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Abstract: Gait recognition and rehabilitation has been a research hotspot in recent years due to its
importance to medical care and elderly care. Active intelligent rehabilitation and assistance systems
for lower limbs integrates mechanical design, sensing technology, intelligent control, and robotics
technology, and is one of the effective ways to resolve the above problems. In this review, crucial
technologies and typical prototypes of active intelligent rehabilitation and assistance systems for gait
training are introduced. The limitations, challenges, and future directions in terms of gait measure-
ment and intention recognition, gait rehabilitation evaluation, and gait training control strategies
are discussed. To address the core problems of the sensing, evaluation and control technology of the
active intelligent gait training systems, the possible future research directions are proposed. Firstly,
different sensing methods need to be proposed for the decoding of human movement intention.
Secondly, the human walking ability evaluation models will be developed by integrating the clin-
ical knowledge and lower limb movement data. Lastly, the personalized gait training strategy for
collaborative control of human–machine systems needs to be implemented in the clinical applications.

Keywords: rehabilitation and assistance system; lower limbs; intention recognition; gait training;
gait evaluation; human–machine interaction control strategy

1. Introduction

Walking is one of the most common behaviors in human daily life, and the ability to
walk is an important factor for human beings to live independently. However, neurological
diseases such as stroke sequelae and Parkinson’s disease can lead to impairment of human
motor function and decline in walking ability [1], which can seriously affect the quality of
life and health of patients. The World Health Organization survey shows that the incidence
of stroke in China ranks first in the world, and stroke is characterized by high incidence
rate, high disability rate, high mortality rate, and high recurrence rate [2]. According to the
report of the National Bureau of Statistics of China, the elderly population in China will
reach 267 million, accounting for 18.9% of the national population in 2022. The accelerated
process of aging has increased the number of people suffering from neurological diseases,
and the conflict with the lack of medical resources has become a serious problem in the
health care system [3]. At present, human beings cannot break the laws of nature to prevent
the decline in their own motor functions, and many injuries to the body’s motor function
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are irreversible. It has become one of the urgent problems in society to help the elderly or
patients overcome movement disorders, restore their walking function, and improve their
daily living ability.

Active intelligent gait training systems are robotic devices that actively interact with
human lower limbs to provide support and assistance for the body’s motor function. State-
of-the-art rehabilitation training walkers or robotic systems mainly have problems such as
poor gait adaptability, inability to quantify and feedback rehabilitation effect, single training
strategy, and limited sensor usage environment [4–12]. Facing major national needs and
the main economic battlefield, it is of great significance to develop intelligent rehabilitation
equipment to realize gait perception, evaluation, and feedback in the home environment,
and to help rehabilitation physiotherapists to assist patients in restoring motor function. The
gait training system is a large area of research which integrates mechanical design, sensing
technology, intelligent control, and robotics technology. At the forefront of the research
of intelligent gait training systems and evaluation methods, there are three important
basic scientific problems to be solved, which include: (1) the measurement of lower limb
movement and the prediction of movement intention, (2) the construction of a walking
ability evaluation model based on clinical knowledge and lower limb movement data, and
(3) the formulation of personalized gait training strategy of collaborative control of human–
machine system. Therefore, the key words “gait measurement and intention recognition”,
“gait evaluation”, and “gait training control strategy” were used in the literature review.
Additionally, this review not only selected publications that directly describe or introduce
any gait training system, but also retains those publications that focus on any of the three
basic scientific problems mentioned above.

In this review, the current active intelligent gait training systems are investigated and
discussed from three perspectives, in accordance with three critical scientific problems
put forward above, which are measurement and prediction of lower limb movement,
evaluation of the effect of gait rehabilitation, and the control strategy of gait training. The
main limitations and challenges are then discussed, and potential future directions of
intelligent gait training systems are put forward.

2. Human Gait Measurement and Intention Recognition
2.1. Gait Movement Measurement

The active intelligent gait training systems have the ability to monitor patient’s move-
ment in real time [13]. At present, human’s body movements are mainly measured through
the fixed force platform and optical motion capture system [14–16] in the gait laboratory,
or multiple movement and force sensors worn on the limb [17–19]. The former is highly
accurate but limited by the measurement environment, and the latter may interfere with
the normal human movement.

The current main human movement measurement methods used in gait training
systems are shown in Figure 1. Gait motion measurement techniques used in each of
the included studies [14–36] and their characteristics are shown in Table 1. Vision-based
methods are one of the important methods for monitoring the posture and movement
of the human body and have a wide range of applications [20–23]. Based on the image
global joint summation problem or the hierarchical detection fusion problem, deep learning
methods have been widely studied for the estimation of human pose [24,25]. However,
visual methods have problems such as clothing occlusion, dark environment, high system
complexity, difficult installation, and privacy issues, and there are limitations in actual
human–machine coordinated movement. The wearable sensing system of human body
dynamics analysis consists of multiple sensors, including gyroscopes, pressure sensors,
angle sensors, inertial sensors, etc., but it has difficulties in obtaining displacement and
relative poses from human to machine. The radio frequency (RF) signal-based method
can use the data characteristics of the human body and its motion in the radar image to
measure the three-dimensional relative pose and radial velocity [35]. The latest research [36]
shows that it has obvious advantages in solving problems such as occlusion and three-
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dimensional reconstruction, but at present it still needs in-depth research on issues such as
decoupling RF signals of human and machine movement, fusion understanding based on
physical models and data, and generalized measurement of abnormal gait. Therefore, it
is necessary to study a new type of non-contact sensing technology solution, combining
the kinematics information of the lower limbs and plantar pressure detection to form a
composite information perception system to accurately predict the movement trend of the
patient’s lower limbs and use it to evaluate the patient’s health and athletic ability.
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Table 1. Gait motion measurement techniques used in each of the included studies and their charac-
teristics.

Study Sensing Techniques Advantages Challenges

Jensen et al. [14] One camera Motion capture systems
represented by Vicon are
currently regarded as the

“gold standard” for motion
capture by their high

accuracy

Greatly affected by the
environment, high system

complexity, difficult to
install, and privacy issues

Xie et al. [20] Three noncontact cameras
Bao et al. [21] Pupil Labs eye tracking system

Steinert et al. [22] 2D smartphone camera
Tran et al. [23] Seven Kinect sensors(cameras)

Toshev et al. [24] Images taken by a camera

Yang et al. [35] Radio-frequency identification
(RFID) tags

Measure in the presence of
occlusions, baggy clothes,

and bad lighting conditions

Decoupling of RF signals of
human–machine

coordinated movementZhao et al. [36] Radio frequency (RF) signals from
RF-Avatar

Veilleux et al. [15] Six large force platforms
No image information will

be left, and user privacy will
not be violated

Only in the laboratory

Zeng et al. [16] Smart sensor shoes
Unrestricted use

environment, simple to use,
user privacy will not be

violated

May intervene with the
normal motion, difficulties
in obtaining displacement

and relative pose of
human–machine

Mazhar et al. [17] A flex sensor on a leather shoe
Trkov et al. [18] inertial sensors on lower limbs

Li et al. [19] Designed strain gauge on leg
Schicketmueller et al. [26,29] Inertial measurement units

Martini et al. [27] Embedded joint angle sensors
Unrestricted use

environment, simple to use,
user privacy will not be

violated

May intervene with the
normal motion, difficulties
in obtaining displacement

and relative pose of
human–machine

Wang et al. [30] Foot pressure sensor and IMU
Bae et al. [31] Force sensors in the foot plates

Livolsi et al. [32] Hip encoders, pressure-insoles
Bae et al. [33] Inertial measurement units

Chen et al. [34] A single IMU
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2.2. Movement Intention Recognition

For patients with impaired motor function but can still move and do some daily
activity, the willingness to actively participate in gait training is especially important in
the rehabilitation process [37]. Clinical studies have shown that active involvement of
patients in the rehabilitation training is more effective in the neurological reconstruction and
motor function recovery. Therefore, as an important input information of active intelligent
rehabilitation and assistant robotics device, human lower limb movement intention needs
to be captured in real time.

The current typical intention recognition methods used in gait training systems and
the statistics of recent research studies using each method are shown in Table 2. The
neuro-rehabilitation training robotics devices should show “transparency” in the patient’s
walking assistance process, that is, reduce the intervention of the patient’s active gait
as much as possible [38], and the key lies in the understanding and prediction of the
patient’s movement intention. Current intention recognition methods are mainly based
on bioelectric signals and motion signals. The electroencephalogram (EEG) signals are the
overall reflection of the movement intentions in brain [39], and have the shortest latency, but
it has a low signal-to-noise ratio, easily interfered by noise [40,41]. The Electromyographic
(EMG) signals reflect the state of muscle activation and the feedback control based on
EMG signal can effectively improve the human–machine coordination in rehabilitation
training [42–45], but it has strong ambiguity and is affected by factors such as surface
contact status, muscle displacement, and muscle fatigue [46]. The intention recognition
method based on motion signal mainly uses kinematic signals such as position, angle,
and speed, and kinetic signals such as interaction force/torque, which has high reliability,
robustness, and accuracy [47–50]. Xu et al. [51] proposed a compliance control algorithm
for walking-aid robots based on multi-sensor fusion, which allows the robot to obey human
movement by recognizing user intentions. Esteban et al. [52] also carried out related
research, using EMG signals and Artificial Neural Network (ANN) algorithms to recognize
human walking intention and proposed a robotic knee exoskeleton for assistance and
rehabilitation. Wu et al. [53] put forward a coordinated control strategy based on human–
machine interaction and the principle of minimum interference. However, the information
of human motion and force is the result of the movement, with a certain time lag between
the motion intent. Therefore, in response to the active adjustment needs of human-in-
the-loop control, it is necessary to study new motion perception systems and intention
prediction models with self-learning capabilities, and to improve the stability, synergy and
adaptability of human–machine collaboration based on active intention feedback.

Table 2. Intent recognition method used in each of the included studies and their characteristics.

Intent Recognition
Methods Study Characteristic

Electroencephalogram (EEG)
signal method

Liu et al. [39] High accuracy: 80.16 ± 5.44%
Engemann et al. [40] The best model depends on noise

Bi et al. [41] To recognize intention under the attended and distracted states

Electromyographic (EMG)
signal method

Zhuang et al. [42] Proved to be better than interaction-torque based method
Zhang et al. [43] Back Propagation (BP) neural network was used

Xie et al. [44] General regression neural network optimized by golden section
algorithm was used

Rabe et al. [45] Anterior sonomyography sensor fusion with surface EMG
Fougner et al. [46] 3.8~18% average classification error due to muscle fatigue

Mora-Tola et al. [52] Artificial Neural Network (ANN) algorithms were used
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Table 2. Cont.

Intent Recognition
Methods Study Characteristic

Kinetic signals method

Guo et al. [47] A robot dynamics model including the active force of human was
established, and contact force was used to analyze intention

Pinheiro et al. [50] The interaction torque’s direction and magnitude were both used
Xu et al. [51] A compliance control algorithm based on intent was proposed

Wu et al. [53] A minimal-intervention-based admittance control strategy was
developed

Kinematic signals method Gong et al. [48] Two IMUs and an imbedded BPNN-based algorithm were used
Zhu et al. [49] Recognition accuracy rate can reach 97.64%

3. Evaluation of Gait Rehabilitation

Clinical gait analysis and evaluation is of great significance in active intelligent gait
training systems. Quantitative analysis methods based on sensor data are important
methods for gait rehabilitation evaluation. An increasing number of researchers in physical
therapy, bioengineering, neurology and rehabilitation have been participating in this field
of study. In the early research studies, gait analysis and evaluation usually took the form
of scales, such as the Fugl-Meyer exercise scale [54]. According to the scale, medical
staff perform the diagnosis and evaluation of motor function, the monitoring of disease
progression, and the evaluation of curative effect. The result of evaluation is often affected
by a large number of subjective and inaccurately measurable parameters in the clinical
scale [55].

Table 3 shows number of gait evaluation studies, which sensors and features were used
in each research [56–77], and the real-time of gait evaluation. Gait parameters are usually
used to assist medical staff in diagnosis, rating and scoring of motor function, monitoring
the progress of the patient’s condition, and evaluating curative effect. Gait measurement
equipment such as motion capture systems and wearable inertial sensors have been widely
used in clinical practice. Some researchers used the gait parameters measured by these large
systems to predict Parkinson’s diagnosis and Hoehn-Yahr (H-Y) classification [67,68]. There
are also researchers who used the changes in gait parameters before and after the patient
receives treatment and training to evaluate the treatment effect [69]. Caramia et al. [70]
used eight inertial measurement units placed on the lower extremities and trunk to estimate
several gait parameters such as step length, stride speed, etc. and extract features from
them to distinguish between healthy people and patients with H-Y grades 1 to 3 in order to
achieve diagnosis and grade prediction. However, there are problems such as inconvenient
use of sensing equipment, lack of clinical significance of data features, difficulty in matching
the scale, and an incomplete assessing system. Wang et al. [71] carried out preliminary
research based on clinical needs, using as few human sensor measurement data as possible,
and using nonlinear data classification methods to achieve quantitative evaluation of
dyskinesias in patients with abnormal gait. Skvortsov et al. [72] also investigated the
feasibility of gait analysis and walking function evaluation based on the stance phase of
stroke patients using biofeedback technology.

Muscle synergy theory describes a potential neuromuscular control mechanism of
vertebrate limb movement [73]. According to the muscle synergy theory, nerves do not
control a certain muscle alone, but recruit muscles on the spinal cord to form muscle
groups, that is, muscle synergy. The muscles in the same muscle synergy are activated at
the same time. Compared with controlling each muscle individually, using one control
signal to activate multiple muscles theoretically provides a simplified system. Numerous
experimental research results support this theory [74,75]. Studies have shown that muscle
activation during motor tasks can be described in terms of low-dimensional control that
reflects muscle synergy. The downward commands of the nervous system to the muscu-
loskeletal system are manifested in muscle synergy, which is reflected in muscle activation
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through spinal cord circuits or reflexes, thereby forming a force in the musculoskeletal
system, driving the musculoskeletal system to move and producing specific actions.

Table 3. Sensors and features used in gait evaluation method in each of the included studies.

Study Sensors Used Features Used in Gait Evaluation Real-Time

Anaya-Reyes et al. [56] Vicon MX T20 Step phase durations and cadence −
Alberto et al. [57] 3-D motion capture system Stride width and gait velocity −

Ma et al. [58] Three Force Sense Resistors Knee and hip joints and FSRs data −

Chomiak et al. [59] Ambulosono system Step length, distance traveled, velocity, and
cadence +

Tran et al. [60] A motion capture system and four force
sensors

Center of mass, the center of pressure, and
step parameters −

Park et al. [61] Force sensors Angles, active force, and resistive force −

Sconza et al. [62] Dynamometer Knee extensor strength, double-time
support, and step length ratio −

Wang et al. [65] 3-D motion capture system Cadence and single stance time −
Tamburella et al. [66] Angle sensors Gait speed −

Wahid et al. [67] 8-camera video motion analysis system Stride length, step length, and double
support time −

Rehman et al. [68] GAITRite instrument Step velocity and step length −
Carlotta et al. [70] Inertial measurement units (IMU) Step length, step time, and stride speed −

Wang et al. [71] Inertial measurement units (IMU) Right spatial-temporal and kinematic gait
parameters +

Skvortsov et al. [72] Neurosens inertial sensors Knee and hip joint range of motion −
Cheung et al. [74]

EMG sensors EMG signals (muscle activity)
−

Safavynia et al. [75] −
Longatelli et al. [77] −

Rinaldi et al. [76] EMG sensors, Vicon, and force platform Both gait parameters and muscle activity −
Seo et al. [78] EMG sensors and IMU −

Abbreviations: + real-time evaluation; − off-line evaluation.

Based on the muscle synergy theory, many research studies have been carried out
to diagnose gait disorders and neurological diseases by measuring the activation state of
lower limb muscles during walking [76–80]. However, the existing methods for measuring
muscles exercise have drawbacks. On the one hand, Surface Electromyography (sEMG)
signal measurement has limitations which include the lack of ability to test the deep
muscles, the easily interfered EMG sensors, and the difficulty for the extraction process of
the EMG signal envelope to accurately demodulate the neural excitation when the motor
neuron action potential is generated. On the other hand, Indwelling Electromyography
(iEMG) causes a certain degree of damage to human muscles, which is not suitable for
long-term exercise detection with multiple measurements. At the same time, the existing
simulation software is generally based on a variety of rule constraints such as muscle force-
length relationship constraints, muscle force and joint motion coupling constraints, etc., and
optimization theories such as minimizing physiological consumption. However, according
to the results of human motion modeling and analysis by related researchers [79,80], in
patients with gait disorders, it is often difficult to meet the above constraints due to nerve-
muscle-skeletal damage, and the dynamic representations such as joint torque are affected
by motion compensation under the condition of external load changes.

4. Control Strategy of Gait Training Systems

Traditional walking devices, such as crutches, walkers, wheelchairs, etc., are mostly
passive devices, which cannot solve the problem of coordinated dynamic training of body
and lower limb muscle when the elderly and patients walk [81]. On the contrary, active
intelligent mobility assistance devices interact physically with the human body, as well as
coordinated movement, to provide support and assistance for the body’s motor function
and help the body maintain and restore its motor function to the greatest extent [82,83].
The typical control diagram of active intelligent gait training systems is shown in Figure 2.
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A walker is a walking rehabilitation assistive device used to assist users in standing
and walking activities which can effectively help users improve their walking ability
and is of great significance to a large number of disabled or elderly people. Based on
this, intelligent walking rehabilitation assistive robotics devices effectively use the current
rapid development of technology to help users break through the original limitations of
walking ability to a certain extent and improve their mobility to meet their daily needs.
These technologies include mechanical design technology, embedded system technology,
sensing and detection technology, automatic control technology, motor control technology,
microelectronics technology, interface technology, and software programming. Table 4
shows several gait training systems and their control strategies from recent studies [84–102].
Pure force/position control means the gait training systems make corresponding operations
by detecting human gait events, but do not care about the information of human–machine
interaction, while systems with impedance/admittance control strategy use the human–
machine interaction information such as interaction force/torque and relative position.
Novel human-in-the-loop control represents a large number of control strategies that both
recognize the motion intention of humans and detect the human–machine interaction
information, described as ‘human-in-the-loop’ because the information of the human body
takes part in both the input and feedback of the closed-loop control. Yu et al. [84] developed
an intelligent three-wheeled mobility aid, which is equipped with infrared sensors and laser
rangefinders to ensure human–machine–environmental intelligent interaction in motion.
Tao et al. [85] studied the intelligent mobility assistance rehabilitation training device
for the needs of standing and gait rehabilitation. A standing support and gait training
system that maximizes the patient’s own rehabilitation exercise ability was developed by
using the pressure sensor on the sole of the foot to detect the user’s balance or falling
state and feeding back the human lower limb joint and muscle force to a load-reducing
suspension system. Zhao et al. [88] developed a gait rehabilitation robot to improve the
safety and availability of rehabilitation training for patients. A built-in-robot camera was
used to obtain leg movement data, and the knee angle was estimated by a New-type ESMF
algorithm to deal with the problem of the brief disappearance of the marker point in the
field of view.
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Table 4. Gait training systems and control strategies of each included.

Device Name Control Strategy References

Gait rehabilitation device Open-loop position control based on GRFs Tao et al. [85]
Novel Robotic Walker Position control based on gait event Ye et al. [86]
Gait Training Robot Force control method based on gait event Miyake et al. [87]

Walking Assist Robot Position control based on fall detection Zhao et al. [88]
Hybrid Rehabilitation Robot Manually changed training modes and speed control Kim et al. [91]

C-ALEX Open-loop force control base on gait event Hidayah et al. [96]
Gait Assist Robot Training mode switch based on task and gait feature Scheidig et al. [99]

Lower-Limb Exoskeleton Speed control based on gait parameters Ma et al. [100]

Intelligent Mobility Aid Admittance-based mobility controller Yu et al. [84]
Rotational Orthosis Admittance control of the ankle mechanism Mu et al. [89]

Gait rehabilitation robot Adaptive admittance control based on interactive force Guo et al. [90]
Improved rotational orthosis Admittance control based on ankle force Mu et al. [92]

Clinic gait training robot Admittance control based on relative position Shunki et al. [93]
2-DOF Exoskeleton Admittance control based on interactive force Chen et al. [101]

Robot Assisted Gait Training Assist-as-needed Control based on prediction Zhang et al. [94]
GAREX Logic compliance adaptation and assist-as-needed Zhong et al. [95]

Ankle Robotic Orthosis Assist-as-needed Impedance Control Strategy Lopes et al. [97]
Biofeedback Exoskeleton Speed control based on predicted user response Zhang et al. [98]

AGoRA Closed-loop control based on intention and gait feature Mayag et al. [102]

Functional Electrical Stimulation (FES) is a method of applying low-frequency pulsed
current or amplifying it through signal-current conversion and then sending it into the
human body to produce immediate effects, artificially causing movement in humans who
are paralyzed by damage to the central nervous system. Recently, a large number of research
studies proposed robotic systems for gait rehabilitation based on FES method [103–105].
Studies have proven that, combined with FES, the assistive torque required of the gait
training systems can be reduced and the muscle strength and joint range of motion of the
human body can be improved. However, due to the use of electrode pads, this rehabilitation
strategy still has problems such as the inability to stimulate deeper muscles or the trauma
of electrode implantation in sEMG and iEMG in Section 3.

Locomat is a robotic gait training system. It is used for gait training for patients with
abnormal gait caused by brain injury, spinal injury, neurological injury, muscle injury,
and orthopedic diseases, and to improve the motor ability of patients with neurological
diseases. In the first few generations of prototypes, Locomat also used the common
impedance control based on torque feedback [106], but in the latest generations of Locomat
Pro, novel control strategy such as automatic gait-pattern adaptation and path control
strategy are applied. Locomat Pro can also perform diagnostic evaluation of patients’ gait
and there are many cases of clinical application [107–109]. However, it is difficult for such
a bulky and expensive product to enter millions of households, and the compliance of
the control can still be improved. For patients who have lost their mobility due to nerve
damage, how to fully mobilize the patient’s own movement intention instead of “passive
walking” so as to achieve the treatment of nerve injury diseases is a difficult point in the
study of the intelligent gait rehabilitation training systems.

5. Limitations and Challenges

Rehabilitation and training of gait is a current research hot spot. From the systematic
analysis of the current research status of the active intelligent gait training systems, it is not
difficult to see that there are still key issues in terms of sensing, evaluation, and control.
Key technologies such as the decoupling of radio frequency signals of human–machine
coordinated movement, the understanding based on fusing physical models and gait data,
and the generalized measurement of abnormal gait are in urgent need of breakthroughs.
To be specific, when capturing patients’ motion using RF signals, both the wearable gait
training device and the human body reflect RF signals. That makes the decoupling of the
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return signals from the two very important, and it is also the limitation of current research
studies. The methods of lower limb movement analysis and movement intention prediction
based on radio frequency principles need to be further studied. As the current intention
recognition based on EEG signals is easily interfered by noise, the EMG signals-based
method has strong ambiguity. Moreover, the intention recognition based on kinematic or
kinetic signals has a long latency.

As a mobility aid for gait rehabilitation and training, if the evaluation criteria for
the rehabilitation effect are difficult to define and the efficacy cannot be guaranteed, it
will be difficult to meet the diverse and personalized needs of users. The current clinical
scale for gait analysis and evaluation relies on the subjective assessment of the doctor
and the self-perception of the patient. In addition, the existing sensing data features
lack clinical significance and are difficult to correspond to the scale, and the evaluation
system is inadequate. How to quantitatively evaluate the effect of gait training with
multi-dimensional information still needs in-depth research.

A crucial problem of control of the active intelligent rehabilitation assistance devices for
lower limbs is that it needs to allow the users to spontaneously participate in motion, which
is of great importance for patients with nerve injury. However, the current gait rehabilitation
training systems have difficulty accurately recognizing the user’s movement intentions to
make corresponding assistance strategies. As users’ requirements for comfort and safety
continue to increase, the human-in-the-loop control, with information of human body
taking part in both the input and feedback of the controller, is receiving increasing attention.
However, due to the difficulty of quickly and accurately identifying the user’s intent, the
research studies on human–machine cooperative intelligent control for personalized gait
rehabilitation training is still too preliminary.

6. Future Directions

To address the core problems in the sensing, evaluation, and control technology of the
active intelligent gait training systems, the following possible future research directions are
proposed. We believe that the key is to focus on scientific issues such as the decoding of
lower limb movement intention based on the principle of radio frequency, the construction
of a walking ability evaluation model combined with clinical knowledge base and lower
limb movement data, and the personalized gait training strategy for collaborative control
of human–machine systems.

Among the many methods of detecting and sensing human lower limb movement,
the method based on the radio frequency signal is relatively preliminary, but it has obvious
advantages and broad prospects. A new type of non-contact motion sensing method based
on the principle of millimeter wave echo reflection needs to be studied. For instance, a
non-contact small radio frequency sensor such as a millimeter wave radar first needs to be
developed. Using the signal features generated by human motion on the radar image and
Doppler signal spectrogram as target features, similar to Daniel et al. [110], and using the
space occupancy status and motion frequency shift information contained in the frequency
characteristic data of the range view as input, the features in the input data are encoded
by the convolutional neural network (CNN) method, and an estimator is generated to
output the joint position and motion information of the object [111]. By combining the
real-time data with the models of the kinematics and dynamics of human lower limbs, the
human lower limb movement may be predicted. In conclusion, it is of important scientific
significance to study a new non-contact sensing principle and the method of model-driven
and data-driven fusion, to integrate the characteristics of different information dimensions,
to build a more concise, fast, and accurate online decoding model of composite information
for patient’s gait training, and to predict patient’s movement intentions.

Based on the knowledge of rehabilitation medicine, combined with the results of
motion recognition and prediction, the evaluation model of gait rehabilitation training
effects needs to be established, and the method of generating personalized rehabilitation
training prescriptions needs to be studied. Based on the extracted non-steady-state motion
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signals of the lower limbs, the time–frequency characteristics of the vital signs signals such
as EMG signals can be analyzed. In order to evaluate the movement synergy of the healthy
and abnormal limbs of the human body, the mechanism of human muscle synergy needs to
be further studied. Combining the lower extremity musculoskeletal model with the static
optimization algorithm to calculate the muscle activation degree during human walking,
the evaluation method of the muscle coordination degree on the lower extremity muscle
movement coordination ability of the patient’s exercise training can be studied. Finally, the
evaluation of gait training effects for different ages and different training stages will be
realized.

The workflow of an ideal gait training system should be as follows: based on the
evaluation of walking ability and the needs of gait rehabilitation training, the movement
mode of gait training can be determined. The corresponding human motion intention and
motion reference trajectory are obtained through the non-contact motion sensing system.
After this, the desired motion trajectory of the gait training system is generated. Combined
with the motion intention of the lower limbs of the human body and some simple control
methods, the gait training system will flexibly assist the patient to complete the desired
action. All in all, the key to the formulation of control strategies is gait evaluation and
intention recognition, while obscure and sophisticated control theory is secondary. By
studying the collaborative control method of the gait rehabilitation training system and the
patient, based on principal component analysis, multiple regression, and neural network,
the association model between gait data and clinical evaluation can be constructed, and a
personalized gait training strategy with multi-layer, and cooperative closed-loop control
of “human in the loop” can be designed. Based on this, carrying out research on the
collaborative control of human–machine systems based on personalized rehabilitation
strategies, evaluating the perception and control performance of the gait training system,
and generating clinical evaluation reports on the effects of rehabilitation training have
important academic significance and extensive clinical application value.
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