
Citation: Wang, Z.; Yang, L.; Yang, J.;

Li, T.; He, L.; Li, Z. A Triple Relation

Network for Joint Entity and Relation

Extraction. Electronics 2022, 11, 1535.

https://doi.org/10.3390/

electronics11101535

Academic Editors: Andrea Prati, Luis

Javier García Villalba, Vincent A.

Cicirello and Gemma Piella

Received: 8 April 2022

Accepted: 7 May 2022

Published: 11 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Triple Relation Network for Joint Entity and
Relation Extraction
Zixiang Wang 1 , Liqun Yang 2, Jian Yang 1, Tongliang Li 1, Longtao He 3 and Zhoujun Li 1,*

1 State Key Lab of Software Development Environment, Beihang University, Beijing 100191, China;
wangzixiang@buaa.edu.cn (Z.W.); jiaya@buaa.edu.cn (J.Y.); tonyliangli@buaa.edu.cn (T.L.)

2 School of Cyber Science and Technology, Beihang University, Beijing 100191, China; lqyang@buaa.edu.cn
3 National Computer Network Emergency Response Technical Team/Coordination Center of China,

Beijing 100029, China; hlt@cert.org.cn
* Correspondence: lizj@buaa.edu.cn

Abstract: Recent methods of extracting relational triples mainly focus on the overlapping problem
and achieve considerable performance. Most previous approaches extract triples solely conditioned
on context words, but ignore the potential relations among the extracted entities, which will cause
incompleteness in succeeding Knowledge Graphs’ (KGs) construction. Since relevant triples give a
clue for establishing implicit connections among entities, we propose a Triple Relation Network (TRN)
to jointly extract triples, especially handling extracting implicit triples. Specifically, we design an
attention-based entity pair encoding module to identify all normal entity pairs directly. To construct
implicit connections among these extracted entities in triples, we utilize our triple reasoning module
to calculate relevance between two triples. Then, we select the top-K relevant triple pairs and
transform them into implicit entity pairs to predict the corresponding implicit relations. We utilize
a bipartite matching objective to match normal triples and implicit triples with the corresponding
labels. Extensive experiments demonstrate the effectiveness of the proposed method on two public
benchmarks, and our proposed model significantly outperforms previous strong baselines.

Keywords: entity and relation extraction; relational triple; triple relation network; implicit triples

1. Introduction

Relational triples’ extraction aims to predict the semantic relation between the two
entities in an unstructured text, which plays a vital role in succeeding Knowledge Graphs’
(KGs) construction. The relational triples are normally presented in the form of (subject,
relation, object). Consider this sentence: “Beijing is known as the capital of China.” From
the sentence, an ideal triple extraction would comprise Beijing, Capital_of, China, in which
Capital_of is the relation of Beijing and China. Therefore, the relational triple in this
example is expressed as (Beijing, Capital_of, China).

Early works in relational triple extraction [1,2] adopted a pipeline manner to extract
entities, classified relations in two separate processes, and achieved promising performance.
The pipeline methods suffer from the error propagation problem, lacking interaction
between the two stages. To address the problem, subsequent works proposed joint learning
of entities and relations, which are mainly categorized as feature-based [3–6] and neural-
network-based [7,8]. To tackle extensive manual efforts in feature-based models, recent
studies observed neural-based models to perform better in the task. However, neural-based
models like [8] fail to extract overlapping triples that the entities share with other triples in
a sentence, as Figure 1 illustrates. Many studies, such as sequence-tagging-based [9–14],
sequence-to-sequence (Seq2Seq)-based [15–20], and table-filling-based [21–24] methods
mainly handle the overlapping problem.

However, most existing methods only extract triples via context words that are ex-
plicitly expressed in a sentence [25]. In fact, there are many implicit relations between

Electronics 2022, 11, 1535. https://doi.org/10.3390/electronics11101535 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11101535
https://doi.org/10.3390/electronics11101535
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2329-231X
https://doi.org/10.3390/electronics11101535
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11101535?type=check_update&version=2

Electronics 2022, 11, 1535 2 of 17

entities. Figure 2 shows an example: the explicit relations Work_for and Locate_in can be
easily recognized by recent models via context words played for and in, respectively, but
hardly recognize the implicit relation Live_in due to the lack of the explicit expression in
the sentence. That means many extracted entities that have certain connections with each
other could be ignored. Consequently, such a scenario will cause the incompleteness of
KGs’ construction [26–28]. To handle these scenarios, the model needs to be equipped with
a reasoning ability.

Birth_place Capital_of

Birth_place

[Barack Obama] was born in [Honolulu], the city of [United States of America].

[Jackie Chan] played as a policeman in his directed film [Police Story].

Act_in

Direct_movie

SEO

EPO

Figure 1. The two examples of overlapping types. Single Entity Overlap (SEO) and Entity Pair
Overlap (EPO) overlapping patterns.

[Fan Zhiyi] played as a defender for [Shanghai Shenhua], a famous football club in [Shanghai].

Work_for Locate_in

Live_in

Figure 2. An example of an explicit relation and an implicit relation. The underlined words are
context words. The red arrow line means the implicit relation between entity pairs without explicit
context words in a sentence.

Given the deficiency of the reasoning ability in previous works, we aim to explore more
potential information in the raw sentence. The relevant triples provide critical evidence
in establishing implicit connections among entities. As shown in Figure 2, the entity pairs
(Fan Zhiyi, Shanghai Shenhua) and (Shanghai Shenhua, Shanghai) are overlapped with
Shanghai Shenhua, which gives a strong clue to connect with entities Fan Zhiyi and
Shanghai. The two selected entities are combined into a new triple (Fan Zhiyi, Live_in,
Shanghai). The implicit relation Live_in can be inferred from the triple pair structures
(A, Work_for, B) and (B, Locate_in, C), which means the implicit connections can be
learned from the structures. Therefore, we extract the critical evidence from the relevant
relational triples.

In this paper, we propose a Triple Relation Network (TRN) to address the implicit
relational triples’ extraction problem. Given a sentence, TRN first utilizes the encoder to
obtain the token representations. Most joint models first extract possible head entities and
then match with all tail entities, leading to high complexity (N2 entity pairs) and perfor-
mance degradation introduced by unrelated entity pairs. To solve this problem, we design
an attention-based entity pair encoding module to obtain the entity pair representations.
We obtain the corresponding relation representations for normal entity pairs. A triple
reasoning module is introduced to calculate the probability of each triple (concatenation of
entity pairs and their relations) pair for reasoning a new triple to find the implicit entity
pairs. The higher probability indicates that there is an implicit connection among entities in
two triples. Our triple generation module is used to decode the entities in a span-based
manner. To calculate the loss of implicit triples and normal triples with the corresponding
training labels, we utilize the bipartite matching loss in the training stage. The experimental

Electronics 2022, 11, 1535 3 of 17

results show that our proposed TRN outperforms the previous strong methods on two
benchmarks and performs better in extracting implicit triples.

Our main contributions include the following:

• We propose a novel Triple Relation Network framework to extract the relational triples,
especially implicit triples existing in raw sentences. This implies that the designed
model possesses the power of reasoning to search for comprehensive information in
the triples’ extraction task.

• We instantiate the proposed TRN, including an attention-based entity pair encoding
module to collect normal entity pairs directly and a triple reasoning module to find the
implicit connections among all entities. Finally, a bipartite matching training objective
is introduced to update the model parameters.

• The main experiments show that the proposed model outperforms the previous strong
baselines on two benchmarks, and analytic experiments verify our motivation in
potential relations among the extracted entities.

2. Related Work

Relational triples’ extraction [29] is a task in which factual knowledge is mined from
texts. It is a well-studied task in information extraction. It is also an important step for the
construction of large-scale KGs such as DBpedia [30], Freebase [31], and Knowledge Vault
[32]. The task is mainly divided into two manners.

Early studies, such as [1,2], addressed the task in a pipeline manner. They extracted
both entities and relations, where entities are extracted first, and then, the relation between
the extracted entities is predicted. These methods ignore the interactions between entities
and relations and cause the error propagation problem.

To prevent error propagation in the pipeline manner, subsequent studies addressed
the task in a joint entity and relation extraction manner, which jointly extracts entities and
relations. Traditional joint models are feature-based methods [3–6], which heavily rely
on feature engineering with manual efforts. To eliminate hand-crafted features, recent
studies proposed the neural-network-based method, which achieves state-of-the-art per-
formance. However, most joint neural models, such as [7], extract entity pairs and predict
the corresponding relations between them through parameter sharing, like the pipeline
manner, in which the decoding setting is separated and still leads to an error propagation
to a certain extent. Unlike parameter sharing, [8] introduced a unified tagging scheme that
transforms the task into an end-to-end sequence tagging problem. Such a joint decoding
setting identifies the entities and relations in one shot instead of two separate processes,
Named Entity Recognition (NER) and Relation Classification (RC), and naturally handle
the error propagation problem.

Most of the previous joint models suffer from the overlapping problem in which triples
are overlapped with one or two entities in a sentence. The problem directly affects sequence
tagging models like [8], since they only recognize each entity token by one tag. To solve this
problem, subsequent studies can be roughly categorized into three frameworks: sequence-
tagging-based [9–14], sequence-to-sequence-based [15–20], and table-filling-based [21–24].
Sequence tagging models the entities and relations’ extraction task as a tagging problem.
To extract an entity (subject or object), the tagging sequences are used to recognize the start
position and end position and sometimes determine the relations simultaneously based on
the subjects extracted. Sequence-to-sequence models regard the triples as a sequence and
view the entities and relations’ extraction task as a generation task. Basically, the method
uses an encoder–decoder architecture just like other generation tasks in NLP. Table filling
converts the entities and relations’ extraction task into filling an n× n table problem (n is
the number of tokens in a sentence). The table elements usually indicate the start and end
positions of two entities or the entity type of each entity.

Despite their success, most methods only capture the connection between two entities
by explicit context words in a sentence. Unfortunately, it is hard for them to identify
relational facts, which are not explicitly expressed in a sentence [25], leading to the under-

Electronics 2022, 11, 1535 4 of 17

utilization of resources and the incompleteness of KGs’ construction [26,27]. To capture the
inner connections, [10] proposed a method named TME to use entity embedding translation
to predict relations. However, TME needs a complicated tagging scheme (position, type,
relation) and cannot handle symmetric relations.

To overcome the aforementioned problems, we designed a framework called TRN.
Following the Seq2Seq-based methods, we modeled triples as a sequence and naturally
dealt with the triple overlapping problem. We propose a triple reasoning module to
construct implicit connections among these entity pairs. It can find the two relevant triples
to infer a new triple and obtain these two implicit entities inside them.

3. Proposed Framework

In this section, we introduce the proposed model TRN. The main architecture of TRN is
shown in Figure 3. Section 3.1 introduces our sentence encoder. Section 3.2 is our entity pair
encoding module. Section 3.3 is our triple reasoning module used to find implicit entity
pairs. Section 3.4 shows our triple generation module. Section 3.5 describes the details of
the bipartite matching training objective.

Fan Zhiyi … defender … Shenhua … Shanghai.

(𝒉𝟏, 𝒓𝟏, 𝒕𝟏)

…

0.8

0.5

0.7

0.6

…

Zhiyi, Shenhua

Linear

Top-K

Linear

relation

triple

0.4

0.6

0.1

0.9

relation

triple

No

triple

No

triple

No

triple

relation

triple

(𝒉𝟐, 𝒓𝟐, 𝒕𝟐) (∅)(𝒉𝟑, 𝒓𝟑, 𝒕𝟑) (∅)(∅) Golds

Live_in Null
score

Weight Sum Weight Sum

score

Work_for

Shenhua, Shanghai

Locate_in

Zhiyi, Shenhua

Work_for

Shenhua, Shanghai

Locate_in

Encoder Entity Pair Encoder

Feed-Forward Network

Softmax

Work_for Locate_in NullNull

Preds

Figure 3. The framework of the proposed model. The red box is a raw entity pair representation. The
green box is an encoded entity pair representation. The orange box is a relation representation. The
pink box is a relation corresponding to an implicit entity pair. As illustrated in the left upper part, we
set k = 2, which means only 2 triple pairs are selected in the final inference.

3.1. Sentence Encoder

Let S = [w1, w2, . . . , wm] be an input sentence, where wi (1 ≤ i ≤ m) is the i-th
token in the sentence and m is the sentence length. We utilized the BERT [33] model as the
encoder. The output of the encoder is denoted as follows:

H = {h1, h2, . . . , hm} (1)

where hi (1 ≤ i ≤ m) ∈ Rd is the encoding representation of the i-th token in a sentence
(including start symbol [CLS] and end symbol [SEP]) and d is the hidden size.

3.2. Entity Pair Encoding

After we obtained the token representations of the current sentence from the sen-
tence encoder, we randomly initialized n-sized raw entity pairs as the initial ones, which

Electronics 2022, 11, 1535 5 of 17

are explicitly recognized by context words. Similar to the decoder of [34], we used the
self-attention and cross-attention parts as the entity pair encoding module. Through the
self-attention layer, we can capture the dependency information regardless of the dis-
tance between entity pairs. Through the cross-attention layer, we can capture contextual
information to establish an entity pair representation. Since there is no causal mask in
the self-attention layer, we fused the information into raw entity pairs in parallel. Thus,
we set n to a relatively large number to ensure we can extract enough entity pairs in a
sentence. Consequently, the representations of n entity pairs E =

{
e1, e2, . . . , en | ei ∈ Rd

}
is computed as:

E = EntityPairEncoding(H; Eraw) (2)

where Eraw denotes n raw entity pairs.
We utilized multi-head attention [35] as the entity pair encoding module. The details

of self-attention and cross-attention are described as:

Attention(Q, K, V) = so f tmax(
QKT
√

d
)V (3)

where Q, K, V are three matrices that are used to transform embeddings to query, key, and
value.

√
d is the scaling factor used to control the dot product value. We set Q = K = V =

Eraw for the self-attention layer and K = V = H for the cross-attention layer.
The multi-head attention is defined by:

headi = Attention(QWq
i , KWk

i , VWv
i) (4)

where Wq
i , Wk

i , Wv
i are learnable matrices and headi is the i-th head representation.

Finally, we obtain the entity pair representations:

E = Concat(head1, ..., heado)Wo (5)

where o is the number of heads in the attention mechanism and Wo is the learnable matrix.

3.3. Triple Reasoning

The triple reasoning module aims to find the implicit entity pairs among relational
triples. Due to the lack of context words to recognize the connection between two implicit
entities, we can only rely on sufficient information provided by the extracted triples, e.g.,
in Figure 2, (Fan Zhiyi, Live_in, Shanghai) is reasoned by (Fan Zhiyi, Work_for, Shanghai
Shenhua) and (Shanghai Shenhua, Locate_in, Shanghai). We also considered a single triple
reasoning case, e.g., from the triple (Beijing, Capital_of, China), we can obtain implicit
triple (Beijing, Locate_in, China) or (China, Contain, Beijing), which infers the new relation
Locate_in or Contain from the two same entities. We treated the single triple reasoning also
as the triple pair reasoning by simply utilizing the triple and its duplicate as the input.

Basically, we utilized the triples to reason the implicit entity pairs in three steps. First,
for each entity pair representation, we collected the relation representation between them
to form the triple representation. Then, we calculated the relevant scores with all other
triples (including itself) to obtain the probabilities for reasoning a new triple. Last, we used
the top-K strategy to select a fixed number of implicit entity pairs.

Formally, given the current entity pair ei and corresponding relation type ri ∈ Rd, the
probabilities of k implicit entity pairs are defined as:

P
(
Eimp

)
= arg max

i,j∈{1,2,...,n}

k

∏ p
(

eimp
ij | ei‖ri, ej‖rj; θ

)
(6)

where Eimp is the entity pair set, k is the number of implicit triples that we set from

our strategy described in the top-K strategy, and eimp
ij ∈ Rd is the implicit entity pair in

which i and j are the indices of two selected triples. The entity pair-embeddings- and

Electronics 2022, 11, 1535 6 of 17

relation-embeddings-based feature vectors are concatenated with ‖ to obtain the triples’
representation.

Triple Collection: To infer the potential relationship between two entities, we need to
capture the information from the triples that we predicted through explicit expressions. In
this part, we calculate the relation representation ri for each entity pair ei:

ri = FFN(ei) (7)

where FFN is a feed-forward network. Then, we obtain the triple representation ti = (ei‖ri) ∈ R2d

as the input of the left upper part of Figure 3.
Scoring Pool: We computed the probability to decide whether an implicit entity

pair could be constructed via a triple pair. Specifically, given the input set of triples
T = [t1, t2, . . . , tn], for any triple ti coupled with tj, the score ωij is computed as:

ωij = Relu(Ws · (ti‖tj) + bs), (i, j = 1, 2, ..., n) (8)

where Ws ∈ R4d×1 and bs are learnable parameters. Figure 4 corresponds to Equation (8).
Note that since not all triple pairs are useful for predicting the new one, the triple that is
irrelevant with respect to the others is supposed to be set at lower scores. Therefore, we
did not use the attention mechanism [36] to calculate the probabilities with others because
all weight scores were restricted to sum to 1. The higher the weight score, the higher the
probability of the triple pair inferring the implicit triple is. Finally, we formed a scoring
pool that collects all the scores calculated in a total of n triples with each other.

Linear

0.9

Zhiyi, Shenhua

Work_for

Shenhua, Shanghai

Locate_in

ReLU

Figure 4. The details of the score operation in Figure 3. The orange box and the green box are
concatenated to be a triple representation. Two triples are used to compute the probability to infer a
new triple.

Top-K Strategy: We introduced our top-K strategy. We selected the top-k relevant
triple pairs based on the scoring pool as candidates, which were used for inferring implicit
triples. When k = 1, our strategy is downgraded to be a “max” approach in selecting
the best triple pair to conduct reasoning. The output is a weighted sum of the features of
implicit entity pair eimp

ij inferred from triple pair ti and tj. Let K denote the indices of the
best k triple pairs. The implicit entity pair is computed as:

eimp
ij = Wψ ·ωij(ti‖tj), ∀(i, j) ∈ K (9)

where Wψ ∈ R4d×d. In this paper, we set k = 5 as the default.

3.4. Triple Generation

Through the triple reasoning module, we obtained k implicit entity pairs and added
them into E. All entities are recognized from the start positions to the end positions in the

Electronics 2022, 11, 1535 7 of 17

sentence with m tokens. We decided the positions of two entities that gave the max values
of four pointer probabilities to form the best entity pair combination.

Given an entity pair ei from E, the classification can be obtained by:

pr = MLPr(ei) (10)

H f use = Dup(ei, m) + Wx,y H (11)

px,y = MLPx,y(H f use) (12)

where pr denotes the probability of the relation type, px,y is the probabilities of start-
ing or ending indices for an entity pair, and superscripts x, y are the combinations of
head/tail and start/end, i.e., phead,start, phead,end, ptail,start, ptail,end. MLP denotes multi-layer
perceptron (same as the FFN of Equation (7)) with the softmax function. Wx,y (super-
script combinations are the same as px,y) are learnable parameters. Dup(·) will duplicate
ei m times into shape Rm×d. Therefore, each predicted triple in the set is denoted as
ŷi = (pr

i , phead,start
i , phead,end

i , ptail,start
i , ptail,end

i), and each golden triple in our training labels
is preprocessed as the same structure yi = (ri, headstart

i , headend
i , tailstart

i , tailend
i).

3.5. Training Objective

Since our training labels are disordered, the main difficulty in training is that our
predicted triples must be in line with the order of the golden triples. Unfortunately, there
are no annotations of implicit triples in either dataset, so it is impossible to be certain that
the predicted implicit triples exactly correspond to the position of the golden implicit triples.
Besides, the model extremely focuses on predicting the order of multiple triples instead of
learning how to generate accurate triples, which hurts the performance in the training stage.
To cope with these permutation problems, we need to find an optimal matching strategy
between the golden triple set and the predicted triple set before computing the training
objective. We used a set prediction loss, which can produce an optimal bipartite matching
by using the Hungarian algorithm [37]. To obtain an optimal matching, we searched for a
permutation of n elements α̂ ∈ Ω(n + k) with the lowest cost as the first step:

α̂ = arg min
α∈Ω(n+k)

n+k

∑
i
Lmatch(yi, ŷα(i)) (13)

where Lmatch(yi, ŷα(i)) is a triple pair matching cost, yi is a golden triple, and yα(i) is a
prediction with index α(i). Ω(n + k) is the space of all permutations of an n + k-sized set.
Lmatch(yi, ŷα(i)) is defined as:

Lmatch

(
yi, ŷα(i)

)
= −1{ri 6=∅}

[
pr

α(i)(ri)

+ phead,start
α(i)

(
head start

i
)

+ phead,end
α(i)

(
head end

i

)
+ ptail,start

α(i)

(
tail start

i
)

+ptail,end
α(i)

(
tail end

i

)]
(14)

Electronics 2022, 11, 1535 8 of 17

Then, we obtain the optimal matching α̂ between the permutation of golden triples
and predictions. We define the final loss Lloss as:

Lloss (y, ŷ) =
n+k

∑
i=1

{
− log pr

α̂(i)(ri)

+ 1{ri 6=∅}

[
− log phead,start

α̂(i)

(
head start

i
)

− log phead,end
α̂(i)

(
head end

i

)
− log ptail,start

α̂(i)

(
tail start

i
)

− log ptail,end
α̂(i)

(
tail end

i

)]}
(15)

where α̂(i) is the element of the optimal permutation.

4. Experiments and Discussion
4.1. Experimental Setup

Datasets In the experimental setup, we evaluated our proposed model on the two
widely used public datasets: New York Times (NYT) [38] and WebNLG [39].

NYT collects sentences from the New York Times corpus, and it contains 24 prede-
fined relation types. Since there are many versions of the NYT dataset, we adopted the
preprocessed version used in [15].

WebNLG contains 171 (The number is miswritten by many works. We followed the
correct number from [23].) predefined relation types. The dataset was originally created for
the Natural Language Generation (NLG) task.

We split the sentences into three categories [15] according to different overlapping
patterns of triples: Normal, SEO, and EPO. The statistics of the two datasets are shown
in Table 1.

Table 1. Statistics of NYT and WebNLG.

Dataset
NYT WebNLG

Train Test Train Test

Normal 37,013 3266 1596 246
SEO 14,735 1297 3406 457
EPO 9782 978 227 26

ALL 56,195 5000 5019 703

Evaluation We utilized the standard micro-F1-scores to evaluate the proposed model
on both NYT and WebNLG. The predicted triple is regarded as correct if the relation type
and two entities are all correct. Note that the entity is correct if the last words of the entity
are correct because both datasets only annotated the last word of every entity. Therefore,
we only performed partial matching evaluations.

Implementation Details We implemented our TRN with the Pytorch framework. For
a fair comparison with previous works [12,23], we used BERTbase_cased in our experiments
as the encoder and set the max length of a sentence to 100. The learning rate of BERT was
set to 10−5, and the attention layers and triple reasoning module were all set to 2× 10−5.
The number of entity pairs n was set to 10, and the number of implicit entity pairs k was
set to 5. We used Byte Pair Encoding [40] to segment the input sentences. The hidden
dimension d was set to 768. We set 3 layers in the entity pair encoding module. The dropout
[41] of the attention layer was set to 0.1. We used AdamW [42] to update TRN to minimize
the loss function defined in Section 3.5 and set the weight decay as 0.02. We trained the
designed model for 200 epochs with the batch size as 32/16 on NYT/WebNLG.

Electronics 2022, 11, 1535 9 of 17

4.2. Comparative Models

We compared TRN with several previous models:

• NovelTagging [8] proposes a novel tagging scheme to transform the task into a se-
quence labeling problem.

• CopyRE [15] proposes an end-to-end based on sequence-to-sequence learning with a
copy mechanism, which jointly extracts triples as the sequence form.

• CopyRERL [16] considers the order of the relational facts extracted from the sentence
to be also important. They utilized reinforcement learning (RL) in the sequence-to-
sequence model to learn the extraction order.

• TME [10] proposes a joint model that is capable of discovering multiple triples in
a sentence via ranking with a translation mechanism. They used a tri-part tagging
scheme (position, type, entity) to obtain entity features.

• ETL-Span [11] proposes a decomposition-based tagging scheme. They decomposed
the joint extraction task into HE extraction and TER extraction, which are interrelated
subtasks. Their model can not only capture the semantic interdependency between
different steps, but also reduces noise from irrelevant entity pairs.

• CopyMTL [17] proposes a Multi-Task Learning (MTL) framework equipped with a
copy mechanism to predict the multi-token entities and accurately differentiate head
and tail entities.

• WDec [18] proposes two approaches to use the sequence-to-sequence architecture to
jointly extract entities and relations.

• CasRel [12] proposes a novel cascade binary tagging framework. They treated relations
as functions that map subjects to objects in a sentence to solve the overlapping problem.

• PMEI [43] designs a multitask learning architecture to extract relevant features that
correlate with entity recognition and relation extraction from the input. They con-
trolled the injection of early predictions to ensure that the extracted task-specific
representations were good for classification.

• TPLinker [23] proposes a novel handshaking tagging scheme to perform the one-stage
extraction. TPLinker is capable of discovering overlapping relations sharing one or
both entities to address the exposure bias problem.

• RMAN [14] proposed a multi-feature fusion sentence representation and decoder
sequence annotation to deal with overlapping triples.

• CGTUniLM [20] proposes a model, contrastive triple extraction with a generative trans-
former. They introduced a single shared transformer module for encoder–decoder-
based generation.

• RIFRE [13] designs a tagging framework, which first extracts all the candidate head
entities and then labels the tail entities with corresponding relations.

4.3. Performance
4.3.1. Main Results

From Table 2, we can observe the results of these baseline models and TRN: our
proposed model TRN significantly outperforms all previous baseline models on NYT and
WebNLG. Concretely, the proposed model achieves 0.6% and 0.5% absolute F1-score im-
provements over the previous method RIFRE [13] on NYT and WebNLG, respectively.
TRN−TRm outperforms all the baseline models even without using the triple reasoning
module. This demonstrates that our basic architecture is more effective in the relational
triples’ extraction task. In addition, for the model TRN−TRm without using the triple
reasoning module, we can observe that there are 0.4% and 0.3% F1-score improvementscom-
pared with TRN on NYT and WebNLG, respectively. This proves the triple reasoning
module can truly extract additional relational triples.

Compared to TME [10], capturing inner connections, TRN performs better on NYT.
This demonstrates that TRN has a strong capability of identifying implicit triples.

We can also observe from Table 2 that there is a gap between the performance on NYT
and WebNLG for most baseline models. In detail, from Table 1, we can find that the ratio

Electronics 2022, 11, 1535 10 of 17

of overlapping triples in WebNLG is larger than the ratio in NYT. The imbalanced data
distribution leads to worse performance on WebNLG since most baselines are weak at
dealing with overlapping triples. We also find that [23] obtains a fair performance on the
two benchmarks, which benefits from their handshaking architecture.

Table 2. The performance of our proposed TRN and previous models on the NYT and WebNLG
test sets. TRN−TRm indicates the model does not use the triples’ reasoning module presented in
Section 3.3. The best scores are in bold font.

Models NYT WebNLG
Precision Recall F1 Precision Recall F1

NovelTagging [8] 62.4 31.7 42.0 52.5 19.3 28.3
CopyRE [15] 61.0 56.6 58.7 37.7 36.4 37.1
CopyRERL [16] 77.9 67.2 72.1 63.3 59.9 61.6
TME [10] 69.6 47.8 56.7 - - -
ETL-Span [11] 84.9 72.3 78.1 84.0 91.5 87.6
CopyMTL [17] 75.7 68.7 72.0 58.0 54.9 56.4
WDec [18] 94.5 76.2 84.4 - - -
CasRel [12] 89.7 89.5 89.6 93.4 90.1 91.8
PMEI [43] 90.5 89.8 90.1 91.0 92.9 92.0
TPLinker [23] 91.3 92.5 91.9 91.8 92.0 91.9
RMAN [14] 87.1 83.8 85.4 83.6 85.3 84.5
CGT [20] 94.7 84.2 89.1 92.9 75.6 83.4
RIFRE [13] 93.6 90.5 92.0 93.3 92.0 92.6

TRN (Our method) 93.0 92.3 92.6 93.5 92.7 93.1
TRN−TRm 92.4 92.1 92.2 93.4 92.4 92.8

4.3.2. Detailed Results on Different Types of Sentences

We compared the ability of the models in extracting relational facts from sentences
with different numbers of triples and different overlapping patterns. The detailed results
are shown in Table 3. The results indicate that the designed model can not only extract
multiple relational triples, but also handles the overlapping problem, which is popular in
this task.

Table 3. The F1-sores on sentences with different numbers of triples. N is the number of triples in a
sentence. The best scores are in bold, while the second-best scores are underlined.

Models NYT WebNLG
Normal SEO EPO N = 1 N = 2 N = 3 N = 4 N ≥ 5 Normal SEO EPO N = 1 N = 2 N = 3 N = 4 N ≥ 5

CopyRE 66.0 48.6 55.0 67.1 58.6 52.0 53.6 30.0 59.2 33.0 36.6 59.2 42.5 31.7 24.2 30.0
CopyRERL 71.2 69.4 72.8 71.7 72.6 72.5 77.9 45.9 65.4 60.1 67.4 63.4 62.2 64.4 57.2 55.7
CasRel 87.3 91.4 92.0 88.2 90.3 91.9 94.2 83.7 89.4 92.2 94.7 89.3 90.8 94.2 92.4 90.9
TPLinker 90.1 93.4 94.0 90.0 92.9 93.1 96.1 90.0 87.9 92.5 95.3 88.0 90.1 94.6 93.3 91.6
RIFRE 90.7 93.2 93.5 90.7 92.8 93.4 94.8 89.6 90.1 93.1 94.7 90.2 92.0 94.8 93.0 92.0

TRN 90.5 94.6 94.6 90.6 93.5 94.1 96.4 91.9 90.4 93.6 90.3 90.0 91.7 94.5 94.8 94.0

From Table 3, we divided the sentences into eight sub-classes for each test set. We
observed that the designed model achieves 10 best scores and 4 second-best scores on
the different numbers of triples over the two benchmarks. Our proposed model achieves
1.9% and 2.0% improvements on NYT and WebNLG over the second-best scores when
N ≥ 5. The results indicate that the designed model is more effective in handling difficult
scenarios.

From the overlapping patterns perspective, we divided the sentences into three sub-
classes (Normal, SEO, EPO). Our proposed model TRN also achieves the best scores in most
cases compared to the previous baselines. There are 1.2% and 0.5% F1-score improvements
compared with the previous best scores in SEO sentences on NYT and WebNLG, respec-
tively, and 0.6% in EPO sentences on NYT. The results indicate that the proposed model is

Electronics 2022, 11, 1535 11 of 17

more suitable for handling complicated scenarios. We found that the implicit triples always
overlapped with others in a sentence. Therefore, we can infer that the improvements of
extracting overlapping triples demonstrate that the designed model can truly extract more
implicit triples.

We found that the EPO performance of TRN on WebNLG was worse than TPLinker
from Table 4. To explore the reasons, we conducted the detailed experiment only on EPO
sentences. The gap of the recall indicates that the proposed model cannot reason more
complete triples than TPLinker. We speculated that one reason is that TRN needs much
more EPO data to fit and evaluate. We found that all previous work classified overlapping
pattern A→B and B→A (A, B are two different entities;→ is the relation between them)
into SEO rather than the EPO defined by [15], which means implicit triples mostly come
from SEO sentences. Thus, EPO sentences only contain A→B and A→B, for which we can
only reason implicit triples in a multi-labeled pattern. The designed model mainly reasons
the implicit triples via SEO sentences. Therefore, the single triple reasoning, i.e., A→B
reasons multi-labeled A→B categorized as EPO very few times.

Table 4. The EPO performance of TRN and TPLinker on the WebNLG test set.

Model Precision Recall F1

TPLinker 97.6 94.3 96.0
TRN 95.5 85.7 90.3

4.4. Ablation Study

Results on Different Model Settings: We conducted ablation studies to prove the
inferential effectiveness on our subset (We collected triple combinations in a sentence,
such as A→B, B→C, coupled with A→C or A→B and A→C, coupled with B→C or A→B,
coupled with B→A combinations. A, B and C are three different entities.), which were
manually selected from NYT. We selected the 100 overlapping pattern sentences, which are
rich in implicit triples. Then, we conducted our experiments on the previous models and
ours with different ablation settings:

• TRN−TRm removes the whole triple reasoning module.
• TRN−TRm-Seq removes the triple reasoning module, adds a causal mask to the entity

pair encoding module to predict the triples order by order (does not distinguish the
difference between normal triples and implicit triples), and uses NLL loss as the
training objective.

We compared the performance of different settings on our subset. The results are
illustrated in Table 5. Compared with these different models, we can observe that: (1)
TRN brings a significant improvement over TRN−TRm on the subset. This indicates that
our triple reasoning module can capture the information among triples and construct
the implicit connections between entities. (2) TRN−TRm also brings improvements over
TRN−TRm-Seq. We considered that it benefits from the training strategy. The bipartite
training strategy successfully matches the normal triples and implicit triples with the
ground truth at the training stage. (3) TRN−TRm-Seq is close to TPLinker and RIFRE on
our subset. Note that the sequence-to-sequence architecture brings improvements over
the generative model CGT. We considered that it benefits from our entity pair encoding
module. (4) TRN−TRm also outperforms the previous models. Even without using the
triple reasoning module, the proposed model obtains a competitive result with respect to
the previous methods. This indicates that using our basic structure is effective.

Electronics 2022, 11, 1535 12 of 17

Table 5. Performance of different models on our subset.

Model F1 Score

CGT 79.1
TPLinker 84.9
RIFRE 85.3
TRN−TRm-Seq 82.2
TRN−TRm 87.6
TRN 91.4

Parameter Analysis: We trained different models and evaluated them on our subset
to analyze how the k number of implicit triples affects model performance. From Figure 5,
we can observe that when k = 0 and n ≤ 4, the F1-score presents a tendency to increase.
This indicates that the number of normal triples is still insufficient to extract from a raw
sentence. There is no obvious increase when n ≥ 4, which means our basic architecture
cannot extract more triples. When k = 5, we can observe that the F1-scores increase slightly
as the number of normal triples progressively increases. This means more implicit triples
will be extracted as normal triples increase. It seems the F1-score will converge when n ≥ 5.

2 3 4 5 6
Number of Normal Triples

0.60

0.65

0.70

0.75

0.80

0.85

0.90

F1

k=0
k=5

Figure 5. Results on different numbers of implicit triples. The green line indicates not using the triple
reasoning module. The purple line indicates there are 5 implicit triples at most in the raw sentence.

4.5. Case Study

Figure 6 shows the three examples of TRN and TPLinker on our subset. The first
example shows an implicit connection (Braga, country, Portugal) by the reversed relation
pattern (Portugal, contains, Braga). In the second example, we infer (Edmund, lived,
Louisiana) by the multi-hop relation patterns (Edmund, lived, Crowley) and (Louisiana,
contains, Crowley). The third example shows (China, contains, Jinghong) in transitive
relation patterns (China, contains, Yunnan) and (Yunnan, contains, Jinghong). We also
observe that the proposed model can recognize new relations from the orange arrows,
although the connections do not givegolden triples.

Electronics 2022, 11, 1535 13 of 17

Alvaro Siza, who …, … de Moura … in [Braga], [Portugal].

contains

country

[Edmund], … was an … judge in [Crowley] , La . , … former [Louisiana] Gov . Edwin [Edwards].
lived

lived
contains

lived

lived

In perhaps … in November in [Jinghong] , a small city in the [Yunnan] province in [China].
containscontains

contains
country

country

Figure 6. Three examples with implicit triples. Entities are in square brackets. Blue arrows indicate
relational connections predicted by TPLinker, as well as ours. The orange arrows indicate that
relational connections do not appear in golden triples. The red arrows indicate implicit connections
only inferred by ours.

4.6. Error Analysis

To validate the effectiveness of TRN in handling implicit triples, we conducted a
supplemental experiment to explore the factors that affect our proposed model. From
Table 6, we observe that there is a trivial gap between (E1, E2) and (E1, R, E2) for NYT both
on EPO and SEO sentences. This implies identifying entity pairs is the bottleneck for TRN.
Furthermore, the recall score is relatively lower than the precision, which is the main factor
affecting F1-score both on EPO and SEO. This reveals that TRN needs to find more entities
that may have connections with each other even if we have already discovered more entity
pairs. For WebNLG, we observe that identifying relations comprise the bottleneck on EPO
sentences, while entity pairs are for SEO sentences. Note that there is a huge gap between
the precision and recall of both (E1, E2) and R on EPO sentences. We discussed the reason
why the designed model performed worse in Section 4.3. We also found that there is
an obvious gap between (E1, E2) and (E1, R, E2) on SEO sentences and R and (E1, R, E2)
on EPO sentences. This demonstrates that there is a mismatch between entity pairs and
relations. Compared with NYT, we speculated the difference to be that the number of
relations in WebNLG is larger than NYT. Therefore, identifying triples is harder for TRN on
WebNLG than NYT. To further explore the factors affecting TRN, we classified several error
sentences and conducted an analysis. From Table 7:

Wrong Arguments: As Sentence #1 shows, the model incorrectly recognizes an entity
mention “Kandahar” as the tail, which is not annotated in the sentence. We argue that
there is no evident clue to demonstrate the relation between “Pakistan” and “Kandahar” in
context. The wrong prediction will be prohibited if the model is equipped with common
sense or real-world knowledge (e.g., Kandahar is a city in Afghanistan; Pakistan is a country
near Afghanistan).

No Relation: There is an evident clue in Sentence #2 to declare that “East China
Normal University” is in “Shanghai”, but the model incorrectly predicts “no_relation” in
our case. We argue that the model normally focuses more on implicit triple reasoning if
there are more overlapping pattern triples in a sentence. Thus, it neglects the extraction of
normal triples. In particular, such “no_relation” wrong cases are rich in predictions. We
can also find in Table 6 that the recall score is much lower than the precision score in any
type of sentence.

Arguments Mismatch: We can observe from Sentence #3 that both entities “Immelt”
and “York” are annotated in the sentence, but they are not related. We argue that the reason
is the same as “no_relation”. It seems balancing the extraction of implicit triples and normal
triples is a problem for the proposed model.

Electronics 2022, 11, 1535 14 of 17

No Label: The designed model in Sentence #4 generated the correct triple, but it did
not exist in the ground truth label. Generally, this situation also occurs, and it is treated as
a wrong case.

Table 6. Results on triple elements. The triple (E1, R, E2) is divided into (E1, E2) and R, where E1
represents the head entity, E2 represents the tail entity, and R represents the relation between E1, E2.

Dataset Element
EPO SEO Overall

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

NYT
(E1, E2) 96.3 93.3 94.8 97.1 92.5 94.7 93.7 93.0 93.4

R 98.4 95.4 96.9 99.4 94.8 97.0 96.9 96.2 96.6
(E1, R, E2) 96.1 93.1 94.6 96.9 92.4 94.6 93.0 92.3 92.6

WebNLG
(E1, E2) 97.7 87.8 92.5 96.4 94.9 95.7 95.8 94.9 95.3

R 96.6 86.7 91.4 96.9 95.5 96.2 96.1 95.2 95.6
(E1, R, E2) 95.5 85.7 90.3 94.3 92.9 93.6 93.5 92.7 93.1

Table 7. Error analysis on different cases.

Instances

Sentence #1: He said he had brought in one bomber called Imran from Pakistan’s
North - West Frontier Province, who blew himself up on the road near the
Kandahar airport.
Gold: (Pakistan, administrative_divisions, Province), (Province, country, Pakistan),
(Pakistan, contains, Province)
Pred: (Pakistan, administrative_divisions, Province), (Province, country, Pakistan),
(Pakistan, contains, Province), (Pakistan, contains, Kandahar)

Sentence #2: The vision for this sort of thing has existed in China for a very long
time,” said Wu Yongyi, deputy dean of the International College of Chinese Studies
at East China Normal University in Shanghai, who has been involved in overseas
language instruction missions since the 1980’s.
Gold: (Shanghai, country, China), (China, contains, Shanghai),
(China, administrative_divisions, Shanghai), (Shanghai, contains, University)
Pred: (Shanghai, country, China), (China, contains, Shanghai),
(China, administrative_divisions, Shanghai), (Shanghai, no_relation, University)

Sentence #3: Jeffrey R. Immelt, chairman and chief executive of General Electric,
bounced a $2000 check to the failed New York gubernatorial campaign of William
F. Weld, according to a campaign finance filing released Monday.
Gold: (Weld, place_lived, York), (Immelt, company, Electric),
(Immelt, major_shareholder_of, Electric), (Electric, major_shareholders, Immelt)
Pred: (Immelt, place_lived, York), (Immelt, company, Electric),
(Immelt, major_shareholder_of, Electric), (Electric, major_shareholders, Immelt)

Sentence #4: It is also adding flights on existing routes to several cities, including
Kiev and Odessa in Ukraine, and Dubrovnik and Split in Croatia.
Gold: (Kiev, country, Ukraine), (Ukraine, capital, Kiev),
(Ukraine, administrative_divisions, Kiev), (Croatia, contains, Dubrovnik),
(Ukraine, contains, Odessa), (Ukraine, contains, Kiev)
Pred: (Kiev, country, Ukraine), (Ukraine, capital, Kiev),
(Ukraine, administrative_divisions, Kiev), (Croatia, contains, Dubrovnik),
(Ukraine, contains, Odessa), (Croatia, contains, Split), (Ukraine, contains, Kiev)

5. Conclusions

In this paper, we proposed a novel framework called TRN to jointly extract triples,
especially implicit triples. Compared with previous methods, our method is capable of
reasoning the implicit triples even if context words are not explicitly expressed in the
relation between two entities. Our model will extract more triples that are overlapped

Electronics 2022, 11, 1535 15 of 17

with others from the sentence, and we utilized an attention-based entity pair encoding
module to extract entity pairs directly. To establish implicit connections among these
extracted entities in triples, we designed a triple reasoning module to select relevant triple
pairs. We matched the training labels with the corresponding triples using the bipartite
method to optimize the matching training objective. Experiment results on two benchmarks
validated the effectiveness of our method over different scenarios. Our proposed model
also outperformed the most advanced baseline, especially for implicit triples’ extraction.

Author Contributions: Z.W.: conceptualization, methodology, formal analysis, software, writing—
original draft. L.Y.: supervision, writing—review and editing. J.Y.: supervision, writing—review
and editing. T.L.: supervision, writing—review and editing. L.H.: supervision, writing—review and
editing. Z.L.: supervision, writing—review and editing. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant Nos.
U1636211, 61672081, 61370126), the 2020 Tencent Wechat Rhino-Bird Focused Research Program, and
the Fund of the State Key Laboratory of Software Development Environment (Grant No. SKLSDE-
2021ZX-18).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: MDPI Research Data Policies at https://github.com/weizhepei/CasRel,
15 September 2020.

Acknowledgments: This work was supported in part by the National Natural Science Foundation
of China (Grant Nos. U1636211, 61672081, 61370126), the 2020 Tencent Wechat Rhino-Bird Focused
Research Program, and the Fund of the State Key Laboratory of Software Development Environment
(Grant No. SKLSDE-2021ZX-18), the National Key R&D Program of China (No.2020YFB1006102),
and the Key Areas R&D Program of Guangdong Province (No.2019B010137003).

Conflicts of Interest: The authors have no competing interests to declare that are relevant to the
content of this article.

References
1. Zelenko, D.; Aone, C.; Richardella, A. Kernel methods for relation extraction. J. Mach. Learn. Res. 2003, 3, 1083–1106.
2. Chan, Y.S.; Roth, D. Exploiting syntactico-semantic structures for relation extraction. In Proceedings of the 49th Annual Meeting of

the Association for Computational Linguistics: Human Language Technologies, Portland, OR, USA, 19–24 June 2011; pp. 551–560.
3. Yu, X.; Lam, W. Jointly identifying entities and extracting relations in encyclopedia text via a graphical model approach. In

Proceedings of the 23rd International Conference on Computational Linguistics: Posters, Beijing, China, 23–27 August 2010; Coling 2010
Organizing Committee: Beijing, China, 2010; pp. 1399–1407.

4. Li, Q.; Ji, H. Incremental joint extraction of entity mentions and relations. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistic, Baltimore, MD, USA, 22–27 June 2014; Volume 1, pp. 402–412.

5. Miwa, M.; Sasaki, Y. Modeling joint entity and relation extraction with table representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1858–1869.

6. Ren, X.; Wu, Z.; He, W.; Qu, M.; Voss, C.R.; Ji, H.; Abdelzaher, T.F.; Han, J. Cotype: Joint extraction of typed entities and relations
with knowledge bases. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017;
pp. 1015–1024.

7. Miwa, M.; Bansal, M. End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; Volume 1, pp. 1105–1116.

8. Zheng, S.; Wang, F.; Bao, H.; Hao, Y.; Zhou, P.; Xu, B. Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme.
In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, BC, Canada,
30 July–4 August 2017; Volume 1, pp. 1227–1236.

9. Dai, D.; Xiao, X.; Lyu, Y.; Dou, S.; She, Q.; Wang, H. Joint extraction of entities and overlapping relations using position-attentive
sequence labeling. Proc. AAAI Conf. Artif. Intell. 2019, 33, 6300–6308. [CrossRef]

10. Tan, Z.; Zhao, X.; Wang, W.; Xiao, W. Jointly Extracting Multiple Triplets with Multilayer Translation Constraints. In Proceedings
of the The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, HI, USA, 27 January–1 February 2019; AAAI Press: Menlo Park, Calif., USA, 2019; pp. 7080–7087.

https://github.com/weizhepei/CasRel
http://doi.org/10.1609/aaai.v33i01.33016300

Electronics 2022, 11, 1535 16 of 17

11. Yu, B.; Zhang, Z.; Shu, X.; Liu, T.; Wang, Y.; Wang, B.; Li, S. Joint Extraction of Entities and Relations Based on a Novel
Decomposition Strategy. In Proceedings of the ECAI 2020—24th European Conference on Artificial Intelligence, including
10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020), Santiago de Compostela, Spain, 29 August–
8 September 2020; Volume 325, pp. 2282–2289.

12. Wei, Z.; Su, J.; Wang, Y.; Tian, Y.; Chang, Y. A Novel Cascade Binary Tagging Framework for Relational Triple Extraction. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020, pp. 1476–1488.

13. Zhao, K.; Xu, H.; Cheng, Y.; Li, X.; Gao, K. Representation iterative fusion based on heterogeneous graph neural network for joint
entity and relation extraction. Knowl. Based Syst. 2021, 219, 106888. [CrossRef]

14. Lai, T.; Cheng, L.; Wang, D.; Ye, H.; Zhang, W. RMAN: Relational multi-head attention neural network for joint extraction of
entities and relations. Appl. Intell. 2022, 52, 3132–3142. [CrossRef]

15. Zeng, X.; Zeng, D.; He, S.; Liu, K.; Zhao, J. Extracting relational facts by an end-to-end neural model with copy mechanism.
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018;
Volume 1, pp. 506–514.

16. Zeng, X.; He, S.; Zeng, D.; Liu, K.; Liu, S.; Zhao, J. Learning the extraction order of multiple relational facts in a sentence with
reinforcement learning. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019;
pp. 367–377.

17. Zeng, D.; Zhang, H.; Liu, Q. Copymtl: Copy mechanism for joint extraction of entities and relations with multi-task learning.
Proc. AAAI Conf. Artif. Intell. 2020, 34, 9507–9514. [CrossRef]

18. Nayak, T.; Ng, H.T. Effective modeling of encoder–decoder architecture for joint entity and relation extraction. Proc. AAAI Conf.
Artif. Intell. 2020, 34, 8528–8535. [CrossRef]

19. Sui, D.; Chen, Y.; Liu, K.; Zhao, J.; Zeng, X.; Liu, S. Joint Entity and Relation Extraction with Set Prediction Networks. arXiv 2020,
arXiv:2011.01675.

20. Ye, H.; Zhang, N.; Deng, S.; Chen, M.; Tan, C.; Huang, F.; Chen, H. Contrastive Triple Extraction with Generative Transformer. In
Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, Virtually, 2–9 February 2021; pp. 14257–14265.

21. Gupta, P.; Schütze, H.; Andrassy, B. Table filling multi-task recurrent neural network for joint entity and relation extraction. In
Proceedings of the COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka,
Japan, 11–16 December 2016; pp. 2537–2547.

22. Zhang, M.; Zhang, Y.; Fu, G. End-to-end neural relation extraction with global optimization. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 9–11 September 2017; pp. 1730–1740.

23. Wang, Y.; Yu, B.; Zhang, Y.; Liu, T.; Zhu, H.; Sun, L. TPLinker: Single-stage Joint Extraction of Entities and Relations Through
Token Pair Linking. In Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, 8–13
December 2020; pp. 1572–1582.

24. Yan, Z.; Zhang, C.; Fu, J.; Zhang, Q.; Wei, Z. A Partition Filter Network for Joint Entity and Relation Extraction. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event/Punta Cana, Dominican
Republic, 7–11 November, 2021; pp. 185–197.

25. Zhu, H.; Lin, Y.; Liu, Z.; Fu, J.; Chua, T.S.; Sun, M. Graph Neural Networks with Generated Parameters for Relation Extraction. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019,
pp. 1331–1339.

26. Angeli, G.; Manning, C.D. Philosophers are mortal: Inferring the truth of unseen facts. In Proceedings of the Seventeenth
Conference on Computational Natural Language Learning, Sofia, Bulgaria, 8–9 August 2013; pp. 133–142.

27. Jia, N.; Cheng, X.; Su, S. Improving knowledge graph embedding using locally and globally attentive relation paths. Adv. Inf.
Retr. 2020, 12035, 17–32.

28. Liang, Z.; Yang, J.; Liu, H.; Huang, K.; Cui, L.; Qu, L.; Li, X. HRER: A New Bottom-Up Rule Learning for Knowledge Graph
Completion. Electronics 2022, 11, 908. [CrossRef]

29. Peng, G.; Chen, X. Entity–Relation Extraction—A Novel and Lightweight Method Based on a Gate Linear Mechanism. Electronics
2020, 9, 1637. [CrossRef]

30. Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z. Dbpedia: A nucleus for a web of open data. In The Semantic
Web; Springer: Manhattan, New York City, USA, 2007; pp. 722–735.

31. Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; Taylor, J. Freebase: A collaboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC,
Canada, 10–12 June 2008; pp. 1247–1250.

32. Dong, X.; Gabrilovich, E.; Heitz, G.; Horn, W.; Lao, N.; Murphy, K.; Strohmann, T.; Sun, S.; Zhang, W. Knowledge vault: A
web-scale approach to probabilistic knowledge fusion. In Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 601–610.

33. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 4171–4186.

http://dx.doi.org/10.1016/j.knosys.2021.106888
http://dx.doi.org/10.1007/s10489-021-02600-2
http://dx.doi.org/10.1609/aaai.v34i05.6495
http://dx.doi.org/10.1609/aaai.v34i05.6374
http://dx.doi.org/10.3390/electronics11060908
http://dx.doi.org/10.3390/electronics9101637

Electronics 2022, 11, 1535 17 of 17

34. Gu, J.; Bradbury, J.; Xiong, C.; Li, V.O.K.; Socher, R. Non-Autoregressive Neural Machine Translation. In Proceedings of the
6th International Conference on Learning Representations, ICLR 2018, Conference Track Proceedings, Vancouver, BC, Canada,
30 April–3 May 2018.

35. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December
2017; pp. 5998–6008.

36. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of
the 3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings, San Diego, CA, USA,
7–9 May 2015.

37. Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [CrossRef]
38. Riedel, S.; Yao, L.; McCallum, A. Modeling relations and their mentions without labeled text. In Proceedings of the Joint

European Conference on Machine Learning and Knowledge Discovery in Databases, Würzburg, Germany, 16–20 September 2010;
pp. 148–163.

39. Gardent, C.; Shimorina, A.; Narayan, S.; Perez-Beltrachini, L. Creating Training Corpora for NLG Micro-Planners. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, BC, Canada, 30 July–4 August 2017;
Volume 1, pp. 179–188.

40. Sennrich, R.; Haddow, B.; Birch, A. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, ACL 2016, Berlin, Germany, 7–12 August 2016; Volume 1.

41. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

42. Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. In Proceedings of the 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019.

43. Sun, K.; Zhang, R.; Mensah, S.; Mao, Y.; Liu, X. Progressive multitask learning with controlled information flow for joint entity
and relation extraction. Assoc. Adv. Artif. Intell. 2021, 35, 13851–13859.

http://dx.doi.org/10.1002/nav.3800020109

	Introduction
	Related Work
	Proposed Framework
	Sentence Encoder
	Entity Pair Encoding
	Triple Reasoning
	Triple Generation
	Training Objective

	Experiments and Discussion
	Experimental Setup
	Comparative Models
	Performance
	Main Results
	Detailed Results on Different Types of Sentences

	Ablation Study
	Case Study
	Error Analysis

	Conclusions
	References

