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Abstract: Along with the recent advance in wireless networking and data processing technologies,
demands for low latency communication (LLC) are increasing in a wide variety of future-driven
autonomous applications such as a smart factory, self-driving cars, and so on. The fifth generation of
cellular mobile communications (5G) will cover this need as one of three key capacities in their usage
scenarios: enhanced mobile broadband (eMBB), massive machine type communication (mMTC),
and ultra-reliable low-latency communications (URLLC). The 5G systems are composed of mobile
devices and various internet of things (IoT) devices for sensing, acting, and information services; they
configure diverse networking topologies such as direct mobile-to-mobile, also known as device-to-
device (D2D). In the 5G D2D network systems, the network topologies are easily broken because
of the mobile devices such as smartphones, IoT devices, and so on. Thus, for the highly flexible
and extensible 5G D2D network systems, mobility support for the mobile devices is necessary. In
this paper, we first explore the mobility issues in beyond 5G D2D. Since there are static and mobile
elements in the 5G application domains such as the smart factory, overall mobility would lead
to highly frequent topology reconfiguration or connectivity reconstruction. Thus, latency-related
problems derived from topology changes and connectivity failures due to the mobility are addressed.
To handle the problems, a fast connectivity construction scheme, denoted by LMK, is proposed with
a deep neural network dealing with learning on radio signal information in order to achieve the LLC.
Evaluation results demonstrate that the proposed framework can provide reliable connectivity for
the MAC layer link with a low latency data transmission.

Keywords: low latency communication; out-band device-to-device; 5G

1. Introduction

The integration between computing and networking environments has been widely
promoted for intelligent service provisioning to end users and effective resource usage
for the next generation of manufacturing. This convergence paves the way toward the
information and communication technologies (ICT) revolution, denoted by IoT. IoT is the
network of physical devices, vehicles, home appliances, and other items embedded with
electronics, sensors, actuators, and connectivity which enables these things to connect,
collect and exchange data [1]. The IoT paradigm is changing the way people interact
with things around them and our everyday life for activities, tasks and rituals in an
easy using information and intelligence hidden in the network linking the things [2].
This pervasive paradigm of IoT increases the value of information generated by many
interconnections between people-things and things-things and the transformation of the
processed information into knowledge for the benefit of mankind and industries.

IoT is leading to the substantial deployment of ubiquitous computing with many
applications built around various types of sensors and actuators. During the past decade,
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most issues at device levels have been solved and nowadays, there is a growing trend in the
integration of sensors and novel communication technologies such as D2D for information-
based smart systems [3]. IoT is taking the center stage as the devices are expected to
form a significant portion of the 5G network that is on the horizon. IoT communication
through D2D will complement intelligent data analysis expected to drastically change the
landscape of various industries and our daily lives [4]. In other words, the proliferation of
connected smart devices with receiving the boost in data analysis via artificial intelligence
(AI) technologies leads to further innovation of manufacturing into the fourth industrial
revolution and intelligent living areas such as smart homes and communities.

This paper brings up a key point of technical issues to realize the integration vision of
IoT and the 5G: Context-awareness [5]. To provide adequate intelligent services, systems
should be aware of information on surrounding service components and their present
status, and automatically adapt to dynamic situations. Data sensing and acquisition are the
first main functionality and cognitive computing provides information and intelligence
for smart applications. During/after service provisioning, service components also deliver
feedbacks as improving context. Each element and process are adopted on different devices
as a separated service component or embedded into one device according to the application
depth from global adaptation to very local controls in a service domain.

The context-aware service loop can be applied to D2D based social networking [6],
smart home with connectable intelligent appliances [7], next generation manufacturing
via machine-type D2D networking [8], self-driving cars with cameras and huge numbers
of sensors, and so on. Those applications are composed of highly heterogeneous devices,
especially for mobility and computation capacity [9]. It means that the context-aware smart
application system should rely on dynamically-reforming D2D networks that easily harm
the fundamental requirements of smart applications such as real-time collaboration and
sustainability.

In the 5G network systems, as a key component of Industry 4.0, robotics and au-
tonomous systems require eMBB, mMTC, and URLLC. The first 5G standards, called
Release 15 New Radio (NR), only support some level of flexibility and scalability of config-
urations as a general framework [10]. Although the 5G NR supports some requirements,
URLLC cannot be guaranteed under the 5G NR defined by the 3rd Generation Partnership
Project (3GPP) [11]. Thus, it should be applicable for limited use cases and optimized.

This paper addresses the seamless network coverage issues to support URLLC in
beyond 5G D2D, and then proposes a solution based on the context-aware service loop to
handle the issues. The contribution of this study will be represented as follows:

• This paper makes closely investigates of seamless connectivity issues with mobility
which are eventually related to real-time demands on applications based on beyond
5G D2D networks.

• In addition, the fast connectivity construction framework relying on on-node analyses
of networking contexts is proposed with the goal achievement on low latency.

• On-node analyses are designed through a light-weight deep neural network (DNN)
technique, and it is examined by various experimental scenarios.

The rest of this paper is organized as follows. In Section 2, we present the state-of-the-
art in terms of the 5G networks, D2D, and cognitive computing. In Section 3, we explain of
our fast connectivity construction scheme. Then, we address DNN based analyses in detail
in Section 4. Finally, we conclude this paper with further discussions and future works in
Section 5.

2. D2D, IOT, and Context-Awareness
2.1. D2D Communications in Smart Applications

5G D2D is recently receiving more interest as a critical technology promoting the
industrial 4.0 paradigm and many daily life applications with situation-adapted intelligence
since D2D is able to support machine-type communication, flexible/extensible connectivity
to the Internet, and temporal dynamic inter-connectivity. Figure 1 presents those scenarios
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with D2D and other 5G connectivity techniques. Particularly, Figure 1a illustrates the smart
factory scenario with various IoT devices such as drones, autonomous mobile robots, and
producing robots which can be connected via a range of the 5G connectivity techniques
such as small cells, D2D, and Drone-supported communication [9]. Then, D2D takes the
role to inter-connect among diverse cells as well. In the other case, social networking is
configured through the D2D technique, as shown in Figure 1b, where two social groups are
formed via D2D. It means that the members of each group might be willing to open their
own smart mobile device capacity to other members since D2D relies on sharing resources
of devices in communication, which is the biggest reason to prevent this novel paradigm
deployment nowadays [5,6].

Small Cell

Drone Cell

D2D

(b)

Macro Cell

Small Cell

D2D

Social Group 1

Social Group 2

(a)

Figure 1. 5G D2D Based Smart Applications with Mobility and LLC Issues: (a) The Smart Factory
Scenario and (b) The Social Networking Scenario.

Such D2D communication is fulfilled by not only radio access technologies, e.g.,
cellular series, WiFi, and Bluetooth, but also various routing techniques with many different
network topologies according to diverse environmental and situational properties [12].
D2D communication can configure tree or mesh networks via inband or outband spectrums
and be configured in conventional control and data planes or direct ways without support
from an eNB in 4/5G. Moreover, it can support offloading from a macro cell to small cells,
as well as isolated networking in out-of-network coverage [13]. Such D2D networks are
minutely composed of three networking phases: Infrastructure-to-Device (I2D), Device-to-
Infrastructure (D2I), and Device-to-Device (D2D) networking. Each networking phase can
be performed in single-hop or multi-hop communication.

D2D supports highly flexible and extensible networking technology based on the mov-
ing devices such as smartphones and smart IoT devices as represented in Figure 1. It means
that the network topology is easily broken due to the mobility of various devices, which
can affect communication performance such as latency and reliability. Thus, connectivity
guarantee and fast network topology recovery should be taken into consideration for the
smart applications that rely on D2D architecture for real-time and reliable communication.
Fast connectivity is essential for D2D network sustainability because of the battery con-
straints of D2D to ensure network lifetime [14]. Furthermore, the mobility of devices may
bring about the discontinuation of established connection sessions in D2D system [15]. As
a result, there are several challenges associated with D2D communication.

2.2. Context-Aware 5G Systems with Mobile Edge Computing and D2D

The development of 5G D2D systems for intelligent applications is continuously ex-
panding toward smart homes, industrial plants, and intelligent transportation systems [16].
The 5G systems are expected to play a critical role in supporting the IoT with their con-
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nectivity and ubiquitous coverage [7]. The IoT needs computation and storage ability to
support the sensors and actuators. The smart service based on cognitive computing with
the IoT will be fulfilled for time-constrained applications. Recently, mobile edge comput-
ing has been increasingly used in various application designs. In the 5G mobile systems,
mobile edge computing has been recognized as a key enabling technology for a wide range
of applications and scenarios [8]. D2D networks are a novel paradigm for mobile edge
computing in the 5G and beyond 5G networks because of energy efficiency, reduced delay,
limited interference, and so on [17]. A lot of mobile devices execute sustainable computa-
tion tasks without connecting the base station or the core network in D2D networks [18].
Furthermore, D2D networks support the applications for the sensing data to the mobile
edge. However, there might be many hurdles for reliable and fast data delivery over D2D
networks since D2D is composed of mobile devices, and they configure multi-hop mesh
networks where connection links between devices can be frequently changed [13].

Cognitive computing for context-awareness has been developing for the last couple of
years to generate information or intelligence eventually. The state-of-the-art studies have
been based on DNN, which is denoted by deep learning. The DNN technologies such as
multi-layered neural network, convolutional neural network (CNN), and recurrent neural
network (RNN) are exploited in various environments for smart applications [19]. These
studies have been worked on communication or IoT related services such as cognitive
radio networks [20], indoor localization [21,22], wireless signal identification [23], mobile
data sensing [24], and so on. These studies are also following the sequence of service
loop mentioned above, and all the cognitive computing in them are based on one model:
train offline-use online. Data acquisition is fulfilled as pre-operation separately; then,
data training with DNN model is performed at the mobile edge as an offline operation.
The trained weight of the DNN is used for the real-time sensory data. However, these
methods for the DNN are not suitable for D2D based time-critical application cases because
D2D network connectivity highly suffers from the mobility of component devices and this
situation frequently happens before making connection to the mobile edge. Thus, on-node
cognitive computing should be considered.

3. Fast Connectivity Construction Framework

Time-constrained communication for managing assets and goods in the on-site pro-
duction and logistics sectors is one of the essential demands on reliable management to
avoid faults and improve the overall manufacturing automation efficiency for the smart
factory. Each device for mobile social group communication needs to continuously connect
with each other and the Internet. Thus, D2D network connectivity should be constructed
all the time to tightly and intelligently deal with low latency against mobility. This section
proposes a fast connectivity construction framework based on the DNN-based cogni-
tive computing.

As mentioned in the analyses of related work, it is not possible to fulfill the offline
training for predicting information of D2D networking connectivity since D2D networks
are frequently detached from the mobile edge computers where the offline training is
performed. This is because that D2D networks can be configured out of the mobile network
coverage even via outband signaling. Therefore, the proposed fast connectivity construction
framework is designed with on-node DNN-based learning. It means that a smartphone
should be able to perform context acquisition, DNN computation, and intelligent actions to
satisfy the low latency requirement against mobility. The proposed DNN is a light-weight
neural network, not taking high computation power and trained by a not large amount of
data batch.

3.1. Framework Operations

In this subsection, operations of our fast connectivity construction framework are
presented. As shown in Figure 2, there are two phases for this framework that mostly
covers the context-aware service loop. In the training phase, a mobile device in a D2D
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network acquires context and trains the context on the light-weight multi-layer neural
network (LMK). In the connecting phase, the mobile device asks for connectivity path
prediction of LMK to calculate the adequate networking path in the current time and
location. Furthermore, both phases in the proposed framework are carried out within each
mobile device in a D2D network.

Training Phase

Connecting Phase

LMK
- NN Training

Connectivity Context
- MAC Table
- Network Layer Routing Table

Signal State Context
- Real-time RSS-Value Table

LMK
- NN Query

Signal State Context
- Real-time RSS-Value Tuples

Preparing Input Batch/Query
(Labeling, Normalization) 

Feature Vector

Deep NN

Input Layer Output LayerHidden Layers

Trained Weight

Query Result

Connectivity Prediction

n1

n2

n3

n4

nk

h1

h2

h3

h4

hk

c1

c2

c3

c4

ck

f
⅀

Backpropagation

Connectivity Context
- MAC Table

ConnectionRouting Table Update

Figure 2. Fast Connectivity Construction Framework with On-node Training and Query.

There are two types of context in the training phase as DNN training data sets: con-
nectivity context and signal state context. The connectivity context is about MAC layer link
information and network layer routing path data over the MAC layer links. The signal state
context is currently measured by radio signal strength (RSS) values, and they are prepared
as a table. All the data are exploited to train LMK. In other words, when a mobile device
joins a D2D network such as a producing sector in the smart factory or a social group over
social networking domains, it starts acquiring such context during a round and training the
context into LMK. After that minimum condition for using LMK, the device continuously
maintains the LMK in update-to-date status.

In the connecting phase, each mobile device in a D2D network prepares two contexts
in terms of signal state context for real-time RSS values and connectivity context in the
MAC layer. The mobile device queries connecting path prediction for updating the routing
table in the network layer to the pre-trained LMK. Then, the mobile device performs the
control plane for networking and updates the routing table in the network layer. Finally,
each mobile device can be ready to send data packets to other mobile devices in the
D2D network.

3.2. Light-Weight Multi-Layer Neural Network

The designed light-weight multi-layer neural network, denoted by LMK, is based
on k numbers of nodes in the input layer, hidden layers, and output layer. The number
k indicates the maximum number of the MAC layer links and the hidden layers use
minimum numbers of k nodes in LMK. LMK uses the Sigmoid function as the activity
function, and then error backpropagation is calculated at the output and distributed back
through the network layers. In order to reduce computing overhead, LMK does not exploit
the convolutional layer and the SoftMax function. When the input data is prepared, the
connectivity context and signal state context are utilized to make the label for training data,
and the prepared input batch is normalized. LMK carries out the training of data. During
the training, the error against the label is propagated backward. After multiple numbers
of epochs, LMK can be ready to receive queries with the trained weight of its own neural
network. Then, a query can be conducted in LMK by preparing a data set with real-time
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RSS values and current MAC layer links. LMK provides query in the trained NN and
decides on connecting paths as the prediction result.

LMK is composed of multi-layer perceptron (MLP) based on DNN [25]. The MLP is a
type of neural network using the backpropagation method and should be pre-trained by a
lot of data to calculate the required prediction accuracy [26]. Equation (1) represents the
inputs, weights, and bias that are computed for MLP.

f j =
n

∑
i=1

wij · xi + β j, (1)

where n, xi, β j, and wij show the number of inputs, the input variable of i, bias term, and
the connection weight respectively. The Sigmoid function is used as the activation function
in the MLP model. The Sigmoid function is described in Equation (2), and the output of the
neuron j can be measured in Equation (3) as follows [19,25]:

sj(x) =
1

1 + exp (− f j)
, (2)

yi = f j ·
(

n

∑
i=1

wij · xi + β j

)
. (3)

4. Performance Analysis

In this section, the performance of the proposed framework with on-node cognitive
computing is evaluated. For the performance analysis, the proof-of-concept based on a
smart mobile device is developed [27,28]. All the process of the proposed framework,
including LMK, is implemented on the smart mobile device. The detailed implementation
and experimental environments are elaborated in the following subsections.

4.1. Proof-of-Concept and Testbed Setup

The proof-of-concept is developed based on four devices (one smartphone and three
laptops) that configure an out-band D2D network via WiFi [14]. In the D2D network
system, one smartphone has its mobility with maintaining network connection to the fixed
laptops through the fast connectivity construction for low latency communication. Our
D2D network system and LMK are implemented with the Java programming language. A
summary of the parameters used in the simulations is shown in Table 1.

Table 1. Simulation parameters.

Parameter Value

D2D Type Outband D2D with WiFi [14]
Number of Nodes 4 (3 fixed and 1 mobile) [29]
Number of Packets 70∼100 [30]

Moving Speed About 5 km/h [29]
DNN Epoch 100∼1000

Number of DNN Layers 3∼9

Three laptops in the network system are the node denoted by DN1, DN2, and DN3,
respectively. DNs are performed as access points with their own MAC link names. The
smartphone has mobility with 5 km/h moving speed in the coverage of the DNs and
acquires context while moving [29]. If the smartphone moves out of coverage of the DN, it
tries to make a connection to another DN because the smartphone might be able to lose
L3 connection to the DN. When the smartphone moves forward passing through the DNs,
latency time is measured to maintain connection to the DN, which shows the best link
quality. Thus, the smartphone is always ready to send data packets to the DNs without
delay for making a connection [30]. In addition, the performance related to LMK with
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changes in DNN properties is investigated in order to check through the appropriate setup
for cognitive networking applications based on on-node deep learning.

4.2. Experimental Results

Figure 3 shows comparison results on the prediction success ratio of LMK according to
the number of epochs for context training as well as the number of DNN layers of LMK. As
shown in Figure 3a, the prediction success ratio converges to 0.86 at 900 epochs within 6.48
s of the training time. Figure 3b represents the results and changes in the number of DNN
layers from 3 to 9. The results show that the number of layers affects decreasing prediction
success ratio. Thus, 3 layers of DNN training are the best performance of prediction success
ratio and training time.

(a) (b)

0 200 400 600 800 1000

0.3

0.4

0.5

0.6

0.7

0.8

0.9
  Sucess Ratio
  Training Time

Epoch

Pr
ed

ic
tio

n 
Su

ce
ss

 R
at

io

0

2

4

6

8
Training Tim

e (sec)

3 4 5 6 7 8 9

0.3

0.4

0.5

0.6

0.7

0.8

0.9
 Success Ratio
 Training Time

Number of Layers

Pr
ed

ic
tio

n 
Su

cc
es

s 
R

at
io

5

10

15

20

25

Training Tim
e (sec)

Figure 3. Comparison of Prediction Success Ratio: (a) Numbers of Epochs and (b) Numbers of
DNN Layers.

Figure 4 shows the comparison results for latency. The latency time of DN1, DN2, and
DN3 for the proposed scheme is 15, 15, and 19, respectively. For the general connectivity
scheme, the latency time of DN1, DN2, and DN3 are 23, 27, and 33, respectively. According
to the results, the smartphone can maintain the network connection over the best MAC
link to the DNs with low latency even though it is continuously moving. On average, the
latency of the proposed scheme in terms of connectivity reconstruction is 11.3 s faster than
general connectivity construction.

D N 1 D N 2 D N 3
0

5

1 0

1 5

2 0

2 5

3 0

3 5

La
ten

cy 
(se

c)

  P r o p o s e d  F a s t  C o n n e c t i v i t y  C o n t r u c t i o n
  G e n e r a l  C o n n e c t i v i t y  C o n s t r u c t i o n

Figure 4. Latency of Routing Paths.

In Figure 5, 100 data packets are transmitted for analyzing the connectivity construc-
tion. As shown in Figure 5a, total delivery time of the general connectivity construction
take a long time than the proposed scheme because the general connectivity construction
maintains the link connection even though the state of the link is not good. In addition,
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there is a delay in which information to be sent cannot be transmitted for a reconnection
time. On the other hand, since the proposed scheme is based on the MLP that can be
used to detect the relative position when a specific signal combination is measured, the
best link is selected. Therefore, in the case of D2D communication in which mobile nodes
frequently reconnect, the proposed scheme can transmit data with low latency faster than
the general connectivity scheme. In Figure 5b, the general connectivity scheme shows
that the transmission ratio for packet data transmission is lower than that of the proposed
scheme. The proposed scheme shows 100% of packet delivery ratio, while the general
connectivity scheme shows 88% of packet delivery ratio.
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Figure 6a shows 70 data packets are transmitted while the mobile smartphone moves
among DN1, DN2, DN3. The proposed scheme performs direct connection between devices
to be transmitted irrespective of the link signal strength, and L3 transmission between
nodes can be performed directly. Thus, it can be seen that 70 data packets are delivered
directly to each DN. On the other hand, in the general connectivity construction method,
data is transmitted only through the connection link to DN1, so both data to be sent to
DN2 and DN3 are sent to DN1. Figure 6b measures the total delivery times to transmit
the entire data with 70 data packets. The proposed scheme takes 96 s, whereas the general
connectivity scheme takes 124 s of transmission time. This means that the proposed scheme
shows performance improvement in relation to the transmission delay.
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Figure 6. (a) Number of Delivered Packets. (b) Total Delivery Times.

5. Conclusions and Future Work

This paper investigates network connectivity issues against the mobility of nodes
in beyond 5G D2D network, which is receiving increasing interest for supporting future-
driven smart applications such as smart factory, the 5G based social group networking,
and so on. The fast connectivity construction framework is proposed for time-sensitive
smart applications to achieve LLC properties. The proposed framework is composed
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of two phases: the training phase and connecting phase. In the training phase, data
about D2D network context are acquired and trained based on on-node deep learning,
named LMK. To calculate the networking path, the mobile device uses the LMK in the
connecting phase. Based on the performance analysis, the proposed D2D network scheme
can maintain its networking connectivity over the best MAC layer link at 11.3 s faster than
general connectivity construction. In addition, we demonstrate that the proposed scheme
can transmit data faster than the general connectivity scheme while maintaining 100% of
the packet delivery ratio. To improve performance metrics on latency suffering from the
handover in D2D networks, the hierarchical deep learning architecture based on mobile
edge computing and cloud computing are taken into account as future work. Furthermore,
the battery power consumption of mobile devices has increased with a lot of data in the
5G network system. In future works, we will consider the battery power consumption of
mobile devices.

Author Contributions: Conceptualization, S.P. and S.S.; methodology, S.-H.L. and T.-S.K.; experi-
ments and simulation, S.S. and S.P.; writing S.P. and S.-H.L.; supervision, S.P. and T.-S.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ortiz, A.M.; Hussein, D.; Park, S.; Han, S.N.; Crespi N. The Cluster Between Internet of Things and Social Networks: Review and

Research Challenges. IEEE Internet Things J. 2014, 1, 206–215. [CrossRef]
2. Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial Internet of Things: Challenges, Opportunities, and

Directions. IEEE Trans. Ind. Informat. 2018, 14, 4724–4734. [CrossRef]
3. Condoluci, M.; Araniti, G.; Mahmoodi, T.; Dohler, M. Enabling the IoT Machine Age With 5G: Machine-Type Multicast Services

for Innovative Real-Time Applications. IEEE Access 2016, 4, 5555–5569. [CrossRef]
4. Park, H.; Lee, Y.; Kim, T.; Kim, B.; Lee, J. Handover Mechanism in NR for Ultra-Reliable Low-Latency Communications. IEEE

Netw. 2018, 32, 41–47. [CrossRef]
5. Hussein, D.; Park, S.; Han, S.N.; Crespi, N. Dynamic Social Structure of Things: A Contextual Approach in CPSS. IEEE Internet

Comput. 2015, 19, 12–20. [CrossRef]
6. He, Y.; Yu, F.R.; Zhao, N.; Yin, H. Secure Social Networks in 5G Systems with Mobile Edge Computing, Caching, and Device-to-

Device Communications. IEEE Wirel. Commun. 2018, 25, 103–109. [CrossRef]
7. Vallati, C.; Virdis, A.; Mingozzi, E.; Stea, G. Mobile-Edge Computing Come Home Connecting Things in Future Smart Homes

Using LTE Device-to-Device Communications. IEEE Consum. Electron. Mag. 2016, 5, 77–83. [CrossRef]
8. Bisio, I.; Garibotto, C.; Grattarola, A.; Lavagetto, F.; Sciarrone, A. Exploiting Context-Aware Capabilities over the Internet of

Things for Industry 4.0 Applications. IEEE Netw. 2018, 32, 101–107. [CrossRef]
9. Orsino, A.; Ometov, A.; Fodor, G.; Moltchanov, D.; Militano, L.; Andreev, S.; Yilmaz, O.N.C.; Tirronen, T.; Torsner, J.; Araniti, G.;

Iera, A.; dohler, M.; Koucheryavy, Y. Effects of Heterogeneous Mobility on D2D- and Drone-Assisted Mission-Critical MTC in 5G.
IEEE Commun. Mag. 2017, 55, 79–87. [CrossRef]

10. Baek, S.; Kim, D.; Tesanovic, M.; Agiwal, A. 3GPP New Radio Release 16: Evolution of 5G for Industrial Internet of Things. IEEE
Commun. Mag. 2021, 59, 41–47. [CrossRef]

11. Tilmaz, O.N.C.; Teyeb, O.; Orsino, A. Overview of LTE-NR Dual Connectivity. IEEE Commun. Mag. 2019, 57, 138–144.
12. Shaikh, F.S.; Wismüller, R. Routing in Multi-hop Cellular Device-to-Device (D2D) Networks: A Survey. IEEE Commun. Surv. Tutor.

2018, 20, 2622–2657. [CrossRef]
13. Jin, J.; Luo, J.; Li, Y.; Xiong, R. COAST: A Cooperative Storage Framework for Mobile Transparent Computing Using Device-to-

Device Data Sharing. IEEE Netw. 2018, 32, 133–139. [CrossRef]
14. Ansari, R.I.; Chrysostomou, C.; Hassan, S.A.; Guizani, M.; Mumtaz, S.; Rodriguez, J.; Rodrigues, J. J. 5G D2D networks:

Techniques, challenges, and future prospects. IEEE Syst. J. 2018, 12, 3970–3984. [CrossRef]
15. Waqas, M.; Niu, Y.; Li, Y.; Ahmed, M.; Jin, D.; Chen, S.; Han, Z. A comprehensive survey on mobility-aware D2D communications:

Principles, practice and challenges. IEEE Commun. Surv. Tutor. 2020, 22, 1863–1886. [CrossRef]
16. Perera, C.; Liu, C.H.; Jayawardena, S.; Chen, M. A Survey on Internet of Things from Industrial Market Perspective. IEEE Access

2014, 2, 1660–1679. [CrossRef]
17. Huang, B.; Liu, X.; Wang, S.; Pan, L.; Chang, V. Multi-agent reinforcement learning for cost-aware collaborative task execution in

energy-harvesting D2D networks. Comput. Netw. 2021, 195, 108176. [CrossRef]
18. Hashima, S.; ElHalawany, B.M.; Hatano, K.; Wu, K.; Mohamed, E.M. Leveraging machine-learning for D2D communications in

5G/beyond 5G networks. Electronics 2021, 10, 169. [CrossRef]

http://doi.org/10.1109/JIOT.2014.2318835
http://dx.doi.org/10.1109/TII.2018.2852491
http://dx.doi.org/10.1109/ACCESS.2016.2573678
http://dx.doi.org/10.1109/MNET.2018.1700235
http://dx.doi.org/10.1109/MIC.2015.27
http://dx.doi.org/10.1109/MWC.2018.1700274
http://dx.doi.org/10.1109/MCE.2016.2590100
http://dx.doi.org/10.1109/MNET.2018.1700355
http://dx.doi.org/10.1109/MCOM.2017.1600443CM
http://dx.doi.org/10.1109/MCOM.001.2000526
http://dx.doi.org/10.1109/COMST.2018.2848108
http://dx.doi.org/10.1109/MNET.2018.1700173
http://dx.doi.org/10.1109/JSYST.2017.2773633
http://dx.doi.org/10.1109/COMST.2019.2923708
http://dx.doi.org/10.1109/ACCESS.2015.2389854
http://dx.doi.org/10.1016/j.comnet.2021.108176
http://dx.doi.org/10.3390/electronics10020169


Electronics 2022, 11, 1580 10 of 10

19. Nosratabadi, S.; Ardabili, S.; Lakner, Z.; Mako, C.; Mosavi, A. Prediction of Food Production Using Machine Learning Algorithms
of Multilayer Perceptron and ANFIS. Agriculture 2021, 11, 408. [CrossRef]

20. Merchant, K.; Revay, S.; Stantchev, G.; Nousain, B. Deep Learning for RF Device Fingerprinting in Cognitive Communication
Networks IEEE J. Sel. Top. Signal Process. 2018, 12, 160–167. [CrossRef]

21. Wang, X.; Gao, L.; Mao, S.; Pandey, S. CSI-Based Fingerprinting for Indoor Localization: A Deep Learning Approach. IEEE Trans.
Veh. Technol. 2017, 66, 763–776. [CrossRef]

22. Dai, H.; Ying W.; Xu, J. Multi-layer Neural Network for Received Signal Strength-based Indoor Localisation. IET Commun. 2016
10, 717–723. [CrossRef]

23. Kulin, M.; Kazaz, T.; Moerman, I.; De Poorter, E. End-to-End Learning From Spectrum Data: A Deep Learning Approach for
Wireless Signal Identification in Spectrum Monitoring Applications. IEEE Access 2018, 6, 18484–18501. [CrossRef]

24. Ravì, D.; Wong, C.; Lo, B.; Yang, G. A Deep Learning Approach to on-Node Sensor Data Analytics for Mobile or Wearable Devices.
IEEE J. Biomed. Health Inform. 2017, 21, 56–64. [CrossRef]

25. Rozos, E.; Dimitriadis, P.; Mazi, K.; Koussis, A.D. A Multilayer Perceptron Model for Stochastic Synthesis. Hydrology 2021, 8, 67.
[CrossRef]

26. Sopelsa Neto, N.F.; Stefenon, S.F.; Meyer, L.H.; Bruns, R.; Nied, A.; Seman, L.O.; Gonzalez, G.V.; Leithardt, V.R.Q.; Yow, K.C. A
Study of Multilayer Perceptron Networks Applied to Classification of Ceramic Insulators Using Ultrasound. Appl. Sci. 2021,
11, 1592. [CrossRef]

27. Choi, K.W.; Wiriaatmadja, D.T.; Hossain, E. Discovering mobile applications in cellular device-to-device communications: Hash
function and bloom filter-based approach. IEEE Trans. Mob. Comput. 2015, 15, 336–349. [CrossRef]

28. Zhang, B.; Li, Y.; Jin, D.; Hui, P.; Han, Z. Social-aware peer discovery for D2D communications underlaying cellular networks.
IEEE Trans. Wirel. Commun. 2014, 14, 2426–2439. [CrossRef]

29. Farag, H.; Österberg, P.; Gidlund, M.; Han, S. RMA-RP: A reliable mobility-aware routing protocol for industrial iot networks. In
Proceedings of the 2019 IEEE Global Conference on Internet of Things (GCIoT), Dubai, United Arab Emirates, 4–7 December
2019; pp. 1–6.

30. Orozco-Santos, F.; Sempere-Payá, V.; Silvestre-Blanes, J.; Albero-Albero, T. Multicast Scheduling in SDN WISE to Support Mobile
Nodes in Industrial Wireless Sensor Networks. IEEE Access 2021, 9, 141651–141666. [CrossRef]

http://dx.doi.org/10.3390/agriculture11050408
http://dx.doi.org/10.1109/JSTSP.2018.2796446
http://dx.doi.org/10.1109/TVT.2016.2545523
http://dx.doi.org/10.1049/iet-com.2015.0469
http://dx.doi.org/10.1109/ACCESS.2018.2818794
http://dx.doi.org/10.1109/JBHI.2016.2633287
http://dx.doi.org/10.3390/hydrology8020067
http://dx.doi.org/10.3390/app11041592
http://dx.doi.org/10.1109/TMC.2015.2418767
http://dx.doi.org/10.1109/TWC.2014.2386865
http://dx.doi.org/10.1109/ACCESS.2021.3120917

	Introduction
	D2D, IOT, and Context-Awareness
	D2D Communications in Smart Applications
	Context-Aware 5G Systems with Mobile Edge Computing and D2D

	Fast Connectivity Construction Framework
	Framework Operations
	Light-Weight Multi-Layer Neural Network

	Performance Analysis
	Proof-of-Concept and Testbed Setup
	Experimental Results

	Conclusions and Future Work
	References

