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Abstract: The explosive growth of botnets has posed an unprecedented potent threat to the internet. It
calls for more efficient ways to screen influential bots, and thus precisely bring the whole botnet down
beforehand. In this paper, we propose a gravity-based critical bots identification scheme to assess the
influence of bots in a large-scale botnet infection. Specifically, we first model the propagation of the
botnet as a Heterogeneous Bot Infection Network (HBIN). An improved SEIR model is embedded
into HBIN to extract both heterogeneous spatial and temporal dependencies. Within built-up HBIN,
we elaborate a gravity-based influential bots identification algorithm where intrinsic influence and
infection diffusion influence are specifically designed to disclose significant bots traits. Experimental
results based on large-scale sample collections from the implemented prototype system demonstrate
the promising performance of our scheme, comparing it with other state-of-the-art baselines.

Keywords: botnet; critical bots identification; Heterogeneous Bot Infection Network

1. Introduction

Botnets have posed an unprecedented potent threat to the internet due to the explosive
growth of IoT (Internet of Things) devices in recent years [1]. The core of a botnet is to
exploit the vulnerabilities existing in the current vast number of IoT devices and to monetize
infected devices through illicit activities on peer-to-peer (P2P) models. Representative
botnets, including Mirai and Mozi [2], are able to launch a spree of massive distributed
denial-of-service (DDoS) attacks with overwhelming traffic sourced from a large number of
powerful devices. Traditional host-based defense measures, e.g., anti-viruses (AVs), are
struggling to keep pace with the increasing sophistication of botnets. It calls for effective
surveillance techniques to obtain insight into the entire situation of a large-scale botnet
before it takes shape.

As a response to this persistent yet rapidly evolving botnet threat, hundreds of sci-
entific works have investigated botnet properties within various approaches. Simple
Susceptible-Exposed-Infectious-Removed (SEIR) models combined with Markov chain
have been widely adopted to measure the total infected population [3]. However, as sum-
marised in [4], these works concentrate more on revealing the propagation property while
overlooking the global topology information of the botnet. From a typical governance point
of view, it is important to explore a botnet’s vulnerability, i.e., identify those crucial bots
whose corruptions bring the whole botnet work down to its knees.

There have also been a substantial number of works proposing different approaches
to account for botnet governance [5–10]. Unfortunately, these approaches do not seem
to represent the entire spatial-temporal characteristics together with the heterogeneity of
botnets. Since botnet infection is typically a complex activity with propagation behaviors
to observe, it is unclear whether current complex work solutions can indeed automatically
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learn the representation of botnet infection and thereby output valid prediction results. In
addition to deficient patterns, none of these works verified their models in the real world.
Consequently, they are far less likely to be readily applied to alleviate the spread of botnets.

To comprehensively tackle a large-scale botnet infection problem fundamentally, two
crucial questions are raised naturally. The first one is how to devise a feasible model
to depict both local and global topology dependencies among bots, as well as portray
the significant propagation pattern across heterogeneous spatial-temporal dimensions,
and verify its effectiveness in the real world. The second challenge lies in how to design
an effective method that is capable of precisely disclosing multiple significant botnet
infection characteristics. Thus it can comprehensively weigh the influence of botnet nodes
in heterogeneous spatial-temporal dimensions for key bots identification.

Jointly considering the challenges above, in this paper, we propose a novel critical bot
identification scheme, to explore the influential bots in a large-scale botnet infection. We
model the propagation of a botnet as a Heterogeneous Bot Infection Network (HBIN) to
extract both heterogeneous spatial and temporal dependencies, where an improved SEIR
model is embedded to deeply reveal the transition states of bot devices during infection.
Based on the built HBIN, we distinguish the influences of bots among the HBIN into
diffusion influences and intrinsic influences, which respectively focus on global topology
compromise and bots’ interactions with neighbours. We further present a Gravity-law
based Critical Bots Identification (GCBI) algorithm where intrinsic influence and infection
diffusion score are specifically designed to disclose significant bots’ influential traits.

In a nutshell, our major contributions are summarized as follows:

• We elaborate a SEIR-based HBIN by utilizing the advantages of the SEIR model
and a heterogeneous information network (HIN), where the SEIR model depicts
the transition states of bots, and HIN provides the heterogeneous spatial-temporal
dependencies among various botnet devices. Such a comprehensive HBIN is capable of
representing significant propagation characteristics on a global bot infection network
for further influential bots identification;

• We design a Gravity-law based Critical Bots Identification algorithm based on HBIN,
which distinguishes the influences of bots into intrinsic influences and diffusion
influences. Such a GCBI algorithm is capable of identifying the critical bots in both
local and global potential structural heterogeneous temporal-spatial dimensions;

• We implement an IoT botnet monitor system and collect millions of bot samples with
distinct labels. We evaluate the effectiveness of our proposed algorithm with extensive
experiments on the large-scale real dataset.

The remainder of this paper is organized as follows: Section 2 introduces our con-
structed model for depicting botnet infection. Section 3 presents the details of the critical
bot identification scheme. Section 4 provides a discussion on the results gained from the
extensive experiments. Section 5 shows system deployment and impacts. In Section 6, we
review some related work. Finally, Section 7 draws final conclusions.

2. Botnet Infection Model

In this section, we first briefly introduce the propagation process of a botnet and next
present a SEIR-based HBIN model to characterize botnet propagation pattern. To better
understand the botnet propagation, we take Mozi botnet as a typical example to provide
a summary of a botnet’s operation gleaned from our botnet tracing system. As indicated
in Figure 1a, building a large-scale epidemic botnet network heavily relies on exploiting
weakness recursively. The workflow of the botnet propagation is illustrated as follows:
(1) Target scanning: At the start of the infection, a bot node scans for benign devices by
choosing IP addresses randomly; (2) Weakness discovery: Susceptible devices with weak
credentials will be labeled as the targets; (3) Vulnerability exploiting: The bot node attempts
to exploit vulnerabilities at a target and then plants a malicious sample into the target
device if it exploits it successfully; (4) Bot binding: Once the target has been infected, the
bot node binds the victim to the related port and tries to connect to peer nodes; (5) Botnet
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forming: During the propagation of a botnet, more and more benign nodes would be
targeted by old bots and turned into newly recruited bots recursively. Based on how P2P
communication takes place, the botnet forms an overlay topology.

On the other hand, the devices may die sporadically due to the failure of the network
or system. However, if the dead node is resurrected, it is also able to be recruited by
the botnet.

Figure 1. Botnet Infection Model.

2.1. SEIR State Transition Diagram

Since botnet propagation is similar to disease transmission in a population, we can
depict the transition states of bots by employing the SEIR epidemic model.

As indicated in Figure 1b, there are four entity types in botnet propagation, i.e.,
Benign, Target, Bot, Dead. For an individual node, it can be affected and transformed
into other types under certain conditions. For instance, initial ‘Benign’ nodes would be
marked as ‘Targeted’ nodes when they encounter vulnerability exploitation, and ‘Targeted’
entities would also be turned into ‘Infected’ if a bot loads a malicious sample into them
successfully. In other words, each individual node could possess different states during
botnet propagation. The entire individual node’s transition state diagram formally also
consists of four distinct states—Benign(B), Targeted(T), Infected(I) and Dead(D), which
correspond to Susceptible(S), Exposed(E), Infected(I) and Recovered(R) in the SEIR model,
respectively. Benign(B) refers to the state where a vulnerable device has not been infected.
Targeted(T) denotes the state where a device with potential weakness has been found by
other bot nodes but is temporarily unable to infect others. Infected(I) indicates a device
that has been infected by the other bots and can spread pestilences to others with a certain
probability. The Dead(D) state denotes the quarantined or healed entity thus permanently
immune to the current pestilences.

The detailed notations of transition states and corresponding conditions are sum-
marised in Table 1. According to the analysis of the botnet propagation process, we can
verify that two transition state pairs, i.e., Benign(B) to Targeted(T), and Targeted(T) to
Infected(I), play an important role in the expansion of a botnet. In what follows, we build a
heterogeneous botnet infection network to investigate the dynamic characteristic of botnet
infection mainly based on these two transition state pairs.

Table 1. The explanation of state transform diagram. Note that the transitions we pay more attention
to are in bold.

Transition Conditions

B→ T Become the target of a bot

B→ D Device is closed, or vulnerabilities are repaired

T → B Vulnerabilities exploiting failed

T→ I Vulnerabilities exploiting is successful

T → D Device is closed, or vulnerabilities are patched

I → D Device is closed, or vulnerabilities are patched

D → B Device is opened, or new vulnerability are emerged
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2.2. HBIN Model

We next build a Heterogeneous Bot Infection Network (HBIN) that is capable of
modeling the heterogeneous spatial-temporal dependencies in botnet infection.

In the context of botnet infection, the HBIN can be defined as a weighted heterogeneous
graph G = (V , E ,O,R,W), where V is the set of vertices representing multiple IoT device
nodes, E is the set of multiple directed edges representing the relations among multiple
nodes. O and R represent the set of node types and that of spatial-temporal edge types,
respectively. Note that each node in V is attributed to a type, e.g., Benign(B) or Bot(O),
depending on its current state in botnet infection. Meanwhile, every edge in E is associated
with a unique directed label fromR illustrating a spatial-temporal relation between two
nodes, e.g., a Bot node chooses one specific Target(T) to launch infection action, such as
vulnerability exploitation. Obviously, we have |O|+ |R| ≥ 3 for a heterogeneous network.
Each edge in E is also assigned a weight inW according to its edge type, which represents
the occurrence probability of different relations, e.g., the probability that a Bot node chooses
one specific Target(T) to launch infection action. As a result, a graph G with various types
of nodes equipped with weights on different edges is called a Heterogeneous Bot Infection
Network. To accelerate the modeling of HBIN, we provide two type mapping functions in
practice, i.e., φ : V → O and ϕ : E → R, to retrieve the type of a given node, as well as the
type of a given edge, respectively.

Before the entire botnet data can be loaded into the HBIN G, we abstract an infection
schema graph for G, which can be considered a “dictionary” of HBIN G. The infection
schema defines the types of vertices and edges in the graph and how those types of vertices
are related to one another. Formally, as shown in Figure 1c, the schema graph of HBIN can
be denoted as TG = (O,R,W) with node types, edge types and edge weights from G.

Based on the analysis of the SEIR state transform diagram above, we formally de-
fine a HBIN schema with four node types, denoted as O = {Benign(B), Target(T), Bot(O),
Dead(D)}. We also define three important types of relations, that is, edges among nodes that
have a great impact on botnet propagation, which are denoted asR = {Scan(S), Choose(C),
Success f ullyIn f ected(SI)}. In this HBIN schema, Scan(S) refers to the relation that a Bot(O)
node scans its neighboring Benign(B) devices; Choose(C) denotes that a Bot node chooses
one specific Target(T) to launch infection action; while Success f ullyIn f ected(SI) indicates
the relation whereby a Bot(O) successfully infected a certain new Bot(O). We useW = {σ,
α, β} to denote the weights of three corresponding edges R = {Scan(S), Choose(C),
Success f ullyIn f ected(SI)}, indicating the occurrence probability of edge-represented rela-
tions, respectively. Specifically, σ describes the occurrence probability that a Bot(O) scans
its neighboring Benign(B) devices. α indicates the probability that a Bot node chooses a
Target(T) to launch an infecting action, such as vulnerability exploiting. The α value depends
largely on the node’s attributes itself, including ip-type, location and available ports since
these attributes are always bound to some specific vulnerabilities. We define the formula of α
as follows:

α = α1 · x1 + α2 · x2 + b, (1)

where 0 < α < 1, α1 and α2 are coefficients that are associated with ip-type and location of
device respectively. x1 and x2 are numerical values respectively representing ip-type and
location for a specific device. b is the bias coefficient. Note that α1, α2, b are pre-learned via
NN-1, which is a neural network with one neuron. In NN-1, it inputs the feature vectors
which synthetically represent attributes of a specific node, and outputs the “1” or “0”,
where “1” indicates that the device is easily the target of botnet infection, and vice versa.

More specifically, the edge weight β refers to the occurrence probability that a Bot
successfully infects a certain new Bot(O). Intuitively, its value is determined by two
continuous steps. The first step is that a Bot(O) locks a Target(T) and is ready to launch an
infecting action whose occurrence possibility is indicated by weights α. The following step
describes the process that a Bot(O) converts the Target(T) to a new Bot(O) successfully.
Mathematically, β can be calculated by the following formula:
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β = α · NI
NT

, (2)

where NT and NI are the the total number of Targeted devices and Infected devices in the
botnet. NI

NT
is the fixed probability from global statistics.

According to the analysis above, each dynamic node infection event can be represented
as a quad e = (vi, r, w, vj) where vi and vj are source and target nodes, r ∈ R is the event
type, and w ∈ W refers to the event occurrence probability. For example, vi denotes a
Bot(O), vj refers to a Target(T), then r denotes a Choose(C) relation representing a fact that
vi chooses one specific vj to launch infecting action with a probability w = α.

The HBIN schema provides heterogeneous spatial-temporal dependencies among
infected bot nodes during botnet infection through infecting diffusion paths. As such,

we can characterize a botnet dynamic diffusion path of bot infection as Bot(O)
SI(β)−−−→

Bot(O)
SI(β)−−−→ Bot(O). This dynamic diffusion path is a semantic abstraction that illustrates

a dynamic infecting process that a bot continuously conscripts new indirect bots through
the directly infected bots with a certain probability β.

Given the proposed HBIN schema, we detail the process of HBIN generation in
Algorithm 1. The initial network includes massive Benign devices, a few Bots and Dead
devices. The basic idea of Algorithm 1 is to extend the bot-conscripted network by infecting
new devices iteratively. The generation process halts until the botnet is immune to infection,
i.e., most Benign devices become Bots.

Algorithm 1: Heterogeneous Bot Infection Network Generation Algorithm.
Input: HBIN schema TG = {O,R,W}, the set of active Bot nodes Os, the set of Benign nodes Bs, the

empty set of Target nodes Ts, the set of Dead nodes Ds, probability σ, γ, δ, system time T;
Output: A HBIN G = (V , E ,O,R,W)

1 t = 0;
2 while !isEmpty(Bs) and t < T do
3 Each Bot node in Os randomly scans Benign nodes in Bs with a probability of σ;
4 Update the type and weight of directed edges from Bot to all it scanned Benign nodes as S and σ

respectively;
5 t = t + 1;
6 for each Bot node vi ∈ Os do
7 Bot node vi chooses its Target to launch infection action;
8 if vj is chosen by vi then
9 Update vj’s node type as Target;

10 Update the type of directed edge from vi to vj as C;
11 Calculate the weight α of directed edges from vi to vj by Equation (1);
12 Move vj from Bs to Ts;
13 end
14 t = t + 1 ;
15 end
16 for each Target node vj ∈ Ts do
17 if vj is infected by Bot v ∈ Bs then
18 Update vj’s node type as Bot;
19 Update the type of directed edges between all vj’s neighboring Bot nodes and vj as SI;
20 Recalculate the weight β of directed edges between all vj’s neighboring Bot nodes and vj

by Equation (2);
21 Move vj from Ts to Os;
22 t = t + 1;
23 end
24 end
25 Move node that converts to Dead from its original set to Ds with a probability of γ;
26 Move node that converts to Benign from its original set to Bs with a probability of δ;
27 V = Bs + Ts + Os + Ds;
28 end
29 return G = (V , E ,O,R,W). ;
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3. Critical Bots Identification

To explore the most influential bots in HBIN, we first analyze the characteristics of
bots infection based on real botnet traces from 3 to 27 August 2021 with the capability
of CNCERT’s Global IoT botnet monitoring system. We draw a HBIN that represents
the infecting interactions among bots. As shown in Figure 2, the darker the bots, the
larger propagating ability they have, which implies two important facts. Firstly, bots with
higher infection influence would have more domination over the network, because more
infections are propagated through those bots. Secondly, highly infectious bots have more
compact infection links with the other highly infectious bots, which indicates that a bot
with large contagion is likely to attract the other influential bots. In other words, a bot with
multiple infectious edges has higher impacts on nearby nodes and thus is likely to be more
influential, which is similar to the properties of representative gravity law.

Figure 2. A sample of infection graph.

Inspired by these observations, we present a Gravity-law based Critical Bots Identi-
fication (GCBI) scheme based on the built HBIN. The rough idea of GCBI scheme takes
into account both neighborhood bots’ interaction and diffusion information, where a bot
with larger infection degrees (neighborhood interaction) and averagely shorter infection
distances to other bots (diffusion information) is more influential.

Formally, given a HBIN G = (V , E ,O,R,W) and an integer M, GCBI scheme aims to
find the M maximum allowed number of bots IG = {ID1, ID2, ID3, . . . , IDm} that should
be singled out for special treatment. To better compromise topological and neighborhood
information in the infection process, we distinguish the influences of bots among the HBIN
into intrinsic influences and diffusion influences, which capture the interacting capability
with other neighbors and diffusion capability in topology, respectively. As a result, the
actual infectious influences of a bot in HBIN can be estimated as a weighted sum of its
neighborhood intrinsic influences and diffusion influence. Specifically, for a bot u ∈ E
with bot v ∈ E as its neighbor, the true infecting influences of bot u, i.e., TIIu , can be
mathematically represented as follows:

TIIu = Sii(u) + ∑
v∈Nout(u)

wr(v)Sii(v), (3)

where Sii(u) and Sii(v) are intrinsic influences for bot u and v, respectively. wr(v) =
weight(u,v)

∑j∈Nout(u)
weight(u,j) , which denotes the ratio of edge weight Euv to total out edge weights for

bot u. Note that weight(u, v) indicates the probability of infection from bot u to another bot
v, we have weight(u, v) = β, which can be calculated by Equation (2). Equation (3) indicates
that the correlations between a bot and its neighbors, i.e., the true infecting influence of
a bot depend on the intrinsic influences of itself and the neighbors it infects (diffusion
influences) directly.

Intrinsic Influence Calculation We next investigate the calculation of intrinsic influ-
ence. Naturally, a bot node with multiple infection links is more likely to be influential.
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On the other hand, it has higher impacts on nearby nodes and fewer impacts on the bots
far from it. Based on above issues, we leverage the gravity law to evaluate the intrinsic
influence of the bot, which can be represented as follows:

Sii(u) = Sid(u) ∑
v 6=u

outdeg(v)
D(u, v)2 , (4)

where Sid(u) is a diffusion score of bot u that is used to measure the diffusion influences of
bots, i.e., its impacts on nearby nodes. outdeg(v) is the number of infection edges sourced
from bot v. D(u, v) denotes the effective infection distance from u to v. According to
Equation (4), we can verify that a node with many infected neighbors and close to the most
influential nodes will derive a larger intrinsic influence in HBIN. To further investigate the
diffusion influence of bots, we will explain effective infection distance D(u, v) and diffusion
score Sid(u) in detail in what follows.

Effective infection distance D(u, v). In the context of HBIN, we define effective
infection distance to assess how many hops there are apart from two bots along the
infection path. We already know that the edge weight of HBIN indicates the probability
of infection from one bot u to another v, i.e., weight(u, v) = β, effective infection distance
highlights the shortest route that infects throughout two bots. To describe the distances
between two bots in a network with precision, we formulate D(u, v) as follows:

D(u, v) = min{1− log2(P(u, v)∗)}, (5)

where P(u, v)∗ denotes the probability of u to choose its direct or indirect downstream
attainable neighbor v, P(u, v)∗ is formulated as follows:

P(u, v)∗ = P(u, l1)× P(l1, l2)× ...× P(ln−1, ln)× P(ln, v), (6)

where P(li, li+1) is the probability of li choosing its direct neighbor li+1, which is defined
as follows:

P(li, li+1) =
weight(li, li+1)

outdeg(li)
, (7)

where 1
outdeg(li)

denotes the average probability of choosing li+1 from many direct neighbors
of li, weight(li, li+1) indicates the occurrence probability of the infection event from li to li+1.
Note that P(li, lj) 6= P(lj, li), and P(li, li) = 0; we can verify that D(li, li) is also infinite.

Diffusion Influence Calculation. We employ infection diffusion score Sid(u) to mea-
sure the diffusion influence of bots by globally sorting bots into different levels of shells.
Different levels of shells are analogous to houses labeled with different levels of index,
where bot nodes are respectively placed according to their infectious ability. The bots in
the innermost shell have the highest infectious capacity while bots in the outermost shell
have the smallest. To calculate the non-negative infectious capacity of bots, we propose a
decomposition scheme to place bots into different levels of shells and therefore derive the
final infection diffusion score for an individual bot.

The decomposition scheme can be considered as an iteration process. In each iteration,
each bot in HBIN calculates its infection diffusion score. If its score is lower than the current
index of the assigned house, the bot will be pruned. With the iterative decomposition
process, the bots possessing the most infectious ability will be pruned at the last round.

Note that the infection diffusion score in the decomposition process concentrates more
on the edges where the bot infects the other bots (out-degree) instead of the bots infected
(in-degree). For ease of presentation, we use exhausted out-degree ke

out(·) to denote the
removed neighbor bots number, and Ne

out to denote the removed neighbor bots during
each decomposition iteration. Similarly, residual out-degree kr

out(·) indicates the remaining
neighbor bots number and Nr

out indicates the remaining neighbor bots. Mathematically, the
diffusion influence for a given bot can be represented as an infection diffusion score:
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Sid(u) = λkr
out + (1− λ) ∑

v∈Nr
out(u)

weight(u, v) + η

λke
out + (1− λ) ∑

v∈Ne
out(u)

weight(u, v)

, (8)

where λ, η are tunable coefficients between 0 and 1, which are used to adjust the impact
ratio of different factors to infectious influence. After generating the infection diffusion
scores for all bots, bots are clustered into different levels of shells by a Sid controlled iterative
decomposition process. All bots in a shell (SID-shell) have the same Sid value. The higher
the Sid value is, the greater the bot diffusion influence is. We present the detailed procedure
of bot infection diffusion score calculation in HBIN in Algorithm 2.

Algorithm 2: Infection diffusion score calculation.
Input: A HBIN G = {V , E ,W ,O,R}, tunable coefficient λ and η;
Output: Bot nodes ranklist[v, Sid]

1 while !isEmpty(V) do
2 Calculate Sid for all bot nodes in G by Equation (8);
3 Assign SID = the smallest Sid value;
4 repeat
5 for each bot v with Sid ≤ SID do
6 Assign Sid = SID;
7 update v’s Sid value in the ranklist;
8 Remove bot v from G;
9 end

10 Calculate Sid for all bot nodes by Equation (8);
11 until All remaining bot nodes have Sid > SID;
12 end
13 return ranklist[v, Sid];

4. Implementation and Evaluations

In this section, we conduct a series of experiments to evaluate the feasibility and
performance of our proposed GCBI scheme.

4.1. Experiment Setup

Experiments were implemented under the Windows 10 operating system, equipped
with a Ryzen 5600X processor, AMD, California, America, two NVIDIA GTX960 graphics
cards and 16 GB of RAM. Our DHIN model was developed with Python 3.6.0.

Data Acquisition and Preparation. To derive the large-scale raw botnet data, we
implemented a prototype system to collect the samples of botnet activities with a distinct
timestamp and interaction label automatically. The sources of botnet samples can roughly
be divided into two categories: one is generated by active probing, the other is derived
from traffic analysis. We deployed an active probing system where a probe module was
integrated to look for the active bots. As malicious attackers often execute an HTTP request
to exploit IoT nodes, we also employed a traffic analysis approach by collecting a vast
number of real botnet exploiting traces from the Internet from 3 to 27 August 2021 with the
capability of CNCERT’s Global IoT botnet monitor system. Tens of thousands of botnet
nodes together with their interactions were extracted from the collected botnet samples.

To better emulate the real infection phenomena on HBIN, we employed the SI epidemic
model [11] to be the benchmark. Note that each botnet node has its different β value (i.e.,
the probability of infected) calculated by Equation (2) in our SI simulation. We only paid
attention to the epidemic spreading ability of bots, i.e., ’susceptible’ state and ’infection’
state regardless of ’dead’ state. Because we believe that dead nodes will not affect the
weighting of bots’ effective infection influence and the infection trend globally.
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The key parameter Settings and Network attributes of the experiment are summarized
in Table 2.

Table 2. Network attributes of HBIN constructed by the dealt data used in the experiments.

Dataset N TN NO NT NB ND E TE ES EC ESI dout ND pmean C

HBIN 18,611 4 12,810 5689 100 12 14,473 3 500 13,737 236 1.072 14 3.082 0.00003

Where the attributes’ interpretation are:

• Nodes count (N);
• Node types count (TN);
• Bot nodes number (NO);
• Target nodes number (NT);
• Benign nodes number (NB);
• Dead nodes number (ND);
• Edges count (E);
• Edge types count (TE);
• Scan edge number (NS);
• Choose edge number (NI);
• Success f ullyin f ected edge number (NSI);
• The average of node out-degree (dout);
• Network diameter (ND): largest value of the shortest path distance between any

two nodes;
• The average of shortest path length (pmean): the average of shortest path length

between any two nodes;
• The average of clustering coefficient (C): the average local clustering coefficient over

all the nodes;

4.2. Baseline Methods and Metrics

In this experiment, our numerical studies were based on the comparisons with several
state-of-the-art baseline algorithms, which can be roughly classified into two groups: local
solution and global solution. Note that local solution refers to the algorithms that only take
their neighbors’ information into consideration for critical node identification, i.e., Degree
centrality (DC) [12], LocalRank [12] and Neighborhood coreness [13]. Global solution
includes K-shell [14], M-shell [15], Clossness centrality (CC) [16], Betweenness centrality
(BC) [17] , PageRank [18], ClusterRank [19], GM [20] and EFFG [21], which are capable of
utilizing the global structure information of network to quantify nodes’ importance.

All baseline algorithms were implemented in Python. Each baseline algorithm would
generate a critical bots list. Without losing generality, we leveraged Kendall’s τ value [22]
and monotonicity [13] as the metrics to assess the correctness of the generated bots list.
Kendall’s τ value is a standard approach to compare two ranked lists, which is formulated
as follows:

τ =
2

N(N − 1) ∑
i<j

sgn[(xi − xj)(yi − yj)], (9)

where sgn(x) is a sign function, N denotes the total number of nodes in the ranking lists,
andxi, xj and yi, yj are the order values in the two ranking lists for the nodes i and j
respectively.

Monotonicity is a measure of the uniqueness of rank value assigned to each node. We
employed monotonicity to understand the effectiveness and the quality of the ranking list
generated by different methods, which is formally expressed as:

M(R) =
[

1− ∑r∈R nr(nr − 1)
N(N − 1)

]2

, (10)



Electronics 2022, 11, 1771 10 of 14

where nr is the total number of those nodes with the same rank r, and N is the total number
of the nodes in the ranking list R.

4.3. Performance Comparison

We first studied the comparison of GCBI algorithm with the other baseline algorithms
by investigating infection influence. As shown in Figure 3, we drew a heat map to illustrate
the distribution of the bots’ importance. In the right color scale card, the proportion of
different colors indicates the proportion of bots number in different influence score scales.
Note that the darker the bot color is, the more highly influential the bot is. We can observe
that the heat map generated by GCBI is well discriminated by red (higher influence)
and blue (lower influence) colors. On the contrary, the other baselines have to employ
more colors to describe their importance distribution. These observations imply that the
proposed GCBI algorithm is able to distinguish critical bots more accurately compared
with the other baselines.

We next investigated the impact of different algorithms on identifying influential bot
nodes in HBIN. We applied the SI [23] model on our HBIN networks. Note that each botnet
node has its different β value (i.e., the probability of infected) calculated by Equation (2)
in our SI simulation. The top-10 bot nodes generated by six different methods were first
selected. We then set the top-10 bot nodes as the initial infectious bots in the SI model
separately. Note that we ran the SI simulation experiment 1000 times independently for
each method. We calculated the average of total bots number, directly or indirectly, infected
by the set of 10 initial infectious bots up to time T respectively. The bots that generated
more infected nodes up to time T are more influential. The results are shown in Figure 4.
The steeper the curve is, the more influential the 10 bots in the initial infectious set are. It
can be seen that our proposed GCBI algorithm denoted by the dark blue curve derives
the best performance compared with the other algorithms. The bots number infected
by 10 infectious bot nodes generated by our GCBI is about 15% higher than the second
best baseline algorithm, i.e., ClusterRank (CR), which is identified by the light blue curve.
This result practically demonstrates the effectiveness of our proposed method for critical
bots identification.

Figure 3. The heat map of different methods calculated influence scores in HBIN. Note that the
proportion of different colors in the right color scale card indicates the proportion of nodes number
in different influence score segments.
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To further investigate the effectiveness of our GCBI algorithm, we conducted extensive
experiments by running eleven baseline methods in our constructed HBIN. Each baseline
method generates a ranking list with top-5 critical bots. We applied Kendall’s τ values
and the monotonicity values of GCBI to compare their relative performance in identifying
critical bots. The detail of performance comparisons is shown in Table 3. We can observe
that the top-5 overlapping number generated by GCBI algorithm is 4, while τ is about 0.556,
which are both the largest compared with the other global algorithms. This result confirms
that the proposed GCBI algorithm is more effective than the benchmarks. The rationale is
that the proposed GCBI can successively explore dynamic infection interactions along the
diffusion path. We also notice that the monotonicity values M of GCBI algorithm are close
to 1. In contrast, the benchmarks, i.e., coreness, k-shell, Closeness Centrality, and EFFG
result in relatively low monotonicity values. This phenomenon indicates that GCBI can
attain the most critical bot node set with efficiency and high quality since it fully and specif-
ically considers various significant and influential botnet infection features across multiple
dimensions instead of just considering a certain feature in a certain dimension. Obviously,
GCBI is practical for precisely selecting critical bots in a large-scale bot infection network.

Figure 4. The figure compares the infection ability of the top-10 bot nodes selected by different
methods in HBIN.

Table 3. Comparison with baseline methods.

SI GCBI DC Coreness k-Shell m-Shell CC BC PR CR GM EFFG Greedy

Top-5 ranking of crucial bots in HBIN selected by our proposed method, other state-of-the-art methods and SI benchmark model

1 231 231 95 95 3025 201 95 95 87 231 87 231 9665

2 226 226 87 87 1551 212 87 87 2271 226 212 226 951

3 229 229 2271 2271 229 9665 10,380 1980 95 229 49 229 3320

4 212 212 523 65 226 11,159 11,626 1698 11,626 201 5635 200 7

5 70 228 65 523 228 1753 96 1695 5989 200 8969 212 7377

The total number of the same bots between SI benchmark method and other methods for the ranked top-5 bots

Sum 5 4 0 0 1 0 0 0 0 3 0 3 0

Kendall’s τ values and the monotonicity values of our proposed method along with other state-of-the-art methods

τ 1 0.556 0.156 0.244 0.067 0.111 −0.067 0.032 −0.111 0.2 −0.022 0.333 0.114

M 1 0.928 1 0.054 0.277 0.99 0.195 1 1 0.898 1 0.419 1

5. System Deployment and Impacts

By adopting the proposed scheme, our GCBI algorithm has already been incorporated
into CNCERT’s Global IoT Botnet Monitor System for over 12 months. The Botnet Monitor
System is able to deal with super-large-scale infection networks and effectively finds critical
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influential bot nodes for different botnets within the response time threshold. It collects
about 100,000 newly found IoT Bot nodes per week and distinguishes about 1% key bots
from millions of nodes. CNCERT has demonstrated its performance at quickly identifying
critical bots. In the short run, the system will be deployed in the anti-botnet industry to
provide surveillance services against botnet rampant expansion.

6. Related Work

Extensive works have investigated botnet properties within various approaches. How-
ever, the literatures that are closely related to this paper roughly fall into three categories:
botnet analysing, epidemic modeling and key nodes identification.

With the rapid expansion of botnets, many works focus on understanding, detecting
and mitigating botnets. The remarkable research of Antonakakis et al. [24] studied the
rapid rise of Mirai and its subversion of the fragile IoT ecosystem through a 7-month
retrospective analysis of the number of infected hosts and DDos victims to disclose some
significant characteristics, such as the time of appearance, fragile devices it targeted and
infected, the attacks it carried out and the modes of propagation. Along this line, the
botnet characteristics obtained by analysis are further widely utilized for detection [25].
Generally, the majority of existing detection approaches [25–31] focus on particular botnet
C&C (command and control) protocols and network structures, e.g., centralized or P2P,
flow and graph based features.

The application of epidemic modeling originated in the medical field to study disease
incidence among people [8]. Due to its effectiveness at modeling propagation behavior,
there exists a large number of works that apply it to modeling vulnerability [4,7,8,10,32,33].
Kephart et al.[34] first introduced the epidemic model to cyber-security with the study of
modeling computer viruses. In [7], Lu et al. used the SI (Susceptible-Infected) model to
construct a semi-distributed P2P Botnet growth model that extends the classical worm
propagation SEM model. Along this line, Antonakakis et al.[4] designed a state-based model
to observe botnet propagation with mobile actuators. Recently, more stochastic versions
of these epidemic models tend to use Markov Processes or stochastic differentials. In [35],
Abaid et al. leveraged Markov chain to build a botnet propagation and infection model,
helping to predict botnet attacks and provide early warnings to network administrators. As
summarised in [10], epidemic modeling is capable of explaining the discrepancy in botnet
propagation well. However, they overlooked global topology information and failed to
represent the entire spatial-temporal characteristics together with the heterogeneity of the
botnet. Our work adopts the SIER model to keep the dynamic properties of botnet infection
while leveraging HIN to represent topological characteristics, as it has shown efficiency in
complex topology portraying [36].

In recent years, critical nodes identification [20,21,37–42] has been widely studied
in complex networks. Typical identification methods include abstract distance [21], in-
formation entropy (IE) [38–43] and machine learning [29]. Shang et al. [21] introduced
effective distance to replace the Euclidean Distance for identifying influential nodes based
on information fusion and multi-level processing. Liu et al. [37] proposed a generalized
weighted gravity model, called the Generalized Mechanical Model (GMM), which is capa-
ble of considering both local information based on neighbors and global information based
on paths in both directed and undirected networks. Note that most of the existing works
mainly concentrate on spatial characteristics, and it is unclear whether existing key nodes
identification can indeed comprehensively consider the significant characteristics of botnet
infection and thereby output critical bots precisely.

Differing from these works, our work leverages advances of epidemic modeling and
key nodes identification techniques, which are capable of disclosing the significant propaga-
tion characteristics of botnet infection across spatial-temporal dimensions for finding critical
bots with the most influence that contribute significantly to zombie pestilence diffusion.
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7. Conclusions

IoT botnets have been a painful problem for the internet. In this paper, we studied
the problem of critical nodes identification in vast botnet infection. We modeled the
propagation of a botnet as a HBIN integrated with SEIR to disclose significant infection
features. Based on a heterogeneous bot infection network, we proposed a Gravity-law
based Critical Bots Identification scheme to assess the influence of botnet nodes. The
proposed critical bots identification scheme, mixed with intrinsic influence and infection
diffusion influence, is capable of measuring the influence of a botnet node by considering
various significant traits in HBIN. Experimental results demonstrate the effectiveness of
our proposed scheme compared with the state-of-the-art methods based on a large-scale
real-world dataset.
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