
Citation: Mahmood, Z.; Jusas, V.

Blockchain-Enabled: Multi-Layered

Security Federated Learning Platform

for Preserving Data Privacy.

Electronics 2022, 11, 1624. https://

doi.org/10.3390/electronics11101624

Academic Editor: Qingqi Pei

Received: 6 March 2022

Accepted: 27 April 2022

Published: 19 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Blockchain-Enabled: Multi-Layered Security Federated
Learning Platform for Preserving Data Privacy
Zeba Mahmood 1,* and Vacius Jusas 2

1 Department of Software, Kaunas Technology University, 44249 Kaunas, Lithuania
2 Faculty of Informatics, Kaunas Technology University, 44249 Kaunas, Lithuania; vacius.jusas@ktu.lt
* Correspondence: zeba.mahmood@ktu.edu

Abstract: Privacy and data security have become the new hot topic for regulators in recent years. As
a result, Federated Learning (FL) (also called collaborative learning) has emerged as a new training
paradigm that allows multiple, geographically distributed nodes to learn a Deep Learning (DL) model
together without sharing their data. Blockchain is becoming a new trend as data protection and
privacy are concerns in many sectors. Technology is leading the world and transforming into a global
village where everything is accessible and transparent. We have presented a blockchain enabled
security model using FL that can generate an enhanced DL model without sharing data and improve
privacy through higher security and access rights to data. However, existing FL approaches also have
unique security vulnerabilities that malicious actors can exploit and compromise the trained model.
The FL method is compared to the other known approaches. Users are more likely to choose the
latter option, i.e., providing local but private data to the server and using ML apps, performing ML
operations on the devices without benefiting from other users’ data, and preventing direct access
to raw data and local training of ML models. FL protects data privacy and reduces data transfer
overhead by storing raw data on devices and combining locally computed model updates. We have
investigated the feasibility of data and model poisoning attacks under a blockchain-enabled FL
system built alongside the Ethereum network and the traditional FL system (without blockchain).
This work fills a knowledge gap by proposing a transparent incentive mechanism that can encourage
good behavior among participating decentralized nodes and avoid common problems and provides
knowledge for the FL security literature by investigating current FL systems.

Keywords: Federated Learning (FL); blockchain; Zero-Knowledge Proofs (ZKPs); multi-layer security;
poisoning attacks; Convolutional Neural Network (CNN)

1. Introduction

Over the past decade, mobile devices and internet use have increased exponentially [1,2].
Given the exponential use of mobile devices, many groups have begun to investigate
how these devices Could be used effectively to collect data. The availability of powerful
sensors such as microphones, cameras, and global positioning systems (GPS) on these
devices, and the fact that they are frequently carried and used, means that they have
access to unprecedented amounts of data. DL Models learned from such data can greatly
improve the user experience by enabling smarter applications [3]. Training data resides
on a single, centralized server in a traditional DL approach. Consequently, DL companies
must go through a lengthy and costly process of evaluating their users’ data, regardless
of the risks and responsibilities of storing such data sets in a centralized data center. DL
Model becomes more complex as such data grows in size and prototype, disenfranchising
smaller start-ups and monopolizing the market. Moreover, data privacy remains a major
challenge for established companies. In 2019, for example, Facebook and Amazon admitted
to wiretapping users’ recordings without their consent. Rising online protests over how
companies handle users’ private data have forced regulators to step in and force these

Electronics 2022, 11, 1624. https://doi.org/10.3390/electronics11101624 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11101624
https://doi.org/10.3390/electronics11101624
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3083-9048
https://doi.org/10.3390/electronics11101624
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11101624?type=check_update&version=1

Electronics 2022, 11, 1624 2 of 21

organizations to stop the practice [4]. FL addresses these issues by allowing geographically
distributed nodes (also called clients) to learn a shared global model without sharing
their training data [5]. FL allows personal data to remain on multiple devices in local
locations, minimizing the possibility of data breaches. FL is essentially a decentralized DL
approach that decouples training data from a globally shared model on personal devices.
Recently, FL has become a leading research area in the field of artificial intelligence (AI)
and has privacy and security mechanisms that can comply with current data protection
laws such as the General Data Protection Regulations (GDPR) [6]. Despite its potential, FL
is not immune to some forms of attacks that can target any stage of the network’s training
and deployment pipelines. Common attacks that can compromise FL systems include
backdoor attacks [7], poisoning attacks [8], and inference attacks [9]. By sharing model
parameters instead of training data, FL creates new attack surfaces those malicious actors
can exploit and compromise the system. Thus, an attacker who has full control over one of
the participating nodes can maliciously manipulate the training data, training pipelines,
and model parameters. The decentralized nature of FL, especially when augmented with
secure aggregation, can lead to many attacks going unnoticed in FL [10]. Secure aggregation
prevents the central server from checking the model update of each node. Moreover, when
training the DL model with thousands of distributed mobile devices, it is impossible to
detect whether any of them is malicious or compromised. The security issues faced by FL’s
current systems are trust issues that blockchain can solve.

As a secure technology, Blockchain can withstand a single point of failure because it
relies on distributed consensus. In addition to improving security, consensus protocols
can help build trust in the learning process [11]. FL was first defined by researchers
in 2016 and has since gained global traction, both in academia and industry. FL was
developed to shift the training effort to the device itself, federating local models and
learning processes and the devices with ML. Its main goal is to provide a framework
for privacy-preserving machine learning. The FL method is compared with the other
known approaches on the right-hand side of Figure 1. Users are more likely to choose
the latter option between providing local but private data to the server and using ML
apps, performing ML operations on devices without benefiting from other users’ data,
preventing direct access to raw data, and incorporating locally training ML models. FL
protects data privacy and reduces data transfer overhead by storing raw data on the devices
and combining locally computed model updates. Although there are reviews of both edge
computing (EC) and federated learning (FL), most studies treat the two areas separately.
Moreover, most writings have not considered the difficulties in device requirements. In [12],
the structures and frameworks for edge insights were considered. They provided insights
that are explicitly for 6G organizations. Organizations whose data sets are getting bigger
and bigger need to communicate faster and deliver their products quickly over the Internet.
Therefore, such organizations need a faster and more credible network.

On the other hand, ref. [13] investigated the use of ML for the IoT board. It also
investigated the open doors and difficulties in federated learning. The authors of [14]
presented the current federated learning and proposed the design of federated learning
frameworks. Another focus was to present the design and characterization of different
federated authors, proposed a scientific categorization of federated learning and divide the
federated learning framework into six different perspectives: Information dissemination,
ML model, protection tool, correspondence design, alliance size and inspiration for feder-
ated learning. The authors have presented the factors of the plan, the contextual analyses
and the open doors for future research. The essence of this is that they have given a brief
guide to FL and the difficulties of federated learning, provided a comprehensive overview
of the writing, and pointed out some future research directions. They have reflected on four
difficulties of federated learning: productivity of correspondence, heterogeneity of setting,
substantial heterogeneity, and safety. Learning arrangements [15] for different information
transmissions utilized for preparing and are even utilized in planning blockchain-based
administrations and securities [16]. The stochastic game executes stochastic advancements

Electronics 2022, 11, 1624 3 of 21

under the conditions of the game, and the players in a stochastic game might change
their methods considering the past activities and irregularity of the behavior of different
players. Some types of stochastic games have been adapted to avoid the 51% attack, and
a stochastic game has been used to study the decision between fair mining and choosing
the appropriate time to add and deliver mining blocks. The blockchain can also encourage
participants to contribute positively to the system FL via an incentive mechanism that
rewards good behavior. A blockchain-powered FL system can overcome challenges such
as poisoning attacks, inference attacks and backdoor attacks by strengthening trust and
providing incentive mechanisms that reward good behavior and punish bad actors. To take
advantage of FL and exploit its features, it is necessary to know potential security attacks in
these systems and how to avoid them. Our paper proposes a blockchain-enabled FL with a
multi-layered security model. The rest of the paper is divided into five sections as follows:
Section 2 explores the various vulnerabilities and attacks inherent in FL systems; Section 3
examines the findings on existing defense mechanisms and their limitations, and Section 4
extends the defense mechanisms to blockchain and other peer-to-peer (P2P) networks.
Finally, Section 5 concludes.

Electronics 2022, 11, x FOR PEER REVIEW 3 of 22

Figure 1. System Description.

On the other hand, ref. [13] investigated the use of ML for the IoT board. It also in-
vestigated the open doors and difficulties in federated learning. The authors of [14] pre-
sented the current federated learning and proposed the design of federated learning
frameworks. Another focus was to present the design and characterization of different
federated authors, proposed a scientific categorization of federated learning and divide
the federated learning framework into six different perspectives: Information dissemina-
tion, ML model, protection tool, correspondence design, alliance size and inspiration for
federated learning. The authors have presented the factors of the plan, the contextual anal-
yses and the open doors for future research. The essence of this is that they have given a
brief guide to FL and the difficulties of federated learning, provided a comprehensive
overview of the writing, and pointed out some future research directions. They have re-
flected on four difficulties of federated learning: productivity of correspondence, hetero-
geneity of setting, substantial heterogeneity, and safety. Learning arrangements [15] for
different information transmissions utilized for preparing and are even utilized in plan-
ning blockchain-based administrations and securities [16]. The stochastic game executes
stochastic advancements under the conditions of the game, and the players in a stochastic
game might change their methods considering the past activities and irregularity of the
behavior of different players. Some types of stochastic games have been adapted to avoid
the 51% attack, and a stochastic game has been used to study the decision between fair
mining and choosing the appropriate time to add and deliver mining blocks. The block-
chain can also encourage participants to contribute positively to the system FL via an in-
centive mechanism that rewards good behavior. A blockchain-powered FL system can
overcome challenges such as poisoning attacks, inference attacks and backdoor attacks by
strengthening trust and providing incentive mechanisms that reward good behavior and
punish bad actors. To take advantage of FL and exploit its features, it is necessary to know
potential security attacks in these systems and how to avoid them. Our paper proposes a
blockchain-enabled FL with a multi-layered security model. The rest of the paper is di-
vided into five sections as follows: Section 2 explores the various vulnerabilities and at-
tacks inherent in FL systems; Section 3 examines the findings on existing defense

Figure 1. System Description.

1.1. Statement and Purpose

FL has evolved to implement a distributed stochastic optimization for deep learning
framework training [11]. A typical FL strategy involves multi-round training where each
round has the following steps:

• Selecting nodes. The centralized server samples the nodes from a set of participating
clients that meets requirements such as Wi-Fi connection, device idle, device plugged
in etc.

• Sharing the global model. Each selected node downloads the global model from the
central server.

• Local training. Each node computes an update to the DL model based on its training
data and the training procedure, such as local stochastic gradient descent (SGD).

Electronics 2022, 11, 1624 4 of 21

• Aggregation. Each node transmits its output to the server. The server, in turn, aggre-
gates the updates to generate an improved global model.

• Updating the global model. The global model gets updated with the new aggregate
emanating from participating nodes.

The FL architectural framework introduces unique security vulnerabilities from three
sources: nodes, aggregators (server), and third parties. A malicious node (containing
malware) that gains complete control over one or multiple nodes can compromise the entire
FL model in various forms such as:

• Manipulating the training data of any compromised endpoint.
• Tampering or replacing the resulting local model’s parameters before transmitting

them to the central server.
• Manipulating the training procedure, including local loss optimisation and other

parameters such as local learning rate, batch size, and local epochs.
• Dynamically modifying the training procedure from one round to another.

Similarly, a hostile aggregator can launch targeted and untargeted attacks on the
shared global model.

Aggregator integrity certification methods such as zero-Knowledge Proofs (ZKPs) [17]
and Secure MultiParty Computations (SCMs) [18] can detect these attacks. However,
reasonably honest aggregators can still infer private information from model updates.

Finally, third parties can also compromise the security of a federated learning system.
This can be the case when nodes exchange model updates during the training phase,
potentially exposing the model to external attackers [18]. In this context, an attacker who
eavesdrops on the communication channel can effectively derive the private data of the
nodes and compromise the entire FL system.

1.2. Literature Review
1.2.1. Security Attacks in Federated Learning Systems

There are two forms of attacks in typical FL systems, distinguished by their goals:
targeted and untargeted attacks. In targeted attacks (also called backdoor attacks), the
attacker alters the model’s behavior by focusing on specific subtasks within the model and
maintaining the overall accuracy of the main task. For example, an attacker may corrupt
an image classification system and misclassify “green cars” as “frogs” while ensuring that
other cars are correctly classified. In an untargeted attack, the malicious actor attempts
to degrade the overall accuracy of the global model. The following subsection classifies
security attacks in FL systems and briefly describes each attack.

1.2.2. Poisoning Attacks

Poisoning attacks are among the most common security attacks in FL systems [19].
In poisoning attacks, an attacker who has gained control over the participating nodes
can poison the training data by injecting carefully designed samples to compromise the
entire federated learning experience. This is because each node has access to the training
data and the likelihood of manipulating such data weights is very high. These attacks
target various forms of FL artifacts, including Data poisoning. With data poisoning attacks,
adversaries generate “Not Accurate” samples on the compromised nodes to generate
falsified parameters and transmit them to the central server. Model poisoning. Unlike data
poisoning, where the attacker manipulates the global model via fake training data, model
poisoning involves poisoning the global model itself. Then, the adversary modifies the
updated model before transmitting it to the central server for aggregation.

Electronics 2022, 11, 1624 5 of 21

1.2.3. Backdoor Attacks

In a backdoor attack, a malicious actor inserts a hidden malware into the global model
while preserving the accuracy of the primary task [20]. In this regard, compromised nodes
train the model on the chosen backdoor data that poisons the entire FL pipeline. These
attacks can harm FL systems as they can predict false results with high confidence levels.
Furthermore, a shared global model that averages across participating nodes is shared in
an FL-based system [21]. Therefore, an attacker who knows the global model state can
easily apply a simple weight re-scaling operation and replace the model. For backdoor
attacks to be successful, they must satisfy two requirements: the model must be close to
convergence, and the adversary must have near-perfect knowledge of some FL parameters
such as the number of nodes and data size [16].

1.2.4. Inference Attacks

A serious gradient leakage can occur when nodes exchange gradients during the FL
training process. In this case, the model updates can leak information regarding the nodes’
training data features to malicious actors. While some of these features are not necessarily
related to the main task, they impact gradient leakage. A malicious actor can also take
a snapshot of the model parameters and perform property inferences by computing the
difference between the consecutive snapshots. This is like aggregating model updates
from all participating nodes minus the malicious actor. In this case, the adversarial node
generates gradients based on the node’s private data. Most deep neural networks (DNNs)
compute the gradient of a particular layer using its features and backpropagate error
from the following layer. For example, the gradients in sequential, fully connected layers
are simply the products of activations and errors backpropagated from the successive
layers. The exact process occurs in the convolutional layer, where gradients are simply
convolutions of the errors from the layer above and its activations. An adversary with
access to this model update can obtain a substantial volume of private data, including
class representations [22] class memberships [4] and properties of other nodes’ data. An
adversary can infer labels from the gradients in a worst-case scenario and retrieve the
original training data without prior knowledge about the training set [8].

1.2.5. Machine Learning Approaches

Regression methods are used for training supervised ML. The goal of regression
techniques is usually to explain or predict a numerical value using a previous data set. For
example, regression methods may use historical price data and then predict the price of a
similar property to forecast retail demand. Linear regression is considered the simplest and
most basic method. In this case, a data set is modelled using the following equation:

(y = m × x + b) (1)

It is possible to train a regression model with several pairs of data, e.g., x, y. To do
this, one must define a position and the slope of the line with a minimum distance to all
known data points. This line best approximates the data observations and can help make
predictions for new data not yet seen.

1.2.6. Clustering

Unsupervised learning methods are clustering algorithms. K-means, mean-shift and
expectation maximization are three typical clustering techniques. In commercial applica-
tions, grouping or clustering techniques are helpful when segmenting or categorizing large
amounts of data. For example, customers can be segmented based on different characteris-
tics to better target marketing campaigns, and messages that appeal to confident readers
can be recommended. Clustering is particularly useful for identifying patterns in large data
sets that are not visible to the naked eye. Therefore, one of the most commonly used AI
approaches in marketing.

Electronics 2022, 11, 1624 6 of 21

1.2.7. Existing Defences against Security Attacks in FL Systems and Their Limitations

While security and privacy preservation have extensively been studied in the machine
learning community, it has yet to receive attention in federated learning. FL environments
have statistical heterogeneity in data sets and sporadic access to network connectivity and
power. Existing works on defences against security in FL systems largely focus on anomaly
detection [23] differential privacy [24], Secure aggregation [25], Pruning [26], ZKPs [27],
Adversarial training [28] and federated distillation (FD) [29].

1.2.8. Anomaly Detection

Anomaly detection can help discover and thwart attacks such as model poisoning
and data poisoning in FL systems via various methods. One popular method is using the
test error rate [30]. In this case, the FL system accepts the test error only if it improves
the global model and rejects it if it does not enhance the model. This proactive defense
mechanism in the FL system explicitly detects erroneous model updates and prevents
impacts. Although this form of defense works well against un-targeted attacks, it does
not produce the same results as targeted adversarial attacks [31]. Training the backdoor
data usually generates a poisoned model that behaves like the intact model. To mitigate
this limitation, Wang et al. [32] proposed the AUROR protocol, a defense mechanism that
leverages k-means clustering algorithm to detect harmful node updates in targeted attacks.
The AUROR protocol isolates all the nodes participating in the FL learning process into
many clusters based on their uploaded features. For every feature, the protocol generates
clusters of benign and malicious nodes. However, despite the nobility of this protocol, it
does not address the challenge of high-dimensional big data for the model weights [33].

1.2.9. Differential Privacy

While initially conceived as a defense mechanism against privacy attacks, differential
privacy is increasingly finding its use case in mitigating security attacks. Differential
privacy can help prevent data poisoning attacks by injecting random noise into the model
updates [24] by injecting the model updates with statistical noise, and differential privacy
achieves two things.

First, it guarantees that no dataset can validly be distinguished from the rest of the
nodes’ local data samples. Second, an adversary that modifies a few training samples
cannot cause a significant deviation in the overall global model. The main problem with
differential privacy is that the statistical noise added to the model updates is injected into
the learning algorithm’s noise. The accumulated noise can compromise the overall global
model when it exceeds the limit [34,35]. Besides the accumulated noise, differential privacy
can also not work when the FL system has many nodes [36].

Various studies have proposed algorithms to robustly detect faulty updates and protect
FL systems from malicious training [19]. Most research in this area has primarily focused
on protocols that can sustain communication instabilities, faulty model updates, and node
dropouts. One such protocol is the adaptive aggregation that combines repeated median
and reweighting approaches in iteratively least squares [37]. This method has demonstrated
robust security against model corruptions prevalent with free-riding attacks [9].

Another often cited method is the Gaussian distribution that determines nodes’ poten-
tial contributions to the global model [18]. This model leverages layer-wise optimization
steps to work effectively on differential functional units in DNNs and tackle heterogeneity
problems in data. Despite the novelty of these approaches, secure aggregation protocols
have a primary challenge. They can leave other attacks, such as man-in-the-middle at-
tacks, unnoticed because of the FL’s decentralized nature. Pruning is quickly emerging
as a defense mechanism against security attacks in FL systems that want to minimize the
magnitude of the global model [20]. By minimizing the complexity of the model updates,
pruning helps FL systems enhance their overall accuracy. The protocol assumes that a de-
centralized FL system has many nodes with limited bandwidth and computational power.
Another often cited method is the Gaussian distribution that determines nodes’ potential

Electronics 2022, 11, 1624 7 of 21

contributions to the global model [18]. This model leverages layer-wise optimization steps
to work effectively on differential functional. As nodes cannot effectively train a large-sized
DNN, but with pruning, this limitation is avoided by leaving out small local datasets that
do not require training. There are two common forms of pruning: Federated Dropout
(FD) and PruneFL. In FD-based learning, nodes train their local dataset on smaller subsets
of the overall global model. FD helps to avoid the problem of local computation and
low bandwidth. PruneFL, on the other hand, maximizes the estimated empirical risks
involved in training small datasets [38,39]. The past few years have seen ZKPs emerging
as privacy-preserving mechanisms that allow data to be verified without revealing that
data [40]. ZKPs use cryptographic primitives to validate statements by one entity (called
the prover) to another entity (called the verifier) without sharing their underlying data in
their most basic form [41].

The past few years have seen ZKPs emerging as privacy-preserving mechanisms
that allow data to be verified without revealing that data [40]. ZKPs use cryptographic
primitives to validate statements by one entity (called the prover) to another entity (called
the verifier) without sharing their underlying data in their most basic form [41]. The
primary goal of ZKPs is to validate a statement without necessarily leaking any extra
information [39]. In FL systems, ZKPs can provide an efficient solution for verifiability
challenges on personal data. Because they avoid sharing nodes’ private data, leveraging
them ensures that clients only submit model updates with pre-specified characteristics.
This can help the learning system defend against backdoor attacks and model corruption.
For example, ZKPs can verify that model updates were trained correctly by data instances
from smartphones without necessarily sharing their private data. ZKPs have compelling
value propositions in FL systems as defense mechanisms against sharing private data.
However, they are merely probabilistic statements and cannot provide complete certainty
that is verifiable [9]. Their application is still in its infancy stages, which means they lack
standards that specify how they should be used. Adversarial training has emerged as one
of the most robust defense techniques against the DNN model adversaries. Unlike other
strategies that focus on extrinsic factors, adversarial training concentrates on intrinsically
improving the DNN model resilience. When applied in FL systems, adversarial training
solves the minimax optimization problem in two ways. First, the inner maximization
generates adversarial examples by optimizing the classification loss. Second, the outer
minimization yields model parameters by minimizing the loss of adversarial datasets from
internal maximization [42]. This way, adversarial training can provide resilience against
common threats such as evasion and backdoor.

Exchanging model parameters under limited bandwidth is too costly, especially with
large-scale DNNs. FD has a compelling value proposition in such environments because it
only transmits model results whose dimensions are relatively smaller than the model sizes.
One FD variation that has gained popularity in the academic community over recent years
is knowledge distillation (KD). With KD, knowledge is transferred from a fully trained
model (also called the teacher model) to a smaller model (known as the empty student
model). Such knowledge can also aggregate other students’ model updates that form in
the FL system. The primary objective of KD-based systems is to enhance the robustness of
FL systems by minimizing computational and bandwidth costs [43]. Table 1 states defense
mechanisms against security attacks in FL systems and their limitations.

Electronics 2022, 11, 1624 8 of 21

Table 1. Summary of defence mechanisms against security attacks in FL systems and their limitations.

Defence Mechanism Security Attacks Limitation (s)

Anomaly detection Data poisoning attacks The test error rate method can generate a poisoned model that appears and behaves as
the intact models.Model poisoning attacks

Free-riding attacks It does not address the problem of high-dimensional big data for the model weights.

Differential privacy Data poisoning attacks The accumulated noise from the model updates and the learning algorithm can
compromise the overall global model when it exceeds the limit.Model poisoning attacks

Inference attacks The protocol cannot work effectively with large decentralized nodes in FL systems.

Secure Aggregation Data poisoning attacks It can leave other attacks to go unnoticed because of the FL’s decentralized nature.
Model poisoning attacks

Backdoor attacks

Pruning Backdoor attacks It cannot work with large decentralized nodes in FL systems

Data poisoning attacks ZKPs merely provide probabilistic statements that cannot provide complete certainty
that is verifiable.ZKPs Model poisoning attacks

Backdoor attacks
Man-in-the-middle attacks There are no standards that organizations can use to implement ZKPs.

Adversarial Inference attacks The protocol cannot work effectively with large decentralized nodes in FL system.
Training

Federation Inference attacks It does not address the problem of high-dimensional big data for the model weights
Distillation Man-in-the-middle attacks

GANs attacks

2. Methodology

This section introduces our proposed system. Our framework facilitates FL by lever-
aging Ethereum’s incentive mechanisms and proof-of-work (PoW) consensus algorithm to
promote trust among the decentralized nodes.

2.1. System Model

We consider a classification problem using the popular Fashion-MNIST dataset. This
image classification problem consists of 60,000 training samples and 10,000 test data sam-
ples [43]. Each example is a 28 × 28 grayscale image with a label from 10 classes. In our
case, the input is a onechannel (1 × 28 × 28) pixel with values [0, 1] while the output is a
10-class label with values [1, 2, . . . , 10] as follows:{

inMNIST ∈ R 1∗28∗28
∣∣∣0 < inMNIST < 1

}
(2)

{outMNIST ∈ Z|0 < 1 < outMNIST < 10} (3)

We regard each problem as a set of test dataset tuples where each tuple represents {P;
BlockFL; Yn} has P = ∑m

I=1 inMNIST, BlockFL is the Blockchain-enabled FL function, and
Yn is the outputwhose value is given as as Yn = f(xn) on the test data set for a vector xn.
Each node in the BlockFL system has an associated key pair (pubkey, privkey).

This paper aims to leverage the Fashion MNIST data and use it as a basis for collabora-
tively training the DNN model. Because our approach uses a homogeneous dataset, we will
not perform a normalization process. However, for heterogeneous data sets, normalization
is required to obtain better results. We will leverage a Blockchain-powered framework
to train them and share the collaborative model. In our case, the main goal of FL will
remain the same even when powered by blockchain combining the weights of a locally
trained model [44]. After aggregating the locally trained model, the global model gets
stored on a Blockchain-enabled system. The security and privacy of data of the decentral-
ized nodes is the main reason we are considering blockchain in this paper. Essentially,
blockchain manages the privacy and leakage of private data helping to prevent various
attacks. Therefore, the ledger will store two kinds of transactions: data sharing transactions
and recovered transactions. To mitigate against security attacks and ensure privacy, we
will use a public permissionless blockchain. Permissionless Blockchains such as Ethereum
allow any node to append transactions to the ledger provided they have enough tokens.

Electronics 2022, 11, 1624 9 of 21

We also believe collaborative learning can thrive if all the nodes participate in the training
process. The proposed Blockchain-enabled FL system combines local model weights and
transmits them as data sharing transactions to the global model. Local nodes that want to
access the global model downloads it as data recovered transactions. The proposed system
has two components local model and Blockchain-enabled FL, as shown in Figure 1.

2.2. CNN Classification Model

Image classification is one of the fundamental topics in DNNs. Li and Wang research-
ing the subject [44] have demonstrated remarkable performances with image classification
tasks with the development of convolutional neural network (CNN) architecture. We will
use principal component analysis (PCA) [45] to reduce the dimensionality of the Fashion
MNIST dataset. To achieve greater levels of abstraction, the CNN will have four layers in-
put layer, pooling layer, fully connected layer, and output layer. We model each component
of the CNN as a vector Vi rotated and translated through a weighted matrix Mi,j to vector
→
υ i|j. We can now calculate the prediction vector as follows:

→
v i|j = Mi,j ui (4)

The next higher layer, i.e., Ni computes the sum of all the predictions from lower-level
layers with ci,j as coupling coefficients. Ni can be represented as follows:

Ni = ∑
i

ci,j
→
v (i|j) (5)

where ci,j is simply the routing softmax function specified as:

ci,j =
ebij

∑k ebik (6)

Prediction vector calculation based on higher level sum in Algorithm 1 lower layer
denoted as l, vector

→
v i|j, M Matrix and this algorithm performs coefficients. We now specify

the routing algorithm as follows:

Algorithm 1 Component Analysis

1: For i in layer l and i in layer (l + 1)
2: bi,j ← 0
3: For k repeats do:
4: Forall i in layer l do ci,j
5: Forall j in layer (l + 1) do Ni
6: Forall j in layer (l + 1) do Ni Iterate
7: i in layer l, j in layer (l + 1) do
8: bi,j ← bi,j + ci,j

→
v i|j

9: Return
→
v j

2.3. Local Model and Blockchain Proposed Model

The global model is stored on a Blockchain-enabled system after the locally learned
models have been aggregated. The main purpose of Blockchain in this article is to ensure
confidentiality and privacy of data held by decentralized nodes. In essence, blockchain
controls the confidentiality and leakage of private data, preventing a variety of threats.

2.4. Consensus Mechanism

A consensus algorithm is a method by which all peers in a blockchain network reach
consensus on the current state of the distributed ledger. Consensus algorithms provide
resilience to the blockchain network and in this way establish trust between unknown
peers in a distributed computing environment. Essentially, the consensus protocol ensures

Electronics 2022, 11, 1624 10 of 21

that each new block added to the blockchain is the only version of the truth that all nodes
in the blockchain agree on. The blockchain consensus protocol has several specific goals,
including reaching agreement, collaboration, cooperation, equal rights for all nodes and
calculations for each node.

2.5. Reduction of Dimensionality

In the case of this model, the process is codified and obtained through principal
component analysis. Since our data have high dimensionality, we will resort to a type of
dimensionality reduction by feature selection, principal component analysis. We will first
calculate 40 principal components and determine the number of components we will use
in our calculations.

Figure 2 illustrate the plot, we achieved from running Algorithm 2 which presented
the results as 80% of variance is captured between the before the 25th PC this provides
information about the presence of the counted components are insufficient. We worked on
Plotting Accuracies and Losses techniques and in this model CNN accuracies and losses
were plotted to determine the training and validation loss and training and validation
accuracy of the model.

Algorithm 2 Component Analysis

1: import tensorflow as tf
2: from tensorflow import keras
3: import numpy as np
4: import matplotlib.pyplot as plt
5: from sklearn.decomposition import PCA
6: from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score
7: from sklearn.pipeline import Pipeline
8: from tensorflow.keras.utils import to_categorical from tensorflow.keras.models import Sequential
9: from tensorflow.keras.layers import Dense, Flatten, Conv2D, Dropout, MaxPooling2D from
sklearn.model_selection import GridSearchCV, ShuffleSplit, train_test_split from sklearn.svm import SVC
10: from sklearn.linear_model import LogisticRegression from sklearn.neighbors import
KNeighborsClassifier from sklearn.neighbors import NearestCentroid from sklearn import metrics
11: from sklearn.cluster import KMeans
12: from sklearn.metrics import classification_report fashion_mnist
= tf.keras.datasets.fashion_mnist
13: (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data

Electronics 2022, 11, x FOR PEER REVIEW 11 of 22

information about the presence of the counted components are insufficient. We worked
on Plotting Accuracies and Losses techniques and in this model CNN accuracies and
losses were plotted to determine the training and validation loss and training and valida-
tion accuracy of the model.

Algorithm 2 Component Analysis
1: import tensorflow as tf
2: from tensorflow import keras
3: import numpy as np
4: import matplotlib.pyplot as plt
5: from sklearn.decomposition import PCA
6: from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accu-
racy_score
7: from sklearn.pipeline import Pipeline
8: from tensorflow.keras.utils import to_categorical from tensorflow.keras.models import Sequen-
tial
9: from tensorflow.keras.layers import Dense, Flatten, Conv2D, Dropout, MaxPooling2D from
sklearn.model_selection import GridSearchCV, ShuffleSplit, train_test_split from sklearn.svm im-
port SVC
10: from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeigh-
borsClassifier from sklearn.neighbors import NearestCentroid from sklearn import metrics
11: from sklearn.cluster import KMeans
12: from sklearn.metrics import classification_report fashion_mnist
= tf.keras.datasets.fashion_mnist
13: (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data

Figure 2. CNN-Components Calculation.

In Algorithm 3, we summarized the analysis of components that presented Results
performing well in validation accuracy from the beginning hovering around 0.90. We can
see that the dataset becomes learned around the 15th epoch. Figure 3 illustrates the anal-
ysis of the CNN-training and Validation accuracy plot, and Figure 4 the CNN-Training
and Validation Loss exemplify.

Figure 2. CNN-Components Calculation.

Electronics 2022, 11, 1624 11 of 21

In Algorithm 3, we summarized the analysis of components that presented Results
performing well in validation accuracy from the beginning hovering around 0.90. We can
see that the dataset becomes learned around the 15th epoch. Figure 3 illustrates the analysis
of the CNN-training and Validation accuracy plot, and Figure 4 the CNN-Training and
Validation Loss exemplify.

Algorithm 3 Component Analysis

1: Cnn_accuracy = Cnn_model_training.history['acc']
2: Cnn_val_accuracy = Cnn_model_training.history['val_acc']
3: loss = Cnn_model_training.history['loss']
4: val_loss = Cnn_model_training.history['val_loss']
5: epochs = [i for i in range (1,51)]
6: plt.plot(epochs, cnn_accuracy, 'b–', label = 'Test accuracy')
7: plt.plot(epochs, cnn_val_accuracy, 'r', label='Validation accuracy')
8: plt.title('Training and validation accuracy')
9: plt.savefig('Accuracy values')
10: plt.legend()
11: plt.figure()
12: plt.plot(epochs, loss, 'b–', label = 'Training loss')
13: plt.plot(epochs, val_loss, 'r', label = 'Validation loss')
14: plt.title('Training and validation loss')
15: plt.legend()
16: plt.savefig('Loss values')
17: plt.show()

Electronics 2022, 11, x FOR PEER REVIEW 12 of 22

Algorithm 3 Component Analysis
1: Cnn_accuracy = Cnn_model_training.history['acc']
2: Cnn_val_accuracy = Cnn_model_training.history['val_acc']
3: loss = Cnn_model_training.history['loss']
4: val_loss = Cnn_model_training.history['val_loss']
5: epochs = [i for i in range (1,51)]
6: plt.plot(epochs, cnn_accuracy, 'b--', label = 'Test accuracy')
7: plt.plot(epochs, cnn_val_accuracy, 'r', label='Validation accuracy')
8: plt.title('Training and validation accuracy')
9: plt.savefig('Accuracy values')
10: plt.legend()
11: plt.figure()
12: plt.plot(epochs, loss, 'b--', label = 'Training loss')
13: plt.plot(epochs, val_loss, 'r', label = 'Validation loss')
14: plt.title('Training and validation loss')
15: plt.legend()
16: plt.savefig('Loss values')
17: plt.show()

Figure 3. CNN-Training and Validation Accuracy.

Figure 3. CNN-Training and Validation Accuracy.

2.6. Multinomial Logistic Regression

Multinomial logistic regression is another method used to analyze our data. We apply
the lasso and regularization techniques and compare the outcomes. It was done on both
primary and secondary components. In Algorithm 4 we put 25 PCs, we’ll employ a pipeline
technique. The One-Vs-Rest strategy will be employed, which trains K binary classifiers,
where K is the number of classes. Pipeline is a sklearn technique that allows us to combine
data modifications and the final estimator in one step.

Electronics 2022, 11, 1624 12 of 21Electronics 2022, 11, x FOR PEER REVIEW 13 of 22

Figure 4. CNN-Training and Validation Loss.

2.6. Multinomial Logistic Regression
Multinomial logistic regression is another method used to analyze our data. We ap-

ply the lasso and regularization techniques and compare the outcomes. It was done on
both primary and secondary components. In Algorithm 4 we put 25 PCs, we’ll employ a
pipeline technique. The One-Vs-Rest strategy will be employed, which trains K binary
classifiers, where K is the number of classes. Pipeline is a sklearn technique that allows us
to combine data modifications and the final estimator in one step.

Algorithm 4 Multinomial Logistic Regression
1: pipe_log_reg_l2=Pipeline([('pca',PCA(n_components=25)),
('clf',LogisticRegression(multi_class='ovr',penalty='l2',solver='saga'))])
2: pipe_log_reg_l2.fit(train_images_mod,train_labels)
3: pred_labels_pipe_log_reg_l2 = pipe_log_reg_l2.predict(test_images_mod)
4: test_acc_pipe_l2 = accuracy_score(pred_labels_pipe_log_reg_l2,test_labels)
5: print('Test accuracy of logistic regression on 25 PCs with l2 penalty : ' + str(test_acc_pipe_l2))

2.7. Supports Vector Machines
Unlike other models, the proposed model supports the vector machine. It is limited

to the use of PCs because of the high dimensionality of the data. Below, Algorithm 5 illus-
trates the Model accuracy with a polynomial kernel. We choose to use 25 PCs because we
believe we can get good results with this variance. The polynomial kernel and the RBF
(Gaussian) kernel were used.

Algorithm 5 Models Accuracy
1: pipe_svm_1 = Pipeline([('pca', PCA(n_components=25)),('clf',SVC(C=100,ker-
nel='rbf',gamma=0.1))])
2: pipe_svm_1.fit(train_images_mod,train_labels)
3: pipe_svm_1_pred_labels = pipe_svm_1.predict(test_images_mod)
4: pipe_svm_1_acc = accuracy_score(pipe_svm_1_pred_labels,test_labels)
5: print('The accuracy of SVM classifier with rbf kernel is equal to :' + str(pipe_svm_1_acc))
6: pipe_svm_2 = Pipeline([('pca', PCA(n_components=25)),('clf', SVC(C=100,kernel='poly',de-
gree=5))])
7: pipe_svm_2.fit(test_images_mod,test_labels)
8: pipe_svm_2_pred_labels = pipe_svm_2.predict(test_images_mod)

Figure 4. CNN-Training and Validation Loss.

Algorithm 4 Multinomial Logistic Regression

1: pipe_log_reg_l2=Pipeline([('pca',PCA(n_components=25)),
('clf',LogisticRegression(multi_class='ovr',penalty='l2',solver='saga'))])
2: pipe_log_reg_l2.fit(train_images_mod,train_labels)
3: pred_labels_pipe_log_reg_l2 = pipe_log_reg_l2.predict(test_images_mod)
4: test_acc_pipe_l2 = accuracy_score(pred_labels_pipe_log_reg_l2,test_labels)
5: print('Test accuracy of logistic regression on 25 PCs with l2 penalty : ' + str(test_acc_pipe_l2))

2.7. Supports Vector Machines

Unlike other models, the proposed model supports the vector machine. It is limited to
the use of PCs because of the high dimensionality of the data. Below, Algorithm 5 illustrates
the Model accuracy with a polynomial kernel. We choose to use 25 PCs because we believe
we can get good results with this variance. The polynomial kernel and the RBF (Gaussian)
kernel were used.

Algorithm 5 Models Accuracy

1: pipe_svm_1 = Pipeline([('pca', PCA(n_components=25)),('clf',SVC(C=100,kernel='rbf',gamma=0.1))])
2: pipe_svm_1.fit(train_images_mod,train_labels)
3: pipe_svm_1_pred_labels = pipe_svm_1.predict(test_images_mod)
4: pipe_svm_1_acc = accuracy_score(pipe_svm_1_pred_labels,test_labels)
5: print('The accuracy of SVM classifier with rbf kernel is equal to :' + str(pipe_svm_1_acc))
6: pipe_svm_2 = Pipeline([('pca', PCA(n_components=25)),('clf', SVC(C=100,kernel='poly',degree=5))])
7: pipe_svm_2.fit(test_images_mod,test_labels)
8: pipe_svm_2_pred_labels = pipe_svm_2.predict(test_images_mod)
9: pipe_svm_2_acc = accuracy_score(pipe_svm_2_pred_labels,test_labels)
10: print('The accuracy of SVM classifier with polynomial kernel of degree five is equal to :' +
str(pipe_svm_2_acc))

2.8. Blockchain-Enabled FL

Traditional DL systems provide no guarantees regarding the integration of the aggre-
gation process and rely on trust instead. These designs are also prone to single-point-of-
failures that by design extend to centralized platforms. This paper proposes a multi-layered
secure FL platform powered by Blockchain. The decentralized training nodes require
motivation to provide computational resources and provide data. A transparent incentive
mechanism backed by smart contracts can help an FL system offer a financial incentive to

Electronics 2022, 11, 1624 13 of 21

decentralized nodes and encourage good behaviors on the network. A Blockchain-enabled
FL guarantees security and system availability by decentralizing trust. The application of
Blockchain in FL systems has received widespread use cases in healthcare. Privacy and
security [46] and the internet of things (IoT) [21]. Authors Wang et al. in these studies,
has proposed using public and permissionless Blockchains such as Ethereum [22], while
others believe that private, permissioned Blockchains like HyperLedger Fabric could be
considered for FL [47]. The proof-of-work (PoW) consensus algorithm in Blockchains is
increasingly facing scalability challenges, making it redundant for efficient processing in
FL systems [48,49]. Consequently, Kumar et al. [50] have recommended the use of other
scalable-friendly consensus protocols such as proof-of-stake (PoS) and proof-of-authority
(PoA). Mikolajczyk and Grochowski [47] proposed a Blockchain-powered FL system that
leverages up-to-date data from decentralized hospitals to enhance the recognition and
privacy of computed tomography (CT) images. This model uses permissioned Blockchains
in FL to detect COVID-19 patients using a lung screening approach where hospitals serve
as decentralized nodes. Rajalakshmi and Tuhina [51] and Xie et al. [49] discuss various
segments of a Blockchain-powered privacy-preserving FL network. Their frameworks
allow them to learn and share private users’ data via a federated architecture that encrypts
the data before training the globally coordinated model update. Finally, Pop et al. [18]
proposed permission for Blockchain-enabled FL to detect intrusions in IoT systems. Their
model, which used Multichain, enhanced audibility and transparency with a negligible
runtime overhead of between 5% to 15%. This paper differs from the previous works in
several aspects. First, previous studies such as [43,52,53] have focused primarily on how
Blockchain can implement FL systems. Since Blockchain is still in its infancy stages, these
studies provide a framework on how FL systems can benefit from Blockchain and provide
security. In doing so, these studies have only provided a general framework that lacks an
incentive mechanism. While their approach advances knowledge in this field, it leaves
out a crucial component of incentivization. This paper bridges this knowledge gap by
proposing a transparent incentivization mechanism that can promote good behavior among
the participating decentralized nodes and avoid common issues such as poisoning and
backdoor attacks.

2.9. Proposed Blockchain Model

The Fashion MNIST dataset is large and requires high-capacity storage. Placing such a
dataset on a Blockchain with a limited storage capacity is expensive, both in computational
resources and financially. Therefore, the actual Fashion MNIST dataset will be stored
locally on the decentralized nodes, while Blockchain will only store the global model
updates and help the clients retrieve the trained model. In this regard, each node stores
a transaction in the block while the Fashion MNIST training data remains local to the
client. This allows multiple nodes to collaboratively share the Fashion MNIST data and
train the FL model for optimal results. Since the nodes leverage Blockchain to transmit
the transactions to and from the centralized server, this mechanism does not violate the
privacy of nodes. The Kademlia protocol proposed by Maymounkov and Mazieres can
provide a framework for a multi-organization architecture that enhances privacy in trustless,
decentralized networks [27]. Using this protocol, we partition all nodes, N, into categories
to share data transparently and securely. Each category belongs to a different community
that maintains a log table, specified as. To retrieve the Fashion MNIST dataset from the
physically present nodes, we use the Kademlia’s Kademlia XOR mechanism that defines
the distance nodes below:

di
(

Ni, Nj
)
=

Σp, q ∈
{

Ni ∪ Nj − Ni ∩ Nj
}(

xNi
pq + x

Nj
pq

)
Σp, q ∈ Ni ∪ Nj

(
xNi

pq + x
Nj
pq

)
· log

(
dp
(

Ni, Nj
)) (7)

where N is the data categories to access the data from decentralized nodes, di
(

Ni, Nj
)

is the distance of the two nodes, Ni and Nj;
{

Ni ∪ Nj − Ni ∩ Nj
}

is the Kademlia’s XOR

Electronics 2022, 11, 1624 14 of 21

metric, and xNi
pq + x

Nj
pq are the attributes for the weight matrix of the two nodes, Ni and Nj

Blockchain stores all each node’s unique identifiers (IDs) based on the logic and distance of
the decentralised nodes. For the two nodes with Ni(ID) and Nj(ID), the equation below
represents the distances between them:

di
(

Ni, Nj
)
= Ni(ID)⊕ Nj(ID

)
(8)

To achieve a privacy-preserving mechanism on the decentralized network, we use the
randomized method for two nodes shown below:

Nr[A(R)ε S] ≤ exp (ε) · Nr
[
A
(

R′
)
ε Z
]

(9)

where R and R′ are the adjacent records of data, Z is the outcome set of data, while
Nr[A(R)ε S] is the privacy-preserving function of the data in the decentralised network.
For multiple nodes, we use the Laplace function in the local model training (ml) as follows:

→
ml = ml + Laplace

(s
ε

)
(10)

where s is the sensitivity of the privacy-preserving function described by the equation below:

s = maxN,N′ f (N) f
(

N′
)

(11)

To ensure a data privacy-preserving mechanism, we will encrypt all the data via a
public key infrastructure (PKI) [54] comprising of two keys: a public key (Pubkey) and a
private key (Prikey). When all the transactions get validated, they are appended to the
Blockchain. In Algorithm 6 the Consensus Protocol presenting the blocks validations.

Algorithm 6 Consensus protocol

1: mi ← Nj : Ni .
2: leader ← mi : Nj
3: Ni , Nj ← leader
4: Validate Ni , Nj
5: Ledger ← Blocks

Current approaches leverage the PKI system to protect data, which to some extent
provides data protection. However, this is not enough considering the emerging sophis-
ticated attacks and the increasing computational power. Our solution does not share the
original training data from decentralized nodes. Instead, it only exchanges locally learned
model weights with the global model. Local nodes that want to access the global model
downloads it as data recovered transactions. The objective of this architecture is to train
the global model via locally trained model and achieve an FL mechanism that preserves
data privacy with multi-layered security. In Algorithm 7 Privacy-preserving flow chart
explained and graphically summarized in Figure 5.

Algorithm 7 Privacy-preserving FL flow chart

1: For Each node n
2: For all N Decentralized node
3: For all i iterations
4: While (Accuracy, Privacy)
5: For m = 1
6: Return mi

Electronics 2022, 11, 1624 15 of 21

Electronics 2022, 11, x FOR PEER REVIEW 16 of 22

data privacy with multi-layered security. In Algorithm 7 Privacy-preserving flow chart
explained and graphically summarized in Figure 5.

Algorithm 7 Privacy-preserving FL flow chart
1: For Each node n
2: For all N Decentralized node
3: For all i iterations
4: While (Accuracy, Privacy)
5: For m=1
6: Return mi

Figure 5. Privacy-preserving FL flow chart.

3. Result and Discussion Conclusions
Our proposed system comprises two components the FL system and the underlying

Blockchain.

Figure 5. Privacy-preserving FL flow chart.

3. Result and Discussion Conclusions

Our proposed system comprises two components the FL system and the underlying
Blockchain.

3.1. Environment

We implement an FL environment using Python (version 3.9.0) with the following
libraries:

• Keras. This is a Python and R-based DL library.
• TensorFlow. This is an open-source library for differentiable programming in multiple
• DL tasks.
• NumPy. This is a Python-based library for computing high-level mathematical func-

tions and multi-dimensional arrays and matrices.
• Matplotlib. This is a plotting library in a Python programming environment that

extends NumPy.

Our framework will use the Fashion MNIST as the dataset. We extracted 70,000
samples in 10 categories and then split the dataset into 60,000 examples for the training
dataset and 10,000 examples in the test dataset. We used a low-resolution scale (28 × 28) in
grayscale, vital for appropriate segmentation. We will use 10 decentralized nodes (N = 10)
and one central aggregator and run the model in 10 rounds by default. The test data set is
used only for evaluation purposes and is not included in any nodes’ train dataset.

Electronics 2022, 11, 1624 16 of 21

To simulate a data poisoning attack with N decentralized nodes where x% are ma-
licious, we randomly designate (nodes as malevolent from the set N at the start of each
experimental round. For example, if 10% of the nodes are malicious and N = 10, we have
() malicious nodes). We then consider three label attack settings that represent diverse
conditions (1) source class/target class pairing where the source class gets frequently mis-
classified (2), a pairing system where the source class is infrequently classified as the target
class and (3) a pairing system involving two extremes.

For this data set, we experiment with:

1. A shirt (label 6) gets paired with a t-shirt/top (label 0).
2. A trouser (label 1) gets paired with a dress (label 3).
3. A coat (label 4) gets paired with a shirt (label 6).

After implementing the FL system, we proceed to develop the Blockchain system.
Whenever a locally trained update gets submitted to the aggregator, the aggregator submits
it to decentralized nodes for verification. During the verification, all the participating
nodes verify that the submitting node has enough tokens in its account and has followed
all the procedures required to generate a new local update. When these nodes agree,
the global weight gets updated, and the aggregator broadcasts it to the decentralized
nodes as its new model update. We use Ethereum as an underlying Blockchain to provide
privacy-preserving capabilities. When a validator block gets committed, the submitting
node receives ERC-20 tokens as incentives. A wallet address represents the identity of
each decentralized node on the Ethereum Blockchain is represented by a wallet address
(a combination of (Pubkey) and (Prikey) that is managed by MetaMask [55]. Each time a
validator updates the global model weight, its position is recorded on Ethereum. The
system then computes ERC-20 tokens sent to the node’s wallet address as an incentive.

3.2. Simulation Process

We consider two scenarios:
Scenario 1: We assume a conventional FL system (without Blockchain) has N decen-

tralized nodes of which m% are malicious. In this case, the malicious node can be a data
poisoning or a model poisoning agent. We randomly designate Nm = N ∗m/100, where
Nm represents the malicious actors at the beginning of each experiment. The rest of the
nodes (N − Nm) are honest participants. We repeat the experiment 10 times and use the
average result to address the impact of random selection for malicious nodes. We tweak
the value m from 2% to 50% in the study.

Scenario 2: We assume a Blockchain-enabled FL system built atop the Ethereum net-
work as described earlier with three smart contracts: training, aggregation, and completed.
The intelligent training contract provides a framework where decentralized nodes submit
the local update processes. When the last required update gets submitted, the smart ag-
gregation contract is triggered. This allows the trainers to submit their local aggregation
output addresses. When the last required aggregation output address is transmitted, the
consensus protocol selects one aggregation address that becomes the new global weight
address. If this is the last training iteration, the contract transitions to completed. Otherwise,
the system goes back to the training stage and starts over with the following training round.
As with scenario 1, we will repeat the experiment 10 times and report the average result.
We assume each training node is a single core machine with 4 GB of RAM and running
Ubuntu 18.04 LTS. To cut down on gas fees and testing purposes, each node does not run
its Ethereum node. Instead, each decentralized node connects to the Infura network via
the Rinkeby Testnet. This way, nodes do not have to synchronize to the Ethereum main
net fully.

4. Findings

We begin by examining the feasibility of data in a conventional FL system. Figure 6
shows the global model accuracy and source class in cases with m ranging from 2% to 50%.

Electronics 2022, 11, 1624 17 of 21

We averaged the results for 10 rounds for each setting of m%. The dark black bars denote
the mean, while slim black bars at top denote the standard deviation.

Electronics 2022, 11, x FOR PEER REVIEW 18 of 22

Scenario 2: We assume a Blockchain-enabled FL system built atop the Ethereum net-
work as described earlier with three smart contracts: training, aggregation, and com-
pleted. The intelligent training contract provides a framework where decentralized nodes
submit the local update processes. When the last required update gets submitted, the
smart aggregation contract is triggered. This allows the trainers to submit their local ag-
gregation output addresses. When the last required aggregation output address is trans-
mitted, the consensus protocol selects one aggregation address that becomes the new
global weight address. If this is the last training iteration, the contract transitions to com-
pleted. Otherwise, the system goes back to the training stage and starts over with the fol-
lowing training round. As with scenario 1, we will repeat the experiment 10 times and
report the average result. We assume each training node is a single core machine with 4
GB of RAM and running Ubuntu 18.04 LTS. To cut down on gas fees and testing purposes,
each node does not run its Ethereum node. Instead, each decentralized node connects to
the Infura network via the Rinkeby Testnet. This way, nodes do not have to synchronize
to the Ethereum main net fully.

4. Findings
We begin by examining the feasibility of data in a conventional FL system. Figure 6

shows the global model accuracy and source class in cases with m ranging from 2% to
50%. We averaged the results for 10 rounds for each setting of m%. The dark black bars
denote the mean, while slim black bars at top denote the standard deviation.

Figure 6. Attack visibility and impact of malicious nodes on a conventional FL system.

The finding shows that the test accuracy (global model utility) decreases as the mali-
cious nodes increase. Even with small m, there is a corresponding decrease in test accuracy
with an even large source recall compared to a non -poisoned system (denoted by MNP)
in the figure. For this dataset, we considered a loss in source class recall for the three 𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑡𝑎𝑟𝑔𝑒𝑡 class settings where (1) shirt (label 6) gets paired with a t-shirt/top (label
0), (2) a trouser (label 1) gets paired with a dress (label 3), and (3) a coat (label 4) gets
paired with a shirt (label 6). Table 2 shows 𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑡𝑎𝑟𝑔𝑒𝑡 with different counts for the
Fashion-MNIST dataset.

Figure 6. Attack visibility and impact of malicious nodes on a conventional FL system.

The finding shows that the test accuracy (global model utility) decreases as the ma-
licious nodes increase. Even with small m, there is a corresponding decrease in test
accuracy with an even large source recall compared to a non -poisoned system (denoted
by MNP) in the figure. For this dataset, we considered a loss in source class recall for the
three source→ target class settings where (1) shirt (label 6) gets paired with a t-shirt/top
(label 0), (2) a trouser (label 1) gets paired with a dress (label 3), and (3) a coat (label 4) gets
paired with a shirt (label 6). Table 2 shows source→ target with different counts for the
Fashion-MNIST dataset.

Table 2. Loss in source→ target with different counts for the Fashion-MNIST dataset.

FMsource→FMtarget
Percentage of Malicious Nodes

2 4 10 20 30 40 50

6→ 0 0.03 0.34 2.15 3.32 23.48 34.17 47.51

1→ 3 0.67 0.64 13.23 23.25 31.23 36.35 46.25

4→ 6 0.00 2.34 5.17 10.79 25.67 33.25 43.21

The findings show that even a small proportion of malicious nodes in the FL system
can impact the global model utility. For example, when m = 4%, we observe that the source
class recall drops by 2.34%, misclassifying a coat as a shirt. When m increases to 50%, we
note that the source recall class decreases by a staggering 47.51%, misclassifying a shirt
as a t-shirt/top. This means that an adversary that controls even small proportion of the
total decentralised nodes can significantly impact the overall global model utility. Next, we
investigate the feasibility of data and model poisoning attacks under a Blockchain-enabled
FL system. Table 3 shows source→ target with different counts for the Fashion-MNIST
dataset when the experiment is conducted under a Blockchain -enabled FL platform.

Electronics 2022, 11, 1624 18 of 21

Table 3. Loss in source→ target with different counts for the Fashion-MNIST dataset under
Blockchain-Enabled FL.

FMsource→FMtarget
Percentage of Malicious Nodes

2 4 10 20 30 40 50

6→ 0 0.00 0.00 0.00 0.00 0.04 3.24 5.84

1→ 3 0.00 0.00 0.00 0.00 0.56 1.78 4.56

4→ 6 0.00 0.00 0.00 0.00 0.78 6.25 7.24

From the table, the platform achieves higher security when compared to a conventional
FL system. Blockchains are inherently resilient to integrity attacks such as the data or model
poisoning that we have investigated. The only option that an adversary would attack such
a network would be by attacking the communication to the trainer nodes. If the adversary
were to succeed in hijacking and gaining complete control over the training operations,
it would tamper with the overall aggregation mechanism. In this case, submitting a
faulty aggregation would result in a different Ethereum address that the honest nodes
would outrightly ignore because of a consensus protocol. This explains why Blockchain
achieves higher security in FL systems. However, when m increases beyond 30%, the model
becomes susceptible to some form of percentage attacks. This is attributable to the nature
of decentralized learning, where the order in which model updates arrive at the aggregator
is not necessarily the same as they would be validated [18,42]. The increase in the attack
percentage would most likely arise from other attacks other than poisoning threats.

5. Conclusions

In this paper we showed that poisoning attacks (data and model poisoning attacks) are
inherent in FL systems and can significantly affect the accuracy of the global model utility.
We demonstrated that an increase in adversaries negatively impacts the global model utility,
and it is possible to achieve targeted poisoning impacts. We also showed that an incentive
based Blockchain mechanism could minimize poisoning attack surfaces in FL systems.
While this study shows how an incentive mechanism helps Blockchain-powered FL systems
provide multi-layered security, it has a weakness: it assumes the dataset is homogeneous.
The proposed Blockchain enabled FL system aggregates data from the local model and
sends them to the global model as data sharing transactions. The proposed model FL
is facilitated by our architecture, which makes use of Ethereum’s incentive mechanisms
and proof-of-work (PoW) consensus algorithm to foster cooperation across decentralized
nodes. In which blockchain was considered because of the security and privacy of data
and the decentralized nodes. The proposed Blockchain-enabled FL system aggregates local
model weights and sends them to the global model as data sharing transactions. The global
model is downloaded as data retrieved transactions by local nodes that desire to access it.
Local model and Blockchain-enabled FL are the two components of the proposed system
Blockchain-enabled FL.

• Accuracy is improved.
• Privacy and security are improved.
• The proposed Blockchain-enabled FL system combines local model weights and

transmits them as data sharing transactions to the global model.
• In our proposed model, we can see a 95% Accuracy test after plotting the Accuracy

test compared to other models above.

Future studies can be undertaken to examine incentive-based Blockchains’ impact
on FL systems that have asynchronous and heterogeneous training datasets. Federated
Learning and challenges facing federated learning was addressed. Data Poisoning in Fed-
erated learning and Model Update on Data Poisoning was addressed. The study also relied
on Infura and Rinkeby Testnet to minimize gas fees, which means that the decentralized

Electronics 2022, 11, 1624 19 of 21

nodes did not fully synchronize with the main chain. Future studies should ascertain the
true impact of an incentive-based Blockchain-enabled FL system under practical scenarios
involving the mainnets.

Author Contributions: Z.M.: Conceptualization, data curation, investigation, writing—original draft
preparation, methodology. V.J.: supervision, writing—review and editing, project administration. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, J.; Cao, B.; Yu, P.; Sun, L.; Bao, W.; Zhu, X. Deep Learning Towards Mobile Applications. In Proceedings of the IEEE 38th

International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, 2–6 July 2018.
2. Roess, A. The Promise, Growth, and Reality of Mobile Health-Another Data-Free Zone. N. Engl. J. Med. 2017, 377, 2010–2011.

[CrossRef] [PubMed]
3. Yao, X.; Huang, T.; Wu, C.; Zhang, R.; Sun, L. Towards Faster and Better Federated Learning: A Feature Fusion Approach. In

Proceedings of the IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019.
4. Tuttle, H. Facebook Scandal Raises Data Privacy Concerns. Risk Manag. 2018, 65, 6–9.
5. Cheng, Y.; Liu, Y.; Chen, T.; Yang, Q. Federated Learning for Privacy-Preserving AI. Commun. ACM 2020, 63, 33–36. [CrossRef]
6. Truong, N.; Sun, K.; Wang, S.; Guitton, F.; Guo, Y. Privacy Preservation in Federated Learning: An Insightful Survey from the

GDPR Perspective. Comput. Secur. 2021, 110, 102402. [CrossRef]
7. Bouacida, N.; Mohapatra, P. Vulnerabilities in Federated Learning. IEEE Access 2021, 9, 63229–63249. [CrossRef]
8. Tolpegin, V.; Truex, S.; Gursoy, M.E.; Liu, L. Data Poisoning Attacks Against Federated Learning Systems. In Proceedings of the

European Symposium on Research in Computer Security, Darmstadt, Germany, 14–18 September 2020.
9. Nasr, M.; Shokri, R.; Houmansadr, A. Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-Box Inference

Attacks Against Centralized and Federated Learning. In Proceedings of the IEEE Symposium on Security and Privacy (SP), San
Francisco, CA, USA, 20–22 May 2019.

10. Ma, J.C.; Li, J.; Ding, M.; Shi, L.; Wang, T.; Han, Z.; Poor, H.V. When Federated Learning Meets Blockchain: A New Distributed
Learning Paradigm. Comput. Sci. Netw. Internet Archit. 2020, 2009, 09338.

11. ur Rehman, M.H.; Salah, K.; Damiani, E.; Svetinovic, D. Towards Blockchain-Based Reputation-Aware Federated Learning. In
Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Virtual Conference, 2–5
May 2020.

12. Mach, P.; Becvar, Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE Commun. Surv. Tutor.
2017, 19, 1628–1656. [CrossRef]

13. Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All one needs to know about fog
computing and related edge computing paradigms: A complete survey. J. Syst. Archit. 2019, 98, 289–330.

14. Halim, S.M.; Khan, L.; Thuraisingham, B. Next-location prediction using federated learning on a blockchain. In Proceedings of
the 2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI), Atlanta, GA, USA, 28–31 October
2020; pp. 244–250.

15. Bhagoji, A.N.; Chakraborty, S.; Mittal, P.; Calo, S. Analyzing Federated Learning Through an Adversarial Lens. In Proceedings of
the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019.

16. Multi-Access Edge Computing (MEC). Available online: https://www.etsi.org/technologies/multi-access-Edge-computing
(accessed on 7 April 2022).

17. Mothukuri, V.; Parizi, R.M.; Pouriyeh, S.; Huang, Y.; Dehghantanha, A.; Srivastava, G. A Survey on Security and Privacy of
Federated Learning. Future Gener. Comput. Syst. 2021, 115, 619–640.

18. Pop, C.D.; Antal, M.; Cioara, T.; Anghel, I.; Salomie, I. Blockchain and Demand Response: Zero-Knowledge Proofs for Energy
Transactions Privacy. Sensors 2020, 20, 5678. [CrossRef]

19. Bryant, C.; Carvalho, W.; Baracaldo, N.; Ludwig, H.; Edwards, B.; Lee, T.; Molloy, I.; Srivastav, B. Detecting Backdoor Attacks on
Deep Neural Networks by Activation Clustering. arXiv 2018, arXiv:1811.03728.

20. Yao, Y.; Li, H.; Zheng, H.; Zhao, B.Y. Latent Backdoor Attacks on Deep Neural Networks. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, London, UK, 11–15 November 2019.

21. Bolun, W.; Yao, Y.; Shan, S.; Li, H.; Viswanath, B.; Zheng, H.; Zhao, B.Y. Neural Cleanse: Identifying and Mitigating Backdoor
Attacks in Neural Networks. In Proceedings of the IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–22
May 2019.

22. Wang, H.; Sreenivasan, K.; Rajput, S.; Vishwakarma, H.; Agarwal, S.; Sohn, J.; Lee, K.; Papailiopoulos, D. Attack of the Tails: Yes,
You Really Can Backdoor Federated Learning. In Proceedings of the Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Virtual, 6–12 December 2020.

http://doi.org/10.1056/NEJMp1713180
http://www.ncbi.nlm.nih.gov/pubmed/29116869
http://doi.org/10.1145/3387107
http://doi.org/10.1016/j.cose.2021.102402
http://doi.org/10.1109/ACCESS.2021.3075203
http://doi.org/10.1109/COMST.2017.2682318
https://www.etsi.org/technologies/multi-access-Edge-computing
http://doi.org/10.3390/s20195678

Electronics 2022, 11, 1624 20 of 21

23. Luca, M.; Song, C.; de Cristofaro, E.; Shmatikov, V. Exploiting Unintended Feature Leakage in Collaborative Learning. In
Proceedings of the IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–22 May 2019.

24. Zhao, Y.; Chen, J.; Wu, D.; Teng, J.; Yu, S. Multi-Task Network Anomaly Detection Using Federated Learning. In Proceedings
of the Tenth International Symposium on Information and Communication Technology, Hanoi-Halong Bay, Vietnam, 4–6
December 2019.

25. Nagar, A. Privacy-Preserving Blockchain Based Federated Learning with Differential Data Sharing. arXiv 2019, arXiv:1912.04859.
26. Fereidooni, H.; Marchal, S.; Miettinen, M.; Mirhoseini, A.; Möllering, H.; Nguyen, T.D.; Rieger, P.; Sadeghi, A.; Schneider, T.;

Yalame, H.; et al. SAFE Learn: Secure Aggregation for Private Federated Learning. In Proceedings of the IEEE Security and
Privacy Workshops (SPW), San Francisco, CA, USA, 27 May 2021.

27. Liu, S.; Yu, G.; Yin, R.; Yuan, J. Adaptive Network Pruning for Wireless Federated Learning. IEEE Wirel. Commun. Lett. 2021, 10,
1572–1576. [CrossRef]

28. Chen, Z.; Tian, P.; Liao, W.; Yu, W. Zero knowledge clustering based adversarial mitigation in heterogeneous federated learning.
EEE Trans. Netw. Sci. Eng. 2020, 8, 1070–1083. [CrossRef]

29. Shah, D.; Dube, P.; Chakraborty, S.; Verma, A. Adversarial Training in Communication Constrained Federated Learning. arXiv
2021, arXiv:2103.01319.

30. Jeong, E.; Oh, S.; Kim, H.; Park, J.; Bennis, M.; Kim, S. Communication-Efficient On-Device Machine Learning: Federated
Distillation and Augmentation Under Non-Iid Private Data. arXiv 2018, arXiv:1811.11479.

31. Choudhury, O.; Gkoulalas-Divanis, A.; Salonidis, T.; Sylla, I.; Park, Y.; Hsu, G.; Das, A. Differential Privacy-Enabled Federated
Learning for Sensitive Health Data. arXiv 2019, arXiv:1910.02578.

32. Wang, X.; Garg, S.; Lin, H.; Hu, J.; Kaddoum, G.; Piran, M.J.; Hossain, M.S. Towards accurate anomaly detection in industrial
internet-of-things using hierarchical federated learning. IEEE Internet Things J. 2021, 9, 7110–7119. [CrossRef]

33. Li, S.; Cheng, Y.; Liu, Y.; Wang, W.; Chen, T. Abnormal Client Behavior Detection in Federated Learning. arXiv 2019,
arXiv:1910.09933.

34. Gupta, R.; Kurtz, Z.T.; Scherer, S.; Smereka, J.M. Open Problems in Robotic Anomaly Detection. arXiv 2018, arXiv:1809.03565.
35. Thudumu, S.; Branch, P.; Jin, J.; Singh, J. A comprehensive survey of anomaly detection techniques for high dimensional big data.

J. Big Data 2020, 7, 1–30.
36. van Dijk, M.; Nguyen, N.V.; Nguyen, T.N.; Nguyen, L.M.; Tran-Dinh, Q.; Nguyen, P.H. Asynchronous Federated Learning With

Reduced Number of Rounds and With Differential Privacy From Less Aggregated Gaussian Noise. arXiv 2020, arXiv:2007.09208.
37. Hu, R.; Guo, Y.; Li, H.; Pei, Q.; Gong, Y. Personalized Federated Learning with Differential Privacy. IEEE Internet Things J. 2020,

10, 9530–9539. [CrossRef]
38. Bibikar, S.; Vikalo, H.; Wang, Z.; Chen, X. Federated Dynamic Sparse Training: Computing Less, Communicating Less, Yet

Learning Better. arXiv 2021, arXiv:2112.09824.
39. Jiang, Y.; Wang, S.; Valls, V.; Ko, B.J.; Lee, W.H.; Leung, K.K.; Tassiulas, L. Model Pruning Enables Efficient Federated Learning on

Edge Devices. arXiv 2019, arXiv:1909.12326. [CrossRef]
40. Truex, S.; Baracaldo, N.; Anwar, A.; Steinke, T.; Ludwig, H.; Zhang, R.; Zhou, Y. A Hybrid Approach to Privacy-Preserving

Federated Learning. In Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, London, UK, 15
November 2019.

41. Mahmood, Z.; Vacius, J. Privacy-Preserving Block-chain Framework Based on Ring Signatures (RSs) and Zero-Knowledge
Proofs (ZKPs). In Proceedings of the International Conference on Innovation and Intelligence for Informatics, Computing and
Technologies (3ICT), Sakheer, Bahrain, 20–21 December 2020.

42. Xie, T.; Zhang, J.; Zhang, Y.; Papamanthou, C.; Song, D. Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation.
In Proceedings of the Annual International Cryptology Conference, Santa Barbara, CA, USA, 18–22 August 2019.

43. Samangouei, P.; Kabkab, M.; Chellappa, R. Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative
Models. arXiv 2018, arXiv:1805.06605.

44. Li, D.; Wang, J. Fedmd: Heterogenous Federated Learning via Model Distillation. arXiv 2019, arXiv:1805.06605.
45. GitHub—Zalandoresearch/Fashion-Mnist: A MNIST-Like Fashion Product Database. Benchmark. Available online: https:

//github.com/zalandoresearch/fashion-mnist (accessed on 23 September 2021).
46. Mahmood, Z.; Jusas, V. Implementation Framework for a Blockchain-Based Federated Learning Model for Classification Problems.

Symmetry 2021, 13, 1116. [CrossRef]
47. Mikolajczyk, A.; Grochowski, M. Data Augmentation for Improving Deep Learning in Image Classification Problem. In

Proceedings of the International Interdisciplinary PhD Workshop (IIPhDW), Swinoujscie, Poland, 9–12 May 2018.
48. Kherif, F.; Latypova, A. Principal Component Analysis. In Machine Learning: Methods and Applications to Brain Disorders; Mechelli,

A., Vieira, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 209–225.
49. Morsbach, F.J. Hardened Model Aggregation for Federated Learning backed by Distributed Trust Towards decentralizing

Federated Learning using a Blockchain. Master’s Thesis, Uppsala University, Uppsala, Sweden, 2020.
50. Kumar, R.; Khan, A.A.; Kumar, J.; Golilarz, N.A.; Zhang, S.; Ting, Y.; Zheng, C.; Wang, W. Blockchain-Federated Learning and

Deep Learning Models for COVID-19 Detection Using CT Imaging. IEEE Sens. J. 2021, 2007, 06537. [CrossRef]
51. Rajalakshmi, K.; Tuhina, S. A Brief Analysis of Blockchain Algorithms and Its Challenges. In Architectures and Frameworks for

Developing and Applying Blockchain Technology; IGI Global: Hershey, PA, USA, 2019. [CrossRef]

http://doi.org/10.1109/LWC.2021.3074605
http://doi.org/10.1109/TNSE.2020.3002796
http://doi.org/10.1109/JIOT.2021.3074382
http://doi.org/10.1109/JIOT.2020.2991416
http://doi.org/10.1109/TNNLS.2022.3166101
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
http://doi.org/10.3390/sym13071116
http://doi.org/10.1109/JSEN.2021.3076767
http://doi.org/10.4018/978-1-5225-9257-0.ch004

Electronics 2022, 11, 1624 21 of 21

52. Sharma, D.K.; Pant, S.; Sharma, M.; Brahmachari, S. Cryptocurrency Mechanisms for Blockchains: Models, Characteristics,
Challenges, and Applications. In Handbook of Research on Blockchain Technology; Elsevier: Amsterdam, The Netherlands, 2020;
pp. 323–348.

53. Weng, J.; Weng, J.; Zhang, J.; Li, M.; Zhang, Y.; Luo, W. DeepChain: Auditable and Privacy-Preserving Deep Learning with
Blockchain-Based Incentive. IEEE Trans. Dependable Secur. Comput. 2021, 18, 2438–2455. [CrossRef]

54. Kim, H.; Park, J.; Bennis, M.; Kim, S.L. Blockchained on-device federated learning. IEEE Commun. Lett. 2019, 24, 1279–1283.
[CrossRef]

55. Maymounkov, P.; Mazieres, D. Kademlia: A peer-to-peer information system based on the xor metric. In Peer-to-Peer Systems.
IPTPS 2002; Druschel, P., Kaashoek, F., Rowstron, A., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2002; Volume 2429.

http://doi.org/10.1109/TDSC.2019.2952332
http://doi.org/10.1109/LCOMM.2019.2921755

	Introduction
	Statement and Purpose
	Literature Review
	Security Attacks in Federated Learning Systems
	Poisoning Attacks
	Backdoor Attacks
	Inference Attacks
	Machine Learning Approaches
	Clustering
	Existing Defences against Security Attacks in FL Systems and Their Limitations
	Anomaly Detection
	Differential Privacy

	Methodology
	System Model
	CNN Classification Model
	Local Model and Blockchain Proposed Model
	Consensus Mechanism
	Reduction of Dimensionality
	Multinomial Logistic Regression
	Supports Vector Machines
	Blockchain-Enabled FL
	Proposed Blockchain Model

	Result and Discussion Conclusions
	Environment
	Simulation Process

	Findings
	Conclusions
	References

