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Abstract: To fundamentally improve the efficiency of content distribution in the network, information-
centric networking (ICN) has received extensive attention. However, the existence of a large number
of IP facilities in the current network makes the smooth evolution of the network architecture a
realistic requirement. The ICN architecture that separates the process of name resolution and message
routing is widely accepted for its better compatibility with IP networks. In this architecture, the user
first obtains the locator of the content replica node from the name resolution system (NRS) and then
completes the data transmission through the locator. In data transmission, receiver-driven congestion
control algorithms need to be studied. Therefore, we introduce the Copa algorithm into ICN and
propose an improved Copa-ICN algorithm. Experiments show that the Copa-ICN algorithm has
a high convergence speed and fairness, and when there is a transmission process in the opposite
direction, it can still have a high throughput different from the original Copa algorithm.

Keywords: information-centric networking; congestion control; receiver-driven

1. Introduction

With the development of emerging network applications such as short video, virtual
reality (VR) and the Internet of Things (IoT), the distribution of massive amounts of content
makes it increasingly difficult for traditional TCP/IP networks to meet quality of service
(QoS) requirements. A content delivery network (CDN) [1] makes up for the shortcomings
of TCP/IP networks in content distribution to a certain extent by deploying a large number
of caching servers on the user side to cache content, but as application layer technology, its
performance is still limited.

ICN has received increasing attention from researchers [2]. Different from traditional
TCP/IP, ICN names the content and places a cache in the network, only cares about the
content and not the location and naturally supports the distribution of large-scale network
content. In recent years, the research on information-centric networking (ICN) has been
very active. For example, due to the advantages of ICN in content distribution efficiency,
some researchers combine ICN with software-defined networking (SDN) to propose the
SDN-based ICN approach [3]. With the support of flexible programmability and efficient
manageability of SDN, ICN has received more attention [3,4]. Furthermore, most IoT
applications inherently follow a content-oriented communication paradigm [5], which is
similar to the way ICN operates. Some research on the IoT is even easy to apply to ICN [6],
and the application of ICN in the IoT has also attracted the attention of researchers [5].

There are many ICN architectures [7–14]. Based on the routing and forwarding ap-
proach, there are two main types: the name-based routing approach and the stand-alone
name resolution approach [15]. Due to the existence of a large number of IP facilities in the
current network, smooth evolution of the network architecture is a realistic requirement.
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The former’s name resolution process and message routing process are coupled, so they are
less compatible with existing IP architectures, such as CCNs [8] and NDNs [7]. In contrast,
the latter has better compatibility with IP architectures such as MobilityFirst [9], NetInf [13]
and SEANet [14].

In the ICN architecture adopting the standalone name resolution approach, the infor-
mation of the named data chunk (NDC) is registered in the name resolution system (NRS).
To complete the acquisition of the NDC, the receiver first needs to obtain the locator from
the NRS and then uses the locator for routing to complete the data transmission. To prevent
over-utilization of the NRS and the overhead of the cache system, the size of the NDC
should not be too small [16,17]. Larger NDCs require congestion control of traffic during
transmission; otherwise, this will easily cause severe network congestion or even collapse.

In traditional TCP/IP networks, congestion control algorithms have been well-studied [18–20].
The separation of the name resolution process and the message routing process makes it easier to
apply congestion control algorithms from TCP/IP networks to ICN networks. Considering that the
ICN obtains the NDC based on the pull method, the congestion control algorithm in the traditional
network must first adapt to the receiver-driven transmission mode [21]. Secondly, each NDC has
a fixed size, which is very different from the communication method based on the byte stream in
traditional networks. In a high-speed network, if the size of the NDC is not large enough, the data
transmission will end quickly, and it is difficult to achieve a relatively fair throughput between
different NDC transmission processes. In this case, the convergence speed and fairness of the
algorithm are very important.

In this paper, we study some excellent congestion control algorithms in traditional
networks, such as BBR [22], Cubic [23], NewReno [24] and Copa [25]. Due to the excellent
performance of the Copa algorithm in terms of convergence speed and fairness, we propose
the Copa-ICN algorithm based on the original Copa algorithm. In order to observe the
performance of different algorithms more accurately, we propose an ICN transport protocol
prototype compatible with the IP architecture. It first obtains the locator from the NRS
and then uses the set congestion control algorithm for data transmission. The transport
protocol allows switching of the NDC replica nodes to take advantage of ICN’s multi-
replica feature. We implement the proposed transport protocol prototype in Network
Simulator 3 (NS-3) [26] and implement Copa-ICN as well as several other receiver-driven
algorithms. The experiment results show that the Copa-ICN algorithm has huge advantages
in algorithm convergence speed and delay compared with the BBR, Cubic and NewReno
algorithms. Compared with the original Copa algorithm, Copa-ICN not only further
improves the convergence speed but also maintains a high throughput when there is an
NDC transmission process in the opposite direction.

The remaining parts of the paper are structured as follows. We review the related
work about congestion control mechanisms of ICN in Section 2. In Section 3, we introduce
a complete ICN transport protocol. In Section 4, we describe the motivation of the Copa
algorithm in ICN and propose the Copa-ICN algorithm. Section 5 evaluates the NS-3
experiment results of the Copa-ICN by comparison with the Cubic, BBR, NewReno and
Copa algorithms. Conclusions and discussions are carried out in Section 6.

2. Related Work

Whether it is the traditional TCP/IP network or the novel ICN network, congestion
control mechanisms are essential to ensure network performance and efficient use of
network bandwidth. Since ICN was proposed, many ICN architectures have appeared,
and researchers have proposed various congestion control algorithms based on various
ICN architectures.

A number of new congestion control mechanisms have emerged in ICN. MFTP is
the transport protocol of the MobilityFirst architecture, which enables congestion control
within the network through a hop-by-hop backpressure scheme, whereby when congestion
occurs within the network, the congestion signal is passed back to the traffic source on
a hop-by-hop basis, ultimately resulting in a reduction in the amount of traffic injected
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into the network [27]. Some researchers have studied the congestion control of wireless
links. For example, the authors of [28] tried to reduce the delay of ICN wireless links,
while those in [6] proposed a mechanism to reduce wireless network congestion using
clustering, which can be easily applied in ICN. Hop-by-hop interest shaping has been
proposed as a viable congestion control mechanism in NDN [29,30]. Researchers have
proposed many hop-by-hop interest shaping algorithms. In [29], the authors pointed
out that both interests and contents can lead to congestion. By shaping interest packets,
the loss of data packets can be prevented, and the bandwidth utilization of links can be
improved. The authors of [31] proposed a bandwidth fair sharing algorithm between
different flows. Interests and NACKs which exceed the fair share will be discarded together,
and the additive increase multiplicative decrease (AIMD) mechanism is used to control
the receiver’s interest rate. PCON [32] uses the CoDel active queue management algorithm
to detect network congestion and then sends signals downstream by explicitly marking
certain packets. Downstream devices recognize the signal, the router can divert traffic to
another path, and the receiver can slow down the interest rate.

Some works try to borrow mature congestion control solutions in TCP/IP networking.
ICP [33] is a well-known ICN congestion control solution. It uses a congestion window
(CWND) similar to TCP in NDN and uses the AIMD mechanism to control the size of
the congestion window. Each round-trip time (RTT) congestion window increases by
one. When a congestion event occurs, the CWND is reduced to half of its original value.
DCP [34] is a delay-based ICN congestion control protocol that measures the queuing
delay on the forwarding path from the producer or caching site to the consumer using
a protocol similar to the LEDBAT [35] algorithm, and it addresses issues such as slow
start fairness and “latecomer advantage”. CCTCP [36] is a transport protocol suitable
for the CCN architecture. It redesigns the TCP as a receiver-driven transport protocol,
maintains multiple congestion windows, and proposes a new RTT estimation method. The
authors of [37] proposed EC-CUBIC, which uses the core idea of the CUBIC [23] algorithm
to control the rate at which consumers send interest packets, sensing congestion in the
network through the implementation of explicit congestion notifications in routers. NetInf
TP [38] is the transport protocol of the NetInf [13] architecture which is compatible with the
IP infrastructure. It can share bandwidth fairly with TCP traffic using the NewReno [24]
algorithm by implementing the AIMD mechanism for the congestion window. In [21], the
authors propose a two-level congestion control mechanism (2LCCM), which first avoids
the congestion path through the selection of replica nodes and then uses the receiver-driven
BBR [22] congestion control algorithm for data transmission.

Whether it is a hop-by-hop congestion control scheme, a purely receiver-driven scheme,
or other work, most of them do not focus on the convergence speed of the congestion
control algorithm. In some particular architectures, such as NetInf [13] and SEANet [14],
the transmission processes of different NDCs are independent. The size of the NDC is
often larger than one maximum transmission unit (MTU), but the size is limited [16]. In this
case, the convergence speed of the algorithm is particularly important. If the convergence
speed of the algorithm is slow, then NDC transmission will be at an unfair rate most of
the time, and the data transmission rate will be unstable, which will adversely affect the
user experience. Copa [25] is a new congestion control algorithm which was proposed
in 2018. It has better fairness and a faster convergence speed than algorithms such as
the Cubic [23] and BBR algorithms [22]. In this paper, we redesign it as a receiver-driven
model, improve its performance including queuing delay calculation and propagation
delay measurement, and then propose a solution to further accelerate the convergence
speed of the Copa algorithm.

3. Proposed Transport Protocol

In this section, we introduce a receiver-driven transport protocol that can be used in
the ICN architecture by adopting the standalone name resolution approach and can be
deployed over an IP infrastructure.
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3.1. Overview of the Transmission Process

In the ICN architecture of the standalone name resolution approach, the process of
name resolution and message routing are separated, and the NRS maintains the mapping
between the identifier and the locator [39]. In this paper, Entity-ID (EID) is the identifier,
and the network address (NA) is the locator. Specifically, EID represents a receiver device
or an NDC, and the NA represents an IP address. When a new NDC is generated in a
device, the NDC is assigned a unique EID. The EID of the NDC and the IP of the device
will be registered in the NRS. If the receiver wants to obtain the NDC identified by the
EID in the network, it first needs to query the NRS for the NA list of nodes that have
replicas of the NDC and then select a replica node to obtain the NDC. For security reasons,
receiver devices often cannot directly obtain the NAs of nodes in the network, so replica
selection often requires the assistance of edge nodes. Since the size of the NDC is often
larger than the maximum segment size (MSS), the NDC should be split into segments for
transmission. The congestion control algorithm controls the transmission rate, and the
retransmission algorithm performs error recovery. In this process, the sender only needs to
reply with data according to the request of the receiver, which is stateless. ICN routers may
cache forwarded segments. When the ICN router successfully assembles a complete NDC, it
will register with the NRS to become a new replica node. In addition, the dynamic binding
of identifiers and locators makes it easier to modify the NA during packet forwarding. This
means that when severe network congestion occurs between the receiver and the selected
replica node, the NDC transmission can be successfully completed by switching the replica
node. Figure 1 is a schematic diagram of NDC transmission in ICN.

Router(NA2)

Router(NA3)

Router(NA5)

Router(NA6)

Router(NA4)

Router(NA1)

Receiver (EID0)

NRS node

Figure 1. NDC transmission in ICN networks.

3.2. Message Type

Transport protocols use IP addresses for routing, so all messages are encapsulated as IP
packets. An unassigned value for the “Protocol” [40] field of IPv4 or the “Next Header” [41]
field of IPv6 can be set to indicate that the IP header is followed by an EID header. The EID
header is followed by the transport layer header. There are mainly two types of packets
used in the transmission process: one is the request (REQ) packet, and the other is the data
(DATA) packet. The receiver sends the REQ packet to the network, and the replica node
replies with the DATA packet after receiving the REQ packet. Figure 2 is the packet format
in the ICN transport protocol.
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Request Packet Data Packet

Source EID (20 byte)

Destination  EID (20 byte)

Message Type (1 byte)

Source EID (20 byte)

Destination  EID (20 byte)

Message Type (1 byte)

Packet Number (2 byte)

Other parameters 

(variable size)

Packet Number (2 byte)

Offset and Length (8 byte)

Payload (variable size)

Offset and Length (8 byte)

Other parameters

(variable size)

Figure 2. Packet format in the ICN transport protocol.

In the REQ packet, “Source EID” indicates the EID of the receiver device, “Destination
EID” is the EID of the NDC, “Message Type” indicates that the packet is an REQ packet,
“Packet Number” is a monotonically increasing request packet sequence number, “Offset
and Length” indicates the offset and length of the requested data in the NDC, and “Other
parameters” are other optional parameters, such as specifying the MSS and checksum.

In the DATA packet, “Source EID” is the EID of the NDC, “Destination EID” is the
EID of the receiver device, “Message Type” indicates that the packet is a DATA packet,
“Packet Number” is the “Packet Number” of the REQ packet, (An REQ packet usually
requests multiple DATA packets, so the “Packet Number” of the DATA packet will be
repeated.) “Offset and Length” indicates the offset and length of the data in the packet in
the NDC, and “Other parameters” are other optional parameters, such as the NDC size
and checksum.

3.3. Rate and Congestion Control

We use a sliding window (WND) to control the rate during transmission. The size
of the WND is the smaller of the congestion windows (CWNDs) and the available buffer
to the receiver. This paper focuses on the congestion window. In fact, for NDCs with
a limited size, except for resource-limited embedded devices, normal computers rarely
have an available buffer smaller than the congestion window. In the transmission process
controlled by the sliding window, the amount of data that the receiver can request is the
difference between the WND and inflight data. When the size of the WND and inflight
data are equal, the receiver will not be able to send REQ packets, and then when DATA
packets are received, inflight data changes to be small, the WND will be larger than inflight
data, and the receiver will be able to request the data.

When DATA packet loss occurs, we need to detect it as soon as possible and subtract
the amount of lost data from the inflight data so that the receiver can send a new request.
For the loss of DATA packets, we have two ways to find this out. One is the number of
DATA packets received that should arrive after the packet exceeds a certain threshold,
which is similar to the TCP’s fast retransmission, with the difference being that the threshold
in the TCP is a value that can be dynamically changed. Our design refers to the practice
of ICTP [16] and NetInf TP [38] and sets the threshold to a fixed value of three. Another
way to detect packet loss is timer timeout, which is consistent with the calculation method
of RTO in the TCP [42]. Data found to be lost will be re-recorded in the queue waiting to
be transmitted.

Based on the above protocol details, we have implemented a set of congestion control
algorithm interfaces, which can transplant some congestion control algorithms of the
TCP. It should be noted that in the implementation of the interface, the switching of
the replica node is also transmitted to the congestion control algorithm as a congestion
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control signal. In addition, according to the needs of some congestion control algorithms,
the pacing [43] mechanism is also supported. We have implemented four congestion
algorithms—NewReno [24], Cubic [23], BBR [22], and Copa [25]—in the transport protocol.

4. Copa Algorithm in ICN

In this section, we first describe the motivation for applying the Copa algorithm to the
ICN network, introduce the Copa algorithm, and finally propose our improvements to the
Copa algorithm for ICN scenarios.

4.1. Motivation

To prevent network collapse, congestion control is necessary during the transmission
of NDCs. Congestion control of a standard transmission process usually has two phases:
slow start and congestion avoidance. The size of the NDC has a great impact on the
performance of the congestion control algorithm. In addition, an NDC that is too small will
also bring a large overhead to the cache and NRS of the ICN [16,17]. Therefore, the NDC
discussed in this paper is not smaller than 1 MB.

An NDC transmission process controlled by a qualified congestion control algorithm
will try to occupy all the bottleneck bandwidth to avoid wasting bandwidth and reduce
the time required for transmission. To improve the user experience, the NDC should be
delivered at a higher transmission rate as much as possible. When a bottleneck link has a
transmission process joining and ending, all transmission processes through the bottleneck
link should be able to quickly converge to a new fair rate. Since the NDC size in ICN is
limited, the transmission time is often not very long. During the transmission process,
the congestion control algorithm may restart due to the switching of replica nodes. If the
congestion control algorithm takes a long time to converge to the fair rate, it will cause the
NDC transmission to be at an unfair rate most of the time.

The convergence speed and fairness of the congestion control algorithm in ICN should
be two important indicators. Copa is a new congestion control algorithm proposed in recent
years which has been applied in the TCP and QUIC [44,45]. Compared with several widely
used algorithms, it has good performance in terms of bandwidth utilization, convergence
speed, fairness, and delay. Therefore, we implement the Copa algorithm in ICN and
improve it so that it has better performance in the ICN transport protocol.

4.2. Improving the Copa Algorithm in ICN

In the ICN transport protocol, we propose the Copa-ICN algorithm, which has three
improvements over the original Copa: improving the calculation of the queuing delay,
improving the accuracy of the queuing delay, and improving the convergence speed of
the algorithm. Algorithms 1 and 2 show the details of Copa-ICN. Table 1 is units and
meanings of main notation.

Table 1. Units and meanings of main notation.

Parameter Units Meanings

λ Mbps The average throughput of the flow
δ 1/(MTU-sized packet) Determining how much latency is a trade-off to throughput
dq second Average queuing time for the round-trip path of the packet
RTTstanding second The minimum RTT within SRTT/2
RTTmin second The minimum RTT within 10 s
cwnd MTU-sized packet The size of the congestion window
v MTU-sized packet The velocity parameter for the change in cwnd
Tdatstanding second Minimum propagation delay of DATA packet within SRTT/2
Tdatmin second Minimum propagation delay of DATA packet within 10 s
Tq second Average queuing time of the DATA packet
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Algorithm 1: Copa-ICN algorithm (part 1).
Data: pTime: Packet Received Time
Data: SRTT: Smooth RTT
Data: Mss: Maximum Segment Size
Data: cwndBytes: Congestion Window size (in bytes)

1 Initialization:
2 cwndBytes← cwndMin, v← 1, isSlowStart← true
3 direction← UP, numTimesDirectionSame← 0
4 lastCwndRecordTime← CurrentTime, lastRecordedCwndByte← cwndBytes
5 Request two high-priority DATA packets
6 Function OnPacketRecv():
7 Update Tdatstanding, Tdatmin, RTTstanding

8 Tq = Tdatstanding − Tdatmin

9 currentRate = cwndBytes/RTTstanding

10 δ = a · (currentRate/1000000 ∗ 8)2 + b
11 δ = min(δ, 0.5)
12 increaseCwnd← f alse
13 if Tq == 0 then
14 increaseCwnd← true
15 else
16 targetRate = Mss

δ·Tq

17 increaseCwnd = targetRate ≥ currentRate

18 if !(increaseCwnd&&isSlowStart) then
19 UpdateDirection()

20 if increaseCwnd then
21 if isSlowStart then
22 cwndBytes = cwndBytes + Mss
23 else
24 if direction! = UP&&v > 1 then
25 ChangeDirection(UP)

26 cwndBytes = cwndBytes + Mss2·v
δ·cwndBytes

27 else
28 if direction! = DOWN&&v > 1 then
29 ChangeDirection(DOWN)

30 if isSlowStart then
31 isSlowStart← f alse

32 cwndBytes = cwndBytes− Mss2·v
δ·cwndBytes

33 cwndBytes = max(cwndBytes, cwndMin)

34 Update Pacing Rate to cwndBytes·2
SRTT
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Algorithm 2: Copa-ICN algorithm (part 2).

1 Function UpdateDirection():
2 if PTime− lastCwndRecordTime > SRTT then
3 newDirection = cwndBytes > lastRecordedCwndBytes?Up : Down
4 if newDirection! = direction then
5 v = 1
6 numTimesDirectionSame = 0
7 else
8 numTimesDirectionSame ++
9 if numTimesDirectionSame >= 4 then

10 v = 2 · v

11 direction = newDirection
12 lastCwndRecordTime = pTime
13 lastRecordedCwndBytes = cwndBytes

14

15 Function ChangeDirection(newDirection):
16 if newDirection! = direction then
17 direction = newDirection
18 v = 1
19 numTimesDirectionSame = 0
20 lastCwndRecordTime = pTime
21 lastRecordedCwndBytes = cwndBytes

22

23 Function OnReplicaChanged():
24 All parameters reset, goto Initialization

4.2.1. Copa Overview

As a delay-based congestion control algorithm, Copa defines an objective function that
includes the average throughput λ of the flow and the packet queuing delay d:U = log λ−
δ log d. According to the author’s proof, when the data transmission rate is λ = 1

/
(δ · dq) ,

U achieves the maximum value.
Copa defines two directions: “Up” and “Down”. When an ACK is received, CWND

increases if the direction is “Up” and decreases if the direction is “Down” so that the
transmission rate converges to the target rate. The value of CWND changes dynamically
each time to speed up the convergence of the algorithm. Specifically, the algorithm performs
the following steps when an ACK is received:

(1) Update packet queuing delay dq:

dq = RTTstanding − RTTmin (1)

where RTTstanding is the minimum value within half the standard SRTT and RTTmin is the
minimum RTT within 10 s.

(2) Calculate the target transmission rate λ:

λtarget = 1
/
(δ · dq) (2)

(3) Calculate the current transmission rate. Then, determine the direction:

λcurrent = cwnd/RTTstanding (3)

where cwnd is the size of the current congestion window. If λcurrent is less than λtarget, then
cwnd = cwnd + v

/
(δ · dq) , and set the direction to “Up”, where v is defined by step (4).
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If λcurrent is greater than λtarget, then cwnd = cwnd− v
/
(δ · dq) , and change the direction

to “Down”.
(4) The parameter v is used to speed up the convergence, and its initial value is

one. If the current direction is different from the last time, v will be reset to one. If the
direction is the same, and the direction remains unchanged for three consecutive RTTs, then
v is doubled.

In addition, when data starts to be transmitted, Copa will also have a slow start
process, in which the congestion window size increases exponentially until λtarget is no
longer greater than λcurrent. The sender of Copa uses pacing and sends packets at twice
the cwnd/RTTstanding rate. The default value of δ is 0.5, and when the Copa algorithm
competes with buffer-filling schemes, δ will be reduced.

4.2.2. Improved Calculation of the Queuing Delay

Delay-based congestion control algorithms are mostly based on changes in the RTT to
sense the delay and reduce the data transmission rate as the delay increases. During the
transmission of an NDC, there are two directions of packet transmission: one is REQ
packet transmission from the receiver to the replica node, and the other is DATA packet
transmission from the replica node to the receiver. When the queuing delay of DATA
packet transmission increases, the congestion control algorithm reduces the transmission
rate so that the newly added NDC transmission process can quickly reach a reasonable
transmission rate. When the queuing delay of REQ packet transmission increases, the con-
gestion control algorithm will also reduce the transmission rate of the NDC. However,
since there are much fewer REQ packets than DATA packets, and their size is much smaller
than that of the DATA packets, REQ packets occupy very little bandwidth and cannot
achieve the effect of giving up bandwidth to the newly added NDC transmission process.
In addition, the increase in the REQ packet queuing delay does not mean an increase in
network congestion in the opposite direction. Blindly reducing the transmission rate of
the NDC will only cause insufficient utilization of bandwidth in the opposite direction.
Therefore, when the queuing delay in one direction increases, reducing the rate of the REQ
packets in that direction should be avoided, but one should consider reducing the rate of
the DATA packets.

Copa, as a delay-based congestion control algorithm, also has the above problems. It
uses the difference between the minimum RTT in SRTT/2 and the minimum RTT in 10 s as
an input parameter to calculate a target rate, where the difference is inversely proportional
to the calculated target rate. Thus, as the queuing delay experienced by REQ packets
increases, the target rate decreases.

A reasonable approach is that the calculated target rate should only be related to
the queuing delay experienced by DATA packets. This requires the measurement of the
queuing delay of the DATA packets. When there is no clock synchronization problem
between the replica node and the receiver, we can easily obtain the transmission delay
of the DATA packet. However, there is a common clock asynchrony between devices,
and the clock synchronization between different devices is a complex question. Therefore,
we identify the clock difference between the receiver and the replica node as clockdelta.
The transmission delay of the DATA packet is

Tdat = Trecv− Treplica + clockdelta (4)

where Treplica is the timestamp of the replica node which sends the DATA packet and
Trecv is the timestamp of the receiver which receives the DATA packet.

Take the minimum value Tdatmin of Tdat within 10 s and the minimum value Tdatstanding
within SRTT/2. Therefore, the queuing delay of the DATA packet is

Tq = Tdatstanding − Tdatmin (5)
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From Equations (4) and (5), we get the following expression:

Tq = (Trecvstanding − Trecvmin)− (Treplicastanding − Treplicamin) (6)

According to the expression in Equation (6), we know that the clock being asyn-
chronous between the receiver and the replica node will not affect the value of Tq.

We use the queuing delay Tq of the DATA packets to replace the queuing delay of
the round-trip path in the Copa algorithm so that we can still calculate a stable target
rate when the queuing delay of the REQ packets increases. However, the target rate
remains unchanged, and the increase in queuing delay experienced by the REQ packets
will lead to an increase in the RTT, and the bandwidth delay product (BDP) of the link
will increase. At this time, cwnd should also increase. Because Copa decides whether to
increase cwnd according to the size of the current transmission rate and the target rate,
the current rate is cwnd/RTTstanding, and when the REQ packet queuing delay increases,
the RTT will become larger, and the current rate will be lower than the target rate, leading
to cwnd getting larger. Therefore, our improvement to dq computation is reasonable.

4.2.3. Improved Accuracy of the Queuing Delay

The original Copa algorithm uses the minimum RTT within 10 s as the round-trip
propagation time (RTprop) of the link, which means that the measured RTprop will be
larger than the actual value until the link queue is completely emptied. Different NDC trans-
mission processes on the same link may have different measured RTprop values. From the
expression in Equation (1), we know that the queuing delay is related to RTTstanding and
RTTmin. A more accurate measured RTprop means a smaller RTTmin and a larger queuing
delay. This will adversely affect the fairness of the Copa algorithm. We improved the
measurement of the queuing delay Tq, but the problem still exists, as the NDC transmis-
sion process with a smaller Tdatmin value will obtain a smaller data transmission rate.
On the other hand, the size of NDC is limited, the transmission time is often less than 10 s,
and the practice of using the smallest measurement value within 10 s is difficult to apply to
ICN scenarios.

In order to measure the link propagation delay quickly, the scheme of setting higher
priority in the IP header of the packet can be used. Whether it is the IPv4 or IPv6 protocol,
there is a differentiated services (DS) field. When an NDC starts to transmit, the receiver
sets an identification bit in the transport layer header of the first two REQ packets, and the
replica node sets a higher priority in the IP header of the reply DATA packet after identifying
the identification bit. Finally, the receiver will be able to measure a minimum value of
Tdatmin. In addition, during the NDC transmission process, link changes may occur due to
replica node switching and other reasons. At this time, the congestion control algorithm
needs to be restarted, and the propagation delay should also be remeasured.

4.2.4. Improved Convergence Speed of Copa

In ICN, the transmission time of an NDC is not very long most of the time. If the
convergence speed of the congestion control algorithm is slow, the transmission process
of the shared bottleneck link is at an unfair transmission rate most of the time. The Copa
algorithm performs well in terms of convergence speed, but it still cannot meet the needs
of ICN scenarios. Therefore, we improved the convergence speed of the Copa algorithm.

The average number of packets queued in the bottleneck buffer for an NDC transmis-
sion process that reaches a steady rate is 1.25/δ. The value of δ determines how much to
weigh the delay compared to the throughput. When the δ value is small, the number of
queued packets in the bottleneck buffer will increase, which will increase the delay, but it is
beneficial to improve the throughput of the transmission process. In the same bottleneck
buffer, the transmission process with a lower rate should have a stronger aggressiveness
than the transmission process with a higher rate so as to obtain a higher transmission rate.
δ is a parameter that can control the aggressiveness. Therefore, we can dynamically adjust
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the value of δ according to the transmission rate to accelerate the convergence process of
the algorithm.

We consider constructing a function between δ and the transmission rate to achieve the
effect of δ dynamically changing with the transmission rate. Since our goal is to increase the
rate of those transmission processes at lower rates, δ should be as small as possible in this
case. Considering that the function is called every time a DATA packet is received, the re-
quired function should have low complexity in order to reduce computational overhead.
For these reasons, we tried to find functions that meet the requirements. We tested some
functions, and we found that the expression in Equation (7) satisfied our needs. The first
derivative of the expression in Equation (7) is 2 · a · rate. When the rate is small, δ increases
slowly so that it can keep a small value. In addition, the expression in Equation (7) has
low complexity:

δ = a · rate2 + b(rate > 0, a > 0, b > 0) (7)

We set b to 0.05 and a to 4.5× 10−5, and rate is in units of Mbps. Therefore, the mini-
mum value of δ is 0.05. When the transmission rate is 100 Mbps, δ is the default value of
0.5. Considering that δ should not exceed the default value, when the transmission rate
is higher than 100 Mbps, δ will be the default value of 0.5. When the transmission rate is
lower than 100 Mbps, there will be a strong aggressiveness, and because the minimum
value of δ is limited, the aggressiveness will not be too strong. It should be noted that b and
a can also be set to other values, and no specific value is optimal. Increasing the speed at
which a slower transmission process rate converges to a fair rate is always accompanied by
occupancy of the bottleneck buffer.

In this way, we obtain a scheme to improve the convergence speed of the algorithm.
When the transmission rate of the transmission process through the bottleneck link is
different, the transmission process with a low transmission rate has a smaller delta value
and is more aggressive. When several transmissions have the same rate, they have the
same δ, so they can still converge to a stable state. Figure 3 is the relationship between δ
and the transmission rate.
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Figure 3. The relationship between δ and the transmission rate.

5. Experimental Evaluation and Analysis

NS-3 is an easy-to-use discrete event network simulator. The protocol stack proposed
in Section 3 has been implemented in NS-3, which has a set of easy-to-use congestion
control interfaces to facilitate the implementation of new congestion control algorithms.
Mvfst [46] is Facebook’s implementation of the QUIC protocol, which includes a Copa
code. We referred to the Copa code of mvfst and implemented the Copa algorithm in our
protocol stack. Meanwhile, Copa-ICN was implemented by modifying the Copa code.
In this section, we experimentally evaluate Copa-ICN using the NS-3 platform.
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5.1. Experiment Set-Up

The simulation experiment mainly included three kinds of nodes: the receiver that
initiated the NDC request, the replica node that cached the NDC, and the ICN/IP router
for forwarding REQ packets and DATA packets. The nomenclature of the device was
determined by its role in the simulation experiment. For example, the replica node may
have actually been a server, a router with an ICN cache, or even a user device. We placed
NDCs 1 MB, 5 MB, 10 MB, 20 MB, 30 MB, 40 MB, and 50 MB in size on the replica
nodes. Since not all algorithms have a high convergence speed, in order to fully observe
the performance of different congestion control algorithms in transmitting NDCs, some
scenarios chose to transmit the NDC with a size of 50 MB. In practical scenarios, the NDC is
often much smaller, and the algorithm with a faster convergence speed will have a greater
advantage at this time. Additionally, the header of the DATA packet is 108 bytes, and the
valid data contained are a maximum of 1250 bytes. The REQ packet size is generally 106
bytes. Our experiments used two topologies, shown in Figures 4 and 5.

Figure 4 shows simulation experiment network topology 1 (topo-1). It is a linear
topology with n receivers (RE1-REn), one replica node (RN), and two routers (IR1 and IR2).

ICN/IP Router(IR1) ICN/IP Router(IR2)

Receiver 1(RE1)

Receiver n(REn)

Replica Node(RN)

Bottleneck Link

Figure 4. Experimental network topology 1.

Figure 5 shows simulation experiment network topology 2 (topo-2). It contains n
receivers (RE1-REn), two replica nodes (RN1 and RN2), and two routers (IR1 and IR2).

ICN/IP Router(IR1) ICN/IP Router(IR2)

Receiver 2(RE2)

Receiver n(REn)

Replica Node1(RN1)

Bottleneck Link

Receiver 1(RE1)

Replica Node2(RN2)

Figure 5. Experimental network topology 2.
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5.2. Comparison of Copa-ICN with BBR, Cubic, and NewReno

In topo-1, we compared the convergence speed of the Copa-ICN algorithm with the
BBR, Cubic and NewReno algorithms. We set up two experimental scenarios. In the first
scenario, the bottleneck bandwidth of the link was 20 Mbps, RTprop was 30 ms, the size of
NDC-1 was 10 MB, and the size of NDC-2 was 1 MB. In the second scenario, the bottleneck
bandwidth of the link was 60 Mbps, RTprop was 50 ms, the size of NDC-1 was 50 MB,
and the size of NDC-2 was 10 MB. At 0.1 s, RE1 began to request the transmission of NDC-1,
and at 2.1 s, RE2 began to request the transmission of NDC-2.

Figure 6 shows the variation of inflight data over time in two transmission processes
in different congestion control algorithms. Before NDC-2 was added, Copa-ICN and
BBR had the smallest inflight data, of which Copa-ICN had the smallest extreme value,
while NewReno and Cubic had larger inflight data because NewReno and Cubic were
buffer-filling algorithms, while Copa-ICN is based on the queuing delay and the BBR
algorithm is based on the BDP. Therefore, the inflight of the latter two was small. After the
addition of NDC-2, the two transmission processes of the Copa-ICN algorithm converged
to fairness quickly, while the Cubic and BBR algorithms failed to converge to fairness.
In Figure 6(7), NewReno converges to fairness because the congestion window of NDC-2
accidentally increased to a value similar to that of NDC-1 at the end of the slow start.
For the Cubic and NewReno algorithms, only when the packet loss reduced the size of the
congestion window multiplicatively did the transmission processes with different rates
have a chance to converge; otherwise, the congestion windows of the two transmission
processes increased together. A transmission with a smaller congestion window will never
catch up with a transmission with a larger congestion window. BBR relies on periodically
changing the transmission rate gain and periodically entering the detection minimum
RTT phase to empty the bottleneck buffer and make the transmission process converge.
The former has less impact on the transmission rate, and the latter has a very low trigger
frequency. The default was about 10 s, so the overall convergence speed of BBR was slower.
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Figure 6. Variation of inflight over time for different factors (algorithm, bottleneck bandwidth,
RTprop, and NDC size).
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When using different congestion control algorithms, the throughputs of the two
transmission processes joined at different times are shown in Figure 7. The maximum
throughputs in the figure are not 20 Mbps and 60 Mbps due to the existence of the packet
header. The relationship between the maximum throughput (Throughput) and the bottle-
neck bandwidth (BW) is

Throughput = BW/(PH + PP) ∗ PP (8)

PH is the header size of the DATA packet, and its value is 108 bytes. PP is the
maximum value of the DATA packet payload, and its value is 1250 bytes. Therefore, for the
bottleneck links of 20 Mbps and 60 Mbps, the maximum throughputs that could be achieved
by the NDC transmission process were 18.41 Mbps and 55.23 Mbps, respectively. It can be
seen from Figure 7 that the addition of NDC-2 reduced the throughput of NDC-1, and the
throughputs of the two NDCs in Copa-ICN would soon tend to be the same. Although the
throughput of NDC-1 in the Cubic and BBR algorithms was reduced, it was greater than
that of NDC-2. The performance of the NewReno algorithm was unstable, although there
was better performance in the experiment in Figure 7(7), while the performance of the
experiment in Figure 7(8) was poor.
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Figure 7. Variation of throughtput with time for different factors (algorithm, bottleneck bandwidth,
RTprop, and NDC size).

Since the fluctuation of the RTT value was relatively large, in order to clearly observe
the change in the RTT, we used the smooth RTT (SRTT), where SRTT = 0.8 ∗ SRTT + 0.2 ∗
RTT. Figure 8 shows the variation of the SRTT over time in the transmission process using
different congestion control algorithms. It can be seen that the Copa-ICN algorithm always
had the smallest delay, while the BBR and NewReno algorithms had relatively large latency,
and Cubic was almost always algorithm with the longest delay.

Compared with the receiver-driven implementation of the other three common algo-
rithms, which failed to converge to a fair rate, Copa-ICN not only successfully converged
but also had a fast convergence speed. In addition, Copa-ICN also had the lowest la-
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tency. After the start of the second transmission process, the average latency of Copa-ICN
was more than 37% lower than those of the other three algorithms. This shows the correct-
ness of using Copa-ICN instead of several other algorithms in the ICN scenario.
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Figure 8. Variation of smooth RTT over time for different factors (algorithm, bottleneck bandwidth,
RTprop, and NDC size).

5.3. Comparison of Copa-ICN with Original Copa

We changed the Copa algorithm to a receiver-driven model and improved it. To verify
the effectiveness of the improvement, we set up four experiments to compare the Copa-ICN
and Copa algorithms.

5.3.1. Convergence Experiment of NDC Transmission Process

In topo-1, we set up two experimental scenarios to compare the performance of
the Copa-ICN and Copa algorithms in terms of convergence speed. The experimental
parameters of the two experimental settings are shown in Table 2. In Experiment-1, RE1
started requesting the NDC at 0.1 s and RE2 at 2.1 s. In Experiment-2, RE1–RE4 started
requesting the NDC at 0.1, 2.1, 4.1, and 6.1 s, respectively.

Table 2. NDC transmission process convergence experiment parameter settings.

Parameter Experiment-1 Experiment-2

Receiver RE1, RE2 RE1–RE4
Bandwidth 20 Mbps, 50 Mbps 50 Mbps

RTprop 50 ms, 80 ms 50 ms
ICN/IP Router IR1, IR2 IR1,IR2
Replica Node RN RN

Topology topo-1 topo-1

It should be noted that, according to the expression in Equation (8), when the bottle-
neck bandwidth was 20 Mbps and 50 Mbps, the maximum throughputs were 18.41 Mbps
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and 46.02 Mbps, respectively. In addition, for the convenience of observing the experimental
phenomenon, the size of the NDC was set to 50 MB.

Figure 9 shows the change in throughput over time during the first 10 s of Experiment-1.
When the second transmission process was added, the throughput of the first transmission
process would decrease, and the throughput of the second transmission process would
continue to increase so that the throughputs of the two transmission processes would
continue to tend to be the same. Observing the time required for the throughput of the
transmission process under different bandwidths and RTprops to become the same, it can
also be seen that with the increase in the bandwidth and RTprop, the convergence speed of
the Copa-ICN and Copa algorithms would become slower and slower. However, the varia-
tion in Copa-ICN’s convergence speed was much smaller than that of Copa. The time it
took for Copa-ICN to converge to a fair rate was only about 20% of that of Copa.
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Figure 9. Convergence of the two transmission processes for different bandwidths and delays.

The variations of multiple transmission processes over time in the first 10 s of
Experiment-2 are shown in Figure 10. It can be seen that with the Copa-ICN algorithm,
the throughputs of different transmission processes converged to the same value quickly
when a transmission process was added. With the Copa algorithm, however, it took much
longer for the throughputs of the different processes to become the same, and a better
convergence rate was achieved only when there were many transmission processes in the
link. The reason for this is that when there are many transmission processes, the fair share
of the throughput of each process becomes smaller, and so the convergence time required
is reduced.

A dynamic δ value was used in Copa-ICN with a maximum value of 0.5. The Copa
algorithm used a fixed default value of 0.5. According to the calculation in [25], the number
of packets in the bottleneck buffer of a transmission process is 1.25/δ. Therefore, using
the Copa-ICN algorithm will have more data packets queued in the bottleneck buffer.
It can be seen from Figure 11 that the queue length of the bottleneck buffer area of the
Copa-ICN algorithm was significantly larger than that of the Copa algorithm. When the
fourth transmission process started, the average queue length of Copa-ICN was eight times
that of Copa. Moreover, after the third NDC transmission process was added, the packets
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in the buffer area had not even been emptied, meaning that it was difficult to measure the
RTprop of the link during the transmission process, and thus the measured queuing delay
would be too small. If the queuing delay measured by the transmission process added later
is too small, it will occupy more bandwidth in the competition with other transmission
processes, resulting in unfairness between transmission processes. However, as can be seen
from Figure 10, Copa-ICN still maintained good fairness at this time, which shows that our
improvement to the queuing delay accuracy was effective.
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Figure 10. The throughput of the transmission process started at 4 different times over time.
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5.3.2. Coexistence with the NDC Transmission Process in the Opposite Direction

In topo-2, we conducted throughput experiments with the Copa-ICN and Copa algo-
rithms in the presence of NDC transmission processes in opposite directions. NDCs were
placed at RN1 and RN2. The bottleneck bandwidth and RTprop settings of the link were
20 Mbps and 40 ms and 50 Mbps and 80 ms, respectively. At 0.1 s, n− 1 receivers (RE2-REn)
would start requesting the NDC from RN1 as a reverse NDC transmission process, where n
had a value of 1, 2, and 3. At 2.1 s, RE1 started requesting the NDC from RN2.

Figure 12 shows the throughput changes in RE1 upon obtaining the NDC from RN2
under different parameters. It can be seen that in any case, when there was no NDC
transmission process in the opposite direction, RE1 obtained the maximum throughput,
and when there was an NDC transmission process in the opposite direction, the throughput
of RE1 would decrease. In the case of using the Copa algorithm, the throughput would
continue to decrease as the number of transmissions in opposite directions increased.
However, in the case of using the Copa-ICN algorithm, the throughput would not change
much as the number of transmissions in the opposite direction increased. In the network
with a bandwidth of 50 Mbps and RTprop of 80 ms, when there were two transmission
processes in opposite directions, the throughput of Copa was reduced to 39%, while that of
Copa-ICN was 87%. Copa-ICN could still maintain good performance.

2 3 4 5 6 7 8 9 10
time(s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

th
ro

ug
hp

ut
(M

bp
s)

×101

(1) Copa (Bandwidth 20Mbps RTprop 50ms)

0 NDC
1 NDC
2 NDC

2 3 4 5 6 7 8 9 10
time(s)

0

1

2

3

4
th

ro
ug

hp
ut

(M
bp

s)

×101

(2) Copa (Bandwidth 50Mbps RTprop 80ms)

0 NDC
1 NDC
2 NDC

2 3 4 5 6 7 8 9 10
time(s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

th
ro

ug
hp

ut
(M

bp
s)

×101

(3) Copa-ICN (Bandwidth 20Mbps RTprop 50ms)

0 NDC
1 NDC
2 NDC

2 3 4 5 6 7 8 9 10
time(s)

0

1

2

3

4

th
ro

ug
hp

ut
(M

bp
s)

×101

(4) Copa-ICN (Bandwidth 50Mbps RTprop 80ms)

0 NDC
1 NDC
2 NDC

Figure 12. Variation of throughput over time for different factors (algorithm, bottleneck bandwidth,
RTprop, and number of NDC transmission processes in opposite directions).

5.3.3. Experiment with Different-Sized NDCs in Transmission

We measured the flow completion time (FCT) for NDCs of different sizes in topology
1. The NDC was placed in the RN. The bottleneck bandwidth of the link was 100 Mbps,
and the RTprop was 60 ms. We used RE1–RE5 to request the NDC from the RN as 5
background traffic at 0 s, and RE6 started to request the RN to transmit the NDCs of 1 MB,
5 MB, 10 MB, 20 MB, 30 MB, 40 MB and 50 MB respectively at the 8th second.

According to the expression in Equation (8), the maximum throughput was 92.05 Mbps
when there were 6 NDC transmission processes. The average throughput of each transmis-
sion process was 15.34 Mbps, so we could calculate the optimal FCTs of NDC transmission
of different sizes. Figure 13 shows the relationship between the ratio of the FCT measure-
ment value and the optimal value of the NDC and the size of the NDC. As can be seen
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from the figure, as the size of the NDC increased, the gap between the FCT measurement
and the optimal value became smaller and smaller. When the NDC size was 1 MB, the FCT
of Copa-ICN was 85% of that of Copa, and when the NDC size was 50 MB, the FCT of
Copa-ICN was 97% of that of Copa. The reason for this is that with the increase in the
NDC size, the transmission time will be longer, and when the network conditions remain
unchanged, the convergence time of different transmission processes is certain, which will
make the transmission process in the optimal throughput time longer. Therefore, it is closer
to the optimal FCT value. In the figure, the FCT of Copa-ICN consistently outperformed
Copa. The reason for this is that when the Copa-ICN algorithm is used, the transmission
process converges faster, which also increases the time during which the transmission
process is at the best throughput, resulting in a better FCT.

0 10 20 30 40 50
NDC size (MB)

1.2

1.4

1.6

1.8

2.0

FC
T/

Op
tim

al
FC

T

Copa
Copa-ICN

Figure 13. The ratio of the FCT to the optimal value for NDCs of different sizes.

6. Discussion

The convergence speed is an important indicator to measure the congestion control
algorithm. In ICN, especially in some architectures of the stand-alone name resolution
approach, the convergence speed of the algorithm is even more important. In this paper, we
proposed a congestion control mechanism based on the Copa algorithm, called Copa-ICN,
which is suitable for the IP network-compatible ICN architecture. Copa-ICN not only has
huge advantages over the BBR, Cubic, and NewReno algorithms in terms of convergence
speed, fairness, and delay, but it also has two important improvements over the original
Copa algorithm. One is that the Copa-ICN algorithm converges faster without reducing
fairness, and the other is that the throughput of the algorithm is significantly improved
when there is an NDC transmission process in the opposite direction.

The Copa-ICN algorithm is easy to deploy. Although we only implemented it in NS-3,
there are no technical difficulties when Copa-ICN is implemented in practical systems.
First, the protocol stack supports the mechanism where the receiver sets the flag bit in the
REQ packet to notify the replica node to stamp the device time in the DATA packet. Second,
the protocol stack needs to modify the congestion control algorithm. Because the protocol
stack often has a set of easy-to-use congestion control algorithm interfaces, just like the
congestion control interface of the Linux kernel protocol stack, by using the congestion
control algorithm interface, we can easily implement various congestion control algorithms,
including Copa-ICN.

In the ICN architecture compatible with IP networks, how to coexist with TCP traffic is
an important issue. TCP traffic may use a variety of different congestion control algorithms,
which will challenge the convergence speed of the Copa-ICN algorithm. This will be the
content of our further research in the future.
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