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Abstract: In recent years, intelligent sensing has gained significant attention because of its au-
tonomous decision-making ability to solve complex problems. Today, smart sensors complement and
enhance the capabilities of human beings and have been widely embraced in numerous application
areas. Artificial intelligence (AI) has made astounding growth in domains of natural language pro-
cessing, machine learning (ML), and computer vision. The methods based on AI enable a computer
to learn and monitor activities by sensing the source of information in a real-time environment. The
combination of these two technologies provides a promising solution in intelligent sensing. This
survey provides a comprehensive summary of recent research on AI-based algorithms for intelligent
sensing. This work also presents a comparative analysis of algorithms, models, influential param-
eters, available datasets, applications and projects in the area of intelligent sensing. Furthermore,
we present a taxonomy of AI models along with the cutting edge approaches. Finally, we highlight
challenges and open issues, followed by the future research directions pertaining to this exciting and
fast-moving field.

Keywords: artificial intelligence; machine learning; intelligent sensing; datasets; neural networks;
IoT; learning algorithms

1. Introduction

The term “Smart Sensor” was coined in the 1970s [1]. The word “Smart” is related
to the capability of microelectronic devices having operative intelligence features. The
improvements observed in the 1980s, especially those related to the area of sensor tech-
nology, show perfection in signal extraction, real-time data transfer, and adaptability to
the physical environment by sensors, which helps in fetching data that seemed to be inac-
cessible previously. In the 1990s, intelligence was added to devices and more promising
results were observed in this area. The evolution in intelligence technology was due to
the advancement in computational technologies. Such intelligent devices possess three
main features: (i) extraction of signal information, (ii) signal processing, and (iii) instruction
execution. It is interesting to observe that applied intelligence was also being advanced
at the same time. In the 1980s, machine learning, and later, in the 1990s, deep-learning,
were also in a progressive state. Artificial intelligence covers all the important technological
development in this domain, including RNN, CNN, Transfer Learning, Continual AI, etc.
Thus, both smart Sensors and AI are integrated to form intelligent sensing for the develop-
ment of smart applications. It is important to observe that nowadays sensors are not just
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used to extract information but are also involved in more complex tasks such as execution
of different instructions based on the pattern of data sequence. Indeed, we encounter
a vast amount of data in different forms on a daily basis. To extract useful information
from the plethora of data, smart sensors are designed that perceive the environment, make
decisions, and draw conclusions. Intelligent sensing is important for various reasons. It
can be applied in different areas such as self-driving cars, autonomous flying droids, and
Amazon Kiva systems.

In light of recent successes, AI is a trending field in the research areas of management
science [2], operational research [3], and technology [4]. There is a broad array of applica-
tions of AI, ranging from expert systems to computer vision, which improves the everyday
lives of ordinary people. For example, [5] investigated the application of machine learning
to medicine and reported the diagnostic performance and caution of machine learning in
dermatology, radiology, pathology, and microscopy. [6] examined the serious issues of
modern transport systems and how AI techniques can be used to tackle the issues. The
recent improvements in AI algorithms and computer hardware are expected to exceed
human intelligence shortly. The current research on AI, including machine learning (ML)
and deep learning (DL), uses real-time algorithms to enable machines to learn information
from the sensing parameters. Recently, several AI-based approaches have witnessed rapid
growth due to their sensing capability to learn feature representations for decision making
and control problems [7]. Furthermore, the critical aspect of AI is to design efficient learning
algorithms to unlock new possibilities in the field of intelligent sensing. Algorithms based
on AI have been successfully utilized in myriads of areas such as mobile applications [8],
social media analytics [9], healthcare [10], agriculture [11], manufacturing processes [12],
logistics [13] and environmental engineering [14].

1.1. Related Works

Many researchers have conducted surveys related to intelligent sensing models to
tackle challenging issues of particular applications and provide solutions to cope with
existing vulnerabilities. However, most of the existing survey articles on intelligent sensing
have not explicitly focused on new methods based on AI and ML/DL for real-time appli-
cations and associated research challenges. The survey in [15] was conducted from two
viewpoints. The first is the intelligent approaches based on AI to solve issues related to
wireless sensor networks (WSNs) and the second is to design intelligent applications that
incorporate sensor networks. In [16], the authors have discussed the research directions of
AI 2.0 and the new models based on AI technology. New forms of intelligent manufactur-
ing systems are also explored. Various AI algorithms are implemented as estimators (i.e.,
software sensors) in chemical operating units and their advantages are shown. Practical
implications and limitations were also discussed for the proper design of AI-based esti-
mators in [17]. In [18], the authors have focused mainly on different intelligent techniques
used in vehicular applications and listed research challenges and issues in the integration
of AI and vehicular systems. In [19], the authors have discussed AI algorithms coupled
with gas sensor arrays (GSAs) embedded in robots as electronic noses to explore potential
applications such as gas explosive detection, environmental monitoring, beverage and food
production and storage. They also discussed the types of gas sensors, gas sensor limitations
and possible solutions.

Another application based on intelligent sensing was given in [20,21]. They focused
on the use of ML and AI technology to fight the coronavirus pandemic. The studies used
AI-based embedded sensors to track the spread of COVID-19 infections and side effects,
thereby helping health professionals to diagnose common symptoms of the virus. The
article [22] surveys the future of healthcare technologies for H-IoT. It summarizes the
features of H-IoT systems based on generic IoT systems.

Several ML and DL methods were reviewed in [23] for big data applications together
with open issues and research directions. Different ML-based algorithms to address issues
of WSNs (i.e., congestion control, synchronization, and energy harvesting) were surveyed
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in [24] and their drawbacks were discussed. An overview of current data mining and ML
techniques employed for activity recognition (AR) were presented in [25]. The authors
also discussed how an activity is captured using different sensors. In [26], the authors
reviewed how recent ML and DL algorithms can be coupled with sensor technologies for
particular sensing applications. They have also compared a new smart sensing system
based on ML with a conventional sensing system and discussed its future opportunities.
A comprehensive survey of various DL algorithms that can be applied to sensor data for
predictive maintenance was provided in [27]. Ref. [28] performs a comprehensive survey of
the applications of the DL models for different network layers, that includes data link layer,
physical layer, routing layer etc. Literature review in [29] is based on the ML algorithms,
which were used to solve the WSN issues in the period of 2002–2013. Also, this paper
investigates the ML solutions to enhance the functional behaviors of WSNs, for example,
quality of service (QoS) and data integrity. Table 1 summarizes some recent survey articles
in the field of intelligent sensing with their advantages and limitations.

Table 1. Recent Survey Articles in Intelligent Sensing.

Reference
Number Year Technology Used Elucidation and Comments Advantages Limitations

[30] 2019
IoT scenarios variables, sensor
analysis and application analy-
sis.

The details of emerging IoT sce-
narios are discussed.

Classification is presented for
analysis of variables and sen-
sors in IoT scenarios that will
help data analysts recognize the
features of IoT applications in a
better way.

The source (three publishers)
and quantity of papers (48) re-
viewed are the main limitation
of the paper.

[31] 2019

Coverage models and classifi-
cation, network life maximiza-
tion, data fusion, and reinforce-
ment learning-based coverage
optimization.

Methods for tackling the net-
work lifetime and coverage
optimization issues of a het-
erogeneous sensor network in
geographically scattered and
resource-constrained environ-
ments are discussed.

Extension of network lifetime
and optimization of coverage
based on data fusion and sen-
sor collaboration are summa-
rized in the paper. Coverage
hole problems in realistic WSNs
are also ameliorated using re-
inforcement learning (RL) ap-
proaches.

Some topics need further elabo-
ration, e.g., how to elongate the
lifetime and optimize the cover-
age of a wireless sensor network
by various RL methods such as
cellular learning automata.

[32] 2019

IoT data properties, fusion in
IoT, data fusion requirements,
smart grid, smart home, and
smart transportation.

The data fusion helps to elimi-
nate the imperfect data.

To evaluate performance of ex-
isting data fusion techniques,
IoT data fusion is employed as
an essential requirement.

The difference in data resolu-
tion, which affects the accuracy,
reliability and privacy at some
level, is not achieved.

[33] 2019 Feature selection, Feature fu-
sion, adaptive fusion.

This survey is focused on the
area of feature fusion, selection
and adaptive multi-view prob-
lems.

This paper discusses the various
feature selection approaches to
tackle multiview problems.

To select the important fea-
tures of unlabeled data, unsu-
pervised feature selection faces
some problems.

[34] 2019
Region-based fusion methods,
evaluation of the performance
of objective fusion.

Saliency map method is found
to be an evolving technique for
use in medical image fusion.

The region partition algorithms
produce better fusion results in
medical image fusion applica-
tions.

Image segmentation is not
proper in region-based image
fusion methods. Limiting fac-
tors are noise, misregistration,
and blur.

[35] 2019

Environmental monitoring, au-
tonomous systems for decom-
missioning monitoring, MAS
sensors, MAS data

Autonomy has changed the
ocean-based science and mon-
itoring of the marine environ-
ment.

Marine autonomous systems re-
duce the human risk of seago-
ing operations.

The main drawback of auton-
omy is its inability to collect
physical samples in seabed sedi-
ments.

[36] 2019

Intelligent vehicle technologies,
In-vehicle applied biometric
grades, cognitive and context-
aware intelligence.

This paper focused on improv-
ing safety of vehicles against
theft using the selection of bio-
metrics.

Traffic and vehicle data col-
lection enhance the decision-
making in transport systems.

This survey constrained to
address bio-metric techniques
used in emerging applications
such as Vehicular Ad hoc Net-
work (VANET) and self-driving
cars.

[37] 2020 Bio-inspired Embodiment, De-
sign challenges and planning

Discussion on major challenges
in Intelligent sensing for Bio-
inspired Embodiment based
on dynamics, work mechanism
and technology involved

Activity skills and implication
for bio-inspired robots using
deep reinforcement learning,
CNN and other methods were
discussed.

Implication on robotic hand
grasping was discussed with ex-
planation of challenges and lim-
itation related to distortion from
senor nodes.

[38] 2020

6G networks with AI enabled
Architectures for knowledge
and decision making in telecom-
munication

Application areas for 6G based
intelligent networks and layers
based Intelligent sensing net-
work for various applications.

Methods and application for uti-
lization AI technology in the
area of 6G networks includ-
ing resource management, traf-
fic and signal optimization.

Well discussed content specif-
ically on 6G current trends
and challenges focusing on net-
works and resource utilization
based on applications of 6G Net-
work.
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1.2. Overview of Intelligent Sensing Elements

A smart sensor is a sensor that can detect an object’s information, and can learn,
judge, and process the data in the form of signals. It can calibrate automatically, collect
data, and compensate it. In the 1980s, the effort was focused on integrating computer
memory, signal processing circuit, interface circuit, and a microprocessor to one chip so
that the sensor can achieve certain AI capability [39]. Smart sensors have emerged due
to technological demands and feasibility [40]. The primary source is the sensing element,
which can trigger the sensing component to deliver a self-test facility. For this, a reference
voltage is applied to monitor the response of the sensor. Amplification is necessary, as most
of the sensors produce signals that are lower than signal levels of a digital processor. For
example, a piezoelectric sensor requires charge amplification, while resistive sensors need
instrumentation amplification. Analog filtering is used to block the aliasing effect in the
data conversion stage.

The data conversion is associated with the digitization process, wherein analog signals
are converted into discrete signals [41]. In this stage, input from sensors is fed into the data
conversion unit to implement different forms of compensation. Signals in the frequency
domain like those from resonant sensors do not need conversion and can be fed directly
into a digital system. Digital processors are required to implement sensor compensation
like cross-sensitivity, linearization, offset, etc., for pattern recognition methods. Finally,
data communication unit sends signals to the sensor bus and deals with the passing and
receiving of data.

1.3. Contributions of This Work

To our knowledge, very little study in the form of review or survey in intelligent
sensing has been done by taking into consideration all of the key aspects, specifically
projects, application areas, state of the art approaches, datasets, and comparative analysis
of existing research works. Thus, this is the first work that comprises various algorithms,
approaches, and applications in these domains. Since all these techniques are essential for
the understanding of ML and AI, therefore, it is crucial to highlight their interconnection in
regards to intelligent sensing and its challenges. This work provides a systematic survey to
understand and expand the perspective of AI technologies in intelligent sensing through
different approaches to inspire and promote further research in the relevant areas.

The main contributions of this work are listed as follows:

• Comprehensive discussion of AI techniques, specifically ML and DL algorithms for
intelligent sensing—The most promising AI techniques, ML and DL algorithms, are
briefly reviewed in the context of intelligent sensing. We also discuss the key factors
that affect the efficiency of intelligent sensing and algorithms. Furthermore, we
highlight the lessons learned and pitfalls when ML and DL methods are used for
intelligent sensing.

• In-depth review of practical applications and datasets in intelligent sensing —We
discuss a broad array of applications that have used ML and DL algorithms and also
include a case study of intelligent sensing for pandemic monitoring and diagnosing.
We present various publicly available datasets that can be used in different domains
of intelligent sensing.

• Noteworthy projects based on the trending technologies —We enumerate several
ongoing research projects around the world that make use of and contribute toward
intelligent sensing.

• Challenges and future research directions —We highlight and discuss research chal-
lenges that need serious attention, along with possible future directions for the suc-
cessful merging of AI and intelligent sensing technologies.

Tables 2 show the research and reviews in the area of intelligent sensing with the
novelty components presented in this work. It is observed that most of the work available
in this domain is application-specific. The work presented in this paper covers an in-depth
review of various components such as the essential elements of intelligent sensing, machine
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learning models, influential projects, datasets, and current technology trends such as future
citizenship, explainable AI, 6G and beyond, healthcare, and usefulness of intelligent sensing
in the pandemic.

Table 2. Comparative Analysis of Work Available in the Area of Intelligent Sensing and Contributions
Presented in This Paper.

Ref Title Areas Addressed Areas Not Addressed Novel Contributions of This Work

[37]

Bioinspired Embodiment
for Intelligent Sensing and
Dexterity in Fine Manipula-
tion: A Survey

The operating mechanism,
categorization, implications
issues, and methods for the
industrial embodiment of
intelligent sensing based on
bioinspired mechanism.

Communication technology
Dark data handling
Performance analysis

Implementation of digital twins, communication
features, and detailed discussion of AI
approaches used in intelligent sensing are
presented in this work

[42] Intelligent Sensing for Citi-
zen Science

Well presented work on mobile
devices with embedded sensors
using existing communication
protocols

5G and 6G communication
protocols
AI−inspired communication
protocols
Projects and Database in the
area of intelligent sensing

Future−generation communication technology
AI−based algorithms and models
Future Citizenship are reviewed in detail

[43]
Toward Intelligent Sensing:
Intermediate Deep Feature
Compression

Well explained work related to
compactly represented and
layer−wise deep learning
approach
Result−based analysis of deep
feature compression
Major emphasis on Visual data

Nonvisual data
Machine learning approaches
Industrial Communication
protocols and ISM band based
communication protocol for
intelligent sensing

Visual and nonvisual data
Smart assistive technology
Data security and privacy
Intelligent sensing in healthcare data
Both machine learning and deep learning
approaches are reviewed for intelligent sensing
algorithm

[44]
Intelligent Sensing Matrix
Setting in Cognitive Radio
Networks

Spectrum sensing
Cognitive radio
Sensing sequence
Well drafted work on matrix
setting for cognitive radio
includes timing analysis

Intelligent sensing related
future challenges
Application areas for
intelligent sensing
5 G and 6G communication
for intelligent sensing

Learning models
Analysis of their advantages and limitations
Detailed review on influential parameters in
intelligent sensing

[45]

Industrial Internet: A Sur-
vey on the Enabling Tech-
nologies, Applications, and
Challenges

Industrial Internet
Functional Safety
E−government
5C architecture

General public utilities,
beyond 5G communication
Artificial intelligence in future
challenges

Industry 4.0
Communication applications in intelligent
sensing
Project and data set available for intelligent
sensing

[46]

Blockchain−based Secure
and Intelligent Sensing
Scheme for Autonomous
Vehicles Activity Tracking
Beyond 5G Networks

Intelligent sensing and tracking
based on blockchain using 5G
and beyond communication
The application area is
Autonomous Vehicle

Other application area such as
assistive technology, health
care Smart cities, etc

Smart city environment, healthcare, assistive
technology are reviewed with respect to
intelligent sensing

[47]

Intelligent Sensing in
Multiagent−Based Wireless
Sensor Network for Bridge
Condition Monitoring
System

Wireless Sensor Networks
Multi−agent system
Artificial intelligence
Performance analysis using case
study

Review of practical
applications of intelligent
sensing
The data set in intelligent
sensing
More emphasis on
communication technology

Reviews of projects and survey work in the area
of intelligent sensing
Covers all the aspects of intelligent sensing such
as future direction challenges, learning models

[48]
Intelligent sensing and deci-
sion making in smart tech-
nologies

Editorial on various works such
as beamforming
Path selection
Data compression
Intelligent sensing in health care

Comparative analysis of
machine learning algorithms
and models
Influential parameters in
Intelligent sensing

Communication network for intelligent sensing
Smart communication network
Latency and Q−learning

[49]

Smart city−oriented Ecolog-
ical Sensitivity Assessment
and Service Value Com-
puting based on Intelligent
sensing data processing

Sensing in Sustainable rural
development
Smart sensing and
Computational algorithms in
territorial rural planning

Smart city planning
Communication technologies
Application−oriented Health
care

Convergence of AI and 6G
Data security and Planning
Intelligent sensing in pandemic monitoring

[50]
CRUISE research activities
toward ubiquitous intelli-
gent sensing environments

Ubiquitous Intelligent sensing
environment
Wireless Sensor Networks
Research orientation and
challenge

Hardware deployment
Explainable AI for Intelligent
sensing
Next−generation
communication protocols

Extended reality and AI
Channel coding
Software platforms in Intelligent sensing
Lesson learned

The paper is structured as follows. In Section 2, an overview of recent learning models
based on AI and used for intelligent sensing applications is presented. Key parameters
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that affect the performance of intelligent sensing are also discussed. Section 3 describes
the datasets used for intelligent sensing. Section 4 focuses on the numerous applications of
intelligent sensing and also presents lessons learned in relation to AI techniques. The key
challenges and future research opportunities are presented in Section 5. Several ongoing
research projects based on AI technologies and intelligent sensing are summarized in
Section 6. Finally, Section 7 concludes the paper. Figure 1 illustrates the structure of
the paper.

Figure 1. Structure of the Paper.

2. AI Methods for Intelligent Sensing

In this section, an overview of ML and DL algorithms from an intelligent sensing
perspective is presented. The aim of this section is to highlight learning algorithms that are
widely used in many real-time applications. Furthermore, parameters affecting the perfor-
mance of intelligent sensing are also discussed. This section concludes with lessons learned.

2.1. AI-Based Algorithms/Models in Intelligent Sensing

A machine that is able to make decisions on its own is said to possess AI. There is
a broad spectrum of applications for AI, ranging from machine learning to robotics. By
combining the current advancements in machine and deep learning, huge amounts of data
from various sources are analyzed by utilizing AI to identify patterns and make intelligent
predictions [51]. However, recent advances in artificial intelligence systems and robotics
still need more research to solve complex problems. The tremendous growth in AI has
ushered in a wave of applications using sensors. As a result, the demand for intelligent
sensing increases in the market. Using sensor signals, the analysis of sensor data based on
AI provides robust predictions and classifications. Hence, intelligent sensing will be the
bright future of AI, where human behavior and emotions can be recognized by AI machines.
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Although some prior works have provided an in-depth summary of AI and ML techniques
in particular areas of applications, this survey shows AI and ML-based intelligent sensing
which has not been explored in other works. We also identify current problems that have
limited real-world implementations. This will provide helpful guidelines to researchers
and practitioners interested in intelligent sensing.

2.2. Machine Learning Algorithms/Models in Intelligent Sensing

In the last few years, the tremendous growth of ML-based approaches has expanded
the research area of intelligent sensing. Generally, ML can be considered to be a subset of AI
which handles complexities to solve a specific task. In this subsection, a brief overview of ex-
isting ML algorithms that improve the functioning of sensing systems is presented together
with their advantages and disadvantages. Various scenarios portraying how machine
learning methods are applied in intelligent sensing is depicted in Figure 2. ML algorithms
are divided into supervised, semi-supervised, unsupervised, and reinforcement learning.

Figure 2. Various Scenarios Portraying ML and DL-based Intelligent Sensing.

1. Supervised learning-based intelligent sensing—Supervised learning deals with the
known and labeled data and is divided into two types: classification and regression.
This approach has been successfully implemented for many years in the fields of
image classification, fraud detection, medical diagnosis, weather forecasting, mar-
ket forecasting, and life expectancy estimation. In [52], ECG data are collected via
wearable sensors, which detect heartbeats automatically, and a supervised learning
approach is used for arrhythmia classification. An artificial haptic neuron system is
fabricated in [53]. The system comprises a Nafion-based memristor and a piezoelectric
sensor. The sensory receptor converts external stimulus into an electric signal, and
the memristor is used for further processing of the data collected from the sensor. A
supervised learning method is implemented for the recognition of English letters by
placing the sensor on the joint of a finger. A novel methodology proposed in [54]
using supervised learning for resolving the collision of cash tags yields high classifica-
tion accuracy of listed companies in London Stock Exchange. A hybrid model that
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combines ML and game theory is proposed in [55] to solve issues related to network
selection in ultra-dense heterogeneous networks.

• K-Nearest Neighbors (K-NN) is an effective classification algorithm used for
large datasets. Here, K represents the number of training samples that are near
the test sample in the feature space [56]. In [57], a machine learning-based K-NN
approach is used for load classification by collecting data from various smart
plug sensors and other devices.

• Support Vector Machine (SVM) is mainly used to categorize data attributes
between classes by creating two-dimensional planes to minimize the classifi-
cation error [58]. For example, Ref. [59] introduces a danger-pose detection
system based on Wi-Fi devices that is used to monitor a bathroom while en-
suring privacy. A machine learning-based detection approach usually requires
large amount of data collected in target scenarios, which is challenging to detect
danger situations. However, this work employed a machine learning-based
anomaly-detection technique which requires a small amount of data in anoma-
lous conditions. In this work, researchers first extracted the amplitude and phase
shift from Wi-Fi Channel State Information (CSI) in order to detect low-frequency
components associated with human activities. The static and dynamic features
were then derived from the CSI changes over time. Finally, the static and dy-
namic characteristics are input into a one-class SVM which is employed as an
anomaly-detection method to determine if a person is not in the bathtub, is
bathing safely or in unsafe situations.

• Decision Tree (DT) model consists of branches and nodes, wherein every node
represents a test on every feature, and each branch has a value that the associated
node can use to classify a sample [60]. A decision tree-based approach was
presented in [61] for an intelligent transportation system (ITS). LIDAR sensors
obtain point cloud data, which are then projected onto the XOY plane. After
that, the images are classified into road and background grids for monitoring
road traffic.

• Ensemble Learning (EL) is a method based on combining the outputs of basic
classification algorithms to boost the performance of classification. It is robust to
data overfitting problem and is better than a single classifier [62]. This method
is proposed in [63], where soft sensors are used to collect data to predict the
composition, flow rate, and other features of the product, e.g., fatty acid methyl
esters (FAME), in the procedure of production of biodiesel from vegetable oil.

• Random Forest (RF) is made of a combination of several DTs and constructed
randomly to form a model for improving the overall results [64]. A random
forest-based classifier is proposed in [65] for estimating the content of bulky
metals in agricultural soil using hyperspectral sensor data and is shown to
reduce computational cost and time.

2. Unsupervised learning-based intelligent sensing—Due to the large amount of un-
labeled data in our everyday life, researchers have emphasized the unsupervised
learning-based algorithms for intelligent sensing applications. This method consists
of dimensionality reduction, generative networks, and clustering. Unsupervised
learning-based intelligent sensing is proposed in [66], which is applied for real-time
environment sensing to detect rare event instances intelligently. An unsupervised
clustering-based method is introduced in [67] to describe an individual’s behavioral
pattern by analyzing 100 days of unlabeled sensor data of 17 older adults from their
homes and extract information of their day-to-day activities at different times. To
detect the change in Landsat images, unsupervised learning is used in [68] with mean-
shift clustering and hybrid wavelet transform under the Multi-Objective Particle
Swarm optimization (MO-PSO) framework.

3. Semi-Supervised intelligent sensing—This method deals with the combination of la-
beled and unlabeled data. To reduce the complexity of labeling all data for large
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datasets, semi-supervised methods are used. A robust model based on a semi-
supervised approach is proposed in [69] to warn about the aircraft fault during
the flight of a UAV by sensing real-time data such as angular velocity and pitch angle
from flight sensors, and dramatically reduces the manual work. To detect faults in
Additive Manufacturing (AM) products, a semi-supervised method with a few labeled
data and a large number of unlabeled data is explored in [70].

4. Reinforcement learning-based intelligent sensing—In the context of AI, reinforcement
learning learns to make a sequence of decisions by interacting with its environment.
One of the successful applications of this approach is to control autonomous cars by
training the model. A deep reinforcement learning-based multi-sensor tracking fusion
is proposed in [71] for vehicle tracking by learning on fused data from different sensors
(camera and LIDAR). An intelligent sensing-based approach is introduced in [47] to
autonomously monitor bridge conditions by collecting data from sensor nodes and
make decisions using the reinforcement learning method. A novel approach based
on YOLO V3 is proposed in [72] for multi-object tracking based on multi-agent deep
reinforcement learning. This approach performs better in terms of precision, accuracy,
and robustness. A routing protocol built on reinforcement learning is developed
in [73] to find an optimal routing path for data transmission in a wireless network.

Table 3 shows the comparison of several ML and DL algorithms used in different areas
of intelligent sensing. ML is a branch of AI that advocates the idea of acquiring the right
data so that a machine can learn how to solve a particular problem by itself. The rise of
ML is due to the availability of large datasets, and the adoption of ML algorithms in the
field of intelligent sensing is to create smart devices that can take actions based on what
they sense from the environment. With the implementation of ML in sensors, the efficiency
and robustness of the system will reach the next level in smart sensing applications. Using
sensor data, ML algorithms enable more robust predictions and classifications as compared
to other physics-based models that envisage AI being added eventually to devices to adapt
to the new circumstances. Therefore, the use of machine learning, including deep learning
algorithms, is appropriate for performing challenging tasks in intelligent sensing, as shown
in Figure 2.

The availability of datasets and the invention of new algorithms have increased the
usage of ML and DL in the last few years. The supervised learning method has been used in
numerous applications, such as object recognition, speech recognition, and spam detection.
It predicts the value of one or more output variables (in the form of continuous or discrete)
by observing input variables. The unsupervised learning method is generally used for gene
clustering, social media analysis, and market research. The main focus of this method is to
analyze unlabeled data. Semi-supervised learning is the hybrid model of supervised and
unsupervised learning methods, which is used to solve problems with a few data points
labeled and most of the data unlabeled. Reinforcement learning (RL) is used in applications
such as finance, inventory management, and robotics, where the purpose is to learn a policy,
i.e., to map situations between states of the environment to perform actions appropriately.
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Table 3. Comparison of Machine Learning Algorithms/Models in Intelligent Sensing.

Reference
Number

Machine Learning
Algorithm/Model

Dataset
Used Description

Parameters In-
fluencing the
Performance

Advantages Limitations

[74]

epsilon-SVR
(eSVR), Linear
regression (LR),
Convolutional
Neural Network
(CNN), STSVR,
T-SVR.

DEAP
Dataset [75].

A Framework is proposed for
stress recognition in real-time
using peripheral physiologi-
cal signals.

BVP and GSR.
1. Less Prediction error;
2. Convenient for real-
world applications.

The model is limited to
the slight movement of
physiological signals.

[76]
Linear regression
(LR) and neural
network (NN).

Chronic Kid-
ney Disease
(CKD) from
patients.

A hybrid intelligent model
is proposed to guess chronic
kidney disease from a pa-
tient’s data on the cloud envi-
ronment to improve services
in healthcare in smart cities.

Feature
weights (FW).

The proposed model sig-
nificantly improves accu-
racy compared to other
models.

The hybrid model is lim-
ited to a small amount of
data of a patient’s record.

[77]
R.A.L.E lung
sound Database
[78].

DEAP
Dataset [75].

Performance of K-NN and
SVM classifiers are com-
pared using the pulmonary
acoustic signal from RALE
database for diagnosing
respiratory pathologies.

Mel-frequency
cepstral coeff-
cients (MFCC).

Analysis of feature vec-
tors is via ANOVA and
separately fed into SVM
and K-NN classifiers.

1.The amount of data
used to train and test the
classifier is very small.
2. Collection of data was
carried out in a controlled
environment.

[9] Ranking SVM. NUS-WIDE
dataset [79].

The interaction between so-
cial images and online users
is analyzed.

Color, texture,
and GIST fea-
tures.

Powerful learning
method and heteroge-
neous social sensory data
improve performance.

External factors such as
images based on cultural
and geographical loca-
tions are not considered
for prediction.

[80]

K-NN, AdaBoost,
SVM, RF and Lo-
gistic regression
(LR).

Non-contact
sensor data.

The non-contact sensor the
device is designed to predict
the signs of HR, RR, HRV
parameters from a patient’s
records during a period of 23
weeks of HD sessions.

Age and BMI
(body mass
index) of
patients.

Using machine learning-
based predictive models,
high accuracy is ob-
tained.

The main limitation is
the prediction of clinical
events in advance and the
other parameters like BP
and the patient’s medical
history using a multi-class
prediction model.

[81] Support Vector Ma-
chine (SVM).

CRCNS-
ORIG and
DIEM.

A model is proposed to
detect mental weakness of
older and younger people by
collecting their eye-tracking
data while watching a video.

Pupil diam-
eters, eye
blinking, gaze
allocation, and
saccade mean
velocity.

Improves detection accu-
racy using an automated
feature selection method.

1. Limited no. of
participants.
2. Eye-tracking data are
collected in a controlled
environment.

2.3. Deep Learning Algorithms/Models in Intelligent Sensing

Deep Learning is now dominating the industry and research spheres for the growth of
a range of smart-world systems for good reasons. DL has shown considerable potential in
approximating and reducing huge datasets into accurate predictive and transformational
output, greatly facilitating human-centered smart systems. This section discusses deep
learning models based on intelligent sensing.

• Convolutional Neural Network—CNN is a robust supervised DL algorithm with better
performance than other DL algorithms. IoT security is one of CNN’s applications
where the features of the security data can be automatically learned by the sensors [82].
Deep CNN-based learning is proposed in [83] to recognize human emotions using
electrodermal activity (EDA) sensors. These devices capture emotional patterns from
a group of persons. The paper [84] proposed a system that detects the physical activity
of older people from wearable sensors. For rotation-invariant features, each feature
triplet is extracted from the X, Y, and Z axes and reduced to one feature represented
by a 3D vector. Other works similar to this also achieve high accuracy in the study of
younger people.

• Recurrent Neural Network—RNN is an important algorithm of DL in which present
and past inputs depend on the output of the neural network. It is used to handle
sequential inputs, which can be speech, text, or sensor data [85]. An RNN-based
approach is discussed in [86], which is meant to interpolate sparse geomagnetic data
from lost traces to reduce the time taken by linear interpolation approaches. The study
in [87] discussed a mobile positioning method using RNN to analyze the strength of
received signals. The authors experiment with the training of two RNNs separately
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for estimating latitude and longitude, which results in overfitting. An RNN-based
learning model is proposed in [88] to monitor underwater sensor networks in real
time, which improves the delay and reduces the cost of packet transmission.

• Generative Adversarial Network—GAN comprises two models; one is the generator,
and the other is the discriminator. The two are trained in tandem via an adversarial
process. These networks have been implemented for the security of IoT systems [89]. A
conditional GAN-based DL method is presented for the reconstruction of CS-MRI that
is compressed sensing magnetic resource imaging using compressed MR data [90].
In [91], the authors proposed a GAN-based method to generate X-ray prohibited
images with different item poses. According to the paper, the quality of the images is
good as compared to DC-GAN and WGAN-GP. After the images are generated, they
are added to the real images and FID (Fréchet inception distance) is used to evaluate
the performance of GANs.

• Long Short-Term Memory—LSTM is a type of recurrent neural network that is in-
tended to model temporal sequences and their long-range dependencies more ac-
curately than conventional RNNs [92]. The LSTM comprises units called memory
blocks in the recurrent hidden layers. The memory blocks contain memory cells with
self-connections that store the temporal state of the network in addition to special
multiplicative units called gates to control the flow of information. A DL-based ap-
proach is used in [93] for emotion classification, dealing with a large number of sensor
signals from different modalities. From the results presented in the paper, it came to
be known that ad-hoc feature extraction may not be compulsory as DL models extract
the high-level features automatically.

2.4. Parameters Affecting the Performance of Intelligent Sensing

This subsection presents a review of some of the parameters that affect the performance
of intelligent sensing. Intelligent sensing methods have been promising with state-of-the-art
results in several areas, such as healthcare, image segmentation, agriculture, soft sensors, etc.
The use of sensor systems in industrial, scientific, and consumer equipment is extensive and
is continuously increasing in domains like automation. Essentially, industrial information
revolutions need more sensors of every kind. The focus of the sensor system is to provide
reliable signals and evaluate information. The smart sensing units include a sensing element
and proper signal processing function within the same package.

Tables 4 give a list of parameters that affect the performance of intelligent sensing
based on the results reported in literature. Key information includes the title and year of
publication of each paper, and parameters that influence the performance of the various
intelligent sensing approaches, such as temperature, accuracy, cost, time, occupancy, de-
pendency, etc. One of the parameters is feature extraction in image recognition. Several
techniques of pre-processing are used for enhancing certain features and removing unnec-
essary data. These techniques include digital spatial filtering, contrast enhancement, gray
level distribution linearization, and image subtraction [94]. Measurement of redundancy in
test samples is attempted to achieve test loss minimization, which can lead to a reduction
of test maintenance costs and also ensure the integrity of test samples [95]. Evaluating ML
algorithms is an important part of any project. Accuracy is one of the essential parameters
to judge the performance of the trained model. Classification accuracy is defined as the
fraction of correct predictions relative to the total number of input samples.



Electronics 2022, 11, 1661 12 of 39

Table 4. Parameters Influencing the Performance of Intelligent Sensing.

Ref.
Number Year Title of Paper Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6 Description

[96] 2019

A review on EMG based motor
intention prediction of continu-
ous human upper limb motion
for human-robot collaboration.

EMG signal
acquisition Pre-processing Feature extrac-

tion
Accuracy of con-
tinuous motion

Dependency on
autonomy Redundancy

Researchers have explored several
approaches and models for motor
intention prediction based on EMG
signals for estimation of continuous
motion of the human upper limb
and also discussed motion parame-
ters for measuring the performance
of the system.

[97] 2019 Toward biotherapeutic product
real time quality monitoring. Dynamic nature Adaptive model

structure
High levels of
noise Complexity Heteroge- neity Real-time moni-

toring

Close monitoring of Critical Qual-
ity Attributes (CQAs) of the product
in real time is critical to increasing
product quality and improving pro-
cess control. A CQA value is a phys-
ical, chemical, biological, or micro-
biological property or characteristic
that should be within an appropri-
ate limit, range, or distribution to
ensure the desired product quality.
Various monitoring techniques are
surveyed to detect CQA value un-
certainty and subsequent reduction
in end-product variability.

[98] 2019 A novel segmentation based
depth map up-sampling. Depth maps Geodesic dis-

tances Super pixels Initial no. of pix-
els Scale constant Splitting thresh-

old

Proposed color image segmentation
according to the guidance of the
depth. Hence, the segmented re-
gions observe the depth of the
boundary well.

[99] 2018
Design and applications of soft
sensors in polymer processing:
A review.

Temperature Pressure Process speed Flow index Viscosity Product dimen-
sions

Researchers have done a compre-
hensive survey on soft sensing tech-
niques applied for polymer pro-
cessing and its importance for the
growth of process monitoring, pro-
cess control and fault diagnostics.
These techniques have replaced the
use of physical sensors for practi-
cal process measurements in indus-
tries.

[100] 2019

Prediction of occupancy level
and energy consumption in an
office building using blind sys-
tem identification and neural
networks.

Occupancy Prediction accu-
racy Time factor Historical inter-

nal load
Energy consump-
tion

Structure parame-
ters

A prediction model based on the
feed forward network, ensemble
models as well as extreme learning
machine (ELM) is established for
measuring electricity consumption
of the AC system, and based on the
approach of blind system identifica-
tion (BSI) model, the occupancy pro-
file is estimated in an office build-
ing.

[101] 2019
Semi-supervised deep learning
for hyperspectral image classifi-
cation.

Training samples Classification ac-
curacy Bias parameters Kappa coefficient Weight decay Momentum

A novel method based on a semi-
supervised deep feature fusion net-
work for classifying hyperspectral
images by integrating the original
training set with pseudo labeled
samples to reduce the problem of
overfitting during training of DNN.

The most crucial aspect of this matter is the collection of data from multiple sources.
The data usually goes through several stages of pre-processing to make it in presentable
form. Intelligent sensing approaches are in general associated with technological appli-
cations where they are applied. For example, in cognitive radio, the sensing approach
will be different from applications in a smart grid. The work in [102] presented an arti-
ficial intelligence-based approach for high-speed data delivery with latency regulation.
Compared to CogMAC (Cognitive Medium Access Control) and AHP (Analytic Hierarchy
Process) protocols, the decentralized approach helps in creating opportunistic methods for
spectrum access and better design of channel selection mechanisms. The work presented
in [103] proposed a method for integrating intelligence close to the sensor, which will
enable decision making in local nodes before transferring the information to cloud or server.
The local intelligence will be helpful in producing smart data that can be used for analysis
to produce effective outcomes. Techniques such as normalization, linearization, and data
cleaning can be done at local nodes in a piconet. Such inclusion will be helpful in the
elimination of unnecessary steps, which needs to be done very frequently before data is
used in artificial intelligence algorithms.

It is very important to identify data anomalies as data sometimes are collected from
multiple platforms. In such cases, the source of data needs to be tracked for threat and
irregularity. The work presented in [104] proposed scheduling and anomaly handling
mechanisms in cross-platform IoT systems using cognitive tokens. The proposed methods
use intelligent sensing with fair play and exponential growth procedures. In contrast to
current technology trends in full-stack system development, a layered architecture-based
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approach was proposed in [105]. The proposed method will help to collect data, extract
useful information, and transfer it for further processing. In the case of more sensitive
data sensing, such as clinical or eHealth, Ref. [106] presented the implementation of gate-
way and scoring mechanisms to reduce the latency and to analyze the performance of
systems. Such implementations have shown good performance in fog computing environ-
ments, where restricted resources are available at local nodes. The work presented in [107]
shows the importance and challenges of IoT-based healthcare information sensing. The
work presents challenges related to information acquisition, sensing, storage, processing,
analytics, and presentation.

The studies reviewed in this section reveal that, although the new generation intelli-
gence reduces the cost of devices and helps present the information more accurately for
decision making, design and implementation as well as communication technologies still
play important roles.

2.5. Lessons Learned

In this section, several approaches based on AI are reviewed that can analyze the
complex characteristics of sensor data for various applications. Most of the ML and DL-
based algorithms work with numerous types of sensory data that come from different
sources. However, algorithms of supervised learning for classification (i.e., SVM, DT,
and RF) are mainly recommended when data have complex feature space (for example,
hyperspectral sensor data). In particular, for data fusion from multiple devices, EL is more
favorable because the fused data can be fed to an ensemble classifier for better results. For
cases where the dataset size is small, K-NNs perform well as compared to other algorithms.
The task is more challenging when the sensor data are unlabelled, and hence, the desired
results can be obtained using unsupervised learning algorithms. Classification based on
semi-supervised algorithms requires a limited set of annotated sensor data and performs
well with time-series data. Another category is reinforcement learning that works well with
the high-dimensional stream of input data. Its integration with deep learning is applied in
new areas of research such as drone navigation. Furthermore, DL-based algorithms are also
discussed and several conclusions are drawn. The variations of CNN are preferred when
input sensor data is more than 1-D and are highly recommended due to their simultaneous
feature extraction and classification capabilities. Most of the recent architectures such as
RNN and LSTM perform well with sequential sensing data (i.e., sequence of words, images,
etc.), but more favorably, LSTM is used due to its long-term dependencies among input
data. For generating synthesized data that is different from actual sensor data, GAN is
considered and has been proven to be successful in handling data privacy.

A few attempts were made to examine the parameters that affect the performance
of intelligent sensing. Internal and external factors such as the collection of real-time
environmental data from multiple sensors, the nature of datasets, the accuracy of the
training datasets, optimization parameters, etc., may hinder the overall performance of
intelligent sensing. Thus, to create an efficient and robust smart system, it is vital to identify
anomalies in data and take appropriate measures to remove them.

3. Datasets in Intelligent Sensing

A dataset is an assemblage of information. Commonly, data are organized as a stream
of bytes into a partitioned dataset, which may comprise multiple members, each containing
a separate sub-dataset, similar to directories or folders. This organization is employed for
the application requirements and to optimize communications. Examples of classic datasets
include iris flower dataset [108], MNIST dataset [109,110] etc. Tables 5 present a variety
of sources of data with comments on the merits and demerits of information. Intelligent
sensing algorithms with appropriate datasets foster sensible and more accurate solutions.

Datasets can be categorized as

• File-based datasets: These are datasets that are entirely stored in a single file.
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• Folder-based datasets: In this type of datasets, the dataset is a folder that holds
the data.

• Database datasets: This type of dataset is a set of data stored in a database, for example,
the Oracle database.

• Web datasets: Web datasets are the datasets that are stored on an internet site. An
example is the WFS format.

Individual datasets are sets of data values in an organized way intended for automated
analysis. The structure of a dataset can be as simple as a table of rows and columns or
can be as complicated as a multidimensional structure. This section comprises different
datasets that belong to the different fields of intelligent sensing. These datasets are used
in various applications like image classification, gender recognition, speech recognition,
obstacle detection, action detection, etc.

Table 5. Publicly Accessible Datasets for Intelligent Sensing.

Publicly Available Dataset Sources of Data Format Exemplar Work
Using the Dataset Elucidation and Comments Applications Deployed Advantages/ Limitations

LILA
Labeled information Library of
Alexandria: Biology and conserva-
tion

Images [111] Based on Deep Learning models,
CNN, ResNet-18 Architecture used. Image Classification. Accuracy of images in the night

time is less than images in day time.

Fashion-MNIST [112] Images [113] More challenging as compared to
original MNIST. Image Classification. More challenging Classification

task than MNIST.

DEAP [114] xls, csv, ods
spreadsheet [115]

In some cases, such as the scales of
arousal, valence, liking, single trial
classification is performed.

Human affective states.
Individual physiological difference
and noise make single trial classifi-
cation challenging.

Movie Tweetings Dataset text collected from Twitter
IMDb Text [116]

Automatically collects data from
structured social media posts
and involves recent and relevant
movies.

Regression and Classifica-
tion of Twitter and Tweets.

Only well structured tweets are con-
sidered.

Toronto Rehab stoke Pose
Dataset [117] CSV [118]

Dataset meant to develop and eval-
uate an algorithm for monitoring
of post stroke, upper body posture
and motion

Motion Tracking, Classifi-
cation.

Tracking of Kinect posture is suscep-
tible to noise and also unstable occa-
sionally while tracking.

DBpedia Neural Question
Answering (DBNAQ)
dataset

Machines (NSpM) templates ex-
tracted from queries in QALD-
7training (QALD-7-train) in con-
junction with the LC-QuAD dataset
[119]

Question query
pair. [120]

A reusable and efficient method to
generate pairs of natural language
questions.

Questions and Answering. Affecting the BLEU accuracy over
large vocabularies.

The Zero Research speech
Challenge 2015 [121] Sound [122]

Focused on two levels of linguistic
structure subword unit and word
units.

Discovery of speech sub-
word features/word units
based on the unsupervised
method.

NLP type and token metrics are not
very good for a system that does not
attempt to optimize a lexicon.

CORe50 [123] RBG-D images [124]

Complex setting of acquisition in
Dataset makes the problem harder
to solve when learning is done on
training data.

Classification object recog-
nition.

Noticeable accuracy decrease with
respect to the cumulative approach.

11k Hands
Biometric identification gender
recognition using a huge hand data-
base [125]

Images (.txt, .csv,
.mat) label files [126]

Gender recognition based on binary
classification and biometric identifi-
cation based on SVM classifier.

Gender recognition and
biometric identification.

Can construct biometric identifica-
tion and gender classification sys-
tem that depends on images.

Field Safe Computer vision and bio system
signal processing group

Images and 3D
point clouds [127]

Supports object tracking, detection,
classification, sensor fusion, and
mapping.

Object detect- ion in agri-
culture.

Projecting explanations to local sen-
sors frames inevitably causes local-
ization errors.

MSPAvatar A motion capture database of spon-
taneous improvisations [128]

Motion captured
video, audio. [129]

Relationship between speech, dis-
course functions, and non-verbal be-
havior.

Classification action detec-
tion.

Cleaning of the motion capture data
slower than expected.

Datasets have played a vital role in the development of sophisticated machine learning
and deep learning algorithms, as documented in [130]. The importance of datasets is that
they represent the relationship of the individual data items. Datasets vary in the types
of manipulations, feature analysis, and other functionality closely related to the domains.
In some areas, for example, astronomy and genetics, domain-specific software may be
supreme. Thus, the data can be incorporated into the cumulative knowledge base of the
respective disciplines.

In machine learning projects, there is a need for training datasets. The datasets are
used to train the model for performing a variety of actions. It is impossible for a machine
learning algorithm to learn without data. It is the most crucial aspect that makes algorithm
training possible. Completeness and accuracy are the two necessities for any dataset [131].
In the absence of these characteristics, the final result is prone to wrong conclusions. Any
investigation relies on the availability and quality of suitable datasets. For this reason,
there is a need to verify the dependability of data before they are converted into valuable
information. AI development heavily relies on data, from training, testing and tuning.
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Three different types of datasets are the training set, the validation set, and the testing
set. The training set is employed to train an algorithm to learn and produce results. The
validation set is used to tune the final ML model. The testing dataset is used to evaluate
how well the algorithm was trained on the training dataset. With the growing acceptance
of AI by companies across all industries around the world, developing a strategy for ML is
vital to gain a competitive edge. A significant component of this strategy is the data used
to train machine learning-based algorithms.

It is very important to remember that good performance on datasets does not neces-
sarily mean that a system with ML algorithms will perform well in real scenarios. Most
people in AI forget that the crucial part of building a new AI solution is not the AI or
algorithms—it is the data collection and labeling. Training datasets represent the majority
(around 60%) of the total data, whereas the validation and testing datasets each account for
20% and 20% of the total data. Other ratios such as 70%:15%:15% among the three datasets
are also possible, depending on the application.

Overfitting takes place when a model learns too well about the training data. It learns
all the features of training data with noise to a level that it adversely affects the performance
of the model on fresh data [132]. If the training part takes too long on the dataset, the
performance may decline because of overfitting of the model [133]. At the same time, the
error for the test set begins to increase as the model’s ability to generalize decreases. Data
augmentation [134] is an approach that allows practitioners to significantly increase the
amount of data without actually collecting new data. It is a way of creating new ‘data’ with
different orientations. The benefit of data augmentation is that it generates “more data”
from a limited amount of data and prevents overfitting. Data augmentation techniques
such as padding, cropping, and horizontal/vertical flipping are commonly used to train
huge neural networks. An underfitting machine learning model is not an appropriate
model [134] and will have poor performance on the testing data. The remedy is to try
alternative machine learning algorithms.

4. Practical Applications of Intelligent Sensing

In this section, a plethora of applications based on intelligent sensing such as agricul-
ture, surveillance, traffic management, healthcare, and assistive services are summarized.

4.1. Applications of Intelligent Sensing

The amount of data that is available on the internet and in our daily life in differ-
ent forms is growing fast because of the rapid development of sensing and computing
technologies.

1. Smart Agriculture—Intelligent sensing applied to this domain, to fulfill the need of
farmers, faces lots of problems on a daily basis, like crop disease infestations, weed
management, pesticide control, etc. [135]. The gradient descent-based technique is
used in [136] to train the network on a real field dataset consisting of various tea
gardens. To identify tea pests, a radial basis function network is used for classification.
Ref. [137] combines expert system technology and ANN to predict the nutrition
level in the crop in order to help inexpert farmers. This system is developed as an
application of Android, which could be installed on a smartphone [137]. The basic
methodology is feed-forward and backpropagation. The neural process and recalling
patterns are done by the feed-forward algorithm, and the training is done by the
backpropagation algorithm. A study carried out in [138] considers the use of ANN in
various techniques to estimate evapotranspiration (ET). The methods applied include
the Penman-Monteith method and Levenberg-Marquardt backpropagation. Because
of the increase in the number of hidden layers, an increase in the variability of the ET
estimation was observed.
Figure 3 illustrates how smart sensors can be used in different areas of agriculture,
i.e., soil, crop growth, disease identification, supply control, environment sensing,
and bio-surveillance. Some key reasons for using sensors are real-time monitoring to
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enable remedial measures, cost savings by reducing waste, remote sensing through
wireless and IoT platforms, and automated agricultural produce monitoring.

2. Intruder Detection and Surveillance—In IoT devices, attacks and threats have become
more dominant as intrusion detection methodologies are hard to deploy. The most
effective intrusion detection systems apply signature-matching methods for detecting
vicious activities [139]. These systems have low false alarm rates and perform well
in the various attacks. Another is anomaly detection; it maps ordinary behaviors
to a certain baseline and detects eccentricities. For creating a baseline profile, a
supervised learning algorithm is used, which uses previous data samples to train a
model. In [140], the knowledge discovery in databases (KDD) is saved to the Oracle
database server to extract the proper dataset for a set of classifiers. After preparing
the dataset by removing the attacks, the most common experimental techniques are
multilayer perception, Bayesian algorithm, and J48 trees for classification. In [141],
the dataset from the 1998 DARPA intrusion detection program is pre-processed in
binary TCP dump format readable by the neural network. Backpropagation is the
supervised learning method used to accomplish this task.
An intelligent video surveillance system (IVSS) composed of an IP camera and a
human-computer interface is presented in [142]. IVSS has modules for image analysis,
image understanding, video capture, and event generation. In the video capture
module, input data can be accessed from different IP addresses of cameras over
a LAN. Image analysis comprises image processing tasks, for example, extracting
relevant information, including tracking, motion detection, etc. Image understanding
includes AI techniques to understand the significance of the scene captured by a
camera. The abnormal behavior is then forwarded to an event generation module,
which helps the user by generating an alarm. The use of intelligent sensing in intrusion
detection and remote surveillance for monitoring applications is shown in Figure 4.
The use of smart sensors will greatly help improve the existing systems in terms of
cost, energy, and performance.

3. Intelligent Traffic Management- AI-based techniques have been applied in this field to
control road traffic. To optimize the traffic light cycles, a technique based on genetic
algorithm (GA) is used to improve the traffic light configuration [143]. Ref. [144] dis-
cusses the design of a traffic light controller that varies the cycle time according to the
number of vehicles behind the red and green traffic lights. Another technique based
on extension neural network (ENN) is used in outdoor environments to recognize
the objects. A traffic light can be monitored by gathering data from the number of
vehicles passing and then processing that data. Here, how intelligent sensing is used
in traffic management is shown in Figure 5. With the emergence of smart sensors,
various challenges faced by traffic management authorities such as traffic congestion,
optimum route, travel cost, average waiting time, etc. can be solved.

4. Smart Healthcare—Unsupervised learning algorithms like clustering and principal
component analysis (PCA) are used in [145]. In this technique, by maximizing and
minimizing the resemblance of patients, the clustering algorithm outputs the labels
within the clusters. PCA mainly focuses on reducing the dimension, especially when
the features are achieved in a considerable number of dimensions. In [146], SVM is
applied to classify imaging biomarkers of nervous and psychiatric diseases. Recently,
CNN has been successfully implemented in the healthcare domain through knowledge
from ocular images to assist in diagnosing congenital cataract disease [147]. Natural
language processing (NLP) aims at better clinical decision making from the narrative
text [148]. In [149], NLP is used to read chest X-ray reports to alert physicians to the
possible requirement for anti-infective therapy.
In healthcare organizations like insurance companies, the use of sensors is to provide
accurate and reliable diagnostic results, which can be monitored remotely irrespective
of whether the patient is at a clinic, hospital, or home, thereby improving healthcare
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efficiency. Healthcare management uses intelligent sensing for different purposes, as
shown in Figure 6.
Mass spreading diseases are not rare nowadays; in such cases, fast and reliable infor-
mation helps to stop the infection to the general public. The mitigation is facilitated
by early detection, identification of the cause, and finding a cure. In healthcare, DL
and AI have been implemented to control such diseases. Intelligent sensing is also
implemented for vaccine detection. In the case of COVID-19, WHO has recommended
a swab-based SARS-CoV-2 test. From the swabbed samples, the information related
to E-gene from SARS-CoV-2 and gene from enzyme RNA-dependent polymerase,
which is in charge of the copying of a DNA sequence into an RNA sequence during
the transcription process, plays a key role in the identification of symptoms. Many re-
searchers have observed that real-time PCR methods are also effective for diagnosing
the test results [150–152]. In these approaches, the protein related to immunological
defense is tagged to identify the potential targets using fluorescent tubes. A CRISPR
(Clustered Regularly Interspaced Short Palindromic Repeats)-Cas13-based strategy
for viral inhibition has been found to be effective for dealing with SARS-CoV-2, which
caused COVID-19, and emerging pan-coronavirus pandemic strains [153].
Intelligent sensing techniques can be employed to determine the diseases that cause
the epidemic and pandemic. In [154], Santosh suggested active learning algorithms
with cross-population datasets to test and train models that can compute the data
with multiple mini-batches of information to help in detection and decision mak-
ing. The work presented in [21] proposed an AI-based framework with the use of
sensors already mounted on palmtop devices, like smartphones, cameras, inertial,
microphone, temperature, and fingerprint sensors to collect information from patients.
Deep Learning algorithms are implemented to do the multimodal analysis to detect
the presence of COVID-19 symptoms.
The use of intelligent sensing with edge computing and cloud services are also en-
couraging several corporations and startups to work in the area. UNet++ [155] was
proposed for medical image segmentation and has been successfully implemented on
computed tomography scan, microscopy, and RGB video data. The UNet++ architec-
ture is the new version in the series of U-Net and wide U-Net architecture. It has been
observed that with deep supervision, UNet++ has demonstrated better performance
than its predecessors. The common issue in implementing the intelligence for disease
detection using sensors is that the raw data need to be segmented and labeled for fur-
ther analysis. In case urgent or fast results are required, a manual method is preferred
as in incorporating intelligence to algorithms, training needs to be done by feeding
information in significant amounts. If the system is not trained, the accuracy of such a
model will be degraded, which will affect the end result, i.e., successful prediction of
true positive cases.
The nucleic acid test is a method used to identify the cases related to the diagnosis
of Gonococcal and other Neisserial infections, HIV RNA, Severe Acute Respiratory
Syndrome (SARS), coronaviruses, etc. A recent study shows that it is also being
considered for the diagnosis of COVID-19 patients. This test helps detect specific
nucleic acid sequences and organisms in blood, tissue, urine, or stool. The work
in [156] proposed nucleic acid amplification tests (NAATs) using stacked denoising
autoencoders (SDAE) for feature extraction. It is also observed that DeepGene, a
cancer type classifier, can be essential [157]. In another work [158], Wang et al. have
implemented CNN to recognize the behavior of pulmonary nodules and also to
extract features for machine-generated endoscopy images in low light. As observed,
artificial intelligence algorithms are increasingly implemented in pathology devices
with assistive methods to achieve high accuracy results. In the monitoring of pandemic
and epidemic also, such intelligent sensing plays a vital role. Thermography devices
can be easily found in public places, especially in the case of mass spreading diseases.
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Thermal scanner is a commonly known device to identify the fever by interpreting
the data (heat map) in human-readable forms.
Figure 7 is a case study on the importance of intelligent sensing in epidemic and
pandemic. To detect the symptoms related to the infection, multiple tests are proposed,
and in most of the cases, a combination of such tests needs to be performed. WHO
suggests swab test, which requires the sample collection from nose and throat. On the
other hand, in CT scan images are used, and test data need to be further analyzed in
thermography to sort out potential patients based on the heat analysis. The tissues
collected by biopsy and bronchoscopy are examined to understand the symptoms.
Urine and stool tests have also shown the presence of infection in patients. In the case
of COVID-19, urine samples are not adequate, and stool analysis has helped detect
the presence of infection, similar to SARS and MERS. Blood tests will help analyze
cell culture, and multiple serology assays will help identify the virus growth and
immune system status. Tests such as RDT, ELISA, and Neutralization assay indicate
the presence of antibodies with the possibility of protection against infection. Data
from multiple test sources shown in Figure 8 are helpful for training and testing
algorithms. Deep learning and artificial intelligence algorithms trained with such data
will further help in symptom identification.

5. Smart Assistive technology—In [159], a navigation system for visually impaired
people is developed. This project focuses on how place cells, grid cells, and track
integration along with AI can be helpful. Artificial intelligence with grid cells uses
deep Q learning with an RNN-based ANN architecture. In [160], cash recognition for
blind people is designed to allow those people to identify the notes correctly. In this
project, an AI-powered application uses a smartphone to capture the image of a cash
note. After recognizing the value of that particular note, an audio sequence signifies
the value of the note. In order to work on realistic images taken from a smartphone, a
transfer learning-based pre-trained model on ImageNet of VGG-16 is used for training
deep neural networks and for verifying the approach. Recently, ML algorithms have
improved the intelligibility of speech in both hearing-impaired and normal-hearing
listeners. In [161], speech separation is considered as a binary classification problem
in which each true or false unit needs to classify noise dominant as 0 and speech
dominant as 1. In speech recognition for normal-hearing persons, Gaussian mixture
models have been used.
Figure 9 shows how AI, ML, and DL techniques are used for the visually impaired by
taking gestures as input and converting text to speech using algorithms. These tech-
nologies improve the way of communication between ordinary people and visually
impaired people.

6. Smart Communication Networks—As a recent trend in communication technologies,
it is observed through 4G, 5G, and ongoing research in 6G networks, that ubiquitous
sensor network is going to be a feature of intelligence sensing, which means that in-
formation of sensor nodes could be easily retrieved remotely and processed. This also
requires adopting new techniques related to nondestructive data transfer mechanism,
fast and lightweight computational nodes for signal and communication requirements,
multichannel modulation schemes, and opportunistic channel sensing schemes. To
control, transfer, and supervision of sensor information, Intelligent sensing can be
observed in Internet of Things, Industry 4.0, etc. [162] presents the behavior analysis
using the Latent Dirichlet Allocation (LDA), the Non-negative Matrix Factorization
(NMF) and the Probabilistic Latent Semantic Analysis (PLSA) for a comparative study
using three different datasets from ubiquitous sensors. LDA, NMF, and PLSA have
all been successfully used in text analysis tasks such as document clustering and are
closely related to each other. In particular, [163] has formally shown the equivalence
between NLM and PLSA. The PLSA, also known as the probabilistic latent semantic
indexing (PLSI), is a statistical approach used to analyze two-mode and co-occurrence
data. Further, PLSA can be treated as LDA with a uniform Dirichlet prior distribution.
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The semi-supervised learning approach was implemented in [164] for gait recognition
for person identification using ubiquitous sensor data. Sparse labels and low modality
factors were analyzed in [165].
For intelligent sensing in communication, the steps illustrated in Figure 8 can be used.
The initial steps include basic signal processing with sensing, filtering, amplification,
sampling, quantization, data acquisition, and conversion. After that, information
processing and digital communication procedures need to be adopted, where edge
computing plays an important role. The edge computing system includes a low-
power compute unit specifically tailored to the requirements. In such scenarios, it is
important to notice that hardware restrictions exist. Because of this, the algorithm de-
velopment should take all such limitations into account. The gateway is an important
medium to transfer data from local nodes to the main computational platform, i.e.,
the server node. Communication protocols such as 4G, 5G, UWB, WiMax, etc. can be
implemented as per the design requirements.

Figure 3. Intelligent Sensing in Agriculture.

Figure 4. Intelligent Sensing in Intruder Detection and Surveillance.
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Figure 5. Intelligent Sensing in Traffic Management.

Figure 6. Intelligent Sensing in Healthcare Management.
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Figure 7. Intelligent Sensing in Pandemic Monitoring.

Figure 8. Intelligent Sensing in Communication Networks.
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Figure 9. Intelligent Sensing for Visually Impaired.

4.2. Lessons Learned

In this section, we have identified a few ML-based foundational services in a broad
range of intelligent sensing applications. We discussed how ML has been used to facilitate
these services. The major contributions of this section are the coverage of the applications
of intelligent sensing, which are gaining tremendous attention.

ML is a revolutionary technology which attracts every other technology through
its algorithms and impressive results. Agriculture represents one sector of the future of
computing and communications. Intelligent sensing applied to this domain fulfills the
needs of the farmers and the population by efficiently utilizing limited resources. Smart
agriculture involves the incorporation of information technology into the traditional meth-
ods of farming. When dealing with smart farming or agriculture, factors like population
movement, weather conditions, and demographics play a significant role. There are other
parameters that are important in the field of agriculture. These may include surveillance in
agriculture, supply control, environment sensing, length analysis of crop growth, disease
identification, soil parameters, etc. Intruder detection and surveillance are very important
and have attracted a great deal of attention. Nowadays, nearly every shop, home, or office
needs a surveillance system for intrusion detection. Signature matching algorithms are
the most effective method in intrusion detection systems for detecting malicious activities.
Multilayer perceptron, Bayesian and J48 algorithms are common experimental techniques
in anomaly detection. Image and video recognition plays a vital role in adapting IVSS
(intelligent video surveillance system). The authors observed that sensors would greatly
help in improving existing systems.

Healthcare has become a high priority after the pandemic became rampant globally in
2020. AI and ML are widely used in smartizing healthcare systems. As mass spreading
disease is not rare nowadays but instead has become normal, fast and reliable information
helps to stop the infection to general public. Recently, CNN has been successfully adapted
for healthcare and is used to classify X-ray images to diagnose heart diseases and ocular
images, thereby helping in the diagnosis of cataract disease. Intelligent sensing is widely
used to monitor the various parameters of the patients remotely, like pulse analysis, routine
checkups, etc. Real-time PCR for diagnosing test results is also a CRISPR-based strategy
and is effective for dealing with COVID-19. Hybrid approaches such as IS with ML, edge
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computing, and cloud services are also gaining attention of several corporations in this
area. AI has been applied to road traffic control. However. intelligent sensing has been
so improved in this domain that most of the work is done by sensors. For example, a
vehicle may have an intelligent system installed inside it to help avoid accidents and
recognize traffic. Some vehicles have installed cameras to monitor the surrounding. For the
infrastructure part, there are speed monitoring systems with video surveillance installed
at traffic signal poles or toll stations on highways to avoid road accidents. AI and ML
combined proved to be successful in assistive technology. ML algorithms have improved
speech intelligibility for both speech and hearing impaired people. Intelligent sensing
also affects communication networks positively to make them smarter and more reliable.
The omnipresent sensor network will play a very important role as one of the features of
intelligence sensing. The sensor nodes will be easily traced remotely. Intelligent sensing
with ML algorithms has been widely used to improve the intelligence of sensors.

5. Challenges and Future Research Directions

With the advancement of sensor technology, research has been carried out to extract
useful information in various domains [166]. The adoption of AI in smart sensing has
advantages associated with forecast based maintenance, adaptable manufacturing, and
improvised productivity [167]. In this section, we review numerous challenges associated
with particular applications and AI approaches and also briefly discuss possible future
research directions.

5.1. Challenges

1. Data Security and Privacy: Despite the success of AI and ML models, they face the
major challenging issue of data security. ML models extract features by learning
patterns that contain information, which can be vulnerable to real-world attacks [168].
One of the legitimate concerns in any real-time environment is data integrity and also
it affects the quality of datasets and overall performance of the system. For example,
the UAV-enabled intelligent transport system in a smart city where information about
vehicle location and speed can be leaked by malicious entities [169,170]. The sensors
must gather and share only essential information that is required to execute any
operation. Standard rules and procedures must be applied to maintain data integrity.
The presentation of information has to go through several stages in machines. Most
of the machines are connected, resource-constrained devices and also available as
standalone computational units. The first step in intelligent sensing is to gather the
collected data from the sensors, which are then merged with information sources to
identify and process accordingly. If information can be analyzed locally, further steps
need to be taken. However, in most of the devices, the next step is to transfer the
information to database storage or cloud services. Such a collection of information
is then processed for data analysis and presentation through queries specific to user
requirements. In the process from data collection to presentation, several types of
security threats need to be taken care of. As illustrated in Figure 10, the process
of intelligent sensing consists of multiple stages from sensing to data analysis and
security needs to be handled in each of the stages.

2. Data Storage and Management: The storage of an enormous amount of data in the
form of audio, video, images, smart device data, and social media has become the
main hurdle for several applications that need to be addressed. Mismanagement of
data will make it difficult to analyze the quality of data collected by sensors and further
affect the decision-making process [171]. The availability of a large amount of data
motivates us to accept the ML and AI methods to enhance the overall performance
of the sensor-based system. Therefore, to avoid redundancy, more advanced AI
algorithms will be needed to extract meaningful data.

3. Power Consumption : Nowadays, the use of wearable flexible sensors has gained
significant attention in medical applications [172–174]. These sensors are placed in
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contact with the clothes worn by a person to measure physiological parameters like
temperature, ECG, EMG, muscle activity, and cardiovascular problems. The power
consumption of these devices is an important issue that needs attention. In addition to
this, the production cost of a flexible sensor is also a challenging issue that needs to be
addressed [175]. Low power consumption sensors such as Shimmer and Telos should
be used for monitoring the health to reduce the power consumption of wearable
flexible sensors.

4. Hardware Deployment: Despite the benefits of AI, designing algorithms on hardware
requires sufficient computing resources, power consumption, high computational
complexity, which is a very challenging task [176]. Hence, the collaboration between
AI and hardware components needs serious efforts to enhance intelligent communi-
cation. The large memory footprint of the trained model and the enormous amount
of sensor data affect the training accuracy and computational speed on hardware.
Moreover, due to lack of specific libraries for hardware, the trained model is not
properly deployed from a specific framework to low-power devices (i.e., edge or
mobile) and FPGAs. These may delay the product delivery for a couple of weeks.
Many researchers are focusing on reducing the complexity of AI and ML algorithms
from hardware perspective and thus enhance the overall performance of the real-time
inference model to make it memory-efficient [177,178].

Figure 10. Layer-wise Security Challenges.

5.2. Future Directions

1. Data Fusion: Recently, data fusion techniques are gaining a lot of attention in different
aspects. Data fusion with big data is an area that ensures the aggregation of data
that are generated either independently or collectively. It facilitates improvement in
decision making through value extraction. The result of this data fusion can be further
manipulated, analyzed, and stored. Data fusion in IoT [32] is more efficient in integrat-
ing, managing, storing, and manipulating the large amount of data. Data processing
in IoT leads to the addition of more data by extracting meaningful information. Thus,
data fusion can help to reduce the volume of that data. Emerging technologies like
M2MC (machine to machine communication) allow data fusion to be performed at
the edge [107]. M2MC has the ability to communicate over a dedicated medium, for
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example, the internet, to enable information flow in an intelligent way through smart
devices for smart homes, cities, and businesses.

2. Industry 4.0: Smartization of manufacturing industries has been perceived as Industry
4.0 (fourth industrial revolution), a paradigm shift made possible by the development
of new information and communication technologies (ICT) [179]. Industry 4.0 is a
new industrial model that displays how production trails and deviates over time.
The emerging technology means the digital factory in which intelligent devices are
inter-networked with semi-finished products, raw materials, robots, machines, and
workers. Industry 4.0 is characterized by the use of resources and the incorporation of
customers and business partners in the business process [180]. The technologies of the
future will be founded on the availability of data. Moreover, those data are becoming
available in profusion thanks to Industry 4.0 that is transforming the industry digitally.
Digital resources like Siemens’ Digital Enterprise portfolio are affecting every phase of
industrial production, from the design of a product to its production to its use. Future
technologies make it possible to analyze and exploit these data pools in completely
new ways. This development will necessitate the use of technology and knowledge
developed in numerous other domains. Autonomous systems need to gain trust
between humans and machines [181]. The IoT vision is rooted in the belief that the
advancement in communications, information technology and microelectronics we
have observed in recent years will be continued into the future. Due to their small
sizes, decreasing energy consumption, and falling prices, communications modules,
processors, and other electronic equipment are being progressively integrated into
everyday objects. At present, cities are remotely monitored and data are collected
intelligently through multiple sensors embedded in surveillance systems. Fifth-
generation (5G) cellular wireless can connect numerous smart objects at the same time
thanks to its capacity and high speed [182].

3. Industry 5.0: After Industry 4.0, intelligent sensing is discovering new heights with
more strategic growth in industrial automation and control. The origin of Industry 5.0
was presented in [183]. The inclusion of ecosystem for safe operation and accelerating
innovation are core features of Industry 5.0. The communication technology used
in Industry 5.0 is similar to Industry 4.0, but the emphasis is on collecting more
dark data from the core components of the plant or manufacturing units to enable
intelligence on it. Society 5.0 is an outcome of industrial advancements which assist
human and machines in making intelligent decisions [184]. Industry 5.0 includes the
implementation of IoT, Big data, Artificial Intelligence, and communication technology
for the digitalization of work environments. The work presented in [185] shares
details about the infrastructure involved in the development of Industry 5.0 work
environment and its effects on business and industries with the involvement of
information technology. The work presented in [186] shows the performance of
Byzantine-tolerant machine learning algorithms in Industry 5.0 with the involvement
of edge computing technology. The goal of Industry 5.0 is to empower rather than
replace workers. Moreover, applications of Industry 5.0 extend well beyond industrial
production. For instance, Industry 5.0 can provide customized therapy and treatment
to COVID-19 patients if detailed information about the patient is available [187].
Industry 5.0-based UAV secure communication using AI was presented in [188]. The
work suggests mass customization and inclusion of cyber-physical systems in this
area. In view of the development, Industry 5.0 will open up ample opportunities for
future research.

4. Explainable AI (XAI): One of the prominent future advancements is explainable AI
that resolves the complexity issues of the models and enables users to understand
how the models reach specific decisions and recommendations [189]. Also, users will
know how the workflow of AI models leads to different conclusions for different
cases and the strengths/weaknesses of the models. Black box models like ANN and
RF are difficult to understand and implement due to their complexity. Therefore,
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an explanation interface such as data visualization and scenario analysis has been
built which presents more explanation towards models and helps humans to easily
understand the relationship between input and predictions. Companies providing
XAI which presents different interfaces for the explanation of complicated AI models
include Google Cloud Platform, Flowcast, and Fiddler Labs [190].

5. Extended Reality and AI: One of the AI-enabled future technology is the extended
reality (XR) combined with all forms of real and virtual environments including aug-
mented reality (AR), virtual reality (VR), and mixed reality (MR). XR is an immersive
technology that creates training data synthetically for DNN. Moreover, it creates
virtual environments [191]. XR environments include cameras, virtual machinery,
sensors, human avatars, and control software, and provide much richer contents
compared to virtual reality. XR and AI unlock many opportunities in various do-
mains [192], such as mobile XR, which uses a combination of smartphones, AR glasses,
and mobile VR headsets. XR solutions are also used in industries and educational
institutions to offer innovative and safe training to employees based on the data
collected by tracking the movement of humans and machines [193]. The healthcare
industry leverages XR in medical procedures to improve surgical imaging [194]. Areas
where XR solutions can be applied still need to be explored. These include 5G com-
munication networks, public services, real estate, defense, and military applications.

6. Convergence of AI and 6G: The future 6G with AI and ML methods will optimize net-
work performance, support diverse services, and build seamless connectivity. Many
researchers have started focusing on 6G with the vision of transmission over THz
and mmWave and integrating communication, sensing, and control functionalities
toward building a sustainable ecosystem. Studies have shown that 6G integrated
with UAV-enabled networks leads to frequent handovers [38]. One of the powerful
AI techniques named DRL, which is a combination of DL and RL, is capable of taking
on the decision-making tasks [195] and can be adapted to provide efficient handovers,
intelligent mobility, and reliable wireless connectivity. Moreover, in some complex
networks, fuzzy Q-learning and LSTM-based AI techniques can be used to avoid
connectivity or handover failures and enable mobility management [196].

7. Channel Coding: Intelligent communication techniques extract the meaning of the
information [197]. This can fulfill two purposes. One is to reduce the amount of
data transmitted, and the other is to protect the information from channel distortion
and noise using error control coding. Network Coding (NC) has been suggested
as a promising technique for improving vehicular wireless network throughput by
reducing packet loss in transmission. In [198], an adaptive network coding method is
proposed with the use of the Hidden Markov Model (HMM) in the network coding
scheme to regulate the rate of coding according to the estimated packet loss rate. In
the near future, research work combining multipath transmission with hierarchical
edge computing in the high-speed cellular-based vehicular network will be a more
focused field.
Recently, Q-learning (QL), which is an ML algorithm, has shown very promising re-
sults in learning problems in energy and computation-constrained sensor devices. The
intelligent collision probability inference algorithm based on Q-Learning model was
proposed in [199]. It is used to optimize the performance of sensor nodes by utilizing
channel collision probability and network layer ranking states with the help of an
accumulated reward function. Future IoT networks will have an assortment of stimu-
lating features that optimize network performance and communication efficiency. ML
techniques allowing machine intelligence to be incorporated in IoT communication
technologies are attracting much attention [200]. The MAC layer and network layer
capabilities of future IoT networks can be enhanced with ML-based algorithms [199].

8. Latency Minimization: Latency minimization is a crucial factor in the deployment of
real-time applications on energy-constrained platforms such as mobile devices. In
the design of AI and computer vision algorithms, latency is considered the primary
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requirement for resource-intensive tasks. Researchers are exploring ways based
on ML and DL methods for reducing latency and energy consumption for future
5G networks [201,202]. Some of the critical issues in intelligent 5G communication
technologies include scheduling medium access control (MAC) layer resources among
sensor devices, storing a large amount of data generated at the network edges, and
assigning virtual network functions (vNFs) to the hosting devices. These issues can be
resolved by reducing the demand on network bandwidth, latency and improving QoS.
These 5G networks are capable of implementing critical tasks such as autonomous
driving, remote drone control, and real-time AI on handheld devices according to
their latency requirements [203].

9. Future Citizenship: Due to the government initiative around the world on digitization
of identity and social information documents, the resources are accessible to their
citizens through various secure online portals. The citizens no longer need to stand
in queues to access the resources as all information is available online. In daily life,
technology is also involved in the form of smart clothing, smart homes, disease
prevention, medicine, etc. It can be said that smart citizenship is the demand of the
smart world. Intelligent sensing is all around the technology used by smart citizens.
Work presented in [42] discusses contributions of information provided by the local
community. One major benefit of such information is to strengthen the quality of
government decision making. In the future, citizens will generate valuable data
through intelligent sensing on mobile platforms. Thus, the challenges related to theft
prevention, forgery, and right to access the information are even more critical for
future citizens.

10. Software Platforms in Intelligent Sensing: The platform on which algorithms can be
executed in an intelligent sensing environment requires multiple software applica-
tions. The three key steps in the development of such systems are (a) hardware level
integration, (b) middleware for feature enhancement, and (c) front end development.
For all the three steps, multiple types of software are available which can be integrated
with each other to create a single framework. The challenge in this domain is to find
one single platform to perform all three steps. Usually the selection of intelligent
sensing platforms is based on the familiarity of the developer with the development
platform. It has been observed that manufacturers provide the development platforms
but limit the use to certain levels. For example, the integration of middleware in a spe-
cific development environment depends on the compatibility of dependent libraries
and the programming language. Due to such constraints, developers face challenges
related to software integration and debugging. Figure 11 shows a brief overview of
how intelligent sensing is applied in various domains and also lists several future
research directions in intelligent sensing.
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Figure 11. Future Directions.

6. Noteworthy Projects Based on Intelligent Sensing

This section presents some noteworthy research projects and initiatives around the
world that are contributing to the field of intelligent sensing. We attempt to cover recent
technologies that can also be helpful in the future. The projects and their technical details
are presented in Tables 6. These projects belong to a variety of fields, including autonomous
underwater vehicles (AUV), 6G, Industry 4.0, smart irrigation, smart farming, smart cities,
smart healthcare, and smart home. The technologies used in these projects are the most
recent ones such as ML, computer vision, DL, MIMO, mmWave, ultra massive MIMO, fog
computing, cloud computing, artificial intelligence, IoT, wireless communication, etc. The
projects spread across the world and touch on many facets of intelligent sensing. Some of
the projects are supported by government agencies, some are sponsored by enterprises,
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and others are pursued by academic institutions. These projects attest to the vigorous
development in intelligent sensing.

Table 6. Some Noteworthy Projects in Intelligent Sensing.

Projects Funding Firms/agencies Technology Used in the Project Aim of the Project

MELOA [204] The European Union’s Horizon 2020 Research and In-
novation Programme

Autonomous underwater technology, GPRS, satellite
communications, and solar panels.

This project design the WAVY drifter units for ocean observing and mon-
itoring systems.

AMOGH [205] National Institute of Ocean Technology and IIT
Madras, India

Artificial intelligence, underwater navigation and
imaging.

It possesses intelligence for picking /placing underwater objects and
processing audio signals.

Autonomous Under water Vehicle
(AUV) CSIR-CMRI, India Autonomous underwater technology.

The vehicle is used for underwater operations like deep-sea mining, ex-
ploration, collection of various scientific data like habitat information of
underwater biomass to oceanographic and bathymetric data.

SSB PANEL (Sonar Signal Behavior
Panel) [206]

Defense Research Development, Organization
(DRDO), India

Deep Learning, machine learning, and computer vi-
sion.

Classification of sonar signals using deep convolutional neural net-
works.

Beamforming using AI for 6G Net-
works [207]

Viavi Solutions, London Brunel University, London,
UK

Artificial intelligence, massive MIMO and mmWave
systems. Intelligent beamforming (IB) scheme is proposed to drive 6G.

Intelligent Environments for Wire-
less Communication for 6G [208]

Broadband Wireless Networking Lab, Georgia Insti-
tute of Technology

Millimeter-wave, terahertz -band communications,
ultra-massive MIMO.

This project deals with the 6G wireless communications as intelligent
communication environment to improve the communication distance
and data rates in mmWave and THz frequency band.

6Genesis—the 6G- Enabled Wire-
less Smart Society and Ecosystem
[209]

University of Oulu, Finland
Artificial intelligence, wireless connectivity and dis-
tributed intelligent computing, 5G/6G radio access
network (RAN).

The goal of this project is to explore the development of 6G standard
and the implementation of the 5G mobile communication technology.

SME 4.0, Industry 4.0 for
SMEs(Smart Manufacturing)
and Logistics for SMEs in an X-
to-order and Mass Customization
Environment [210]

European Union’s Horizon 2020 R&I Programme un-
der the Marie Skłodowska-Curie Smart logistics, smart manufacturing in Industry 4.0.

This project focuses on identifying the need and enablers for Industry
4.0 applications and implementation, also fostering SME -specific con-
cepts and strategies in SME manufacturing and Logistics.

SmartFactory: Cold 4.0 project [211] Gestamp, France Smart factory, Industry 4.0 data analytics, Chassis
quality Project.

This project envisions creating more efficient and flexible manufacturing
plants and more consistent processes through the analysis of data, by
adding intelligence to the processes.

MF2C Project [212] European Union’s Horizon 2020 research and innova-
tion programme Fog computing, cloud computing. The main goal of this project is to address the need for an open and

coordinated managing of fog and cloud computing systems.

WATERBEE DA (WaterBee Smart Ir-
rigation Systems Demonstration Ac-
tion) [213]

European Union’s Horizon 2020 research and innova-
tion programme

Smart irrigation, intelligent irrigation modeling, soil
sensor technology, Web and smartphone user inter-
face, operational sensors.

Project targeted at demonstrating and evaluating a smart irrigation and
water management system. It exploits recent advances in wireless net-
working and environmental sensors.

KisanRaja-Smart Irrigation Device
[214]

Ministry of Micro, Small and Medium Enterprises
(MSME), Government of India

IoT, data analytics, AI, ML, mobile pump cont- rollers,
wireless valve cont- rollers, wireless sensors, and satel-
lite data.

It is designed to transform the technique, used by a farmer to interact
with motors. This project allows a farmer to manage the agricultural
motor using his mobile or landline from the comforts of his home. [215].

Smart Cities Mission Building a
Smart India [216] Indian Government, India

Internet of Things (IoT), Information and Communica-
tion Technology (ICT), Big data, 5G Connectivity, sen-
sor technology, Geospatial technology, Robotics.

Government of India has started this project for such urban areas that
must have all core infrastructure required for citizens to have a civilized
life and a sustainable environment. These features comprise guaranteed
water and electricity supplies, proper sanitation, public transport, suffi-
cient healthcare, education facilities and affordable housing for econom-
ically weak sections of society. Beyond these, such cities must also offer
robust information technology connectivity, which improves local gov-
ernance.

Ambulatory Sensing and Point-
Of-Care Recommendation for IoT-
based Healthcare [217]

Kalam Technology National Fellowship (INAE), India Cloud computing, fog computing.

This project focuses on the efficient decision delivery based on the real-
time monitoring of the conditions such as patient health, road condition.
Based on these decisions, the system finds a nearest hospital through a
safer route.

Safe: Secure And Usable IoT Ecosys-
tem [217] UGC-UKIERI, India IoT, Raspberry Pi, sensor technology.

This project explores the impact of IoT in intelligent ecosystem from a
perception of end-to-end security and context-aware intelligent data ac-
cess.

i-Plug Control [218] DoQuick services pvt.ltd, India
Based on Smart home technologies, intelligent sen-
sors, automatic speech recognition, mobile develop-
ment, artificial intelligence machine learning.

This project focuses on the smart home technology, which helps you
to control everything at your fingertips. From turn on/off lights, play
music to adjust the room temperature from the tap of a Smartphone.

Hyperspectral Microscopy [219] National Institute of Standards and Technology, USA Optical technology, photometry, laser metrology. This project aims at measuring the optical properties of materials
through the use of commercial and custom hyper spectral images.

Ocean Color [220] The National Institute of Standards and Technology,
USA

Marine science, Optical physics and Calibration ser-
vices.

Ocean color radiometry provides essential data of phyto-plankton con-
centration and dissolved organic matters, which allows analysis of pri-
mary productivity, global carbon cycling, and the influence of both on
the global climate.

Advanced Dimensional Measure-
ment Systems [221]

The National Institute of Standards and Technology,
USA

Dimensional metrology, Calibration services and Doc-
umentary standards.

ADMS furnishes the infrastructure needed for the adoption of new mea-
surement technology.

Project N [222] Shanghai-based Pateo Group Co., Shanghai, China Wireless communication, Artificial intelligence, Au-
tomation.

Smart Cars: It is a project of electric vehicles that have range extender a
tiny gasoline motor that charges the battery. The car offers traffic fore-
casts, and syncs to the driver’s social networks.

Smart Cities, Australia [223] Australian Government, Australia IoT Technologies, Artificial intelligence, sensor tech-
nology, intelligent asset management.

Smart cities leverage innovative technologies to enhance quality and
performance of services, reduce cost and consumption of resources, and
engage inhabitants more effectively and actively.

7. Conclusions

The continuous growth in intelligent sensing raises challenges related to the inte-
gration, communication, safety, and adaptation of algorithms in different stages and
applications. This paper has presented a survey of AI-enabled intelligent sensing and
its technology requirements, opportunities, and future directions. In the beginning, we
pointed out the AI technology in intelligent sensing. Then we summarized the contribu-
tions of the work, highlighting key areas in intelligent sensing. We have reviewed various
learning models with comparative analysis. Parameters that affect the performance of
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intelligent sensing are discussed based on the results of recent research. Then available
datasets for use in intelligent sensing are presented to help the research community explore
further. They represent a broad spectrum of datasets that have been used fruitfully in AI
and intelligent sensing research. Advantages and limitations, format of information, and
elucidations are provided. Next, we have presented the review of practical applications,
including intelligent sensing in healthcare, pandemic monitoring, assistive technology,
smart sensor networks, among others. The list is by no means exhaustive but instead
serves to exemplify the ample applications of intelligent sensing. In addition, we have
elaborated on the challenges and future research directions in intelligent sensing, pointing
out challenges related to data security and privacy, data storage, power consumption,
and hardware deployment. It is observed that intelligent sensing will grow more rapidly
with communication technology and edge computing. Therefore, its involvement in data
fusion, Industry 4.0, Industry 5.0, explainable AI, latency minimization, future citizenship,
extended reality, convergence of AI and 6G, and software platforms in intelligent sensing is
discussed in future research directions. Finally, we have presented noteworthy projects in
intelligent sensing, mentioning project names, sources, technology used, and aims of the
projects. These projects are dispersed in many countries and represent the use of intelligent
sensing in diverse areas globally. We believe this work will help researchers get a deeper
understanding of the different aspects of AI-enabled intelligent sensing.
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Abbreviations

The following abbreviations are used in this manuscript:

Acronym Definition
5G Fifth-Generation (Mobile Telecommunications Technology)
6G Sixth-Generation (Mobile Telecommunications Technology)
ADMS Advanced Dimensional Measurement System
AHP Analytic Hierarchy Process
AI Artificial Intelligence
AM Additive Manufacturing
ANN Artificial Neural Network
AR Augmented Reality or Activity Recognition
AUV Autonomous Underwater Vehicle
BMI Body Mass Index
BSI Blind System Identification
CC Common Criteria
CKD Chronic Kidney Disease
CNN Convolutional Neural Networks
CoAP Constrained Application Protocol
CogMAC Cognitive Medium Access Control
COVID-19 Coronavirus Diseases-2019
CRISPR Clustered Regularly Interspaced Short and Palindromic Repeats
DL Deep Learning
DNP3 Distributed Network Protocol 3
ECG Electrocardiogram
EDA Electrodermal Activity
EL Ensemble Learning



Electronics 2022, 11, 1661 31 of 39

EMG Electromyography
ENN Ensemble Neural Network
ET Evapotranspiration
FAME Fatty Acid Methyl Esters
FID Fréchet Inception Distance
FW Feature Weights
GA Genetic Algorithm
GAN Generative Adversarial Network
GMM Gaussian Mixture Model
GPRS General Packet Radio Service
HMM Hidden Markov Model
IB Intelligent Beamforming
ICT Information and Communication Technology
IoT Internet of Things
ITS Intelligent Transport System
IVSS Intelligent Video Surveillance System
KDD Knowledge Discovery and Data Mining
K-NN K-Nearest Neighbors
LAN Local Area Network
LDA Latent Dirichlet Allocation
LIDAR Light Detection and Ranging
LR Linear Regression
LSTM Long Short Term Memory
M2MC Machine to Machine Communication
MAS Multi-Agent System
MFCC Mel-Frequency Cepstral Coefficients
MIMO Multiple Input Multiple Output
ML Machine Learning
MO-PSO Multi-Objective Particle Swarm Optimization
MQTT Message Queuing Telemetry Transport
MR Mixed Reality
NFV Network Function Virtualization
NLP Natural Language Processing
NMF Non-negative Matrix Factorization
NN Neural Network
PCA Principal Component Analysis
PLSA Probabilistic Latent Semantic Analysis
QL Q-Learning
QoS Quality of Service
RAN Radio Access Network
RF Random Forest
RFID Radio Frequency Identification
RL Reinforcement Learning
RNN Recurrent Neural Network
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
SCADA Supervisory Control and Data Acquisition
SDAE Stacked Denoising Auto Encoders
SDN Software Defined Networking
SME Small to Mid-size Enterprise
SVM Support Vector Machine
UUV Unmanned Underwater Vehicle
VR Virtual Reality
WSN Wireless Sensor Network
XAI Explainable AI
XR Extended Reality
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