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Abstract: With the increasing need for eye tracking in head-mounted virtual reality displays, the
gaze-based modality has the potential to predict user intention and unlock intuitive new interaction
schemes. In the present work, we explore whether gaze-based data and hand-eye coordination data
can predict a user’s interaction intention with the digital world, which could be used to develop
predictive interfaces. We validate it on the eye-tracking data collected from 10 participants in item
selection and teleporting tasks in virtual reality. We demonstrate successful prediction of the onset of
item selection and teleporting with an 0.943 F1-Score using a Gradient Boosting Decision Tree, which
is the best among the four classifiers compared, while the model size of the Support Vector Machine
is the smallest. It is also proven that hand-eye-coordination-related features can improve interaction
intention recognition in virtual reality environments.

Keywords: intention prediction; virtual reality; gaze-based interaction

1. Introduction

The Metaverse has recently attracted a great deal of attention in industry and academia,
especially after Facebook changed its name to Meta. If the Metaverse is realized in the
future, extended reality technology, including virtual reality technology, will be one of
its essential supporting technologies. Biocca and Delaney [1] define virtual reality (VR)
as “the sum of the hardware and software systems that seek to perfect an all-inclusive,
sensory illusion of being present in another environment”. The core characteristics of VR
are immersion, interaction and imagination [2]. Immersion and interaction mean higher
requirements for human–computer interaction in VR systems. Interaction should be more
natural and intuitive. The first step is to identify and understand the interaction that the
user wants to perform so that the system can provide appropriate help in time. Interaction
intent recognition enables the system to provide shortcuts to the user by predicting the
intended interaction, facilitating the interaction, and reducing the operational load of the
user. For example, if the system knows what object the user would like to interact with
within the virtual environment, it can connect a certain input command to the inferred
interaction target and allow the user to complete the entire interaction without manual
pointing, which can greatly reduce the physical and cognitive load of the user. Especially
under the concept of the Metaverse, 24/7-wearable AR and VR devices for production
and work are facing the problem that prolonged usage can exacerbate fatigue, so adaptive
interaction interface that can accurately predict the interaction intention of the user has the
potential to reinvent human–computer interaction under extended reality.

Research on the application of eye tracking in VR and human–computer interaction
began early [3], but has not been widely used due to the cost and accuracy of the eye-
tracking equipment. In 2017, we witnessed the acquisitions of companies that can provide
eye-tracking technology by well-known companies in VR and augmented reality, high-
lighting the importance of eye tracking in this field. In 2019, companies such as FOVE Inc.,
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Microsoft and HTC had already provided systems with built-in eye-tracking for profes-
sional and consumer markets. The applications of eye movements in VR fall into four main
categories [4]: diagnostic (eye-movement behavior analysis), active (as a human–computer
interface), passive (gaze-contingent rendering), and expressive (synthesizing eye move-
ments of virtual avatars). This research mainly focuses on active applications; that is, eye
movement as a human–computer interface.

A drawback in gaze-based interfaces is the Midas touch problem, i.e., unintentionally
activated commands while the user is looking at an interactive element [5]. Fixation or
dwell time is an indicator of an intention of the user to select an object through eye gaze
alone [6–9]. However, this time threshold can negatively impact the user experience.
For example, when the required dwell time is too short, it puts pressure on the user to look
away and avoid unwanted selection. On the contrary, it may result in a longer wait time if
it is too long [10]. If the interaction intention of the user can be recognized through natural
eye-movement behavior rather than intentional, the mental and operational load of the
user can be greatly reduced. Another common way to avoid the Midas touch problem
is using a physical trigger as a confirmation mechanism, such as a hand controller or
keyboard [6,8,11–13]. In such a case, it also makes sense to recognize the interaction intent
to simplify physical buttons’ operation or give more information as visual feedback based
on the recognition result.

The eye has been said to be a mirror to the soul or window into the brain. This may be
the first reason eye movements have attracted researchers’ interest. There are many studies
related to eye movements in the field of attention [14–18]. Eye movements can indicate
areas of interest (active or passive attraction) and quantify the changes in human attention.
Therefore, they are widely used in visual attention modeling. Eye movements can also
reflect human perception [19], cognitive state [20,21], decision-making processes [22,23],
and working memory [15]. Eye movements have also been used in studies of human
activity classification [24–27], especially in human–computer interaction [24,27–32].

These studies have demonstrated that human eye-movement behavior can be signifi-
cantly different across activities. All of the above studies focus on understanding human
behavior and thinking through eye movements, which is a prerequisite and basis for the
application of eye movements in intention recognition. Gaze behavior reflects cognitive
processes and can give hints of our thinking and intentions.

An intention is an idea or plan of what you will do. A great deal of existing gaze-based
intention recognition research aims to recognize the intention of daily human behav-
ior [25,26,33–35] or higher-level intention involving game strategy [36]. The interaction
intention in this study is the way that the user wants to interact with the computer system,
i.e., to identify the interaction intention of the user before he/she performs the actual
interaction. However, the interaction intent we want to identify here is low-level intent;
more specifically, the intent to perform an interaction without involving complex contex-
tual relationships and specific interaction environments. Similar to the task-independent
interaction intent prediction studied by Brendan et al. [37], the application context of our
study is in VR.

Our approach tracks the eye movements of the user in controller-based interaction
in VR and fuses the eye movements and hand-eye coordination information collected via
gaze and controller to predict the current intention of the user. Briefly, our research is
conducted as follows. Initially, we collect controller and gaze data in two controller-based
interaction tasks in VR (selection and teleporting) and build a multimodality database. We
then extract gaze-based features from this database and train intention recognition models
using supervised machine-learning techniques. Finally, we use a separate dataset to verify
the accuracy of our models. The main contributions of this paper are as follows:

• We introduce a new dataset of human interaction intentions behind human gaze
and hand behaviors. It contains gaze-and controller-related data of selection and
teleporting in VR from multiple participants.
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• We propose a gaze-controller-based feature-set representation based on human vision
and behavioral studies to predict user intention through the gaze. These features are
neither subject nor interface specific.

• We train four classifiers with supervised machine-learning and evaluate them in
several aspects, including F1-Score and model size. In addition, we perform feature
selection to assess the relevance and redundancy of feature representations. The exper-
imental results show that for behaviors from different people, the Gradient Boosting
Decision Tree (GBDT) approach achieves F1-Score of 0.924 for binary classification and
0.953 for three-class classification. Such results offer the possibility of a more natural
implementation of the interaction interface paradigm, i.e., more intelligent delivery of
low-cost interaction patterns by providing the right interventions at the right time.

Section 2 gives an outline of state-of-the-art gaze-based intention recognition studies.
Our approach consists of three major parts: data collection, feature extraction, and intention
recognition. They are detailed in Section 3. Section 4 compares and analyzes different clas-
sifiers’ classification performance and feature importance. Section 5 includes a discussion
of our work and a summary of future directions. Section 6 concludes our work.

2. Related Work

The term intent has different definitions in different fields. To avoid ambiguity,
the term interaction intention in this study needs to be clarified. In human–computer
interaction, the intent is either explicit or implicit. An explicit intent is directly input into
the system through the interaction interface. Implicit intent involves the internal activities
of users. It requires the system to infer the intentions based on some hints such as natural
facial expressions, behaviors, and eye movements. This is a key feature of intelligent inter-
active interfaces, i.e., understanding the current state of users and predicting the following
action. The ultimate goal of our research is to enable computer systems, like humans, to
understand and predict users’ behavior and purpose for intuitive and safe interaction. Van-
Horenbeke and Peer [38] explore human behavior, planning, and goal (intent) recognition
as a holistic problem. They argue that behaviors and goals are incremental in granularity
(i.e., a series of behaviors constitute intentions) and in time (i.e., behavior recognition
focuses more on actions that occur simultaneously, while intention recognition focuses on
upcoming actions). On the other hand, planning is more complex, focusing more on the
relationship between a series of behaviors or intentions and the specific meaning in the
semantic context in the interaction. In our study, interaction intention recognition is the
least fine-grained intention recognition. Let us consider the action of pressing a button.
The expected interaction result behind the series of actions, including finding a specific
location and pressing it, is the “interaction intent” in this study, i.e., selection or teleporting.
We do not consider the deeper intent of winning a game or switching to a better visual
perspective, i.e., the interaction intent is relatively weakly linked to the semantic context of
the interaction.

Eye movements are a common source of information in intention or behavior recogni-
tion. Table 1 summarizes the research on using eye-related data to classify daily behaviors
and intention classification in computer environments. According to the table, the most
commonly used classification algorithms include Support Vector Machine (SVM), Logistic
Regression (LR), and Random Forest (RF). Our study also chooses to perform a cross-
sectional comparison of these classification algorithms. These studies are also aimed at
different environments. The application environments of the above studies are mainly
personal computers or tablets, and there are relatively few studies in VR. Our study is to
recognize interaction intention of the user in controller-based interaction in VR based on
eye-movement data.
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Table 1. Task, activity, and intention classification studies using eye movement data.

Reference Year Platform Scope Classifier Performance Tasks/Activities/Intentions

[39] 2014 PC Intention recognition Nearest Neighborhood (NN)
Support Vector Machine (SVM)

Average accuracy: 79.81 ± 4.93
Average accuracy: 85.26 ± 0.70

Navigational intent
Informational intent

[40] 2014 PC Intention recognition Support Vector Machine (SVM) Average accuracy: 90% Navigational intent
Informational intent

[41] 2017 PC Intention recognition Nearest Neighborhood (NN)
Support Vector Machine (SVM) Average accuracy: 85% Unintentional intention

Purposeful intention

[42] 2012 PC Intention prediction Support Vector Machine (SVM) ROC-AUC: 0.807
Accuracy: 76% Issue a command or not

[43] 2018 PC Intention prediction Support Vector Machine (SVM) Accuracy: 77.2%

Monitoring
Tracking
Decision
Burst
Off loop

[36] 2013 PC Cognitive states prediction Support Vector Machine (SVM) Best accuracy: 32 %

8-tiles puzzle game:
Cognitions
Evaluations
Plans
Intentions
Current move

[28] 2004 PC Activity recognition - -

Reading comprehension
Mathematical reasoning
Searching
Object manipulation

[29] 2011 PC Activity recognition LHMM Accuracy: 51.3%
Accuracy: 89.1%

Evaluate website traffic task
E-Learning quiz task

[30] 2013 PC Activity recognition Logistic Regression Average accuracy: 53.18%

Retrieve values
Filter
Compute derived value
Find extremum
Sort

[24] 2018 PC Activity recognition
Support Vector Machine (SVM)
K-Nearest Neighbour (K-NN)
Random Forest

F1 score:
SVM 0.71
K-NN 0.61
Random Forest 0.73

Read
Watch
Browse
Play
Search
Interpret
Debug
Write

[44] 2015 Reality Intention prediction Support Vector Machine (SVM) Accuracy: 76% Making sandwich

[33] 2009 Reality Activity recognition Support Vector Machine (SVM) Average precision: 76.1%
Average recall: 70.5%

Copy
Read
Write
Video
Browse
Null

[34] 2011 Reality Activity recognition Support Vector Machine (SVM)
Average accuracy: 80.2%
Average precision: 76.1%
Average recall: 70.%

Reading or not reading
Copy, read, write video, browse, null
Visual memory (familiar/unfamiliar
images)

[35] 2012 Reality Activity recognition Support Vector Machine (SVM) Mean average precision 57%

Copy
Read
Write
Video
Browse
Null

[25] 2019 Reality Activity recognition Random Forest Average accuracy 67%

Common navigation tasks:
Self-positioning and orientation.
Local environment target search
Map target search
Route memorization
Walking to the destination

[26] 2020 Reality Activity recognition CNN Average Precision: 40.41% 26 common action classes

[45] 2015 Tabletop Intention prediction Support Vector Machine (SVM) 88% success rate

Drag
Maximize
Minimize
Scroll
Free-form drawing
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Table 1. Cont.

Reference Year Platform Scope Classifier Performance Tasks/Activities/Intentions

[39] 2014 PC Intention recognition Nearest Neighborhood (NN)
Support Vector Machine (SVM)

Average accuracy: 79.81 ± 4.93
Average accuracy: 85.26 ± 0.70

Navigational intent
Informational intent

[46] 2019 VR Intention prediction Long Short-Term Memory
(LSTM) Topology

Accuracy 99.94%
Precision 99.92%
Recall 99.96%
F1-Score 99.94%

Navigation:
Needing navigation aid
No need for navigation aid

[37] 2021 VR Intention prediction Logistic Regression Average PR-AUC = 0.12
Average ROC-AUC = 0.77 Issue a command or not

[27] 2020 VR Activity recognition
Support Vector Machine (SVM)
Logistic Regression
Random Forest

Prediction accuracy:
SVM: 80.23%
Logistic Regression: 74.74%
Random Forest: 79.50%

Shopping
Goal-directed search
Exploratory search

Alghofaili et al. [46] classify whether users need navigation assistance in VR envi-
ronments through Long Short-Term Memory (LSTM) topology. It determines whether
the user loses his/her way by analyzing the eye-movement behavior of the user in VR
roaming scenarios. Pfeiffer et al. [27] classify the type of search (goal or exploration based)
when shopping in cave-based VR. Their study also relies mainly on eye-movement data
for training and evaluating three classifiers: SVM, LR, and RF, where SVM has the highest
accuracy of 80.2%.

The most similar work to our study is the work of Brendan et al. [37]. Their study
predicts whether a user will make a selection interaction or not in VR. In their study,
a separate LR classifier is trained for each participant, but the overall results are not very
satisfactory, with an average PR-AUC of 0.12. However, in their study, they also find that
the classifiers for participants are very similar in terms of feature selection, which to the
extent indicates that the interaction intention of the user is common in eye movement-
based features. There is some commonality in the eye movement-based features. Therefore,
the training dataset in our study is composed of eye-movement data and controller data
generated by multiple users during the two interaction tasks of selection and telepoting.
We want the trained models to determine whether the user wants to interact or not and the
interaction type (selection or telepoting).

The superiority of our work over the existing works that aim to classify user interaction
intention in VR is twofold. First, many studies are content-related, since they focus on
highly specific application scenarios such as VR navigation [46] and shopping [27]. Our
work can be applied in all areas that utilize basic interaction tasks such as selecting and
teleporting. Application areas can range from simple scene-roaming to more complicated
game interactions. Second, our recognition model is more accurate than some existing
works [27,37], making it a better candidate for practical use.

3. Materials and Methods
3.1. Data Collecting
3.1.1. Participants

Ten participants (five female and five male) volunteered for this experiment. Their ages
ranged between 22 and 27. All participants had normal or corrected-to-normal vision by
using glasses or lenses during the experiment. Most participants were either undergraduate
or graduate students. All participants had used VR Head Mounted Display (HMD) before.
A pretest was conducted before the formal experiment to help the participants prepare.

3.1.2. Physical Setup

The virtual environment was displayed through an HTC VIVE Pro Eye integrated
with an eye tracker. The screen had a 1440 × 1600 pixels/eye resolution with a 110° field of
view. The HMD’s highest refresh rate was 90 Hz. The refresh rate of the built-in eye tracker
was 120 Hz, which offered tracking precision of 0.5–1.1°. The experiment was conducted
on a PC with an Intel Core i7-9700 CPU, an NVIDIA GeForce GTX 1070 8G GPU, and 16G
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DDR4 2666 Hz RAM. The experimental platform was developed using Unity 2019.4 and
C#.

3.1.3. Experiment Design

We designed two basic VR interactive tasks for experiments. One used ray casting
to select the target sphere (Figure 1). The other was teleporting to the target location
(Figure 2).There were two reasons for choosing these two tasks: first, these two primary
tasks are relatively simple, but they are very similar in interaction behavior; second, they
are often used in actual VR applications. The most complex interaction in the current VR
application scenario was the game. For example, in the game “Half-life: Alyx” released
in 2020, selecting an item from a distance and teleporting are the basic interaction tasks.
Other, more straightforward scenes, such as the Home scenario of SteamVR, also included
these two tasks. They are also used as experimental tasks in many studies [37,47].

Figure 1. Using controllers to select the target sphere.

Figure 2. Using controllers to teleport to the target position.

The virtual environment was an empty room with the participant in the center. Partici-
pants were asked to repeat one of the two tasks 20 times in each session. The position of
each target sphere or each target position was random. Each task was conducted in five
sessions; that is, a total of 10 sessions for each participant.

3.1.4. Data Set

The raw data collected from the experiment consisted of gaze-related data, controller-
related data, helmet-position coordinates, timestamps, and task types. Gaze-related data
include the combined gaze-origin position, combined normalized gaze-direction vector,
the corresponding timestamp and pupil diameter, and eye openness for either eye (Figure 3).
In addition, we also acquired 3D gaze points in real-time with the help of a ray-based
method [48]. The gaze direction vector and the corresponding gaze original position were
used to find the intersection with the reconstructed 3D scene, representing the 3D gaze-
points. The handle-related data were mainly the coordinates of the intersection points
of the handle rays with the environment. One hundred tests were performed on ten
subjects. After removing invalid data, 98 sets of valid data were obtained, i.e., a total of
250,380 raw data.
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Figure 3. Eye tracker output data description.

One thing to note is that although the data collection frequency of the eye-tracking
device was 120 Hz, our experimental platform was developed on Unity, so the actual data-
collection frequency depended on the refresh frequency of the Update function. However,
the increasing demand for GPU graphics rendering or the saturation of computing power
led to a temporary decrease in the data collection frequency. The sampling frequency in
this experiment fluctuates between 60 Hz and 40 Hz, with an average of 46 Hz. This will be
taken into account in the subsequent feature extraction.

3.2. Proposed Method
3.2.1. Data Pre-Processing

Our processing pipeline is visualized in Figure 4. The first step filled the missing
data mainly caused by blinking. The last valid data were directly filled in the blanks.
There were 9552 blank data points, accounting for about 3.8%. The next step converted
right-handed coordinates to left-handed. The eye-related data were obtained using the
SDK (SRanpial) through a Unity script. According to the document of SRanpial, Gaze
Original is the point in the eye from which the gaze ray originates, and Gaze Direction
Normalized is the normalized gaze direction of the eye. They are both based on a right-
handed coordinate system. However, Unity is based on a left-handed coordinate system.
Therefore, we needed to multiply their X coordinates by −1 to convert the right-handed
coordinate system to left-handed. Then, we transformed the Gaze Original vectors from
the eye-in-head frame to the eye-in-world frame by adding the coordinates of the main
camera to the Gaze Original vectors.

3.2.2. Ground Truth

We used the trigger/pad events from the hand controller to mark the ground truth of
input datasets. It was uncertain how far in advance the intention could be predicted. We
also needed to ensure sufficient training samples, so we chose two time thresholds to divide
the data. The 20 or 40 sets of samples preceding a click were considered as positive samples;
that is, the sampled data within 400 milliseconds as ground truth generation (GTG) type1
or 800 milliseconds as GTG type2 before the interaction occurred. In addition, we also tried
to train two types of interaction-intention prediction models. One was a binary classifier,
to predict whether users want to issue a command or not. The other was a three-class
classifier which predicts whether users want to select, teleport, or execute no command at
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all. Positive samples needed to be further divided into two types according to interaction
tasks: selection or teleporting.

Figure 4. The pipeline to detect eye events, extract features, and train and evaluate models.

3.2.3. Eye Event Detection and Feature Extraction

Many previous studies selected eye-based features to capture spatiotemporal charac-
teristics based on two fundamental eye movements—fixation points and saccades. Our
method utilizes four types of features for interaction-intention prediction: fixation, saccade,
pupil, and hand-eye coordination. We extracted them from each fixation and saccade. We
summarize these features in Table 2. Therefore, eye event detection is required before
feature extraction to classify these two types of eye movements.

Komogortsev and Karpov [49] proposed a ternary classification algorithm called
velocity and dispersion threshold identification (I-VDT). We chose it to classify the two
types of eye movements. It first identifies saccades by the velocity threshold. Subsequently,
it identifies smooth pursuits from fixation by a modified dispersion threshold and duration.
The original algorithm needs an initial time window to carry out. However, in a VR
environment, due to increasing graphic rendering requirements or the limited computing
power of GPUs, the data collection frequency is unstable and often reduced. Since the
raw data is obtained using the SDK (SRanpial) through a Unity script, the data-collection
frequency depends on the graphic engine’s processing rate. To solve this problem, we
adjusted the algorithm. Instead of setting an initial window, we checked whether it met the
minimum fixation duration after determining a group of fixation points. In addition, we
also checked the dispersion distance between the centroids of two adjacent fixation groups.
They merged if they were too close (below the dispersion threshold). Moreover, the smooth
pursuit was not one of our classification categories, so we modified the algorithm.

The I-VDT algorithm in this paper employs three velocity, dispersion, and minimum
fixation-duration thresholds. The specific values of these three parameters are determined
by previous research [50]. The velocity threshold is 140 degrees per second. The minimum
fixation duration is 110 milliseconds. The maximum dispersion angle is 5.75 degrees. I-
VDT begins by calculating point-to-point velocities for each eye-data sample. Then, I-VDT
classifies (Algorithm A1) each point as a fixation or saccade point based on a simple velocity
threshold: if the point’s velocity is below the threshold, it is a fixation point; otherwise,
it is a saccade point. Then, we check whether each fixation group meets the minimum
fixation duration and whether the dispersion distance between adjacent fixation groups
meets the maximum dispersion distance. If both are met, it is regarded as a fixation at
centroid (x, y, z) of the fixation group points with the first point’s timestamp as fixation
start timestamp and the duration of the points as the fixation duration.

Each gaze sample should belong to fixation or saccade after classification by I-VDT.
So, to represent all these features as a continuous-time series, we set the value for each
gaze sample as the feature value from the most recent fixation or saccade event, i.e., each
was carried forward in time until the next detected event. Pupil-related and hand-eye-
coordination-related features were all calculated based on the fixation or scanning data
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group to which the sample belonged. As for hand-eye coordination, related features were
based on the distance between points of gaze and controller-ray intersection with the
virtual environment at the same time. Specifically, let Gt < x, y, z > be the positions
of gaze in the virtual environment at time t during the execution of a particular task;
let Ct < x, y, z > represent the position of the intersection point of the controller ray
with the virtual environment at time t. We argue that the distance between these points
Dt = |Gt − Ct| strongly correlates with whether the user executes interaction. Çığ, Ç and
Sezgin [45] confirmed that the distance between strokes and gaze in pen-based touch-
screen interaction is related to task types, and different task types have completely different
rise/fall characteristics. We assume the same in VR controller interaction, so we choose this
feature type. See Table 2 for specific features.

Table 2. Features derived from fixation, saccade, pupillary responses, and hand-eye coordination.

Types Features

Fixation Related

Fixation detection: Sample-level boolean indicating whether a sample was part of a fixation or not
Fixation duration
Standard deviation of gaze position on x-axis, y-axis, and z-axis during fixation
Skewness of gaze position on x-axis, y-axis, and z-axis during fixation
Kurtosis of gaze position on x-axis, y-axis, and z-axis during fixation
Average velocity of gaze samples during fixation
Path length of gaze samples during fixation
Dispersion of gaze samples during fixation

Saccade Related

Saccade duration
Standard deviation of gaze position on x-axis, y-axis, and z-axis
M3S2K of gaze velocity during saccade
Saccadic ratio: peak velocity/saccade duration
Saccade amplitude

Pupil Related M3S2K of left-eye pupil during a fixation or a saccade
M3S2K of right eye pupil during a fixation or a saccade

Hand-Eye-Coordination-related M3S2K of the distance between gaze position and the hit point of the controller ray during a fixation or saccade

Note: M3S2K refers to the computation of mean, median, maximum, standard deviation, skewness, and Kurto-
sis values.

3.2.4. Metrics

We chose accuracy, precision, recall, F1-Score, and model size to evaluate binary classifiers.
Accuracy is the ratio of correct predictions. If ŷi is the predicted value of the i-th

sample and yi is the corresponding true value, then the ratio of correct predictions over
nsamples samples is defined as

Accuracy(y, ŷ) =
∑

nsamples−1
i=0 1(ŷi = yi)

nsamples
(1)

where 1(x) is an indicator function.
Precision is the ability of the classifier not to label negative samples as positive, and re-

call is the ability of the classifier to find all positive samples. The calculation formulas are
as follows:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

where TP, FP, and FN are the numbers of true positives, false positives, and false negatives,
respectively.

F1-Score is the weighted harmonic mean of precision and recall with equal importance.
The F1-Score is defined as

F1 =
2 ∗ (Precision× Recall)

Precision + Recall
(4)
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In addition to the above metrics, for binary classification, we also use average precision
(AP) and AUROC (the area under the receiver operating characteristic curve) to evaluate
binary classifiers.

The value of AP is between 0 and 1 and higher is better. AP is defined as

AP = ∑
n
(Rn − Rn−1)Pn (5)

where Pn and Rn are the precision and recall at the n-th threshold. With random predictions,
the AP is the ratio of positive samples.

A receiver operating characteristic (ROC), or ROC curve, is a graphical plot that
illustrates the performance of a binary classifier as its discrimination threshold varies. It
is created by plotting the ratio of true positives to all positives (TPR = true positive rate)
versus the ratio of false positives to all negatives (FPR = false positive rate), at various
threshold settings. By computing the area under the ROC curve (AUROC), the curve
information is summarized in one number. The closer to 1, the better.

As for three-class classifiers, we chose Hamming loss, Cohen’s kappa, model size,
and the macro average of precision, recall, and F1-Score.

Let nlabels be the number of classes or labels, the Hamming loss LHamming is defined as:

LHamming(y, ŷ) =
∑nlabels−1

i=0 1(ŷi 6= yi)

nlabels
(6)

The closer to zero, the better.
The calculation formulas of macro average metrics are as follows:

Precisionmacro =
∑l∈L P(yl , ŷl)

|L| (7)

Recallmacro =
∑l∈L R(yl , ŷl)

|L| (8)

F1macro =
∑l∈L F1(yL, ŷl)

|L| (9)

where L is the set of labels, and P(yl , ŷl), R(yl , ŷl), F1(yl , ŷl) are the Precision, Recall, F1-
Score of class or label l, respectively.

A kappa score is a number between -1 and 1. Scores above 0.8 are generally considered
good agreement; zero or lower means no agreement (practically random labels).

3.2.5. Classifiers

We used the features described in the previous sections to build models that automati-
cally classify observations as positive (interaction intention) or negative. There are plenty of
candidate classification algorithms. We explored LR models, RF, GBDT, and SVM (which
are commonly used for gaze data (Table 1)) to predict interaction intention in VR. All the
above algorithms are implemented by Scikit-learn (https://github.com/scikit-learn/scikit-
learn, accessed on 1 April 2022) [51], an open source machine-learning library in Python.
We performed parameter tuning to find the optimal parameters for each classifier with
F1-Score. The optimal parameters for each classifier are given in Appendix B Table A1.

4. Results

All evaluations were performed using Scikit-learn. The evaluations were measured
in line with the standard three-step machine-learning pipeline, where we first extracted
features from the dataset and split the data into training and test datasets, then trained
classifier models using training data, and finally measured all metrics using test data. We
evaluated the hyper-parameters of each model using a grid search with two-fold cross-
validation based on F1-Score.

https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
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4.1. Performance of Binary Classifiers

Table 3 presents an overview of the main results of the best classification performance
for each combination of algorithms and GTG methods for binary classification.

We compare the performance across all combinations of four classifiers, two GTG meth-
ods, and two feature sets. Table 3 shows the performance using LR, SVM, RF, and GBDT .
The LR classifier performed poorly for both feature sets. As our dataset is highly complex
and multi-dimensional, the LR classifier proved unsuitable for our purpose. The F1-Scores
of the other three classifiers are higher than 86%, which is worthy of further analysis.

We can see an improvement in the F1-Score when hand-eye-coordination-related
features were used. The F1-Scores of the other three classifiers were improved by 1–3%
by incorporating hand-eye-coordination-related features. Table 3 also shows that the GTG
methods influenced the classifiers’ performance for the Whole Feature Set. When using the
Whole Feature Set, the GBDT classifier achieved a maximum F1-Score of 92.4% using 20 sets
of data before interaction operation (400 milliseconds, GTG type1) as positive samples
and 87.3% with 40 sets of data before interaction operation (800 milliseconds, GTG type2)
as positive samples. However, the difference between the two GTG methods was less
significant when using the Eye-Only Feature Set. One possible explanation can be related
to the fact that hand-eye-coordination-related features are more sensitive to time. In other
words, the relevant features have substantial differences only when they are very close to
the time of interaction.

Table 3. Binary classification results for the combinations of four classifiers (RF, GBDT, LR, and SVM),
two feature sets, and two GTG methods.

GTG 20 Sets Data before Interaction Operation
(400 Milliseconds)

40 Sets Data before Interaction Operation
(800 Milliseconds)

Algorithm RF GBDT RFE + LR SVM RF GBDT RFE + LR SVM

Whole Feature Set

Accuracy 0.976 0.976 0.838 0.964 0.949 0.947 0.801 0.928
Precision 0.954 0.947 0.476 0.894 0.962 0.947 0.679 0.908
Recall 0.890 0.902 0.172 0.880 0.874 0.882 0.709 0.859
F1-Score 0.921 0.924 0.253 0.887 0.916 0.914 0.693 0.883
AUROC 0.994 0.993 0.875 0.980 0.987 0.981 0.850 0.962
AP 0.980 0.970 0.460 0.940 0.980 0.970 0.660 0.950
Size 83 MB 54.5 MB 37KB 10.3 MB 139.2 MB 32.9 MB 19 KB 21.8 MB

Eye-Only Feature Set
(No Hand-Eye

Coordination-related Feature)

Accuracy 0.972 0.974 0.836 0.959 0.945 0.943 0.758 0.927
Precision 0.958 0.949 0.465 0.881 0.966 0.947 0.653 0.899
Recall 0.862 0.884 0.190 0.854 0.857 0.868 0.508 0.868
F1-Score 0.908 0.916 0.270 0.868 0.908 0.906 0.571 0.883
AUROC 0.993 0.990 0.853 0.973 0.985 0.977 0.817 0.960
AP 0.980 0.950 0.430 0.920 0.980 0.970 0.600 0.940
Size 100.1 MB 66.1 MB 37KB 8.4 MB 156.4 MB 41.2 MB 39 KB 18.2 MB

In addition to standard evaluation metrics in machine learning, we also chose the
model size as a reference because the ultimate goal of our research is to achieve real-time
classification, so the smaller the model, the better. RF and GBDT had similar classification
performances, but the GBDT model was relatively small. RF and GBDT are ensemble
classifiers, which means the final models contain many decision trees. The SVM classifier
only needed to record the final classification hyperplane so that the model was smaller
than the other two.

Table 4 lists the top-ten features according to RF and GBDT importance scores when
predicting whether users want to issue a command or not with the Eye-only Feature Set or
Whole Feature Set.
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Table 4. Top-ten importance features based on RF and GBDT feature importance scores of binary classifiers.

Algorithm RF GBDT
GTG Feature Set Features Importance Features Importance

20 sets data before
interaction operation

(400 milliseconds)

Whole Feature Set

[C] Min of distance 0.060 [C] Median of distance 0.120
[F] Fixation duration 0.051 [S] Saccade duration 0.064
[C] Median of distance 0.023 [C] Skewness of distance 0.055
[C] Mean of distance 0.013 [F] Fixation duration 0.040
[F] Average velocity of gaze samples during fixation 0.007 [S] Average velocity of gaze samples during saccades 0.040
[C] Max of distance 0.006 [C] Max of distance 0.036
[F] Dispersion of gaze samples during fixation 0.006 [C] Min of Distance 0.034
[F] Fixation detection 0.005 [C] Standard deviation of distance 0.026
[S] Average velocity of gaze samples during saccades 0.004 [C] Mean of distance 0.026
[S] Max velocity of gaze samples During saccades 0.003 [F] Dispersion of gaze samples during fixation 0.024

Eye-only Feature Set
(No Hand-Eye

Coordination-related
Feature)

[F] Fixation duration 0.071 [F] Fixation duration 0.089
[F] Average velocity of gaze samples during fixation 0.020 [F] Average velocity of gaze samples during fixation 0.081
[F] Dispersion of gaze samples during fixation 0.020 [P] Kurtosis of right-eye pupil diameter 0.051
[F] Fixation detection 0.011 [F] Path length of gaze samples during fixation 0.050
[S] Max velocity of gaze samples during saccades 0.010 [F] Dispersion of gaze samples during fixation 0.037
[S] Average velocity of gaze samples during saccades 0.009 [S] Average velocity of gaze samples during saccades 0.036
[F] Path length of gaze samples during fixation 0.006 [P] Mean of left-eye pupil diameter 0.031
[F] Standard deviation of z-axis coordinate
of the gaze position during fixation 0.006 [P] Standard deviation of right-eye pupil diameter 0.028

[S] Median velocity of gaze samples during saccades 0.006
[F] Standard deviation of z-axis coordinate
of the gaze position during fixation 0.028

[F] Standard deviation of x-axis coordinate
of the gaze position during fixation 0.005 [P] Mean of right-eye pupil diameter 0.026

40 sets data before
interaction operation

(800 milliseconds)
Whole Feature Set

[C] Min of distance 0.043 [C] Median of distance 0.074
[F] Fixation duration 0.026 [S] Saccade duration 0.064
[F] Fixation detection 0.012 [C] Min of distance 0.046
[C] Median of distance 0.010 [C] Standard deviation of distance 0.043

[C] Mean of distance 0.010
[F] Kurtosis of y-axis coordinate
of the gaze position during fixation 0.037

[S] Average velocity of gaze samples during saccades 0.008 [F] Average velocity of gaze samples during fixation 0.034
[S] Max velocity of gaze samples during saccades 0.007 [C] Mean of distance 0.031
[C] Max of distance 0.007 [P] Kurtosis of right-eye pupil diameter 0.030
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Table 4. Cont.

Algorithm RF GBDT
GTG Feature Set Features Importance Features Importance

[F] Dispersion of gaze samples during fixation 0.007
[F] Skewness of y-axis coordinate
the gaze position during fixation 0.030

[F] Average velocity of gaze samples during fixation 0.006 [S] Max Velocity of gaze samples during saccades 0.029

Eye-Only Feature Set
(No Hand-Eye

Coordination-related
Feature)

[F] Fixation Duration 0.064 [F] Fixation duration 0.136

[S] Average velocity of gaze samples during saccades 0.017
[S] Standard deviation of y-axis coordinate
of the gaze position during saccade 0.064

[F] Fixation detection 0.013 [F] dispersion of gaze samples during fixation 0.055
[S] Max velocity of gaze samples during saccades 0.013 [S] Min velocity of gaze samples during saccades 0.047
[S] Median velocity of gaze samples during saccades 0.010 [P] Skewness of left-eye pupil diameter 0.038

[S] Min velocity of gaze samples during saccades 0.009
[F] Skewness of x-axis coordinate
of the gaze position during fixation 0.031

[S] Saccade amplitude 0.009 [P] Mean of left-eye pupil diameter 0.028
[F] Average velocity of gaze samples during fixation 0.009 [F] Average velocity of gaze samples during fixation 0.027
[F] Dispersion of gaze samples during fixation 0.009 [S] Average velocity of gaze samples during saccades 0.027
[S] Saccadic ratio 0.009 [S] Median velocity of gaze samples during saccades 0.023

Note: [F] stands for fixation-related feature; [S] stands for saccade-related feature; [P] stands for pupil-related feature; [C] stands for hand-eye-coordination-related feature.
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For the Whole Feature Set, taking the example of the GBDT classifier with the high-
est F1-Score using GTG type1, the top-10 important features consisted of six hand-eye-
coordination-related features, two fixation-related features, and one saccade-related feature.
The top-10 features of other classifiers were highly consistent with this one. The four hand-
eye-coordination-related features—min, max, median, and mean of distance—received
high importance. As for eye-only features, three features about the velocity of gaze samples,
such as the average velocity of gaze samples during fixation or saccade and the maximum
velocity of gaze samples during saccade, also scored high in importance, the same as
fixation-related features—fixation duration and dispersion of gaze samples during fixation.

For the Eye-Only Feature Set, taking the example of the GBDT classifier with the
highest F1-Score using GTG type1, the top-10 important features consisted of five fixation-
related features, four pupil-related features, and one saccade-related feature. Overall,
the important eye-only features were the same as the classifiers that used the Whole
Feature Set.

4.2. Performance of Three-Class Classifiers

For three-class classifiers, except LR, the F1-Scores of the other three algorithms are
above 0.9. The GBDT is still the best classification algorithm, followed by RF and SVM.
Table 5 shows an overview of the main results for three-class classifiers.

Table 5. Three-class classification results for the combinations of four classifiers (RF, GBDT, LR,
and SVM), two feature sets, and two GTG methods.

GTG 20 Sets Data before Interaction Operation
(400 Milliseconds)

40 Sets Data before Interaction Operation
(800 Milliseconds)

Algorithm RF GBDT RFE + LR SVM RF GBDT RFE + LR SVM

Precision (macro) 0.963 0.964 0.280 0.936 0.956 0.969 0.633 0.922
Recall (macro) 0.916 0.923 0.333 0.930 0.893 0.939 0.557 0.909
F1-Score (macro) 0.939 0.943 0.305 0.933 0.921 0.953 0.582 0.915
Cohen’s kappa 0.906 0.912 0.000 0.866 0.879 0.927 0.395 0.830
Hamming loss 0.026 0.024 0.159 0.036 0.056 0.034 0.263 0.072

Whole Feature Set

Size 107.5 MB 86.2 MB 4 KB 10.3 MB 180 MB 148.4 MB 5 KB 21.8 MB

Precision (macro) 0.964 0.964 0.280 0.953 0.957 0.964 0.582 0.907
Recall (macro) 0.899 0.907 0.333 0.898 0.885 0.915 0.476 0.895
F1-Score (macro) 0.929 0.934 0.304 0.923 0.917 0.938 0.492 0.901
Cohen’s kappa 0.891 0.899 0.000 0.846 0.871 0.902 0.274 0.801
Hamming loss 0.029 0.027 0.159 0.039 0.059 0.046 0.290 0.085

Eye-Only Feature Set
(No Hand-Eye

Coordination-related Feature)

Size 118.9 MB 87.9 MB 3 KB 34.6 MB 175.6 MB 144.6 MB 4 KB 15.9 MB

In terms of GTG, for the GBDT algorithm, the two GTGs had little difference in
classification performance, while for RF and SVM, the result of GTG type1 was better
than that of type2. For the feature sets, as we estimated, the classification performance of
the Eye-Only Feature Set was worse than the Whole Feature Set by 0.006–0.016 (F1-Score).
As for the model size, the GBDT had a better classification performance with a smaller
model size than the RF. SVM was the smallest model, the same as binary classifiers.

Table 6 lists the top ten features of three-class classifiers using RF and GBDT. The fea-
tures related to hand-eye coordination are still of high importance. However, some new
features, especially those related to the y-axis distribution of fixation points, have a signifi-
cant difference between the two interactive tasks of selection and blinking. However, it may
also indicate that these indicators may be related to the design of the interactive interface.
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Table 6. Top-ten importance features based on Random Forest and GBDT feature importance scores of three-class classifiers.

Algorithm RF GBDT
GTG Feature Set Features Importance Features Importance

[F] Fixation duration 0.062 [F] Fixation duration 0.078
[C] Min of distance 0.058 [C] Min of distance 0.058
[C] Median of distance 0.046 [C] Median of distance 0.054

[C] Mean of distance 0.043 [F] Standard deviation of y-axis coordinate
of the gaze position during fixation 0.051

[F] Dispersion of gaze samples during fixation 0.042 [F] Dispersion of gaze samples during fixation 0.048
[F] Standard deviation of y-axis coordinate
of the gaze position during fixation 0.041 [C] Mean of distance 0.045

[F] Path length of gaze samples during fixation 0.037 [F] Kurtosis of y-axis coordinate
of the gaze position during fixation 0.032

[F] Average velocity of gaze samples during fixation 0.032 [F] Average velocity of gaze samples during fixation 0.031
[F] Kurtosis of y-axis coordinate
of the gaze position during fixation 0.027 [F] path length of gaze samples during fixation 0.027

Whole feature set

[F] Skewness of y-axis coordinate
of the gaze position during fixation 0.024 [F] Skewness of y-axis coordinate

of the gaze position during fixation 0.026

[F] Fixation duration 0.084 [F] Fixation duration 0.082
[F] Dispersion of gaze samples during fixation 0.058 [F] Path length of gaze samples during fixation 0.062
[F] Standard deviation of y-axis coordinate
of the gaze position during fixation 0.054 [F] Standard deviation of y-axis coordinate

of the gaze position during fixation 0.053

[F] Path length of gaze samples during fixation 0.046 [F] Dispersion of gaze samples during fixation 0.045
[F] Average velocity of gaze samples during fixation 0.039 [F] Average velocity of gaze samples during fixation 0.043
[F] Skewness of y-axis coordinate
of the gaze position during fixation 0.039 [F] Skewness of y-axis coordinate

of the gaze position during fixation 0.037

[F] Kurtosis of y-axis coordinate
of the gaze position during fixation 0.036 [F] Kurtosis of y-axis coordinate

of the gaze position during fixation 0.033

[S] Average velocity of gaze samples during saccades 0.030 [S] Max Velocity of Gaze samples during saccades 0.030
[S] Max velocity of gaze samples during saccades 0.028 [S] Average velocity of gaze samples during saccades 0.029

20 sets data before
interaction operation

(400 milliseconds)

Eye-Only Feature Set
(No Hand-Eye

Coordination-related
Feature)

[F] Standard deviation of z-axis coordinate
of the gaze position during fixation 0.025 [F] Standard deviation of z-axis coordinate

of the gaze position during fixation 0.026

[C] Min of distance 0.067 [C] Min of distance 0.173

[F] Fixation duration 0.054 [F] Standard deviation of y-axis coordinate
of the gaze position during fixation 0.116

[F] Standard deviation of y-axis coordinate
of the gaze position during fixation 0.048 [F] Fixation duration 0.086
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Table 6. Cont.

Algorithm RF GBDT
GTG Feature Set Features Importance Features Importance

[C] Median of distance 0.043 [C] Max of distance 0.027
[F] Dispersion of gaze samples during fixation 0.043 [C] Mean of distance 0.027
[C] Mean of distance 0.041 [S] Average velocity of gaze samples during saccades 0.027
[F] Path Length of gaze samples during fixation 0.036 [S] Max velocity of gaze samples during saccades 0.025
[F] Kurtosis of y-axis coordinate
of the gaze position during fixation 0.028 [F] Fixation detection 0.025

[F] Average velocity of gaze samples during fixation 0.028 [P] Max of right-eye pupil diameter 0.023

Whole Feature Set

[C] Max of distance 0.026 [S] saccadic ratio 0.022

[F] Fixation duration 0.075 [F] Fixation duration 0.090
[F] Standard deviation of y-axis coordinate
of the gaze position during fixation 0.055 [F] Standard deviation of y-axis coordinate

of the gaze position during fixation 0.047

[F] Dispersion of gaze samples during fixation 0.044 [F] Skewness of y-axis coordinate
of the gaze position during fixation 0.043

[F] Path length of gaze samples during fixation 0.039 [F] Dispersion of gaze samples during fixation 0.042
[S] Average velocity of gaze samples during saccades 0.035 [F] Path length of gaze samples during fixation 0.042
[S] Max velocity of gaze samples during saccades 0.033 [S] Max velocity of gaze samples during saccades 0.038

[F] Average velocity of gaze samples during fixation 0.032 [F] Kurtosis of y-axis coordinate
of the gaze position during fixation 0.037

[F] Kurtosis of y-axis coordinate
of the gaze Position during fixation 0.030 [F] Average velocity of gaze samples during fixation 0.033

[F] Skewness of y-axis coordinate
of the gaze position during fixation 0.030 [S] Average velocity of gaze samples during saccades 0.032

40 sets data before
interaction operation

(800 milliseconds)

Eye-Only Feature Set
(No Hand-Eye

Coordination-related
Feature)

[S] Median velocity of gaze samples during saccades 0.027 [S] Median velocity of gaze samples during saccades 0.029

Note: [F] stands for fixation-related feature, [S] stands for saccade-related feature, [P] stands for pupil-related feature, [C] stands for Hand-Eye-Coordination-Related feature.
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5. Discussion

The research of binary classifiers mainly explores which features can separate inten-
tional behavior from unintentional behavior. The research of classifiers is to explore which
features may be particularly relevant to the two tasks in our experiment. It can be said
that binary classifiers can play a comparative role to three-class classifiers. In general,
the features in binary classifiers are independent of the coordinate axis. The y-axis—that
is, the vertical gaze coordinate distribution in three-class classification—plays a vital role
in distinguishing the two types of tasks. It should be noted that when we select features
at the beginning, we avoid features related to absolute coordinates and retain features
related to the distribution law of coordinates. The above phenomenon may be because the
selection task requires the user to keep staring at the target until visual feedback indicates
that the interaction is completed. However, the teleporting task only requires clarification
of the destination, so there is no need to keep staring at destination but to prepare for the
change of perspective after teleporting. This phenomenon needs to be further explored in
later research.

In the selection of features, we used two feature sets. The major difference was
whether to include the hand-eye-coordination-related features. On the one hand, we
wanted to verify whether the features of hand-eye coordination can improve the accuracy
of interaction intention recognition in a multimodal interaction system, including controller
and eye movement. The results show that the hand-eye-coordination index is important
in predicting interaction intention. On the other hand, we should also consider whether
the interaction intention of users can be effectively predicted with only eye-movement
data and without controller-related data. Our study shows that only the features related
to eye movement can be used to classify the interaction intention and the classification
performance is also acceptable.

We used two kinds of methods to generate datasets. The main difference was how
many groups of sampled data were included before the interaction occurred. We expected
the system to deduce the interaction intention in advance. We selected 400 milliseconds and
800 milliseconds for comparative analysis. The classification result of the 800-millisecond
classifier was slightly inferior to that of the 400-millisecond classifier, which is under-
standable. The generation time of real interaction intention was short, especially for our
experiment’s simple interaction tasks. If a long period is selected for data generation,
the difference of features under different categories will not be significant, and the classifi-
cation performance will naturally decline. However, it is not always good to use a shorter
period. The shorter the period is, the fewer data we can generate in the dataset. In that
way, the robustness of the trained model may decline. The choice of this time length needs
to be determined through further experimental research and combined with the user’s
expectation of the intention prediction system.

As for the selection of algorithms, GBDT had the best performance. Its classification
performance was not inferior to RF, and its model size was smaller than RF’s. When
we transformed the model into a real-time classifier, it was more likely to reduce latency.
The model size of the SVM was small enough, but the overall classification performance
still lagged behind the other two algorithms. In addition, SVM is more dependent on
hyperparameters and takes the longest time to train.

We declare several limitations of our work, despite our best efforts to minimize them.
First, the dataset is not entirely naturalistic. The number of participants was limited,
so it was necessary to use data from new participants to verify the performance of the
models. The experimental environment was also relatively simple. Whether more complex
interaction scenarios will impact the classification performance still needs to be verified by
follow-up research.

In the light of promising findings reported in this paper, we envision several immediate
follow-ups to our work, as well as long-term research directions to explore. An imme-
diate extension might involve conducting experiments to see if our classification models
apply to other more complex interaction environments rather than a concise experiment
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environment only. We want to explore two factors. One is whether the targets of different
dimensions will affect the prediction results of the classifier (the selection target in this
experiment is a sphere if it is replaced by a plane). The other is whether the interface
complexity will affect the prediction results of the classifier (if there are multiple targets or
locations in the environment at the same time). We also want to build an online prediction
system to verify the performance of classifiers. Further experiments would evaluate the
usability aspects of this setup and compare it to state-of-the-art online interaction inten-
tion prediction mechanisms in the literature. Another possible direction might involve
conducting experiments to see if our prediction system can successfully recognize other
interaction tasks.

6. Conclusions

This paper explored hand-eye-coordination-related features to improve interaction
intention recognition in a VR environment. We collected a dataset of eye-movement data
and controller-related data from 10 participants as they performed two basic interaction
tasks: selection and teleporting. We extracted a Whole Feature Set, including fixation-
related, saccade-related, pupil-related, and hand-eye-coordination-related features, and an
Eye-Only Feature Set without hand-eye-coordination-related features. We obtained a
high binary classification performance score (F1-Score = 0.924) using the combination of
the Whole Feature Set, GTG method type1, and the GBDT classifier, as well as a high
three-class classification performance score (F1-Score = 0.953) using the combination of the
Whole Feature Set, GTG method type2, and the GBDT classifier. The results show that
hand-eye-coordination-related features improve interaction intention recognition in VR
environments. The GBDT had the best classification performance among the four classifiers,
and its model size was smaller than the RF’s. Generally, this work provides the groundwork
for its exploration and towards building a robust and generalizable model for eye-based
interaction-intention recognition in VR. We believe that predicting the interaction intention
will eventually enable us to build systems that save users the trouble of switching during
basic interaction tasks.
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Abbreviations
The following abbreviations are used in this manuscript:

VR Virtal Reality
HMD Head Mounted Display
LR Logistic Regression
SVM Support Vector Machine
RF Random Forest
GBDT Gradient Boosting Decision Tree
GTG Ground Truth Generation

Appendix A

The I-VDT algorithm in this paper employs three thresholds of velocity, dispersion,
and minimum fixation duration. The specific values of these three parameters are deter-
mined by previous research. The velocity threshold is 140 degrees per second. The mini-
mum fixation during is 110 milliseconds. The maximum dispersion angle is 5.75 degrees.
See Algorithm A1 below for details.

Algorithm A1 Velocity and Dispersion-Threshold Identification
Require: pi :3D gaze position with timestamps, (x, y, z, t); Vi :normalized gaze direction vector with timestamps,

Vel:velocity threshold; DDmax : maximum fixation dispersion distance threshold; Durationmin: minimum
fixation duration threshold;

Ensure: fi :representative coordinates corresponding to fixations groups, and the the starting time and duration
of these fixations groups, (x f , y f , z f , tstart, d)
// calculate the instantaneous visual angle
for i = 0→ n− 1 do

3: vi =
arccos

Vi ·Vi+1
‖Vi‖‖Vi+1‖

|ti+1−ti |
× 5.73× 104

end for
Initialize Previous fixation group PFG and current fixation group CFG

6: save p0 into PFG
save p1 into CFG
for i = 2→ n− 1 do

9: Calculate the CFG centroid coordinates (x, y, z)
Calculate the dispersion distance (DD) between CFG centroid coordinates and pi coordinates
if vi < Vel then

12: save pi into CFG
else

if CFG is not empty then
15: Calculate the duration d of the points in CFG

if d > Durationmin then
Calculate the dispersion distance (DD) between the first point in CFG and the last point in PFG

18: if DD < DDmax then
Merge CFG into PFG

else
21: Calculate the PFG centroid coordinates (x f , y f , z f )

Save the timestamp t of the first point in PFG as tstart
Calculate the duration d of points in PFG

24: Initialize PFG
Merge CFG into PFG
Initialize CFG

27: save pi into CFG
end if

else
30: Initialize CFG

save pi into CFG
end if

33: end if
end if

end for

Appendix B

Table A1 shows the optimal parameters for each classifier discussed in this paper.
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Table A1. The optimal parameters of each classifier are selected by grid search.

Ground Truth Generation Algrithm Random Forest Gradient Boosting Decision Tree Logistic Regression with
Recursive Feature Elimination Support Vector Machine

2-class

20 sets data
before interaction operation

(400 milliseconds)

Whole Feature Set

max_depth: 29 max_depth: 24

Optimal number of features: 38

C: 100.0
max_features: 0.1 max_features: 0.1 gamma: 0.1
min_samples_leaf: 1 min_samples_leaf: 2 kenel:RBF
min_samples_split: 2 min_samples_split: 7
n_estimators: 100 n_estimators: 100
criterion: entropy learning_rate: 1.0

Eye-Only Feature Set
(No Hand-Eye

Coordination-related
Feature)

max_depth: 30 max_depth: 25

Optimal number of features: 39

C: 100.0
max_features: 0.1 max_features: 0.1 gamma: 0.1
min_samples_leaf: 1 min_samples_leaf: 3 kenel:RBF
min_samples_split: 2 min_samples_split: 2
n_estimators: 100 n_estimators: 100
criterion: entropy learning_rate: 1.0

40 sets data
before interaction operation

(800 milliseconds)

Whole Feature Set

max_depth: 35 max_depth: 17

Optimal number of features: 16

C: 10.0
max_features: 0.1 max_features: 1 gamma: 0.1
min_samples_leaf: 1 min_samples_leaf: 19 kenel:RBF
min_samples_split: 2 min_samples_split: 8
n_estimators: 100 n_estimators: 100
criterion: entropy learning_rate: 1.0

Eye-Only Feature Set
(No Hand-Eye

Coordination-related
Feature)

max_depth: 30 max_depth: 17

Optimal number of features: 41

C: 100.0
max_features: 0.1 max_features: 1.0 gamma: 0.1
min_samples_leaf: 1 min_samples_leaf: 14 kenel:RBF
min_samples_split: 2 min_samples_split: 2
n_estimators: 100 n_estimators: 100
criterion: entropy learning_rate 1.0

3-class
20 sets data

before interaction operation
(400 milliseconds)

Whole Feature Set

max_depth: 27 max_depth: 22

Optimal number of features: 1

C: 100.0
max_features: 0.1 max_features: 0.1 gamma: 0.1
min_samples_leaf: 1 min_samples_leaf: 12 kenel:RBF
min_samples_split: 2 min_samples_split: 2
n_estimators: 100 n_estimators: 100
criterion: gini learning_rate: 0.1
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Table A1. Cont.

Ground Truth Generation Algrithm Random Forest Gradient Boosting Decision Tree Logistic Regression with
Recursive Feature Elimination Support Vector Machine

Eye-Only Feature Set
(No Hand-Eye

Coordination-related
Feature)

max_depth: 29 max_depth: 12

Optimal number of features: 1

C: 10.0
max_features: 0.1 max_features: 0.1 gamma: 1.0
min_samples_leaf: 1 min_samples_leaf: 1 kenel:RBF
min_samples_split: 2 min_samples_split: 3
n_estimators: 99 n_estimators: 100
criterion: entropy learning_rate: 0.1

40 sets data
before interaction operation

(800 milliseconds)

Whole Feature Set

max_depth: 29 max_depth: 18

Optimal number of features: 48

C: 10.0
max_features: 0.1 max_features: 0.9 gamma: 0.1
min_samples_leaf: 1 min_samples_leaf: 12 kenel:RBF
min_samples_split: 2 min_samples_split: 9
n_estimators: 98 n_estimators: 99
criterion: gini learning_rate 0.3

Eye-Only Feature Set
(No Hand-Eye

Coordination-related
Feature)

max_depth: 29 max_depth: 17

Optimal number of features: 40

C: 10.0
max_features: 0.1 max_features: 0.1 gamma: 0.1
min_samples_leaf: 1 min_samples_leaf: 14 kenel:RBF
min_samples_split: 2 min_samples_split: 2
n_estimators: 88 n_estimators: 100
criterion: gini learning_rate: 0.1
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