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Abstract: DC–DC converter fault diagnosis, executed via neural networks built by exploiting the
information deriving from testability analysis, is the subject of this paper. The networks under
consideration are complex valued neural networks (CVNNs), whose fundamental feature is the
proper treatment of the phase and the information contained in it. In particular, a multilayer neural
network based on multi-valued neurons (MLMVN) is considered. In order to effectively design the
network, testability analysis is exploited. Two possible ways for executing this analysis on DC–DC
converters are proposed, taking into account the single-fault hypothesis. The theoretical foundations
and some applicative examples are presented. Computer programs, based on symbolic analysis
techniques, are used for both the testability analysis and the neural network training phase. The
obtained results are very satisfactory and demonstrate the optimal performances of the method.

Keywords: DC–DC power converters; pulse-width modulation converters; switched-mode power
supply; testability analysis; analog circuit fault diagnosis; neural networks

1. Introduction

Switching-mode power converters are among the most important circuits used in elec-
tronics. In fact, almost all electronic systems are supplied by this kind of device. The most
used of them are the pulse width modulated (PWM) DC–DC converters, which convert
electrical voltage from one level to another by means of a switching action. Their behavior
affects the operation of the supplied systems in such a way that, in some applications, the
reliability of the supplied systems is linked to proper behavior of PWM DC–DC converters.
Fatal consequences can occur as a result of supply faults if they occur in safety critical
applications—for example, in artificial heart implants. Therefore, it is easy to understand
how important immediate fault identification and fast restoration action are, because even
a small deviation from the nominal conditions could produce an error propagation with
consequent catastrophic failures for the connected systems.

The aim of this paper is two-fold. From one side, a procedure for fault diagnosis of
DC–DC converters—based on the use of neural networks—is proposed. These networks
have already been utilized in several converter applications, as in mitigation problems of
power quality [1] and in control algorithm design [2]. Furthermore, applications relevant
to converter fault diagnosis have appeared in literature [3], but they are limited to a few
circuital topologies, namely boost–buck converters. Other important circuits—such as buck–
boost, forward, half-bridge, and full-bridge converters—have yet to be investigated, and
some of them are considered in this paper. In particular, a complete diagnosis procedure
on a single-ended primary inductance converter (SEPIC) is presented. For this purpose, a
multilayer neural network with multi-valued neurons (MLMVN) has been chosen. This
algorithm is extremely adaptable in many classification and regression problems, because
the use of complex inputs enables the association of information with real and imaginary
parts, thus increasing the generalization capability compared to other neural classifiers
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usually used in literature. Therefore, this document presents the architecture of a very
versatile classification tool which can be used in diagnosis and prognosis problems and
which does not require the use of derivatives in the learning process. This significantly
reduces training times compared to traditional feed-forward networks.

On the other hand, as shown in the paper, a correct operation of any fault diagnosis
procedure must include a preliminary testability analysis. The main contribution of this
work is to propose a graphical method for the evaluation of testability, which facilitates
the identification of the best test points, thereby avoiding situations of ambiguity. Indeed,
parametric failures on different passive components could introduce indistinguishable
changes in the measurements used. Testability analysis makes it possible to identify
how many and which measures are necessary for the detection and exact localization of
problems. In the case under consideration, testability analysis is of fundamental importance
for designing the neural network architecture, as it is shown in the following sections. The
canonical approaches for verifying testability require the symbolic analysis of analytical
equations that describe the behavior of the circuit in the time or frequency domain [4,5].
In these methods, the computation of the Jacobian matrix represents a fundamental step,
thus requiring a high computational effort and specific software. Differently from existing
techniques, the graphical method proposed here does not require the extraction of the
analytical transfer function. Therefore, the testability curves obtained with this method
allow immediate visualization of the results and are suitable for DC–DC power converters,
where different topologies alternate during normal operation. In these cases, in fact,
the mathematical approach may not be easily applicable. Furthermore, one of the main
advantages of the proposed graphic approach is the possibility of using very common
software such as MATLAB (version R2021b, © 1994–2022 The MathWorks, Inc., Natick,
MA, USA): all simulations can be performed in the Simulink environment and the curves
are obtained through a MATLAB script. Both the canonical and the graphical approach are
presented in this paper, because the former constitutes the theoretical basis of the latter in
the case of a single failure hypothesis. Applicative examples related to the most traditional
converters—buck, boost and buck–boost—and to the SEPIC, containing a larger number of
components, are proposed with the aim of validating the second technique, here presented
for the first time.

The paper is organized as follows. In Section 2, the concepts of testability and ambigu-
ity groups—which, together, constitute testability analysis—are recalled, by highlighting
their importance in neural network-based fault procedures. In Section 3, two techniques
of testability analysis are described, one of them completely new. Section 4 is focused
on the characteristics of the MLMVN and the main steps of the diagnostic procedure are
presented. Section 5 is dedicated to application examples. Section 6 presents the application
of a complete diagnostic procedure on a SEPIC converter that has a larger number of
components than the traditional converters and, then, is suitable to show the potentialities
of both a new testability graphical approach and MLMVN based fault diagnosis method.
Furthermore, Section 6 presents a comparison between the MLMVN-based classifier and
other algorithms usually used for classification problems. Finally, conclusions are reported
in Section 7.

2. Theoretical Concepts
2.1. Testability Analysis

There are two categories of fault: catastrophic faults and parametric faults. In this
paper, we are interested in parametric faults—specifically, deviations of parameter values
from a given tolerance range. For these kinds of faults, diagnosis approaches called
simulation-after-test (SAT) are used. They are based on the identification of the element
values carried out by means of a comparison between the circuit responses at the selected
test points and input–output relationships. From this comparison, a set of equations is
obtained. These equations constitute the so-called fault diagnosis equations, which have the
actual values of the parameters as unknowns. The solvability degree of these equations—
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i.e., the number of determinable unknown circuit parameters—provides the testability of
the circuit under analysis. The testability concept gives an a priori quantitative measure of
the solvability degree of the fault diagnosis equations obtained through any fault diagnosis
algorithm. Thus, it is essential for avoiding wasting time and resources in the attempt to
isolate undetectable faults.

As was just now recalled, testability matches the number of the component parameters
determinable from fault diagnosis equations or, in other words, it evaluates how many
components cannot be diagnosed with the given test point set. Since, in a fault condition,
the number of faulty components is generally smaller than the total number of components,
the k-fault hypothesis is made, i.e., the number of faulty components is considered to be
at most equal to k. In theory, the value of k ranges between one and the total number of
circuit parameters. Actually, the maximum achievable value of k depends on the solvability
degree of the fault diagnosis equations, which corresponds to the testability value.

The largest testability value is equal to the total number of circuit parameters; however,
generally, it is less than the maximum. In the case of low testability, it is important to
determine ambiguity groups. They are groups of parameters where it is not possible to
uniquely identify the faulty one. An ambiguity group is defined as canonical when it
does not contain ambiguity groups of lower order, where the ambiguity group order is
the number of parameters contained in the group. Canonical ambiguity groups (CAGs)
give information about the solvability of the fault diagnosis problem with respect to
each component in the case of k-fault hypothesis [6], because they help to select a set of
components whose faults represent the whole set of circuit faults.

Testability evaluation and ambiguity group determination constitute, together, testa-
bility analysis, which can determine a set of components representative of all the circuit
elements. In this way, it is possible to confine the presence of faults to well-defined groups
of components, called fault classes (FCs). They can contain a single component or a group of
components, in accordance with the general criteria reported in [6–8]. Every FC containing
two or more components must be considered as a ‘unique’ element. This means that, if a
failure occurs in such an FC, it cannot be further distinguished which component of the
class is actually faulty. FC determination is linked to the concept of the global ambiguity
group (GAG), an ambiguity group derived from the union of two or more CAGs with at
least one common element. Referring to [6–8], under the single fault hypothesis (the most
likely fault case and the one considered in this paper), it is possible to diagnose all the
circuit fault components if all the GAGs are constituted by CAGs of an order at least equal
to 3. Therefore, if there is no CAG of order 2, all the parameters are identifiable and each of
them is an FC. If there are CAGs of order 2, it is not possible to uniquely identify faults of
their components. In this case, all the components not belonging to CAGs of order 2 are
identifiable and each of them is an FC. Meanwhile, for the components belonging to CAGs
of order 2, there are two cases:

1. Each CAG is an FC if all the CAGs of order 2 do not intersect;
2. Each GAG constituted by CAGs of order 2 intersecting each other are considered

an FC.

Testability analysis is fundamental for neural network-based fault diagnosis tech-
niques. The training phase, typical of neural networks, is performed on the inputs of
the network. Since it is useless to train a neural network to identify indistinguishable
faults, the network inputs have to correspond with FCs in order to avoid ambiguity. In this
sense, testability analysis is fundamental for the network architecture construction, because
allowing the determination of the FCs establishes the network inputs. Before now, several
approaches based on the use of neural networks have been proposed [9–12], but they often
suffered strong limitations due to the lack of a testability analysis, as demonstrated in [7].

2.2. Testability Analysis of DC–DC Converters

Several testability definitions exist in literature [13–23] for time-invariant analog cir-
cuits, but the most popular one is still the one based on multifrequency measurements,
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introduced by Sen and Saeks in [24], and used in the previous section. Sen and Saeks link
testability to the rank of the Jacobian of the network function vector, thereby giving to it a
quantitative nature, independent of the component value and the test frequencies. In this
way, the testability concept conforms to whatever algorithm is employed for the solution of
the fault diagnosis equations. Recently, new algorithms and fully automated procedures
for the testability analysis have been presented in literature [25–27]. However, the linearity
and time-invariance of the circuit under test are always the fundamental hypothesis. In fact,
the fault diagnosis equations correspond to network functions expressing the input–output
relationships. If the circuit is not linear and/or time-invariant, the network function concept
loses significance.

Despite a great quantity of literature dedicated to the linear time-invariant analog
circuits, the research concerning the testability analysis of nonlinear time-invariant analog
circuits is exiguous [28–30], while that relevant to time-variant analog circuits is almost
nonexistent. At least to the authors’ knowledge, the only exceptions are [4,5], dedicated to
PWM DC–DC converters. These circuits are characterized by the use of a switching cell,
constituted of a switch and a diode. This cell is the fundamental part of many DC–DC
converters, such as buck, boost, buck–boost. In other converter circuits—such as Cùk,
flyback, and forward—the switch and diode are not connected to the same node, but
their combination always acts as a device alternatively diverting the inductor current
through the switch and the diode. The presence of the switch and diode cell makes
these circuits time-variant. In fact, they can operate under two different ways, continuous
current mode (CCM) and discontinuous current mode (DCM). When the converter operates
under CCM, it runs through two different circuit topologies; when the converter operates
under DCM, the circuit runs through three circuit topologies. For this reason, PWM
DC–DC converters cannot be directly analyzed with standard methods based on Laplace
transform [31–36]. Consequently, testability analysis also cannot be addressed with the
classical multifrequency approach. However, in [5] it has been shown that it is possible to
circumvent this strong limitation through a trick, as summarized in the following section [4].

3. Methods for Testability Analysis
3.1. First Method: Analitycal Evaluation of Testability

A testability analysis approach related to time-domain measurements is adopted in [5].
In steady-state conditions, the following steps have to be followed in order to determine
testability and ambiguity groups:

• choice of a specific working phase (i.e., a specific state of the switches) and its sampling
in n different instants;

• determination of the vector u0 corresponding to the constant input samples;
• determination of the output sample vector,

yT(p, u0) =
[
y(t1, p, u0)

tr, y(t2, p, u0)
tr, . . . , y(tn, p, u0)

tr
]tr

(1)

• determination of the fault diagnosis equation:

yT(p, u0) = y∗T (2)

where p is the vector of the np unknown parameters and y∗T is the vector of the measure-
ments corresponding to the output sample vector;

• determination of testability value through the Jacobian matrix of the fault equations
evaluated at the nominal values of the circuit parameters p0;

• determination of CAGs corresponding to the minimal sets of linearly dependent
columns of the Jacobian matrix.

The achieved testability is independent of measurement errors, sampling times, and
nominal values of parameters. Furthermore, testability analysis can give different results
moving from a time interval to another one [5]. Therefore, by suitably choosing the time
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interval, it is possible to increase the number of distinguishable parameters by considering
a higher testability and/or a smaller number of second order CAGs.

In [5], it has been demonstrated that the simplest way to realize a computer program
implementing this algorithm is based on the equivalence, in terms of testability and ambigu-
ity group determination, of the above-mentioned Jacobian matrix to the Laplace transform
of its extension to all the positive time semi-axis. In this way, a link with the frequency
domain may be built up, which can exploit the results in [25] for setting up a fully numerical
algorithm for the testability analysis of DC–DC converters. The program implementing
this algorithm is called TAPSLIN (testability analysis for periodically switched linear net-
works) [5]. It is able to identify the correct FCs, and then the inputs of a neural network.
TAPSLIN exploits SapWinPE (SapWin for power electronics) [37], a program for simulat-
ing analog switching circuits. It is included in the software package SapWin (Symbolic
Analysis Program for Windows, version SapWin4, Department of Information Engineering,
University of Florence, Florence, Italy) [38] and exploits symbolic analysis techniques.

3.2. Second Method: Graphical Evaluation of Testability

An interesting technique for testability analysis of linear time-invariant networks—
under the single-input, single-output, and single-fault hypotheses—is proposed in [27],
where the fault model in the form of a geometric locus in the complex plane, is based on the
following reasoning. Consider a circuit represented by a frequency response h(jω, p) rele-
vant to an input–output pair. At a fixed frequency value ωt, it is possible to obtain a locus

in the complex plane for each circuit parameter pi ∈ p =
[

p1 p2 · · · pnp

]T
, considered as

the only variable of h(jω, p), having fixed all the other parameters to their nominal values:

L+
i

∣∣
ωt

=
{

h ∈ {
∣∣∣h = h

(
jωt, p(i)

0 , pi

)
, pi ∈ [0,+∞]

}
(3)

where p0
(i) =

[
p1,0 p2,0 · · · pi−1,0 pi+1,0 · · · pnp ,0

]T
is the vector of the nominal values with

the exception of pi. If np is the parameter number, the obtained loci are np and are defined
signature curves. For each locus, when the corresponding variable parameter assumes its
own nominal value, the nominal value h0 = h(jωt, p0)—evaluated at the chosen frequency

value—is obtained. This means that all the signature curves L+
1

∣∣
ωt

, L+
2

∣∣
ωt

, . . . , L+
np

∣∣∣
ωt

must pass through the point representative h0 = h(jωt, p0), in the complex plane, where p0
is the vector of nominal values, with dimension np. Now, let p∗ and h∗ be the actual value
assumed by p and the experimentally measured counterpart of h(jωt, p∗), respectively.
Then, under the single-fault hypothesis, only one of the two situations can occur:

• p∗ = p0 and hence h∗ = h0;
• p∗ 6= p0 and then there must exist exactly one i ∈

{
1, 2 · · · np

}
such that h∗ ∈ L+

i

∣∣
ωt

;
this means that, if h∗ = h0, then the circuit is healthy, if h∗ 6= h0 and h∗ ∈ L+

i

∣∣
ωt

, then
the circuit is faulty and pi is the fault source.

This observation means also that, if, for a certain i, one k exists such that L+
i

∣∣
ωt

= L+
k

∣∣
ωt

,
pi and pk constitute a CAG of order two in correspondence of the frequency ωt, because they
produce the same fault situation. Furthermore, the number of distinct signature curves gives
the number of identifiable parameters—i.e., it gives the testability measure. If more than
two signature curves overlap, this means that the corresponding parameters form a GAG
derived from the union of CAGs of order two constituted by all the possible couples of the
involved parameters. In this way, an alternative method for testability analysis under the
hypothesis of a single fault has been introduced. The application of this technique to the
fault location is not as easy as it could appear. In fact, in the case of fault diagnosis, it is not
possible to disregard the effects of parameter tolerances and measurement errors differently
from testability analysis, and this requires some precautions which are yet to be analyzed
in depth.
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The above-described method requires drawing the variation of the input–output
relationship versus each circuit parameter in a unique plane. In the case of linear, time-
invariant, analog circuits a network function represents the required equation. In the
frequency domain, once the frequency value has been fixed, it is possible to draw, for each
parameter pi within the range [0, +∞], the imaginary part versus the real part of h(jωt, p),
thereby obtaining the signature curves.

In the case of DC–DC converters, it is possible to proceed in this way by consider-
ing the network function relevant to a specific working interval, since the methodology
summarized in the previous subsection demonstrated how, once the steady state status is
achieved, the behavior can change from interval to interval. The steady state operation is
guaranteed by the use of the frequency response, which can be obtained by SapWinPE. This
program can determine the network functions of DC–DC converters in the Laplace domain,
and then, by replacing the Laplace variable with jω, the frequency responses. They depend
on the parameters representing the state of switch and diode in each working interval and
on the initial conditions of inductor and capacitor [39,40]. For each working interval, both
switch and diode parameters and initial conditions change. This means that these network
functions do not have the classical meaning and then cannot be used for determining
the frequency domain behavior of the whole circuit. If a traditional frequency domain
simulation is required, it is necessary to replace the switch-diode cell with a time-invariant
equivalent circuit [41–47] so that the circuit is linearized. However, the SapWinPE network
functions can be used to determine the signature curves, as described above, within each
of two or three possible working intervals of a converter, depending on the operating
mode. This is due to the independence of testability analysis from parameter values and
time instants and to its dependence on circuit topology, which in turn also justifies the
possibility of having different testability analysis results in different converter working
phases. Nevertheless, this way of proceeding is very onerous in terms of time consumption.

An alternative method for obtaining the signature curves for DC–DC converters is
to proceed in the time domain. In fact, the signature curves need only to draw circuit
characteristics with respect to each parameter variation independently on the domain.
In the case of DC–DC converters, it is easier obtain steady-state responses in time rather
than in frequency. In the time domain, different characteristics of the typical quantities
(for example mean value, maximum value and ripple) of the steady-state response can be
considered and the signature curves can be obtained by drawing one versus the other for
each parameter variation once a time is fixed for every operation mode. Proceeding in this
manner, different groups of signature curves are obtained, each group corresponding to a
different working interval. The results, in terms of testability and ambiguity groups, are
equal to those obtained by using frequency responses. The advantages consist in the fact
that time domain simulations are faster, and any simulation program can be used for the
extraction of the required quantities. Since it is necessary to run many simulations for each
parameter value, a symbolic simulation program is by far preferable.

4. Classification Tool
4.1. Multilayer Neural Network with Multi-Valued Neurons

In this paper, the classification tool proposed to define the state of health of DC–DC
converters is a feed-forward neural network based on multi-valued neurons [48]. In this
type of neural network, the weights are complex numbers, as are the inputs used to obtain
classification results. Thanks to these characteristics, MLMVN-based classifiers are easily
adaptable for analyzing electrical quantities in the frequency domain, which are expressed
by phasors. When the measured quantities are expressed in the time domain, they are real
numbers, but there are several signal processing methods that can be used to create the
complex inputs. The most popular approach consists in the use of a real quantity as phase
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of a complex number with magnitude equal to 1. For example, the real number R is used as
input of the neural classifier in the following form.

ejR = cos(R) + j sen(R) (4)

In the case of the diagnosis of DC–DC converters, currents, and voltages are extracted
in a specific time interval at the ends of the passive components selected by the testability
analysis. Consequently, mean values and ripples of the measured quantities are calculated
and processed as shown in (4). As shown in Figure 1a, the neural classifier used in this case
is constituted of three layers: the input layer, hidden layer, and output layer.
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In the first layer, the complex inputs are created starting from the values belonging
to the dataset matrix. Hence, they are connected to the hidden neurons through complex
weights. These neurons are characterized by a continuous activation function,

P(z) = ej Arg(z) =
z
|z| (5)

where Arg(z) is the argument of the weighted sum calculated by (6),

z = W0X0 +
n

∑
i=1

WiXi (6)

in which Wi is the i-th weight of the considered neuron and Xi is the i-th input. In order to
clarify the meaning of these terms, Figure 1b shows a graphical representation of the multi-
valued neuron. Therefore, all inputs belonging to the same sample are used to calculate
a weighted sum (6) for each hidden neuron. These neurons use the discrete activation
Function (5), which generates an output on the unit circumference of the complex plane
corresponding to the division of the weighted sum by its magnitude.

Therefore, MLMVN neurons have multiple inputs and one complex output located
on the unit circle. When the final purpose is the classification of input patterns, each
neuron belonging to the output layer divides the complex plane into k equal sectors and
the following activation function is used,

P(z) = ε
j
k = ei2π j/k i f 2π j/k ≤ arg(z) < 2π(j + 1)/k (7)



Electronics 2022, 11, 1589 8 of 25

where j is one of the possible k sectors and arg(z) is the argument of the weighted sum. This
means that the neurons belonging to the last layer are discrete and each output corresponds
to the lower border of the sector that contains the weighted sum of the inputs.

During the training phase of the classifier, the values of the weights are corrected in
order to minimize classification errors. These errors are complex numbers, each of which is
calculated as the difference between the desired output and that obtained by processing
specific inputs. In fact, MLMVN is based on a supervised learning algorithm and this
means that the dataset matrix must contain the inputs and the corresponding desired
output for each neuron in the last layer.

One of the most important advantages of the MLMVN compared to other machine
learning methods is the absence of derivative terms in the training procedure. In fact, the
backpropagation procedure is not based on the gradient calculation and the following
formula is used,

∆Wk,m
i =

αk,m

(nm−1 + 1)
∣∣∣zs

k,m

∣∣∣ δs
k,m Ys

i,m−1 (8)

where ∆Wk,m
i is the correction for the i-th weight of the k-th neuron belonging to the

layer m, αk,m is the corresponding learning rate, nm−1 is the number of the inputs equal to

the number of the outputs of the previous layer,
∣∣∣zs

k,m

∣∣∣ is the magnitude of the weighted

sum, δs
k,m is the output error, and Ys

i,m−1 is the conjugate-transposed of the input. This
learning rule is used for the correction of the weights and is repeated for each sample s
(s = 1, · · · , Ns) belonging to the dataset matrix. Therefore, the dataset matrix must contain
numerous examples of all possible situations and their classification. The backpropagation
procedure here described is an iterative method in which all corrections are calculated Ns
times for each weight (training epoch).

Alternatively, algorithms based on linear least square (LLS) methods can be used in
order to reduce the computational cost [49]. In this case, all output errors are saved in a
specific matrix, 

δ1
1,m δ1

2,m · · · δ1
n,m

δ2
1,m δ2

2,m · · · δ2
n,m

...
... · · ·

...
δNs

1,m δNs
1,m · · · δNs

n,m

 (9)

and the corrections of the weights are calculated by solving an oversized system of equa-
tions at the end of each training epoch. These solutions can be calculated through various
techniques, such as Q-R decomposition or singular value decomposition (SVD). The system
is oversized because the number of samples belonging to the dataset is higher than the
number of corrections to be calculated. It can be written in a compact form as

Y
(

∆W(k)
)
= δ(k) (10)

and the solution obtained with the LLS method satisfies this condition

∆W(k) = argmin ‖ Y
(

∆W(k)
)
− δ(k) ‖ 2 = Y∗δ(k) (11)

where the superscript k indicates the number of the neuron taken into account, Y∗ =(
YTY

)−1YT is the pseudo-inverse of the matrix Y and YT is its conjugate transpose. Moreover,
the soft margin method is used to improve the classification rate, changing the target for each
output to the bisector of the desired sector [50].

4.2. Diagnostic Procedure

The neural classifier described in the previous subsection is used to validate the
selection of measurements based on the testability analysis. The main purpose is the
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diagnosis of parametric faults in DC–DC converters and the choice of test points plays
a fundamental role in providing significant quantities to the MLMVN. In fact, the use of
measures that have indistinguishable variations, when different malfunctions occur, is
completely useless.

Since the objective is the detection and localization of malfunctions in a specific
component, the number of fault classes depends on the number of passive elements. When
the testability is maximum and the single failure hypothesis is assumed, each converter
component can be considered faulty, but one at a time. Therefore, one neuron is used in the
output layer of the MLMVN for each passive component that can be considered variable.
These neurons are binary, because they must distinguish the nominal condition of each
element from its malfunction condition. For example, Figure 2 describes the output layer
of an MLMVN used to detect the state of health of three passive components.
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Figure 2. Configuration of the output layer of the MLMVN (example).

Each neuron belonging to the output layer divides the complex plane into two sectors:
the first of them corresponds to the upper half plane (0, π) and is encoded by the value 0,
while the second sector is the lower half plane (π, 2π) and is encoded by the value 1. The
term 0 is used to describe the nominal condition of the corresponding component and the
number 1 is used to indicate its malfunction. When all outputs are equal to zero, the whole
system is functioning correctly. Therefore, the diagnostic procedure can be summarized
as follows:

• definition of the converter topology;
• definition of the nominal value for each passive component and application of a

specific tolerance;
• testability analysis and subsequent selection of test points in order to classify as many

components as possible;
• according to the testability analysis, the distinguishable components are considered as

variable terms, while other components are fixed to their nominal values;
• creation of the neural classifier used as neurons in the output layer as the number of

potentially faulty components;
• creation of the dataset matrix;
• learning phase of the MLMVN;
• validation and test phase.
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5. Application Examples
5.1. Testability Analysis of a Buck Converter

The first topology taken into consideration is a buck converter shown in Figure 3,
in which there are three passive components: two reactive elements (L1 and C1) and a
resistive load R1. This is a switching converter driven by a pulse width modulation (PWM)
capable of reducing the input DC voltage with high efficiency [51]. The output voltage Vout
is measured at the ends of the resistive load and, in CCM, it can be calculated as

Vout = D Vin (12)

where D is the duty cycle of the PWM signal and Vin is the DC source. During the operation
of the converter, it is possible to distinguish two different periods: switch-on period and
switch-off period. They are related to the state of the active components (B1 and A1), which
are alternately conductive and interdicted. During the switch-on period, B1 is in conduction,
while A1 is off; during the switch-off period, the state of the active elements is opposite.
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Figure 3. Simulink/Simscape model of the buck converter.

As said before, the time-varying nature of DC–DC converters makes the testability
analysis more complex, because different topologies are obtained depending on the time
interval taken into consideration. Figure 4 shows the two different circuit configurations
obtained during the on period and the off period in CCM.
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Figure 4. Topologies of a buck converter: (a) switch-on period; (b) switch-off period.

The first step for verifying the equivalence of the two approaches described in Section 3
is to evaluate the testability in the frequency domain using the TAPSLIN software (first
version developed by the Department of Information Engineering, University of Florence,
Florence, Italy). In this case, the symbolic form of the transfer functions relating to the
two circuits of Figure 4a,b are analyzed individually, and the rank of the Jacobian matrix
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corresponds to the testability value. It should be noted that multiple test points can be used
obtaining different transfer functions and testability levels.

The second step is the analysis of the converter in the time domain using the same
test points. In this case, the Simulink/Simscape model of the buck converter is used to
extract the voltage and current waveforms by varying the values of the passive components.
Therefore, by processing these quantities, it is possible to create graphs in which the ripple
is on the ordinate axis and the average value is on the abscissa axis.

By analyzing these curves, it is possible to obtain information about testability and
testable groups. In fact, when two or more curves are superimposed or very close together,
the corresponding components cannot be considered faulty at the same time. Figure 5
shows some of the characteristic waveforms of the converter operation in CCM using a DC
source of 20 V and D = 0.6.
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current; (d) output voltage.

5.1.1. First Method: Testability Analysis of a Buck Converter in the Frequency Domain

The results obtained through the TAPSLIN software are summarized in Table 1 (TG—i.e.,
Testable Group—is a parameter group that can be considered unknown). In this case, the
test points taken into consideration allow the measurement of the output voltage and the
capacitor current. By considering only one of them at a time, the analysis in the switch-on
period and that in the off period show the same results—i.e., the test point related to the
output voltage, as also the test point relevant to the capacitor current, give a result in terms
of testability equal to 2. The same situation occurs if the two test points are simultaneously
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considered. Figure 6 shows the TAPSLIN user interface and the testability analysis performed
for the buck converter.

Table 1. Testability analysis in the frequency domain for a buck converter.

Test Points Switching Period B1 A1 TGs Testability

Vout, IC1 On 1 0
C1, L1
C1, R1
L1, R1

2

Vout, IC1 Off 0 1
C1, L1
C1, R1
L1, R1

2
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In this situation, there are no differences in the testability analysis for the two topolo-
gies shown in Figure 4 and the testability level is lower than the total number of passive
components. This means that one of the elements must be fixed to its nominal value and it
cannot be considered as a faulty component during the diagnostic procedure.

In order to increase the testability value, it is necessary to modify the test points
considered. For example, by simultaneously using the output voltage and the inductor
current as measurements, it is possible to obtain the maximum testability. Furthermore, this
choice shows a difference between the testability calculated during the switch-on period
and that calculated using the second topology (Figure 4b).

Table 2 summarizes these results.

Table 2. Testability analysis in the frequency domain for a buck converter using output voltage and
inductor current.

Test Points Switching Period B1 A1 TGs Testability

Vout, IL1 On 1 0 C1, L1, R1 3

Vout, IL1 Off 0 1
C1, L1
C1, R1
L1, R1

2
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5.1.2. Second Method: Testability Analysis of a Buck Converter in the Time Domain

The second approach for the testability assessment is based on the Simulink/Simscape
model of the buck converter. Several simulations are carried out by varying the values of
the passive components one at a time. The selected measurements are then extracted when
the steady state condition is reached by the converter. Finally, the measured quantities are
processed to obtain the ripple and the mean value. In order to validate the first results
obtained in the previous subsection, the output voltage and the current on the capacitor
are considered. Figure 7 shows the corresponding testability curves.
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Figure 7. Testability curves during the switch-on period: (a) variations introduced in the output
voltage; (b) variations introduced in the capacitor current.

The curves presented in Figure 7 show that the testability value is 2 and each pair of
passive components can be considered as a testable group. The curves obtained during the
switch-off period offer the same results and confirm the content of Table 1. As regards the
use of the output voltage and current on the inductor as test points, the curves shown in
Figure 8 are obtained during the switch-on period. In this case, the effect of the variations
of C1 in Figure 8b is absolutely negligible. This determines maximum testability and,
consequently, there is only one testable group containing all three passive components, if
both the test points are simultaneously considered.
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voltage; (b) variations introduced in the inductor current.
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5.2. Testability Analysis of a Boost Converter with Parasitic Resistances

One of the most important aspects in the new graphical method here proposed is its
easy application on different circuit topologies. Furthermore, there are no restrictions on
the total number of passive elements that can be taken into consideration. This plays a
fundamental role when parasitic effects must be included in the diagnostic procedure. In
this subsection, a boost converter is analyzed, which is used in many devices powered
by a battery in order to increase the voltage level. The circuit taken into consideration is
presented in Figure 9, in which parasitic resistances are introduced for both the inductor
and the capacitor.
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Figure 9. Simulink/Simscape model of the boost converter.

The first simulation presented for this converter is performed considering the output
voltage as a single test point during the switch-on period. As shown in Figure 10a, the
effects produced by R1 and C1 are easily identifiable, while the consequence of changes in L1
cannot be detected and those introduced by RL1 and RC1 are not distinguishable. Therefore,
by setting the values of L1 and RL1 (or alternatively RC1), it is possible to diagnose three
parametric faults. This means that the testability level is 3.
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Figure 10. Testability assessment for a boost converter using only output voltage: (a) switch-on
period (b) switch-off period.

By changing the switching period considered, the curves shown in Figure 10b are
obtained and the testability is equal to the maximum value 5. However, the effects induced
by changes in C1 are very small and their identification depends on the sensitivity of the
measuring instrument.
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To increase testability during the switch-on period, it is necessary to use additional
test points. For example, by introducing the measurement of the current on the inductor,
it is possible to increase the testability from 3 to 4. In fact, in this case the variations of L1
become distinguishable. Figure 11 shows this condition. It should be noted that increasing
the number of test points means increasing the intrusive level of the diagnosis system. This
means that monitoring the off period of the boost converter offers significant benefits.
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where T is the switching period, Vin is the input voltage, and IO is the output current. As 

for the initial condition on parameters L and C, it should be noted that both the voltage on 

the capacitor and the current through the inductor are zero. 

Figure 11. Testability assessment for a boost converter during the switch-on period: (a) measurement
of output voltage; (b) measurement of inductor current.

5.3. Testability Assessment of a Buck–Boost Converter

To conclude the discussion of the most common power converters, in this subsection a
buck–boost converter is considered. The basic topology of this circuit is shown in Figure 12
and the nominal values of the electrical components are presented in Table 3. The variation
range used to create the testability curves extends up to a reduction of 70% starting from
these values.
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Table 3. Characteristics of the buck–boost converter.

L C R f

750 µH 2 mF 1 Ω 10 kHz
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Since the inverting topology is considered, the voltage gain G of the converter in CCM
is expressed by Formula (13),

G =
−D

(1− D)
(13)

where D is the duty cycle used. Regarding the limiting level of the inductance between
CCM and DCM, it can be calculated through the Formula (14),

Llim =
T Vin D (1− D)

2 IO
(14)

where T is the switching period, Vin is the input voltage, and IO is the output current. As
for the initial condition on parameters L and C, it should be noted that both the voltage on
the capacitor and the current through the inductor are zero.

The graphical study of testability for a buck–boost converter in the time domain is
carried out using the Simulink model shown in Figure 12. To present a complete view of the
possible situations, the testability curves obtained on all measurable electrical quantities
and in all switching periods are presented.

It is necessary to highlight that in addition to the two topologies corresponding to
the on and off periods, it is possible to carry out the testability study in a third topology,
corresponding to the DCM situation. In fact, if in the off period the current on the inductor
becomes zero before the next commutation, a new circuit topology is obtained.

Figure 13a shows the situation in CCM, where only two topologies can be examined:
the first one in correspondence with the on period and the second one in correspondence
with the off period. Figure 13b indicates the presence of the third topology during the off
period of the DCM operation.

Electronics 2022, 11, 1589 16 of 25 
 

 

 

Figure 12. Simulink/Simscape model of the buck–boost converter. 

The graphical study of testability for a buck–boost converter in the time domain is 

carried out using the Simulink model shown in Figure 12. To present a complete view of 

the possible situations, the testability curves obtained on all measurable electrical quanti-

ties and in all switching periods are presented. 

It is necessary to highlight that in addition to the two topologies corresponding to the 

on and off periods, it is possible to carry out the testability study in a third topology, cor-

responding to the DCM situation. In fact, if in the off period the current on the inductor 

becomes zero before the next commutation, a new circuit topology is obtained. 

Figure 13a shows the situation in CCM, where only two topologies can be examined: 

the first one in correspondence with the on period and the second one in correspondence 

with the off period. Figure 13b indicates the presence of the third topology during the off 

period of the DCM operation. 

  

(a) (b) 

Figure 13. Testability assessment for a buck–boost converter: (a) definition of the two possible to-

pologies in CCM; (b) definition of the three possible topologies in DCM. 

Figure 14 a–d shows the testability curves obtained during the switch-on period in 

CCM, while Figure 15 a–d refers to the switch-off period in the same conduction mode. 

Figure 13. Testability assessment for a buck–boost converter: (a) definition of the two possible
topologies in CCM; (b) definition of the three possible topologies in DCM.

Figure 14 a–d shows the testability curves obtained during the switch-on period in
CCM, while Figure 15 a–d refers to the switch-off period in the same conduction mode.



Electronics 2022, 11, 1589 17 of 25
Electronics 2022, 11, 1589 17 of 25 
 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 
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Figure 14. Testability curves for the buck–boost converter in the switch-on period: (a) changes in the
inductor voltage; (b) changes in the capacitor voltage; (c) changes in the inductor current; (d) changes
in the capacitor current; (e) changes in the output current; (f) changes in the output voltage.
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Figure 15. Testability curves for the buck–boost converter in the switch-off period: (a) changes in the
inductor voltage; (b) changes in the capacitor voltage; (c) changes in the inductor current; (d) changes
in the capacitor current; (e) changes in the output current; (f) changes in the output voltage.
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The curves obtained in this case confirm the possibility of having maximum testability
by choosing at least two proper measures. For example, the use of the output voltage and
the current on the inductor guarantees the identification of all possible malfunctions.

As for the third topology, it is possible to achieve maximum testability using only
one measure. For example, Figure 16 shows that—by using the output voltage or the
output current individually—it is possible to realize a complete monitoring of the passive
components in a buck–boost converter.
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6. Classification Results
Fault Diagnosis in a SEPIC Converter

To show a complete diagnosis procedure, from the testability study to the classification
of components by MLMVN, a SEPIC converter is considered in this section. This converter
is a step-up/step-down circuit with non-inverted output and this represents one of the
main advantages of the SEPIC converter compared to other types of buck–boost converters.
Furthermore, thanks to the presence of a series capacitor, the SEPIC converter offers
isolation between output and input. Figure 17 shows the circuit topology of this converter.
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Figure 17. Simulink/Simscape model of the SEPIC converter.

The converter components have been dimensioned as shown in [52] ensuring an
output ripple of less than 5% during normal operation. The main objective of the diagnostic
method is to detect variations of these elements beyond a tolerance of 10% with respect to
nominal values.
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In this case, four potentially faulty components are considered: L1, L2, C, C0. Before
training the neural classifier, it is necessary to define what measurements are needed.
Therefore, the Simulink/Simscape model of the converter is used. The four components
are varied starting from the nominal value until a reduction of 70% is reached. A simula-
tion is carried out for each of these values by bringing the converter to the steady state.
By analyzing the obtained results, it is possible to choose the measures that eliminate
ambiguities and make all four components testable. The results relevant to the best test
points are shown in Figure 18: they are the voltage on L2 and the voltage on C0. It should
be noted that other measurements would also enable reaching the maximum testability,
but, in this case, the voltages are chosen because they can be practically made with a less
intrusive level. As it can be noted in Figure 18b, the curves relevant to each component
are present, then the testability is maximum—i.e., equal to 4—with the only voltage on C0
as test point. However, the curve of C—completely distinguishable in Figure 18a—is very
little in Figure 18b, so it is preferable to consider two test points.
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across L2 (b) voltage across C0.

Once the measurements have been chosen on the basis of the testability analysis, it is
necessary to create a dataset matrix for training the neural classifier. As mentioned before, a
multilayer neural network with multivalued neurons is used. Therefore, real measures are
used as phases of unit module complex numbers, which are used as input to the classifier.
Since the testability analysis takes into account the ripple and the mean value of each
quantity, these characteristics belong to the dataset (15),
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where, for example, V1
L2,m is the first sample of the mean value of the voltage across L2 and

V1
L2,r is its ripple. The last element of each row in the dataset matrix is the number of the

corresponding fault class. These values are defined as shown in Table 4.
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Table 4. Fault classes.

Fault Class Description

0 All passive components are in the nominal conditions
1 L1 is in malfunction condition
2 L2 is in malfunction condition
3 C is in malfunction condition
4 C0 is in malfunction condition

NS simulations of the Simulink/Simscape model are performed to create the dataset
matrix by modifying the values of the passive elements. When class 0 is simulated, each
component of the converter is randomly selected within the range defined by the nominal
value and a tolerance of ±10%. When the malfunction condition on a component is
simulated, its value can have a maximum reduction of 70% from the nominal value. In this
paper, 50 samples for each fault class are used and this means that NS = 250.

Before training the MLMVN, it is necessary to convert the indices of the failure classes
into the desired outputs for the neurons belonging to the last layer. As stated in Section 4,
one discrete neuron is used in the output layer of the classifier for each passive element.
Since binary neurons are considered, the output corresponding to the nominal condition
is the upper half plane (value 0), while that of the malfunction condition is the lower half
plane (value 1). Consequently, each fault class is a specific combination of four binary
numbers (Table 5). Therefore, the four complex numbers present in each row of the dataset
(15) are considered as phases of complex numbers having a magnitude equal to 1 and are
processed by the neural network. The neurons of the hidden layer generate outputs on
the unit circle that correspond to the inputs of the output level. The neurons of this layer
are binary and produce an output equal to 1 or equal to 0 according to the Equation (7).
Therefore, there is a combination of four outputs, in which only one must be equal to 1. If
the combination of the outputs does not correspond to the desired one (Table 5), one error
is calculated for each neuron and proceed with the backpropagation described in Section 4.
When the converter works in a wrong way, a combination other than four zeros is obtained
at the output of the neural network, because at least one of the weighted sums falls into
the negative half plane. This allows the detection of the problem and the localization of
the faulty component. It should be noted that the ‘winner takes all’ rule is used in the case
of two outputs equal to 1. In the case of the soft margin technique, this method keeps at a
high level only the output closest to the bisector of the desired sector.

Table 5. Desired outputs of the MLMVN.

Fault Class Output Combination

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 1 0 0
4 1 0 0 0

Finally, it is possible to train the neural classifier. Figure 19 shows the classification
rate (CR) obtained using 70 neurons in the hidden layer. The training procedure has
been performed using the hold out validation technique, this means that 80% of the data
belonging to the dataset are used for the correction of the weights, while the remaining 20%
is used to verify the performance. For this reason, the classification rate can be assessed in
two different stages: learning phase and test phase.
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The classification results obtained are excellent and guarantee the possibility of identi-
fying parametric failures while preventing catastrophic ones. In this way, it is possible to
organize maintenance operations, reducing recovery times and increasing the reliability of
the converter. Finally, these excellent results validate the selection of measurements based
on the graphical testability assessment. Table 6 summarizes all the classification results.

Table 6. Classification results.

Learning Phase Test Phase

Global classification rate 97.75% 99%
Class 0 95.99% 100%
Class 1 99.68% 97.73%
Class 2 100% 91.95%
Class 3 99.38% 100%
Class 4 100% 100%

As mentioned above, these results are obtained through a holdout validation, in
which 80% of the data is used during the training phase and the remaining 20% is used
for validation. In order to propose a more accurate assessment of the performance, it is
possible to repeat the hold out validation five times by modifying the data used for training
and validation at the end of each process. In this way, each sample is used in both phases
and the analysis of the results is more accurate. This method is called cross validation and,
in this case, confirms the excellent performances shown in Table 6 and the fact that the
number of false positive errors is greater than false negative ones. This is a very important
aspect in industrial applications because false negative errors make it impossible to detect
malfunctions and can lead to catastrophic consequences by putting the converter out of
service. At each stage of training, class 0 has the lowest classification rate and there are
some incorrect classifications between class 1 and class 3. Mistakes made on class 0 are
defined as false positives, while errors between class 1 and class 3 only produce an incorrect
localization of the problem. False negatives are therefore rare events and occur when one
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of the classes from 1 to 4 is incorrectly classified as class 0. Analyzing the data obtained
with the cross validation, it can be noted that the false negative rate is about 2% during the
phase of training.

Finally, other neural algorithms are trained using the same dataset in order to compare
the MLMVM performances. Table 7 summarizes the percentual classification rate (CR%) of
the considered classifiers. Several algorithms based on different theoretical approaches are
considered: Bayesian classifier, decision tree based classifiers, K-nearest neighbor (KNN)
classifiers, and support vector machine. It can be noted that the MLMVN guarantees
the best performance in terms of classification rate. However, the choice of test points
on the basis of the testability study guarantees excellent results with other classifiers as
well. Therefore, the graphical method plays a fundamental role because it facilitates the
evaluation of testability.

Table 7. Comparison with other machine learning techniques.

Classifier Classification Rate (%)

MLMVN-based classifier 97.75%
Gaussian naïve Bayes 89%
Linear support vector machine 92%
Quadratic support vector machine 94.5%
1-nearest neighbor 90.5%
100-nearest neighbor 92%
Decision tree 87.5%

7. Conclusions

The new method for the testability evaluation proposed in this paper is based on
time domain measurements of voltages and currents. It allows the selection of test points
without ambiguities by reducing the intrusive level and ensuring the correct operation of
the diagnostic system. The main advantage of this approach is the possibility to determine
the testability level from a graphical point of view. This facilitates the study of time-variant
circuits, such as DC–DC converters, which have different topologies depending on the time
interval taken into consideration. In addition, this method can be easily applied to different
topologies and operating conditions. Starting from this testability assessment, it is possible
to train a machine learning algorithm to identify the parametric failures of the converter
components. A classifier based on a multilayer neural network with multivalued neurons
is used in this paper and its application in the failure prevention for a SEPIC converter is
presented. The classification results are excellent and validate the choice of measurements.
The proposed prognostic method could be applied during converter operation without
interrupting the power flow. In fact, the measurements are extracted in a few seconds while
the converter works in a fixed duty cycle, the one used for the training phase. As a result,
the measurements are processed by the neural classifier to obtain the health state of the
converter and the location of the problems. No special equipment is therefore required, the
intrusive level and the loss of efficiency are very low.
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