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Abstract: Machine learning can encode and amplify negative biases or stereotypes already present
in humans, resulting in high-profile cases. There can be multiple sources encoding the negative
bias in these algorithms, like errors from human labelling, inaccurate representation of different
population groups in training datasets, and chosen model structures and optimization methods. Our
paper proposes a novel approach to speech processing that can resolve the gender bias problem
by eliminating the gender parameter. Therefore, we devised a system that transforms the input
sound (speech of a person) into a neutralized voice to the point where the gender of the speaker
becomes indistinguishable by both humans and AI. Wav2Vec based network has been utilised to
conduct speech gender recognition to validate the main claim of this research work, which is the
neutralisation of gender from the speech. Such a system can be used as a batch pre-processing layer
for training models, thus making associated gender bias irrelevant. Further, such a system can also
find its application where speaker gender bias by humans is also prominent, as the listener will not
be able to judge the gender from speech.

Keywords: responsible AI; speech analysis; emotion recognition; gender bias

1. Introduction

In recent times, research in artificial intelligence (AI) and machine learning (ML)
techniques have led to significant improvements in computer vision, speech processing,
and language technologies, among others. Consequently, with these advances has come an
inadvertent focus on the ethics of such ML models [1–3].

Most machine learning models are designed to optimize only one performance metric,
such as accuracy. Such designs inadvertently have consequences [4], having discriminatory
results based on sensitive features, such as gender, and are considered to be ‘biased’
or ‘unfair’. Examples of gender-based unfairness in speech processing applications are
abundant. For instance, until recently, speech synthesis and speech recognition favoured
lower pitch voices [5], typically present in adult males. As a result, speech recognition
produced higher error rate scores for children and adult females.

Several factors can contribute to producing negative bias in ML models. One signif-
icant cause is incomplete training data that lack sensitive information like gender or is
unbalanced. Most models used in modern technology applications are based on supervised
learning, and much of the labelled data comes from people. Despite the effects of the
dataset, since people are unintentionally biased and models are estimates of people’s im-
pressions, this bias will be passed on and implicitly encoded in the algorithms. As a result,
there is the real risk that these systems can inadvertently perpetuate or even amplify bias
contained in the label data [6,7]. Similarly, as mentioned, humans might be gender-biased
as well. While there are conventional methods for de-biasing AI, like modification of
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loss function to minimize the bias towards protected variable [8], they can not be applied
to humans.

According to [9], one of the definitions of fairness can be considered “Fairness through
unawareness”, which states that the model achieves fairness towards a certain attribute, if
such attribute is not utilized to make predictions [10]. Approaches using such definition
can be generalized not only for AI but also for humans. Therefore, we propose eliminating
the gender parameter from speech processing altogether by pre-processing the sound, so
that perceived gender is indistinguishable by both humans and AI.

One of the crucial elements of gender-neutral speech synthesis is the speech gender
recognition (SGR) network, which must be highly accurate and robust towards accents,
languages, and noise that the sound may carry. Such a network has to validate that
perceived gender is hard to distinguish. Generally, it is believed that perceived gender
depends mainly on the pitch, the male being in the range of 85 to 155 Hz and female 165 to
255 Hz [11], though, in reality, factors like higher tier frequencies, pitch fluctuations, and
overall pitch contour shape have a significant effect on it. Further, both male and female
pitches can go out of those boundaries in many cases. Figure 1 shows the sorted distribution
of average pitch for 720 female and male speakers, respectively. Figure 2 shows the pitch
contours for female and male speakers expressing happy emotions over the same sentence.

Figure 1. Sorted average pitch values for 1440 utterances by female and male speakers separately.
Sounds from each gender category were analysed for average pitch and then sorted for illustra-
tive purposes.

Figure 2. Pitch contour for female and male speakers on example utterance.

Most of the previous researches [12,13] have targeted model or dataset optimizations
for gender bias mitigation. To the best of our knowledge, our proposed method is the first to
investigate gender de-biasing directly by parameter elimination, and its main contributions
are as follows:

• We assembled and trained a network for SGR, with previously unseen accuracy and
robustness towards a variety of sounds.
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• We created a pipeline for eliminating gender parameters from the speech.
• We demonstrated that said method does not create unwanted artefacts in the sound,

showing that speech-to-text performance and conveyed emotion stay the same.

The remaining of the paper is organized as follows: Section 2 gives an overview of the
related works. Section 3 describes the used datasets, the experimental methods, and the
training. Section 4 presents the experimental results and the discussion. Lastly, Section 5
concludes the paper.

2. Related Work

With the widespread use of AI and its applications in our everyday lives, accounting
for fairness has gained significant importance in designing such systems. AI systems can be
used in many sensitive environments to make important and life-changing decisions, such
as interviews [14], hiring [15] and personality analysis [16]. Thus, it is crucial to ensure
that these decisions do not reflect discriminatory behaviour towards certain groups or
populations.

More recently, some work has been developed in traditional ML and deep learning
(DL) techniques that address such challenges in different sub-domains [17]. These sub-
domains can include different aspects of possible bias sources, be it gender, race, age, and
others. For example, in [2], authors show which models are gender-biased, which are
not, and how the gender of the subject affects its emotion recognition. They also describe
the extent of this bias by measuring the accuracy gap in emotion recognition between
male and female test sets and observing which types of emotions are better classified
for men and women. In [8], authors demonstrate that the activation model for Speaker
Emotion Recognition (SER) is negatively biased towards women, meaning that said models
consistently display lower activation for women than men.

Furthermore, psychologists did many studies and found that there was a correlation
between culture [18], race [19], gender [20], and cultural differences in emotions. For
example, in [21], authors have shown that participants believed women experienced and
expressed the majority of the 19 emotions studied more often than men. In another study,
it was shown that women were rated sadder and less angry than men.

Better performance has been reported when separate acoustic models are employed
for males and females [22], thus rendering SGR very significant. Many methods for SGR
have been described in [23–27] and while most show relatively high accuracy rates, their
robustness towards different aspects of input sound, such as quality, noise levels, language,
and others can be questioned. Moreover, most of these methods rely on feature extraction,
such as pitch and multiple spectrograms, for which multiple methods exist, and they
ultimately differ in their output.

Natural language processing (NLP), speech-to-text, and general sound recognition
can also be the subject of gender bias. Authors of [28] mention that current state-of-the-art
speech recognition is 13% more accurate for men than it is for women. Furthermore, they
go on to state that Dialects also affect accuracy. For example, Indian English has a 78%
accuracy rate, and Scottish English has a 53% accuracy rate.

Authors of [29] highlight the said bias for machine translation, which facilitates itself
by creating social gender expectations—for example, translating engineers as masculine
and nurses as feminine. Similar stereotypical gender bias can be observed in humans
as well. For instance, authors of [30] utilized a word association test to assess gender
stereotypes in texts and found that bias scores correlate well with bias in the real world.

On another note, we can discuss the possible adjustments needed for AI fairness.
In [31], the authors highlight the requirements and obstacles for responsible AI concerning
two intertwined objectives: efforts toward socially beneficial applications and human and
social dangers of AI systems. They also mentioned several reported bias cases in different
fields due to a lack of transparency, intelligibility, and biased training data. Authors of [32]
explain how to use design methodology to create a responsible and fair AI. Authors of [10]
provide a summary of formal definitions for AI fairness, those being ‘Fairness through
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unawareness’ [9], ‘Counterfactual fairness’ [9], ‘Statistical Parity Difference’ [9], ‘Equal
Opportunity Difference’ [33], ‘Average Odds Difference’ [34] and ‘Disparate Impact’ [35].
With correctly chosen technical tools, such as Meta’s Fairness Flow tool, IBM’s Fairness
360 toolkit or even Accenture’s AI Fairness tool, one can detect bias in sensitive datasets
and even see correlations in said datasets. In [36], the authors highlight the importance
of an appropriately diverse dataset to achieve fairness. They then propose a maximum
entropy-based approach for data pre-processing, ultimately leading to bias mitigation.

Finally, we can look at the methods and approaches that try to overcome bias in
AI. As discussed, most approaches try to target and optimize the network, training, or
datasets; for example, in their comprehensive review paper, authors of [12] focus on NLP
and discuss existing methods for recognizing and mitigating gender bias, such as data
manipulation and algorithm adjustment. They also outline the advantages and drawbacks
of each. Authors of [8] propose two methods for AI de-biasing; while they focus on gender
and gender bias, such approaches can be applied to any protected parameter. First, through
an adversarial learning approach to achieve “Equality of odds” towards gender. The
approach involves jointly training two models: a regression predictor and an adversary. The
adversary is a low complexity model that takes the continuous scalar output of the predictor
and the binary label variable as inputs and is trained to classify the binary protected
variable(gender) optimally. The authors propose that the second method solely focuses
on training a regression predictor model. Training involves minimizing a loss function
which additionally includes a weighted term, which penalizes the model for producing
inconsistency in recall across classes of the protected variable. These methodologies are
being actively employed [13,37–39] against gender bias in AI.

3. Methodology

This section gives an overview and details about the resources and methods used.
Section 3.1 describes the datasets that are used for the project and outlines the reason why
each of them was chosen. Section 3.2 describes the method for speech gender recognition.
Lastly, Section 3.3 portrays the whole sound resynthesis process.

3.1. Databases

There are many speech datasets (https://github.com/coqui-ai/open-speech-corpora)
(accessed on 15 December 2021) that differ in their content, labels, language, access level,
and more. We presented some of the datasets in Table 1.

Table 1. Examples of different speech datasets, their content and description.

Database Samples Genders Emotions Language

CREMA-D 7442 Male + Female 6 English
DEMoS 9365 Male + Female 6 Italian

TESS 2800 only female 7 English
AudioMNIST 30,000 Male + Female – English

EMO-DB 535 Male + Female 7 German
LibriSpeech 280,000 Male + Female – English
RAVDESS 1440 Male + Female 8 English

For training and experimentation, we used 4 Speech databases from Table 1. All sound
samples used were 16 bit and 16 kHz sampling frequencies. For pre-processing, we set
the intensity of each sound to 70 dB using Praat (https://www.fon.hum.uva.nl/praat/)
(accessed on 5 January 2022). The following subsections describe the datasets we used.

3.1.1. RAVDESS

Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) (https:
//smartlaboratory.org/ravdess/) (accessed on 15 December 2021) the database contains
1440 audio files of 24 professional actors (12 female, 12 male), vocalizing two lexically-

https://github.com/coqui-ai/open-speech-corpora
https://www.fon.hum.uva.nl/praat/
https://smartlaboratory.org/ravdess/
https://smartlaboratory.org/ravdess/
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matched statements in a neutral North American accent. Speech includes calm, happy,
sad, angry, fearful, surprised, and disgusted expressions. This set was primarily used
for testing emotional integrity after the speech was resynthesized. As the dataset con-
tains relatively noiseless voices and equal gender distribution, the results of SER will
be more comprehensive and accurate. Its labels include the gender of the speaker and
conveyed emotion.

3.1.2. CREMA-D

CREMA-D (Crowd-sourced Emotional Multimodal Actors Dataset) (https://github.
com/CheyneyComputerScience/CREMA-D) (accessed on 15 December 2021) is a data
set of 7442 original clips from 91 actors. These clips were from 48 male and 43 female
actors between the ages of 20 and 74 coming from various races and ethnicities (African
America, Asian, Caucasian, Hispanic, and Unspecified). This set was primarily used to
test the robustness of our gender recognition network, as there is a wide range of speakers
and sounds themselves being quite noisy. Labels include the gender of the speaker and
convey emotion.

3.1.3. EMO-DB

EMO-DB (Berlin Database of Emotional Speech) (http://emodb.bilderbar.info/) (ac-
cessed on 15 December 2021) is a data set of 535 audio clips from 10 actors (5 male and
5 female) spoken in German. This set was primarily used to test the robustness of our
gender recognition network toward the language. Using databases that contain speech in
different languages, we can verify that our model is language invariant in a given task.
Labels for EMO-DB include the gender and emotion of the speaker.

3.1.4. LibriSpeech

LibriSpeech (https://www.openslr.org/12/) (accessed on 20 January 2022) is a corpus
of approximately 1000 h of 16 kHz read English speech. The data is derived from reading
audiobooks from the LibriVox project and has been carefully segmented and aligned. Each
sound segment is 3–20 s long and contains labels for the gender of the speaker and a full
transcript of what is read. We used this set for training our gender recognition network,
primarily because of its size and quality. Transcripts were used to compare speech-to-text
performance programs on unmodified and modified sounds to prove the absence of any
unwanted artefacts after the “neutralization” step.

3.2. Speaker Gender Recognition

The classical approach to SGR is extracting features from the sound and then feeding
those to some NN for classification, as described in [23]. Though many described models
achieve almost perfect accuracy, some of them may be prone to over-fitting and perform
purely on cross-dataset tests. Primarily, this is because the feature extraction part relies heav-
ily on the quality of the sound itself, which may vary from sample to sample. We propose a
non-traditional yet quite simple method that is robust to the aforementioned problems.

We propose the following model for recognizing gender from speech, and it can be
split into two parts, feature extraction and classification.

For feature extraction, instead of relying on traditional methods like different spec-
trograms, we use a pre-trained Wav2Vec [40] network. Wav2Vec is a convolutional neural
network model that takes raw audio as input and computes a general representation that
can be input to a speech recognition system. These representations are computed for each
25 ms frame in the sound and comprise a vector with 512 values.

For classification, the output of the Wav2Vec network over the input sound is averaged
over time, yielding a vector with 512 values. In other words, for 100 ms sound, the output of
Wav2Vec will be a 512× 4 matrix, which will then get flattened by averaging corresponding
values for each time frame. We then feed those values to a simple Multilayer perceptron
(MLP) classifier with two fully connected layers of size (512, 64) and rectified linear unit

https://github.com/CheyneyComputerScience/CREMA-D
https://github.com/CheyneyComputerScience/CREMA-D
http://emodb.bilderbar.info/
https://www.openslr.org/12/
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(Relu) as activation function. The output layer contains two neurons, corresponding to each
gender prediction. The structure diagram of described SGR model can be seen in Figure 3.

Figure 3. Structure of our SGR network.

3.3. Neutralization Process

As previously discussed, multiple types of alterations can be applied to the sound to
change its perceived gender, including frequency shifting, filtering, time stretching and
more. In line with this point, we have found that the combination of correctly chosen
pitch and formant shifts (we refer to these as transformation parameters) is sufficient for
achieving gender neutrality from any speech sample. Therefore, the task of our method
is to find a correct combination of pitch and formant shift values for any given sample to
achieve the above-mentioned goal. For modifying and resynthesizing sounds, we use Praat
and its implementation in python called parselMouth (https://pypi.org/project/praat-
parselmouth/) (accessed on 5 January 2022). Praat is a computer program that can analyze,
synthesize, and manipulate speech. Most importantly, Praat has functions for pitch and
formant manipulation that take one argument for each. These functions take arguments for
new average pitch (50 Hz to 300 Hz) and formant shift coefficient (from 0.5 to 1.5, where
values more than 1 would increase formant frequencies and the reverse for values below 1)
and resynthesizes the sound accordingly.

To check that the speech is indeed gender-neutral, we use the SGR network described
in Section 3.2. As the output of SGR is accompanied by the certainty of a given prediction,
at the point of gender neutrality, this certainty for each gender prediction would be close
to 50%, implying that the model is not able to distinguish them accurately. Therefore, we
devised a system which searches through all transformation parameter combinations, until
the SGR network outputs predictions with certainty close to 50%. In other words, the
system transforms the speech with every possible combination of parameters (we use steps
of 3 Hz in the range of 50 Hz to 240 Hz for pitch and steps of 0.01 in the range of 0.75 to 1.25
for formant shift) and runs the output sound through SGR. This process continues until
the absolute difference of certainties for each gender prediction falls below 10% (given by
formula (1)). Such a search is quite time consuming and mostly unnecessary. For example,
increasing the frequencies of the female voice will most certainly make it sound more
feminine, thus our system should not waste time checking all possible combinations.

|Pmale − Pf emale| < 10% (1)

where P is the certainty of given gender prediction.
To address this, we first neutralized 1000 different speech samples using the lengthy

method described above and looked for possible relations between pitch, pitch standard
deviation and gender of the initial sound and the transformation parameters found by the
system. We have found that for each gender, the initial pitch was correlated to the correct
formant shift coefficient, and pitch standard deviation was correlated to the new pitch
transformation found by the system. Said correlations are demonstrated on Figure 4 for
male samples and Figure 5 for female samples. Based on these correlation figures, we were

https://pypi.org/project/praat-parselmouth/
https://pypi.org/project/praat-parselmouth/
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able to devise the corresponding Equations (2) and (3) for males and Equations (4) and (5)
for females.

For male:
Pmale = 150 +

sp
1.63

(2)

f s = 1.15− p
1500

(3)

For female:
Pf emale = 140− sp

1.96
(4)

f s = 0.8 +
20
p

(5)

where P is the new average pitch, sp is the measured standard deviation of pitch, f s is the
formant shift coefficient, and p is the initial measured pitch.

These findings enabled us to add an initial “coarse neutralization” step to the system.
Here, we extract gender, pitch and standard deviation of the pitch from the initial sound
and using the above correlation formulas, calculate the initial neutralization parameters.
Based on these parameters, we do not need to start the searching cycle from scratch, hence
saving time and processing power. Moreover, without this step, the search can take up an
additional 100 iterations, while, on average with a coarse neutralization step, the process
takes 11 iterations to find the correct transformation parameters.

Figure 4. Correlation of initial sound features and correct transformation parameters for gender
neutralization for male samples. Orange ‘+’ markers correspond to each sound sample and blue
line is representing equation of corresponding correlation. (A) Correlation of initial pitch standard
deviation and new pitch value of neutralized sound. (B) Correlation of initial average pitch to the
formant shift coefficient in neutralized sound.

Finally, as said it is very important that we do not change the emotion carried by speech
during neutralization. To make sure this is the case, we use Vokaturi (https://vokaturi.
com/) (accessed on 3 February 2022) software’s Python API to measure the emotion of the
initial sample and during parameter search, prioritize the transformations where emotion
was not affected. In other words, if the system finds a pitch and formant shift combination
for which SGR outputs certainties close to 50% but the measure emotion differs from the
initial, such combination will be discarded.

https://vokaturi.com/
https://vokaturi.com/
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Figure 5. Correlation of initial sound features and correct transformation parameters for gender
neutralization for female samples. Orange ‘+’ markers correspond to each sound sample and blue
line is representing equation of corresponding correlation. (A) Correlation of initial pitch standard
deviation and new pitch value of neutralized sound. (B) Correlation of initial average pitch to the
formant shift coefficient in neutralized sound.

All in all, our gender neutralization system can be split into two parts. The first is
coarse neutralization, where we extract the features from the initial speech sample and
use them to find a probable location of correct transformation parameters. And second,
a feedback loop comprising sound resynthesis, SGR and SER networks. The loop starts
from the combination of transformation parameters calculated by the coarse neutralization
step. Then for each iteration, it slightly changes the pitch or formant shift coefficient,
resynthesizes the sound with new parameters and puts the sound through SGR and SER
networks. We loop this process until the absolute difference of certainties for each gender
prediction is below 10% (Equation (1)) provided that there is no modification in the carried
emotion from the given transformation. After such a pair is found, the loop is halted and
the corresponding sound is saved. A block diagram of the gender neutralization system
can be seen in Figure 6.

Figure 6. Diagram of our proposed gender neutralization system.

4. Experimental Results and Discussion

To start, we evaluate the robustness and accuracy of our SGR method. For comparison
purposes, we have employed the approach described in [23], namely, pre-processing,
feature (MFCC, chroma, mel, and tonnetz) extraction, and classification using MLP. We
then trained it using the RAVDESS dataset, and the network reached an accuracy of 98.4%
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on the validation set. When we cross-checked the pre-trained network on a different dataset
(EMO-DB), the accuracy was 56.9%, suggesting that this method is prone to over-fitting.
The confusion matrix of such cross dataset test can be seen in Figure 7A.

On the other hand, our proposed network, trained on LibriSpeech (see Section 3.1.4,
trained using 80% of the dataset and tested using 20%), shows similar accuracy of 99.87% on
the validation set as seen in Figure 7B, while also excelling in cross dataset tests. Figure 7C,D
show the confusion matrices of our method tested against RAVDESS and EMO-DB, reaching
96.9% and 97.3% respectively.

(A) (B)

(C) (D)

Figure 7. Confusion matrices of SGR methods tested on different datasets (A) Confusion matrix of
SGR method from [23] trained on RAVDESS and tested on EMO-DB. (B) Confusion matrix of our SGR
method trained on LibriSpeech. (C) Confusion matrix of our SGR method trained on LibriSpeech
and tested on RAVDESS. (D) Confusion matrix of our SGR method trained on LibriSpeech and tested
on EMO-DB.

After the proposed system described in Section 3.3 was assembled, we needed to
check emotion integrity and the absence of the added sound artefacts. Using the previously
mentioned tool for SER, VokaTuri, we can measure the emotion before and after the
transformation and then compare the two. Doing this for the whole RAVDESS dataset
yielded a 98.75% match between original and transformed files, see Figure 8. It is important
to stress that we do not measure the accuracy of said SER method but rather make sure
that the emotional prediction of a given sound does not change upon transformation.

To verify the absence of any unwanted artefacts, we compare speech-to-text per-
formance on original and neutralized sounds. We used 5000 speech samples from Lib-
riSpeech, as it also comes with text transcriptions and google’s speech-to-text API (https:
//cloud.google.com/speech-to-text/) (accessed on 20 February 2022). To compare tran-
scriptions, we used FuzzyWuzzy library (https://github.com/seatgeek/fuzzywuzzy) (ac-
cessed on 20 February 2022), which basically compares two strings and measures the
edit distance between them, then outputs a match score in percentages. Consequently,
google’s speech-to-text scored 86.12% on original set and 85.67% on Transformed sounds

https://cloud.google.com/speech-to-text/
https://cloud.google.com/speech-to-text/
https://github.com/seatgeek/fuzzywuzzy
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and Cross-checking transcriptions yielded 98.7% match, see Figure 9. However, the said
string matching algorithm does not take into account the fact that some words may sound
similar but have different spellings, which could be one of the main contributors to the
matching gap.

Finally, we inspected the transformed sounds and compared them to the original.
From Figures 10 and 11 you can see the frequency spectra of voices, before and after
transformation. In the case of a female voice, frequencies in the vicinity of 400 Hz and
over 800 Hz were drastically dampened. While in the case of male voice, some high-tier
frequencies have increased in amplitude after transformations. Such behaviour is expected
as the female voice is associated with having more high-frequency components. Most
importantly, as far as the authors’ impression is concerned, by playing and listening to
transformed sounds, it was very hard to imply on the gender of the speaker.

Figure 8. Emotion predictions on original and Transformed sounds from RAVDESS dataset.

Figure 9. Transcription match pattern between original and neutralized sounds.
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Figure 10. Frequency spectrum of female speech, before and after neutralization.

Figure 11. Frequency spectrum of male speech, before and after neutralization.

To sum up, we demonstrated that our method for SGR performs with similarly high
accuracy towards validation or completely different sets. We assembled the system for
speaker gender neutralization using said SGR for validation, which also includes some
optimizations to cut down processing time finally, we have shown that transformations
used in this method are non-destructive for the sound and all key aspects of it stay al-
most untouched.

5. Conclusions

Our paper proposes a novel approach for gender de-biasing in speech processing.
Instead of focusing on dataset or model optimizations, our method implies the removal
of gender parameters from speech data altogether. To achieve this, we employ the speech
manipulation tools to transform the original sound to the point where gender becomes
indistinguishable, thus rendering such parameters redundant for consideration in speech
processing. Specifically, we have found that the correct combination of pitch and formant
shifts is sufficient for the given task. As a benchmark for gender neutrality, we employ
a Wav2Vec based speech gender recognition network, which demonstrated remarkable
accuracy on validation, as well as on cross dataset tests. Results of our gender neutralizing
system have shown that transformations and validations are used to ensure that key
aspects of the original sound, like carried emotion, stay the same and that there are no
unwanted artefacts added. Furthermore, we have shown that our method for SGR excels
in robustness towards sounds that differ in noise levels, language, and accents. Such
a system can be used as a batch pre-processing tool for models in speech processing
applications, where gender bias is an evident problem. By removing the gender factor
from speech processing, we ultimately eliminate bias towards it as well. It is essential to
highlight that our implementation can be further optimized. For future work, we firmly
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believe that computation times for sound resynthesis can be cut down, and other types of
transformations can be introduced as well.
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