
Citation: Chen, J.; Zhu, Y.; Chen, Z.

Graph-Embedded Online Learning

for Cell Detection and Tumour

Proportion Score Estimation.

Electronics 2022, 11, 1642.

https://doi.org/10.3390/

electronics11101642

Academic Editor: Gemma Piella

Received: 10 April 2022

Accepted: 15 May 2022

Published: 21 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Graph-Embedded Online Learning for Cell Detection and
Tumour Proportion Score Estimation
Jinhao Chen 1 , Yuang Zhu 1 and Zhao Chen 1,2,*

1 School of Computer Science and Technology, Donghua University, Shanghai 201600, China;
jinhaochan365@163.com (J.C.); Zhuyuang1@gmail.com (Y.Z.)

2 Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University,
Shanghai 200241, China

* Correspondence: chenzhao@dhu.edu.cn

Abstract: Cell detection in microscopy images can provide useful clinical information. Most methods
based on deep learning for cell detection are fully supervised. Without enough labelled samples,
the accuracy of these methods would drop rapidly. To handle limited annotations and massive
unlabelled data, semi-supervised learning methods have been developed. However, many of these
are trained off-line, and are unable to process new incoming data to meet the needs of clinical
diagnosis. Therefore, we propose a novel graph-embedded online learning network (GeoNet) for
cell detection. It can locate and classify cells with dot annotations, saving considerable manpower.
Trained by both historical data and reliable new samples, the online network can predict nuclear
locations for upcoming new images while being optimized. To be more easily adapted to open data, it
engages dynamic graph regularization and learns the inherent nonlinear structures of cells. Moreover,
GeoNet can be applied to downstream tasks such as quantitative estimation of tumour proportion
score (TPS), which is a useful indicator for lung squamous cell carcinoma treatment and prognostics.
Experimental results for five large datasets with great variability in cell type and morphology validate
the effectiveness and generalizability of the proposed method. For the lung squamous cell carcinoma
(LUSC) dataset, the detection F1-scores of GeoNet for negative and positive tumour cells are 0.734
and 0.769, respectively, and the relative error of GeoNet for TPS estimation is 11.1%.

Keywords: nuclear; localization; classification; online learning; graph embedding

1. Introduction

Cell detection can be regarded as a combination of nuclear localization and cell clas-
sification. It can provide useful clinical information about the cells of interest, such as
the presence of cancer cells in a microscopy image [1]. To realize automatic detection and
achieve high accuracy, a number of cell localization and classification methods based on
machine learning have been proposed. Recently, deep learning has further increased the
accuracy of these methods, thanks to its feature representation ability [2]. However, most
of these methods are trained in a fully supervised manner, the success of which is highly
dependent on precisely labelled samples. Some methods even require datasets with cell
contours or masks [3–6]. Meanwhile, it is difficult to obtain large sets of precise labels at
low cost, as cell annotation consumes lots of time and human effort. Thus, semi-supervised
methods have been proposed to address the problem [7,8]. These are designed to increase
representation power and save annotation efforts, by exploiting patterns in labelled and
unlabelled data sets. But many of them are trained off-line, and unable to deal with new
images which are constantly generated in pathology labs and may contain variable un-
seen patterns. Moreover, networks designed for multiple tasks including localization and
classification usually take complicated forms, reducing their practicability and limiting
their application.
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Therefore, we propose a graph-embedded online learning network (GeoNet) for
cell detection. GeoNet consists of two modules, one for localization and the other for
classification. It generates distance maps [1] with dot annotations roughly indicating
locations of nuclei in historical images, as illustrated by Figure 1. It uses an encoder-
decoder with dynamic graph embedding for distance map regression and online nuclear
localization. It then obtains from new images cell instances with the predicted nuclear
locations and classifies them using a pretrained network. The main contributions of this
work are as follows:

1. It proposes an online learning network, GeoNet, for cell detection in open datasets.
It is trained in a semi-supervised fashion, which enables learning features from un-
known images while simultaneously predicting nuclear locations. It uses incomplete
annotations and saves manual effort. To avoid introducing errors, GeoNet selects
only the most reliable new samples with rigid confidence measured according to
morphology features of extracted nuclear instances to optimize the backbone.

2. The proposed GeoNet is designed to adapt to new images with various cell patterns. It
leverages historical data and new images to enhance its feature representation ability
and increase nuclear localization accuracy. Moreover, it engages dynamic graph
regularization and learns inherent nonlinear structures of cells to gain generalizability.

3. GeoNet is a practical solution for computer-aided biomedical study and pathology
diagnosis. It is a flexible framework, allowing any encoder-decoders for regression or
pretrained networks for classification. Moreover, the cell detection results it produces
can easily be used in many downstream applications, such as estimation of tumour
proportion score (TPS), which is a key measurement for prognosis and treatment of
lung squamous cell carcinoma (LUSC) [9].
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Figure 1. (a) An example of PD-L1 slides from the LUSC data set, (b) dot annotations (red indicates
positive viable tumour cells and green negative ones) and (c) distance map generated from the
dot annotations.

In this paper we validate the efficacy of GeoNet using five large datasets with great
variability in cell type and morphology. We demonstrate how it can be applied to a
downstream task, TPS estimation, using Programmed Death Ligand 1 (PD-L1) slides of
LUSC, obtained from first-hand clinical data.

2. Related Works

There are three main ways to detect cells in microscopy images, placing bounding
boxes around cells [8], drawing cell contours or masks [3–6], and looking for nuclei [1,10–13].
Some cell detection methods combine localization and classification [3,12,14–16], while
others perform only localization [10,11,17–19].

Methods that combine localization and classification can be categorized into multi-
stage and end-to-end methods. Multi-stage methods usually extract cell masks and then
classify cells. Theera-Umpon et al. [20] applied a fuzzy C-means (FCM) algorithm to locate
cells and neural networks to classify cells. Sharma et al. [21] used a contour-based minimum-
model to locate cells and AdaBoost to realize classification. Multi-stage methods are
intuitive and their requirements for cell location labels are low. However, their final outcome
relies on the output of each intermediate step. End-to-end methods can simultaneously
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locate and classify cells. Graham et al. [3] proposed a Horizontal-Vertical-Network (HoVer-
Net) using horizontal and vertical maps to separate occluded or overlapping cells, with
multi-branch architecture to realize cell segmentation and classification concurrently. In
this kind of method, cell classification is not dependent on localization. However, these
techniques require large amounts of precisely labelled data and their models are complex.

Methods that only locate cells can be grouped into conventional machine learning
methods and deep learning methods. In the first group, watershed algorithms are usually
employed for cell feature extraction [22,23]. The watershed algorithm requires less com-
putation than deep networks, and is thus more efficient. However, it relies on predefined
geometry of nuclei, which limits its accuracy and generalizability as nuclear patterns may
vary greatly. Deep learning methods can represent nuclear features with better generaliz-
ability. Chen et al. [10] use U-Net as the backbone and direction field map as the regression
target to deal with overlapping and occluded cells. Deep learning methods reach higher
accuracy than conventional methods of cell localization. However, most of the existing
deep learning methods do not consider previously unseen patterns in open data, which
limits their applications.

From the perspective of supervision, cell detection methods can be categorized as
unsupervised, supervised and semi-supervised. Unsupervised methods locate cells by
means of scale-invariant morphological feature extraction and clustering, without the need
for annotations [24,25]. These methods are efficient, but their overall performance is poor
because they lack the guidance of prior learning. Supervised methods can accurately
detect cells when trained by abundant labelled data. Xie et al. [1] used a fully residual
convolutional neural network to locate nuclei by regressing distance maps. Tofighi et al. [26]
used cell shape as prior knowledge to construct regularization and improve accuracy.
However, supervised methods depend highly on labelled data, some methods requiring
prior domain knowledge or precise labels such as contours, costing considerable human
workload. Semi-supervised detection models are trained on both labelled and unlabelled
data. Unlike their supervised counterparts, they can utilize partially annotated datasets.
Ying et al. [8] manually filtered prediction results to re-train the network. Li et al. [7]
proposed self-training to handle incomplete annotations and applied cooperative training
to process unlabelled samples. However, existing semi-supervised methods lack the
adaptive ability to learn patterns from unknown data.

The results of cell detection can be used for downstream tasks such as TPS estima-
tion [27,28] and HER2 scoring [15]. To date, TPS estimation using pathology image analysis
for cancer diagnosis and prognostics has not been intensively studied. TPS refers to the
proportion of positive tumour cells in the total number of surviving tumour cells. Some
methods have been proposed [27] for TPS estimation, but they usually depend on large
complex networks to yield accurate results.

3. Methods
3.1. The Whole Pipeline for Online Cell Detection

To address the issues with existing cell detection methods, we propose GeoNet as
illustrated by Figure 2. It contains two modules, nuclear localization and cell classification.
The former is a semi-supervised regression network consisting of an encoder-decoder as the
backbone and a dynamic graph regularizer, responsible for robust feature representation
and distance map prediction. It enables GeoNet to infer nuclear locations from the predicted
distance maps for new data examples encountered during training, while being optimized
with historical and new samples. The latter adopts a pretrained network to classify the cell
instances drawn from the predicted locations. The detection results yielded by GeoNet can
be leveraged in many downstream tasks, for example, TPS estimation. Let a microscopy
image be denoted by Xi ∈ RH×W×B, where i = 1, 2, · · · , I and H, W, B and I stand for
height, width, number of channels and number of images, respectively. Here, B = 3. As
manual annotations, Ai ∈ RKi×2 holds locations (i.e., row and column indexes) of dots on
nuclei and yi = [y1, · · · yk, · · · yKi ]

T ∈ RKi contains classes of cells, where yk ∈
{

1, 2, · · · , C
}
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and Ki is number of cells in Xi and C is number of classes in all the available data examples.

Given the input image Xi, GeoNet predicts its nuclear locations
^
Ai ∈ RKi×2 and cell types

^
yi ∈ RKi . The details of the proposed network are introduced as follows.
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3.2. Nuclear Localization

The nuclear localizer in GeoNet is primarily a semi-supervised regression network
regularized by dynamic graphs, as illustrated by Figure 3. Apart from the backbone, it also
involves necessary preprocessing and postprocessing techniques.
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3.2.1. Preprocessing

(1) Patch split: To increase detection accuracy and reduce computational cost in each

epoch, the microscopy images
{

Xi
}I

i=1 are split in an open dataset into patches Xj ∈
RHj×Wj×B, where j = 1, 2, · · · J(l), J(l)+ 1, J(l)+ 2, · · · , J(l)+ J(u), J(l) and J(u) represent
the numbers of historical samples with dot annotations on nuclei and newly collected
samples without any labels, respectively.

(2) Distance map generation: Distance maps are used instead of location coordinates to
train a regression network for cell detection, because the distance maps not only reflect
nuclear locations but also encode spatial and morphological information of cells. The
distance maps provide a better optimization goal for feature representation. They are
also useful for confidence measurement and reliable sample selection, which is the
key to our semi-supervised mechanism, to be fully introduced in the next subsection.
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Given a labelled patch Xj (j = 1, 2, · · · J(l)) with K j cells inside, its dot annotations
Aj ∈ RK j×2 are transformed to vectorized distance map mj ∈ RHjWj [1] with

mj(n) =

{
(eα(1−dmin(n,n(l))/D) − 1)/(eα − 1), dmin(n, n(l)) ≤ D
0, otherwise

, (1)

where n = 1, 2, · · · , HjWj, dmin(n, n(l)) represents the shortest spatial Euclidean distance
(ED) between the nth pixel and an annotation, and D is a constant set by users.

3.2.2. Graph-Embedded Network for Semi-Supervised Regression

After preprocessing, the patches Xj ∈ RHj×Wj×B are fed into the proposed graph-
embedded regression network for nuclear localization. As illustrated by Figure 3, the

network is semi-supervised, first pretrained on the labelled data
{

Xj, mj}J(l)

j=1 and then

fine-tuned by both labelled and unlabelled data
{

Xj,
^
m

j}J(l)+J(u)

j=J(l)+1, where
^
m

j
is the predicted

distance map. The network gains the basic ability to recognize cell patterns in pretraining,
while adapting to new images during fine-tuning and becoming capable of detecting
crowded cells online.

The backbone of the localization network is denoted by freg(·,θreg), where θreg repre-
sents learnable parameters. It regresses the distance maps with the following loss

`reg =
J(l)

∑
j=1

∣∣∣∣mj − ^
m

j∣∣∣∣2
2, (2)

where ||·||2 is l2-norm. It should be noted that freg can be any encoder-decoder. Here,
U-Net [29] was chosen for precise localization as it consists of a contracting path to cap-
ture context and a symmetric expanding path combining high-resolution features with
upsampled outputs. The architecture of U-Net is depicted in Figure 4. Inspired by Zheng
et al. [30], we superimpose a dynamic graph regularization on the backbone to exploit
inherent nonlinear structures of different cells, so that it can be better generalized and
adapted to new data. Patches of distance maps are used in an input batch to construct the
graphs. Denote an arbitrary distance map patch, which can be a real map mj or a predicted

one
^
m

j
, by ap, where p = 1, 2, · · · , P and P is the batch size. Regard each ap as a node and

link it only with its 8-nearest neighbors determined by ED [31] in the current batch. The
weight of edge between ap and aq is computed by

wp,q =

{
exp(−

∣∣∣∣ap − aq
∣∣∣∣2

2/
∣∣∣∣ap − aq

∣∣∣∣
1), ap and aq are linked

0, otherwise
, (3)

where ||·||1 represents l1-norm and p, q = 1, 2, · · · , J(l) + J(u) with p 6= q. In this way, a
localized graph is obtained to exploit local spatial distributions of cells. Moreover, the
graph for each input batch is dynamic and evolves with the incoming data as its nodes
include predicted distance maps. The graph regularization is defined as

`gra =
J(l)+J(u)

∑
p

J(l)+J(u)

∑
q,p 6=q

∣∣∣∣ap − aq
∣∣∣∣2

2wp,q. (4)

Thus, the loss of the localization network during the pretraining stage is

`pre = `reg + λ`gra, (5)

where λ is a trade-off coefficient.
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After pretraining, online nuclear localization is activated as newly sampled microscopy
images are fed to the network freg(·,θreg). The graph-embedded regressor is fine-tuned in
a semi-supervised fashion with both historically labelled data and unlabelled new samples.
Let t denote the iteration number of online learning, initialized as 0 at the end of pretraining

when J(l)0 = J(l), the label set
{

mj
0
}J(l)0

j=1 =
{

mj}J(l)

j=1 and
^
m

j

0 is predicted by the pretrained

freg for image patch Xj. Modify Equation (5) and obtain the graph-regularized regression
loss for online localization

`t =
J(l)t
∑

j=1

∣∣∣∣mj
t −

^
m

j

t
∣∣∣∣2

2 + α
J(l)t +J(u)t

∑
j=J(l)t +1

∣∣∣∣ ^
m

j

t−1 −
^
m

j

t
∣∣∣∣2

2

+ λ
J(l)t +J(u)t

∑
p

J(l)t +J(u)t
∑

q,p 6=q

∣∣∣∣ap − aq
∣∣∣∣2

2wp,q,

(6)

where α is a trade-off coefficient,
^
m

j

t−1 and
^
m

j

t are the distance maps of Xj predicted in the

t− 1th and the tth iterations, respectively, and J(l)t and J(u)t indicate the numbers of labelled

and unlabelled samples, respectively. It should be noted that both J(l)t and J(u)t are dynamic.
The former depends on how the label set is expended for online training while the latter is
the quantity of new samples fed to the network.

The label set expansion mechanism is designed to leverage the feature adaptation
ability of online learning and exploit the information in the unlabelled images. The tech-
niques are as follows. In the tth semi-supervised iteration, obtain the binary masks of each

unlabelled patch Xj and its predicted distance map
^
m

j

t by applying the same thresholding
and dilation operations, where j = J(l)t + 1, J(l)t + 2, · · · , J(l)t + J(u)t . The masks reflect major
morphology patterns such as nuclear contours and areas. Measure the ED between the

binary masks of
^
m

j

t and Xj and use the reciprocal of ED as the confidence for the predicted

map
^
m

j

t. The lower the distance is, the more reliably the features of the cell image Xj

are learned and maintained in the distance map
^
m

j

t, and the more likely the prediction
is correct. Therefore, select J(sel)

t predicted maps with the top confidence measurements,
rearrange their indexes and add them to the current labelled set for the next iteration.

Hence,
{

mj
t+1
}J(l)t+1

j=1 =
{

mj
t
}J(l)t

j=1 ∪
{ ^

m
j

t
}J(l)t +J(sel)

t

j=J(l)t +1
and J(l)t is dynamically increased by J(sel)

t ,

whereas
{ ^

m
j

t
}J(l)t +J(sel)

t

j=J(l)t +1
⊂
{ ^

m
j

t
}J(l)t +J(u)t

j=J(l)t +1
.

While the first term in Equation (6) leverages the most confident predictions, the
second term pays extra attention to unlabelled samples, even though their predictions
may not be so reliable. That unreliability does not mean they are not valuable. Through
the iterations, the network gains ability in feature representation. If the network makes
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similar predictions for unlabelled images in successive iterations, it is probably going into
a steady status and approaching its optimum. It is especially desirable to automatically
quantify and minimize prediction errors for the unlabelled new data in the online learning
scenario. Therefore, the difference between the distance map predicted in the current
iteration and that predicted in the last iteration is included in the overall loss. The third
term in Equation (6) is the graph regularizer, which depicts the underlying structures
of the dynamic labelled and unlabelled datasets that change in each iteration. It can be
seen that the semi-supervised regression network can learn from the unlabelled new data
while predicting the distance maps. This allows for adaptation to open data and online
localization of different nuclei. The Adam optimizer [32] is adopted to perform gradient
descent and update the parameters in the backbone.

3.2.3. Postprocessing

To obtain precise nuclear locations from the predicted distance maps, postprocessing
is adopted. This includes three major steps: thresholding, connected region filtering and
centroid calculation. Empirically speaking, pixels with small values in a distance map
are not usually the centroids of nuclei. Thus, thresholding is used to remove these pixels,

as shown in by Figure 5a,b. Given a predicted map
^
m

j
∈ RHjWj , the threshold is set by

V ∈ (0, 1) and the distance map
~
m

j
∈ RHjWj obtained after thresholding.

~
m

j
(n) =


^
m

j
(n),

^
m

j
(n) ≥ V

0,
^
m

j
(n) < V

, n = 1, 2, · · · , HjWj. (7)
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Figure 5. Visualization of postprocessing. (a) A predicted distance map. (b) The original image
overlaid with the distance map after thresholding. (c) The original image overlaid with the distance
map after connected region filtering. (d) The original image overlaid with centroids (yellow dots) in
connected regions, regarded as the estimated nuclear locations.

Because in a microscopy image a nucleus usually consists of a cluster of pixels, its
existence is unlikely to be indicated by high-valued but under-sized regions in the distance
maps. To avoid false detections, we apply the connected region filtering [33] to remove

small regions in
~
m

j
and obtain

_
m

j
. Figure 5c shows that highlighted regions of very small

sizes close to the border of the image are eliminated. Finally, we calculate the coordinate of

the centroid of each connected region kept in
_
m

j
by averaging the coordinates of pixels in

the corresponding region. Regarding the centroids as nuclear positions
^
A

j

∈ RK j×2, we can
finally locate the cells of interest in image patch Xj. The yellow dots Figure 5d indicate the
estimated nuclear locations.

The implementation details of nuclear localization are summarized in Algorithm 1. It
should be noted that numbers of labelled images and unlabelled images before splitting
into patches are I(l) and I(u), respectively.
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Algorithm 1 Implementation details of the nuclear localizer

Input: labelled dataset
{

Xi
}I(l)

i=1 with dot annotations
{

Ai
}I(l)

i=1 and newly-sampled unlabelled

images
{

Xi
}I(l)+I(u)

i=I(l)+1;
Step 1 Preprocessing

(1a) Split the input images into patches
{

Xj, Aj}J(l)

j=1 and
{

Xj}J(l)+J(u)

j=J(l)+1;

(1b) Convert
{

Aj}J(l)

j=1 to distance maps
{

mj}J(l)

j=1 by Equation (1);
Step 2 Localization
//Pretraining

(2a) Pretrain freg(·,θreg) on
{

Xj, mj}J(l)

j=1 using Equation (5);

(2b) Let the semi-supervised iteration number t = 0 and ft
reg ← freg ;

(2c) Initialize the labelled set
{

Xj, mj
t
}J(l)t

j=1 as
{

Xj, mj}J(l)

j=1;
//Semi-supervised Online Learning

(2d) Feed
{

Xj}J(l)t +J(u)t
j=1 to ft

reg and infer
{ ^

m
j

t
}J(l)t +J(u)t

j=1 ;

(2e) Select J(sel)
t most confident

{ ^
m

j

t
}J(l)t +J(sel)

t

j=J(l)t +1
from

{ ^
m

j

t
}J(l)t +J(u)t

j=J(l)t +1
;

(2f) Expand the label set as J(l)t+1 ← J(l)t + J(sel)
t+1 and

{
mj

t+1
}J(l)t+1

j=1 ←
{

mj
t
}J(l)t

j=1 ∪
{ ^

m
j

t
}J(l)t +J(sel)

t

j=J(l)t +1
; let

J(u)t+1 = J(u)t − J(sel)
t+1 ,

{
mj

t+1
}J(u)t+1

j=1 ←
{

mj
t
}J(u)t

j=1 −
{ ^

m
j

t
}J(l)t +J(sel)

t

j=J(l)t +1
and t← t + 1 ;

(2g) Fine-tune ft
reg(·,θt

reg) by Equation (6);

(2h) Repeat Steps 2d–2g until J(u)t = 0 and produce
{ ^

m
j}J(l)+J(u)

j=J(l)+1;
Step 3 Postprocessing
for j = J(l) + 1, J(l) + 2, · · · , J(l) + J(u)

(3a) Apply thresholding to
^
m

j
and obtain

~
m

j
;

(3b) Apply connected region filtering to
~
m

j
and obtain

_
m

j
;

(3c) Calculate the centroid of each region in
_
m

j
and obtain

^
A

j

;
end for

Output: predicted nuclear locations
{ ^

A
j}J(l)+J(u)

j=J(l)+1 for
{

Xj}J(l)+J(u)

j=J(l)+1.

3.3. Cell Classification

As shown in Figure 2, after nuclear localization, cell instances are acquired and classifier
is employed to identify their cell types. The cell instances are small patches Zi

r ∈ RHr×Wr×B

centred at nuclear locations Ai ∈ RKi×2 in a microscopy image Xi ∈ RH×W×B, where r =
1, 2, · · · , Ri and Ri is the total number of cell instances in Xi. For unlabelled images, the nuclear
locations are predicted using Algorithm 1. The instance size Hr ×Wr is determined empirically.
Several cell examples are extracted from the labelled set, the average area for each cell type is
calculated, and their values are utilised to determine the instance size. The cell instances thus
generated are sufficient for online cell detection. This acquisition technique is very efficient,
without engaging complicated implementations or extra training. It enables efficient cell
classification for unlabelled images in open datasets, using only approximate knowledge about
cell areas instead of precise annotations such as masks or contours of each cell.

Let the classifier be denoted by fcls(·,θcls), where θcls represents learnable parameters.
The inputs are the cell instances Zi

r resized to the same size (H0 ×W0) and the outputs

are their classes
ˆ
y

i

r ∈
{

1, 2, · · · , C
}

inferred by fcls. To realize online cell detection, we use
pretrained deep networks for fcls, because they can be easily fine-tuned by historically
labelled data and used for inference of unlabelled cell instances in newly-sampled images.
Specifically, SimCLR [34] was selected to leverage its effectiveness and generalizability
for cell images. As shown in Figure 6, SimCLR [34] has the same basic architecture as
ResNet18 [35], where the residual block adds shortcut connection to avoid degradation
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of feature representation ability. One difference between ResNet18 and SimCLR is that
the former is pretrained with ImageNet [36] and the latter with 57 pathology images [34].
ImageNet contains 1.43 million images with 1000 types, which gives ResNet18 the ability
to recognize diversified object patterns. The pathology images enable SimCLR to recognize
specific patterns of cells. Another important difference is that SimCLR involves contrastive
learning whereas the vanilla ResNet18 does not. SimCLR learns representations by maxi-
mizing agreement between differently augmented views of the same sample via contrastive
loss. Given strong data augmentation, large batch sizes and long training episodes, con-
trastive learning is more effective than supervised learning for feature representation [37].
SimCLR benefits from the pathology images and contrastive learning, and is expected to
outperform ResNet18 in cell classification for dynamically sampled new data.
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The classifier fcls is fine-tuned by Adam [32] on labelled cell instances,
{

Zr
}R(l)

r=1, where
R(l) is number of instances with class labels yr ∈

{
1, 2, · · · , C

}
. To save time, the local-

ization network can be pretrained according to Step 2a in Algorithm 1, and the classifier
simultaneously fine-tuned with the historically labelled dataset. After locating cell in-
stances in an unlabelled image, they are fed into the fine-tuned classifier and their cell type
is predicted. This way, efficient online cell detection can be performed, with minimal costs
incurred for annotations and computations. The process is described in Algorithm 2.

Algorithm 2 Online cell detection by GeoNet and TPS estimation with PD-L1 IHC slides

Input: labelled PD− L1 IHC slides
{

Xi
}I(l)

i=1 with dot annotations
{

Ai
}I(l)

i=1 and newly-sampled

unlabelled PD-L1 slides
{

Xi
}I(l)+I(u)

i=I(l)+1;
Step 1 Initialization

(1a) Preprocess
{

Xi, Ai
}I(l)

i=1 and produce
{

Xj, mj}J(l)

j=1 as in Step1, Algorithm 1;

(1b) Pretrain freg(·,θreg) on
{

Xj, mj}J(l)

j=1 using Equation (5);

(1c) Fine-tune fcls(·,θcls) on
{

Zr, yr
}R(l)

r=1 as in Section 3.3;
Step 2 Online Cell Detection
//Localization
(2a) Let the semi-supervised iteration number t = 0 and ft

reg ← freg ;

for j = J(l) + 1, J(l) + 2, · · · , J(l) + J(u)

(2b) Feed Xj to ft
reg and get

^
m

j

t via Steps 2d–2g in Algorithm 1;

(2c) Predict cell locations
^
A

j

t via Steps 3a–3c in Algorithm 1;
//Classification
(2d) Obtain

{
Zj

r
}Rj

r=1 from Xj as described in Section 3.3;

(2e) Feed
{

Zj
r
}Rj

r=1 to fcls and infer cell classes
{ ˆ

y
j

r
}Rj

r=1;
//TPS Estimation
(2f) Compute TPS for Xj by Equation (8);
end for.

Output: predicted nuclear locations
^
A

j

, inferred cell classes
{ ˆ

y
j

r
}Rj

r=1, and estimated TPS for Xj,
where j = J(l) + 1, J(l) + 2, · · · , J(l) + J(u).
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3.4. Application: TPS Estimation

The results of online cell detection obtained via GeoNet can be utilized in many
downstream tasks, e.g., quantitative assessment of PD-L1 expression. This is a vital part of
PD-L1 immunohistochemical (IHC) assays that have been co-developed as companion or
complementary diagnostics for different anti-PD-1/PD-L1 inhibitor drugs [27]. To assess
PD-L1 expression, the Dako PD-L1 IHC 22C3 and 28-8 pharmaDx assays employ tumour
proportion score (TPS) computed as

TPS = s+/(s+ + s−)× 100%, (8)

where s+ and s− denote numbers of positive and negative viable tumour cells, respectively.
For TPS less than 1%, PD-L1 expression levels are negative. With TPS ranging from 1%
to 49%, PD-L1 expression levels are low. When TPS is greater than 49%, PD-L1 expres-
sion levels are high. Tumoural expression of PD-L1 is associated with overall survival
and adverse events on non-small cell lung cancer (NSCLC) [27]. For patients with un-
treated metastatic NSCLC with PD-L1 TPS of 50% or greater, it has been reported that
first-line pembrolizumab (anti-PD-1/PD-L1 inhibitor) monotherapy improves overall and
progression-free survival [38].

In clinical practice, pathologists determine TPS by microscopic examination, which
is time-consuming and subjective. It is impractical to detect and count millions of cells
contained in large PD-L1 IHC slides. With the proposed GeoNet, we can input new
unlabelled PD-L1 slides, then allow the computer to detect tumour cells and estimate
TPS automatically. As well as saving manual efforts in annotation and assessment, this
method also increases precision in IHC assays. The major procedures are summarized in
Algorithm 2. To demonstrate its effectiveness, we applied the method to a set of PD-L1
slides for lung squamous cell carcinoma (LUSC), which is a common type of NSCLC.

4. Results
4.1. Datasets

For evaluation of the proposed GeoNet, we used five datasets as illustrated by Figure 7.
The first three datasets were used only for online nuclear localization since they were
not provided with classification labels. The fourth and fifth were used for the whole
pipeline, i.e., nuclear localization plus cell classification. The first two datasets provide a
dot annotation on each cell. The last three datasets contain cell-wise segmentation masks.
In our experiments, these masks were turned to dot annotations by locating the centre of
each mask to generate distance maps. Each dataset was split into subsets of labelled data
and unlabelled data. Moreover, the cell detection results on the fifth data set were applied
to the downstream task, TPS estimation.

1. This dataset comprises bacterial cells in fluorescent-light microscopy images (BCFM) [39].
It contains 200 synthetic images, each with 256 × 256 pixels and 171 ± 64 cells.
We randomly selected 32 images from the first 50 images as the labelled set and
50–100 images as unlabelled set (i.e., newly sampled data for online learning).

2. The bone marrow (BM) [40] dataset consists of 11 H&E images with 1200 × 1200 pixels,
cropped from WSIs (40×magnification) from 8 different patients. We split them into
44 patches, each with 600× 600 pixels. The labelled set used 15 patches the unlabelled
set used 18.

3. The Kaggle 2018 Data Science Bowl dataset (Kaggle) [41] contains 670 H&E stained
images of different sizes. From these, 335 images were used as the labelled set and
135 as the unlabelled set.

4. Pan-Cancer Histology Data for Nuclei Instance Segmentation and Classification (Pan-
Nuke) [42] contains 7901 images with 256× 256 pixels of 19 different tissues, including
neoplastic cells, inflammatory cells, connective tissue cells, dead cells and epithelial
cells. The data set was supplied split into three subsets. We used the first subset as
the labelled set and the second as the unlabelled set.
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5. LUSC is an in-house dataset, provided by a teaching hospital and a professional
pathology diagnosis center [9]. It contains 43 immuostained PD-L1 images with
1000 × 1000 pixels cropped from 4 WSIs scanned with KF-PRO-120 (0.2481 µm/pixel,
40× magnification). We randomly selected 34 images as the labelled set and 9 images
as the unlabelled set.
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4.2. Implementation Details

For batch-wise input to GeoNet, each image in BCFM, Kaggle and PanNuke was split
into smaller patches of 64 × 64 pixels; each 600 × 600 patch in BM was further split into
100× 100 patches; and each image in LUSC was split into 100× 100 patches. The batch size
was 16. The learning rate for the GeoNet localizer was initialized as 0.0001 and decayed
with a factor 0.9 every 20 epochs. For Equation (6), λ is 0.2 and α is 0.2. The number of
epochs in the first semi-supervised iteration was 100, and 20 for the rest. The number of
selected samples in each iterationwas 1 for BM and LUSC, 2 for BCFM and Kaggle, and
25 for PanNuke. For the classifier, the learning rate was set as 0.00625. Number of epochs
was 15. Learning rate was reduced with a factor 0.9 at the 4th, 6th and 8th epoch. Data
augmentations including random brightness, contrast, horizontal and vertical flipping
were adopted.

To demonstrate the usefulness of the online pipeline, we compared GeoNet with its
pretrained model, Graph-Embedded Network (GeNet) [30]. To validate the flexibility of
GeoNet, we embedded U-Net [29] and Structured Regression (SR) [1] within the online
localizer. The online versions of U-Net and SR are referred to as “O-U-Net” and “O-
SR”, respectively. Using the vanilla localizer in GeoNet, we compared SimCLR [34] with
ResNet18 [35] as the cell classifier. These two versions are denoted by GeoNet-SimCLR
and GeoNet-ResNet18. F1-score, precision, and recall [10] were employed to evaluate cell
detection performance. For localization metrics, if the predicted location is within a circle
with a radius of 12 from the real location, the predicted location is accurate. All methods
were implemented on a workstation equipped with an NVIDIA GeForce RTX 2080 Ti.

4.3. Experimental Analysis
4.3.1. Detection Performance

We used the PanNuke and LUSC data sets to validate the efficacy and efficiency of
the proposed online learning network, GeoNet. As illustrated in Figure 8, the localizer
in GeoNet can automatically locate different cell types in the unlabelled images. Most
predicted nuclear locations represented by yellow dots are within the green circles that
indicate the real locations. Figures 9 and 10 visualize the saliency maps for cell instances of
different classes acquired at the predicted locations, showing that the classifier in GeoNet
can represent discriminative patterns. Tables 1 and 2 give the classification indexes. Since
classification is the last step in the online detection pipeline, the classification results are
the final detection outcomes. They show that GeoNet can generate cell instances without
manual annotations and accurately detect cells in unlabelled images in a semi-supervised
fashion. Meanwhile, GeoNet embedded with SimCLR as the classifier (GeoNet-SimCLR)
outperforms the ResNet18, since SimCLR is pretrained on pathology images and involves
contrastive learning. As indicated by Table 2, GeoNet-SimCLR can accurately identify
negative and positive tumour cells in the PD-L1 slides, thus being applicable to TPS
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estimation for LUSC. Figure 11 demonstrates the efficiency of the online learning process.
Figure 11a shows that the loss curve of the localizer converges in each semi-supervised
iteration. Figure 11b shows that the loss curve of each classifier converges rapidly. Because
both the localizer and classifier function correctly, the whole framework illustrated by
Figure 2 is successfully implemented.
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However, there is still room for improvement. As can be seen in Section 4.1, PanNuke
is a class-unbalanced dataset [42]. Dead cells account for its smallest proportion, 4.7%, and
neoplastic cells account for the greatest proportion, 37.7%. As Table 1 shows, whichever
one of GeoNet-SimCLR or GeoNet-ResNet18 is applied, the poorest classification indexes
are those of dead cells. Meanwhile, the indexes of neoplastic cells are much better. This
problem can be addressed by performing class-related data augmentation or introducing
class-wise reweighting to the loss of GeoNet.
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4.3.2. Detailed Localization Results

We used the BCFM, BM, Kaggle and PanNuKe datasets to test the localization perfor-
mance of GeoNet. Table 3 shows that GeoNet outperforms the other methods in general.
For all datasets, GeoNet yielded higher F1-scores than the competing models, especially
the supervised ones, indicating its feature representation ability. The F1-scores of GeoNet
are higher than those of O-U-Net, validating the use of the dynamic graph regularizer to
enable GeoNet to learn inherent nonlinear structures of cells and gain better generaliz-
ability than O-U-Net for newly captured unlabelled images. Furthermore, almost every
semi-supervised model outperformed its supervised counterpart on the unlabelled sets.
This not only demonstrates that semi-supervised optimization can increase localization
precision, but also indicates the flexibility of GeoNet. The proposed method can utilize
almost any encoder-decoder to regress nuclear locations. As illustrated by Figure 11a, the
loss curve of every iteration converges, indicating that the label set expansion mechanism
for the semi-supervision avoided the introduction of errors and can exploit information
in the unlabelled images. Thus, it can be seen that GeoNet exhibits good feature adaption
ability, which is important for online cell detection in dynamically imported images.

Table 3. Evaluation of cell localization for the unlabelled images of each data set.

Model

BCFM BM Kaggle PanNuke

Precision Recall F1-
Score Precision Recall F1-

Score Precision Recall F1-
Score Precision Recall F1-

Score

U-Net 0.920 0.916 0.918 0.742 0.810 0.775 0.767 0.841 0.802 0.652 0.691 0.671
SR 0.758 0.816 0.786 0.855 0.932 0.892 0.720 0.745 0.732 0.648 0.667 0.657

GeNet 0.935 0.914 0.924 0.844 0.961 0.899 0.847 0.829 0.838 0.687 0.702 0.694

O-U-
Net 0.924 0.920 0.922 0.765 0.813 0.789 0.768 0.868 0.815 0.690 0.711 0.700

O-SR 0.764 0.824 0.793 0.875 0.933 0.903 0.755 0.785 0.770 0.677 0.680 0.678
GeoNet 0.935 0.919 0.927 0.868 0.950 0.907 0.850 0.846 0.848 0.712 0.730 0.721

To further demonstrate the efficiency of the proposed online learning pipeline, we
recorded the time costs of O-U-Net, O-SR and GeoNet for semi-supervised training and
prediction for the BCFM dataset. Table 4 indicates that the time consumptions, especially
the online prediction time are acceptable. For example, GeoNet took only 0.35 s to locate all
the cells in each unlabelled image (around 171 cells per image). O-SR spent the most time
on training due to its complex structure. GeoNet costs more training time than O-U-Net
because the construction of the dynamic graph requires extra time. However, the prediction
time of O-U-Net and GeoNet were close. According to Table 3, GeoNet located nuclei more
accurately than O-U-Net. This means that GeoNet is a practical method for online cell
detection in unknown images.

Table 4. Time costs of semi-supervised training and prediction for BCFM.

Model Time Cost for Training
(s/image)

Time Cost for Prediction
(s/image)

O-U-Net 410.57 0.34
O-SR 820.98 0.54

GeoNet 658.14 0.35

4.3.3. TPS Estimation Errors

The detection results of GeoNet were satisfactory, and were applied to TPS estimation.
As described in Section 3.4, pathologists usually assess PD-L1 expression by TPS for
diagnosis and treatment of NSCLC. Table 5 shows the predicted TPS values and relative
errors for GeoNet-ResNet18 and GeoNet-SimCLR applied to LUSC. Predicted TPS values of
GeoNet-SimCLR and GeoNet-ResNet18 are both greater than 49%, suggesting that PD-L1
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expression levels are high. As described in Section 3.4, pathologists make clinical diagnosis
according to PD-L1 expression levels rather than a precise TPS value. Therefore, the exact
values of predicted TPS will not impact pathologists’ decisions if the TPS values fall into
the predefined ranges (<1%, 1–49%, >49%). Figure 12 shows the TPS of every unlabelled
image in LUSC and the histogram of the unlabelled set. It can be seen that GeoNet-SimCLR
outperformed GeoNet-ResNet18 in most TPS estimation cases. Although there were some
errors, especially when real TPS values were lower than 50%, these were not great enough
to alter diagnosis because the predicted TPS values were in the same range as the real ones.
To improve TPS estimation in GeoNet, we could add a branch after the classifier to regress
positive and negative cell counts as well as TPS values.

Table 5. Average TPS values of the unlabelled set of LUSC.

Estimation Method GeoNet-ResNet18 GeoNet-SimCLR

Real TPS 70.7%

Predicted TPS 56.7% 59.6%
Relative Error 13.9% 11.1%
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5. Conclusions

We propose a novel graph-embedded online learning network, namely GeoNet, for cell
detection with dot annotations. With its efficient label set expansion mechanism, GeoNet
uses historical data and reliable new samples to optimize the model in an online learning
fashion. In this way, GeoNet can learn features from unknown data while at the same
time efficiently predicting nuclear locations. By involving a dynamic graph regularizer,
GeoNet can exploit inherent nonlinear structures of cells to improve generalizability. Thus,
GeoNet can adapt to new images with various cell patterns. Moreover, GeoNet is a practical
network as its detection results can be applied to downstream tasks such as TPS estimation.
Experimental results validate the flexibility and effectiveness of GeoNet.
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