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Abstract: Deep learning models have been increasingly applied to medical images for tasks such as
lesion detection, segmentation, and diagnosis. However, the field suffers from the lack of concrete
definitions for usable explanations in different settings. To identify specific aspects of explainability
that may catalyse building trust in deep learning models, we will use some techniques to demonstrate
many aspects of explaining convolutional neural networks in a medical imaging context. One
important factor influencing clinician’s trust is how well a model can justify its predictions or
outcomes. Clinicians need understandable explanations about why a machine-learned prediction
was made so they can assess whether it is accurate and clinically useful. The provision of appropriate
explanations has been generally understood to be critical for establishing trust in deep learning
models. However, there lacks a clear understanding on what constitutes an explanation that is both
understandable and useful across different domains such as medical image analysis, which hampers
efforts towards developing explanatory tool sets specifically tailored towards these tasks. In this
paper, we investigated two major directions for explaining convolutional neural networks: feature-
based post hoc explanatory methods that try to explain already trained and fixed target models and
preliminary analysis and choice of the model architecture with an accuracy of 98% ± 0.156% from
36 CNN architectures with different configurations.

Keywords: explainability; convolutional neural networks; medical imaging

1. Introduction

Artificial intelligence in medical imaging is a recent development that has the potential
to revolutionize the field. The ability of AI to learn and make predictions can help doctors
diagnose diseases earlier and more accurately. For example, doctors are using deep learning
algorithms to diagnose diseases from medical images such as X-rays and CT scans faster
and more accurately than humans can [1]. In addition, scientists are working on creating
robots that will be able to assist nurses in caring for patients. These robots will be able to
do things such as measure patients’ vital signs and report them back to nurses. This will
allow nurses to spend more time with patients who need their attention the most [2].

AI can help reduce the number of false positives and negatives in medical images,
which can lead to more accurate diagnoses and treatment plans, while there are some
concerns about how much data AI requires in order for it to be effective, these concerns
are outweighed by the benefits that this technology brings to the medical community. By
working closely with physicians and other clinical professionals, we can create systems that
not only produce reliable results but also provide explanations for why those results were
produced. This will help build trust between doctors and AI models, leading to greater
adoption rates and satisfaction levels across the board.
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Since its inception, AI has grown increasingly complex, with deep learning algorithms
and deep learning algorithms becoming ubiquitous in everything from user interfaces
to business intelligence. However, this complexity has also made it difficult for humans
to understand how these algorithms work or even why they produce certain results.
This lack of explainability has led some experts to express concern that these advanced
AI systems may contain unforeseen vulnerabilities or biases that could have harmful
consequences [3,4].

Fortunately, there are efforts underway to make AI more understandable and account-
able. For example, researchers at MIT have developed an algorithm called EXSUM: from
local explanations to model understanding a mathematical framework for quantifying
model understanding, and propose metrics for its quality assessment [5]. Furthermore,
businesses are beginning to realize the importance of explaining their decisions not just to
customers but also regulators and other stakeholders who need assurance that AI is being
used responsibly [6].

Our paper aims to do two stages of explanation: the first is finding the right model
while respecting a few major factors; then, a visual explanation or medical specialist
can fully understand the decision made by our model. This also allows for detection of
drawbacks where necessary. The rest of the paper is organized as follows: the background
and the context of explainable AI in the medical setting is discussed in Section 2. Then,
Section 3 covers Materials and Methods by introducing the CNN’s basic and different
techniques used. In Section 4, we discuss the results and the analysis of the experimental
results and discussion and conclusion of this work is presented in Sections 5 and 6.

The term explaining convolutional neural networks describes the explanatory process.
We will often refer to CXAI for explaining convolutional neural networks and explainable
AI as XAI.

2. Background Study

There are many reasons why a doctor or other medical professional might need to
understand what a CNN model is telling them. For example, if the model predicts that a
patient has cancer, the doctor will want to know what specifically led the machine to that
conclusion. This may be important for two reasons: first, so that the doctor can verify that
the prediction is correct; and second, so that the doctor can understand which aspects of
the image were most important in making the diagnosis [7].

CNN interpretability is particularly important in certain medical imaging tasks. One
such task is detecting lesions in images of human skin. In this application, it’s often very
difficult for a human expert to determine whether or not an observed lesion represents
cancer. However, if we have an interpretable CNN model trained on these images, we
can ask it to explain its predictions in terms of specific image features (e.g., colouration
patterns or textures) [8,9]. This information could then be used by doctors as part of their
decision-making process when diagnosing patients with skin lesions [10,11].

The black-box nature of deep learning models has been a concern for many researchers
and practitioners in various industries, but it is particularly worrisome in medical applica-
tions where lives may be at stake. Indeed, if something goes wrong with a decision made
by an AI algorithm, it may be difficult or even impossible to determine what led to that
decision and how to fix it. This lack of interpretability can also make explaining the results
of ML algorithms to clinicians difficult, which can hinder adoption [12].

There are two main causes for why explainability and interpretability are barriers for
AI’s practical implementation in medicine: the gap between research communities and
real-world medical applications, and the lack of interpretability in deep learning models.

First, there is often a disconnection between breakthrough research findings and their
practical application-this is especially true in the field of AI where new techniques are
rapidly evolving. For example, while some cutting-edge ML algorithms have been shown
to outperform humans on specific tasks (such as object recognition), they have not yet been
widely adopted by medical professionals due to concerns about reliability and safety.
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Second, one major challenge facing AI development today is that most deep learning
models are “black boxes”meaning that it is often very difficult (or even impossible) to
understand why they produce certain results or make specific decisions. This presents a
serious obstacle when trying to deploy these models into clinical settings where mistakes
could potentially lead to life-threatening consequences [13].

When it comes to the application of artificial intelligence (AI) and deep learning (DL),
there are two main axes: performance and understanding. The first axis is performance,
which is mainly concerned with how well AI and DL can do a certain task. The second axis
is that of knowledge. AI has helped research across the world with the task of inferring
relations that were far beyond the human cognitive reach [14].

There are many important factors to consider when choosing a research model. In
our article, we discuss two stages of explanation: the first is finding the right model while
respecting a few major factors; then, a visual explanation or medical specialist can fully
understand the decision made by our model. This also allows for detection of drawbacks
where necessary.

3. Materials and Methods
3.1. Convolutional Neural Networks

The name “convolutional neural network” indicates that the network employs a
mathematical operation called convolution. In essence, convolution allows the network
to learn features in the input data by overlapping and combining small regions of it. This
makes it possible for the network to identify patterns even when they are not explicitly
stated in the training dataset. As such, convolutional nets often achieve better performance
than traditional feedforward nets on tasks such as object recognition and classification

This sections focuses and illustrates basic technical knowledge regarding deep learning
with CNNs. The CNN architecture includes several building blocks, such as convolution
layers, pooling layers, and fully connected layers. A typical design comprises of numerous
convolution layers and a pooling layer repeated several times, followed by one or more
fully linked layers. Forward propagation refers to the process of transforming input data
into output data via these levels (Figure 1).

Figure 1. Convolutional networks.

3.1.1. Feature Maps Phase

One of the most important stages in CNN is the feature extraction stage (as you can
see in Figure 2). This stage is responsible for identifying and extracting key features from
an image. This is a critical step, as the features extracted will be used to determine if there
are any anomalies in the image. A convolution layer is a core component of the CNN
architecture that conducts feature extraction. It generally comprises of a combination of
linear and nonlinear processes, such as convolution and activation functions.
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Figure 2. Feature maps phase.

3.1.2. Fully Connected Layer

The most significant step in the CNN model is feature extraction. This step is based on
the mathematical property of the convolution operation, which allows us to extract features.
These features are then pooled together and downsampled before being mapped into the
final outputs of the network. However, it is important to note that each full connected layer
in a CNN typically holds the same number of outcome nodes as the number of clusters (as
you can see in Figure 3). This ensures that all information related to a certain task (such as
clustering) is contained within one layer, and can be easily interpreted by a human observer.
Finally, after all layers have been fully connected, a non-linear function is applied in order
to produce results.

Figure 3. Fully connected layer.

3.1.3. Probabilistic Distribution

There are a variety of activation functions that can be applied to the last fully con-
nected layer of a neural network. The most common is the linear function, but there are
others that may be more appropriate for specific tasks. For example (See Figure 4), when
performing multiclass classification, it is often useful to use a softmax function to normalize
output values and produce target class probabilities. where each value ranges between
0 and 1 and all values sum to 1. Typical choices of the last layer are a linear or sigmoid
activation function.
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Figure 4. Probabilistic distribution.

3.2. Global Versus Local Explanation

In this section, we will address the problem of explanations specific to convolutional
neural networks, but before that, we will introduce some basics of XAI. We will suppose
that the CNN model is pre-trained and that the input-output relationship it implements is
abstracted by a function. In the context of medical imaging, this function may take as input
an image, and the output of the function may be proof of a certain medical condition or
help clinicians or radiologists decide on the presence or absence of anomalies.

Many approaches have been put forth to explain deep learning predictions. We can
divide them into two general categories: global and local explanations. Global explanations
provide a high-level understanding of the inner workings of the entire target model. Local
explanations aim to provide an explanation for the prediction of the target model on any
individual instance [15].

A global explainer is a deep learning model that is designed to explain the behaviour
of the entire target model, usually via distilling the target model into an interpretable one.
Global explainers can be helpful in understanding how a complex deep learning model
works, and can also provide instance-wise explanations as to why certain outputs were
produced. However, it should be noted that global explainers are not perfect and may not
always produce accurate results. Additionally, most of the current research in this area
focuses on designing local explainers rather than global ones [16].

Global explanations are beneficial because they give us a broad understanding of how
the target model works as a whole. However, they often lack detail and can be difficult to
interpret. Local explanations are more detailed, but may not be representative of how the
target model behaves on other instances [16].

x∗ = arg max
x

f (x) (1)

In principle, verifying that a function has a high value only for the valid cases is an
important task. However, it is difficult, if not impossible, for an interpretable model to
accurately capture all the irregularities learned by a highly non-linear model. Hence, local
explanations derived from global explainers might not always be accurate. The majority of
the current works in the literature focus on designing local explainers.

In our medical application context the global explanation may be good as a first step to
understand the model’s behaviour. Global approaches focus on the interior of a model by
leveraging general information about the model, training, and associated data. It attempts
to describe the model’s behaviour in general. Feature importance is a good example of this
method, which tries to figure out the features which are in general responsible for better
performance of the model among all different features. Global explainers are particularly
useful when the modeller wants to understand the general mechanisms in the medical data
or debug a model.

Local explanations or local interpretable methods are applicable to a single outcome
of the model. This can be completed by designing methods that can explain the reason for
a particular prediction or outcome. For example, it is interested in specific features and
their characteristics. Specifically, we would like to know for that very example what input
features contribute positively or negatively to the given prediction. These local analyses
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of the decision function have received growing attention, and many approaches have
been proposed. For simple models with limited non linearity, the decision function can be
approximated locally as the linear function (Equation (2)) [17].

f (x) ≈
d

∑
i=0

[∇ f (x̆)]i • (xi − x̆i)︸ ︷︷ ︸
Ri

(2)

where x̆ is some nearby root point (see Figure 5).

Figure 5. Nonlinear function of the input features, which produces some prediction. The function
can be approximated locally as a linear model.

Many deep learning models are designed to produce a single output (such as predict-
ing whether an email is spam or not), which can often be explained using local interpretable
methods. By breaking down the model into its individual parts (e.g., looking at which
input features contribute positively/negatively to predicting an outcome), we can better
understand how it works and why it produces certain results.

Ultimately, which approach we use depends on our goals and what we want to learn
from deep learning predictions. If we want a broad understanding of how the target model
works, then global explanations are ideal. If we need more specific information about why
a particular prediction was made, then local explanations are better suited for that task.

3.3. Post-Hoc versus Self-Explanatory

One of the most prominent distinctions among current explanatory methods is to
divide them into two types post hoc and self explanatory methods.

Post-hoc explanatory methods are stand-alone methods that aim to explain already
trained and fixed target models. For example, LIME is a post hoc explanatory method
that explains a prediction of a target model by learning an interpretable model, such as a
linear regression, on a neighbourhood around the prediction of the model. So, post hoc
explainability can be cast as a type of “explanation-by-justification”, an after-the -prediction
explanation step where some evidence/information/visualisation is given to elucidate the
predictions made by the AI system [18].

Another popular post hoc explanatory method is Shapley value attribution [19], which
aims to identify which input features are most important for predicting the target label. This
information can then be used to improve or fine tune the target model. Finally, Bayesian
local interpretable model-agnostic explanations [20] combines multiple interpretable mod-
els into one overall interpretation of predictions from complex deep learning models.
This approach has been found to be more accurate than single interpretable models in
some cases.

Overall, post hoc explanatory methods provide valuable insights into why AI systems
make certain decisions or predictions. These insights can help us improve our systems and
better understand how they work.

Self-explanatory models are a relatively new development in the field of deep learning,
but they have already shown great promise. At a high level, self-explanatory models have
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two interdependent modules: (i) a predictor module, which is responsible for making
predictions about some task or outcome, and (ii) an explanation generator module, which
is responsible for providing explanations for the predictions made by the predictor. This
separation of responsibilities allows self-explanatory models to be more accurate and
efficient than traditional deep learning models [21].

One example of a self-explanatory model is Lei et al.’s [22] neural network model. In
this model, the explanation generator selects a subset of input features that are then passed
on to the predictor module. This allows the predictor to make its prediction based solely
on those selected features, without being influenced by any extraneous information. The
advantage of this approach is that it eliminates noise from the data and results in more
accurate predictions. Additionally, because only relevant information is passed on to the
predictor module, self-explanatory models are also more efficient than traditional deep
learning models in terms of computational resources required

Self-explanatory models do not necessarily need to have supervision on the explana-
tions. For example, the models introduced by Lei et al. [22,23] do not have supervision on
the explanations but only at the final prediction. On the other hand, the models introduced
by [23,24] require explanation-level supervision in order to generate accurate predictions.

In general, for self-explanatory models, the predictor and explanation generator are
trained jointly, hence the presence of the explanation generator is influencing the training
of the predictor. This is not always true for post hoc explanatory methods which do
not influence at all predictions made by already trained target models. In cases where
adding an explanation generator to a neural network results in significantly lower task
performance than that of a neural network trained only to perform the task, it may be
preferable to use latter model with a post hoc explanatory method. On the other hand it can
be case that enhancing neural network with an explainer and jointly training them results
in better performance on task at hand. This could potentially due to additional guidance
in architecture model or extra supervision on explanations if available [25]. For example,
sentiment analysis is the process of identifying and quantifying the attitude of a writer or
speaker with respect to a particular topic. This task can be difficult, as the sentiment an
author expresses may not be straightforward. In a study by Lei et al. (2016), it was found
that adding an intermediate explanation generator module to a sentiment analysis model
did not hurt performance. This suggests that giving explanations for the results of deep
learning models can help improve understanding among users.

However, in [26] the authors found that using self-explaining models outperformed
neural networks trained only to perform the task of sentiment analysis on common sense
question answering tasks. This suggests that explanatory methods have their advantages
and disadvantages depending on what task is being performed.

4. Results
4.1. The Preliminary Analysis Part

Machine learning algorithms are used to teach computers how to learn from data.
Deep learning algorithms are used to create networks that can learn how to recognize
patterns on their own [27]. Both machine learning and deep learning algorithms require
hyperparameters tuning in order to work properly. Hyperparameters are the variables
that control the behaviour of a machine-learning algorithm. They include things such
as the number of layers in a neural network, the size of training datasets, and the type
of optimization algorithm used. Tuning these parameters is essential for obtaining good
results from an AI system [28,29].

There are many factors that go into the success or failure of a CNN model. Choosing
appropriate parameters and factors is critical to good performance. In this part, we will
discuss some of the most important considerations for parameter selection.

To notice the impact of each hyperparameter, we decided to train a CNN using the
same data on a different set of hyperparameters, and observe the underlying change in
performance and accuracy of the model. Although there are lots of hyperparameters one
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can tweak, we decided to focus mainly on the number of convolution blocks, batch size and
the learning rate. As you can see from these three figures (Figures 6–8), we have 36 CNN
models with different configurations and measured their accuracy. The CNN model with
each set of hyperparameters was trained using backpropagation with Adam optimizer. The
data used to train/test this model consists of MRI Brain Scans labelled as tumourous or
non-tumourous, split into train and test datasets. All models were trained using the same
train dataset and tested on the same test dataset. Accuracy for such task is then calculated
as such

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Accuracy is then calculated for each epoch and plotted on a graph for each set of
hyperparameters to clearly differentiate the changes in performance and accuracy.

When it comes to selecting the number of convolution blocks to use in training a CNN
model, there is no one-size-fits-all answer. The features or attributes of data set determine
how well a CNN model will perform on new data. If the wrong features are chosen, it
can lead to poor performance or even inaccurate predictions. The number of convolution
blocks is directly responsible for how deep and complex the CNN model is, so the choice of
the number of convolution blocks in the CNN need to reflect the complexity of the problem
at hand.

Figure 6. Three convolution block with different batch number and learning rate.
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Figure 7. Five convolution block with different batch number and learning rate.

Figure 8. Seven convolution block with different batch number and learning rate.

Another critical factor is the size of the batch and the learning rate parameter. A
large size of the batch set will not provide enough information for a CNN model to learn
effectively, leading to poorer predictions on new data sets. However, practitioners often
want to use a bigger batch size to coach their model because it allows computational
speedups from the parallelism of GPUs. However, it is well-known that too large of a batch
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size will result in poor generalization. This is reflected on the figures above; the validation
accuracy decreases once we use a batch size too big.

Moreover, choosing the training rate is admittedly curial for the model’s convergence
still because the speed at which the model does so, as we see from all the figures, choosing a
learning rate too big can result in divergence of the model, but on the other hand choosing
a learning rate which is too small can decrease the convergence speed dramatically. The
perfect learning rate for the given problem lies within the middle.

Additionally, if training datasets are not representative of actual use cases, models
may be inaccurate when applied outside of the context for which they were trained. Choos-
ing an inappropriate feature engineering strategy can also have a negative impact on
model accuracy.

In this paper, we are investigate the impact of three key parameters on model perfor-
mance: the initial knowledge of the AI engineer or researcher, the number of architectures
used in training, and the number of settings used in each architecture.

We first trained 36 CNN models with different configurations and measured their
accuracy. We then looked at how changing each parameter affected accuracy. The results
were clear: the initial knowledge of the AI engineer or researcher had a big impact on
explaining model behaviour; more architectures led to better accuracy and more settings
led to worse accuracy.

These findings have important implications for anyone designing or using an AI
model. First, it is crucial that engineers have a good understanding not just of how their
models work but also why they work well (or poorly). Second, if you want your CNN
model to be as accurate as possible, you need to use as many architectures as possible in
your training set. Finally, it’s important to carefully select only those settings that are likely
to improve performance—otherwise you may end up making things worse!

4.2. TheFeature-Based Post Hoc Explanatory Methods Part

In the early days of AI, computer scientists relied on rules written by humans to
program machines. However, this method was not scalable and resulted in brittle systems
that could only do what they were programmed to do. In the past few years, there has been
a resurgence of interest in artificial intelligence (AI) due to advances in deep learning (ML)
algorithms and large amounts of data available for training models. These advances have
led to some impressive achievements such as AlphaGo’s victory over a world champion
Go player and self-driving cars becoming more common on our streets [30].

Despite these successes, we are still far from having general AI systems that can
match or exceed human intelligence across all tasks. One reason for this is that we don’t
really understand how these ML algorithms work or why they produce the results they
do. This lack of understanding is partly due to our inability to interactively probe deep
neural networks (DNNs)—the current state-of-the-art in deep learning—and see what
is happening inside them at runtime. This limitation has led some researchers such as
Geoff Hinton to call for a new era of AI research called “XAI” which stands for explainable
artificial intelligence [31].

Medical imaging is a critical part of diagnosing and treating many medical conditions.
However, the use of medical imaging can be difficult due to the material limitation and the
difficulty with the use of CNN models. In our implementation, we will use the post hoc
explanation to explain CNN models due to these difficulties [32].

The first challenge in using medical images for diagnosis is that there are often many
different types of images that can be used for a particular condition. For example, an MRI
image may show different information than an X-ray image or a CT scan image. This makes
it difficult to create a model that can accurately diagnose a condition from any type of
medical image.

Another challenge in using medical images for diagnosis is that current CNN models
are not able to effectively learn from large amounts of data. Medical imaging often involves
large files with lots of data points. Current CNN models cannot effectively learn from all
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this data without becoming very complex and slow to run. This makes it difficult to create
accurate diagnostic models using current technology.

In this section, we will pass to the second stage of our method- the visual explanation
to help medical staff to understand the logic behind AI algorithms. After choosing the
best model based in test datasets, now we will use it in this stage by using interactive
visualization tools. These tools allow users to explore data sets visually while also seeing
what impact changes made to individual features have on predicted classifications. To
achieve the goal of our paper, we will as a mathematical base the following techniques
including Integrated Gradients (IG) [33]:

• Vanilla gradients [34];
• XRAI [35];
• Blur IG [36];
• Guided IG [37].

To implement this technique we will use two medical data set for sample task clas-
sification of the presence or absence of disease. The first data set is about brain tumor
classification and the second one is about classification of pneumonia diseases.

4.3. XRAI: Better Attributions through Regions

Saliency maps are an important part of computer vision and deep learning. They are
used to determine which parts of an image or video are most important, and can be used
for tasks such as object detection or tracking. XRAI is a new algorithm that uses region
information to improve upon integrated gradients (IG), the most popular saliency map
algorithm.

Let us now explain a bit about the algorithm behind the XRAI technique, as seen in
Algorithm 1.

Algorithm 1 XRAI

1: Given_imageI, model f and_attributuion_method_g
2: Over− segementIto_segmentss ∈ S
3: Get_attribution_map_A = g( f , I)
4: Let_saliency_maskM = 0, trajectoryT = []
5: while S 6= ∅ and area(M) < area(i) do
6: for s ∈ S do
7: Computegain2 : g(s) = ∑i∈s/M

Ai
area(s/M)

8: end for
9: s = argmaxsgs

10: S = S/s
11: M = M ∪ s
12: Add_M_to_list_T
13: end while

return T

XRAI [35] makes three sets of contributions. Firstly, it presents a new region-based
saliency approach based on the commonly utilized integrated gradients (IG). Importantly,
XRAI may be utilized with any DNN-based model as long as the input features can be
clustered into segments using any similarity metric. Second, it adds to the growing body
of sanity checks for attribution methods by introducing a perturbation-based sanity check
that can be used to test the reliability of an attribution method [38]. Third, it provides
empirical evidence that XRAI outperforms IG in terms of both accuracy and robustness
across different datasets and models

In recent years there has been a lot of research into techniques for improving image
saliency detection—the process of identifying which parts of an image are most important
to focus on. These techniques can be used for a variety of purposes, from medical diagnosis
to object recognition in pictures posted online [39].
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Several different methods have been proposed for measuring image saliency, but
so far there has been no consensus on which metric is best. In our work, we propose
two new metrics: accuracy information curves (AICs) and softmax information curves
(SICs). We believe these metrics provide a more accurate measure of image saliency than
existing methods.

As you can see in Figures 9 and 10 the XRAI heatmap explanation for brain tumour
detection and classification with the top 8% of the salient of the image.

Figure 9. XRAI heatmap explanation for brain tumour detection and classification with the top 8% of
the salient of the image.

Figure 10. XRAI heatmap explanation for brain tumour detection and classification with the top 8%
of the salient of the image.

4.4. Vanilla Integrated Gradients

Now we will show the next two technique that allow us to demonstrate the CXAI the
vanilla integrated gradients and SmoothGrad integrated gradients.

The original integrated gradients technique has demonstrated its usefulness in debug-
ging networks, extracting rules from a network, and enabling users to engage with models
better. The two fundamental axioms—sensitivity and implementation invariance—that
attribution methods ought to satisfy have been found to hold for integrated gradients [26].

The vanilla integrated gradients technique builds on the original by adding the ability
to debug networks more effectively. In particular, it can identify which neurons are activated
or suppressed when a given input is applied. This information can help improve the
design of neural networks by revealing which neurons are important for achieving a
desired outcome.

The SmoothGrad integrated gradients technique further enhances the vanilla approach
by incorporating an algorithm that smooths gradients as they propagate through the
network. This helps avoid any sudden changes in activation or suppression that could
occur with traditional gradient descent techniques. As such, it leads to more stable and
accurate results when training neural networks. The results from Figure 11 show that
the classifier is able to correctly identify the part of the pixel used to make its decision.
This information can help us to improve our classifier’s accuracy and ensure that it is
making accurate decisions. Additionally, this data can be used to develop new methods for
improving our classifier’s performance.
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Figure 11. Vanilla IG results.

Vanilla gradient is an approach to pixel assignment that was pioneered by Simonyan
et al. It is based on backpropagation, which gives us a map of the size of the input features
with negative to positive values. This makes it easy to determine how much change is
needed in each pixel in order to achieve the desired outcome. Why is this important?
Because it makes creating accurate images much easier than ever before! With vanilla
gradient, you can fine-tune your images until they look perfect—no more guesswork
involved. Plus, because the algorithm is so efficient, you can apply it even when working
with large images files.

The following is the key to this method:

1. Make a forward pass of the problematic picture.
2. Determine the gradient of the class of interest’s score relative to the input pixels:

Egrad(I0) =
δSc

δI
|I=I0 (4)

3. Picture the gradients. You have the option of displaying absolute figures or highlight-
ing negative and positive contributions individually.

In more technical terms, we have an image I, and the convolutional neural network
assigns it a score S_c(I) for class c. The rating of our image is a very non-linear function.
The concept behind using the gradient is that we can use a first-order Taylor expansion to
approximate this score.

Sc(I) ≈ wT I + b (5)
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where w is the derivate of our score:

w =
δSC
δI
|I0 (6)

4.5. Guided Integrated Gradients

Guided integrated gradients models can be used to explain the observed data and
help to improve the quality of images generated by a rendering system. However, when
these models are used in a path-based global illumination (GI) system, they can often
produce noisy results due to accumulation of errors along the GI path. In this paper,
we will try to implement the guided IG technique in order to adapt the attribution path
itself—by conditioning the path not only on the image but also on the explained model—in
order to mitigate the effect of noise accumulation along the GI path. Empirical evidence
suggests that guided GI produces saliency maps that are more closely aligned with the
model prediction and input image being explained.

To reduce the influence of attribution accumulation in high gradient directions unre-
lated to the input, we are willing to build a path that avoids (input) locations that generate
anomalies in the model’s behaviour. This is called (`noise), and one method for reducing it
is as follows:

γF∗ = arg min
γF∈T

`noise (7)

`noise =
N

∑
i=1

∫ 1

α=0

∣∣∣∣∣∂F(γF(α))

∂γF
i (α)

∂γF
i (α)

∂α

∣∣∣∣∣dα (8)

We can calculate a (`noise) value for each pixel in an image by taking the gradient
magnitude at each pixel, and dividing it by the standard deviation of all gradient magni-
tudes within a neighbourhood around that pixel. The smaller this value is, the less likely
it is that any given direction will contribute significantly to model error. We can then use
this value to weight our input images when training our models, so that those areas with
higher (`noise) values contribute less towards model error than those with lower values.

In order to reduce the amount of noise in our data, we need to first understand what
contributes to the noise. By minimizing `noise at every feature (pixels in an image, for
example), we can hopefully avoid high gradient directions. However, before we can define
γF(α) precisely, optimizing the above objective requires knowing the prediction surface of
the neural network F at every point in the input space. This is infeasible and therefore a
greedy approximation method called guided integrated gradients is proposed instead.

This approach approximates the prediction surface using a low-dimensional subspace
that is learned during training. The gradient along each dimension of this subspace is
computed using a simple linear regression model. These gradients are then combined
into a single gradient vector and used as input to optimize γF(α). Experiments show (as
you can see in Figure 12) that this approach achieves good performance with minimal
parameter tuning.
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Figure 12. Guided integrated gradients results.

4.6. Blur Integrated Gradients

The attributions in computer vision identify the value of each pixel to the forecast.
Perception tasks vary from other tasks in that the fundamental characteristics, such as
pixels or time points, are never important on their own; instead, information is usually
always stored in higher level features such as textures, edges, or frequencies. The classifier
decision in Figure 13 is based on the pixel at the bottom-left corner. This part of the pixel
has good results for distinguishing between classes, which can help us to well identify it.

Figure 13. Blur integrated gradients and SmoothGrad IG results.
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BlurIG [36] extends the integrated gradients technique. Formally, suppose we have a
function F : Rm∗n → [0, 1] that represents a deep network.

Specifically, let z(x, y) ∈ Rm∗n be the 2D input at hand, and z′(x, y) ∈ Rm∗n be the 2D
baseline input, meant to represent an informationless input.

We consider the straightline path from the baseline z′ to the input z

γ(x, y, α) = z′(x, y) + α ∗ (z(x, y)− z′(x, y)) (9)

Integrated gradients are obtained by accumulating these gradients.

IG(x, y) = (z(x, y)− z′(x, y)) ∗
∫ 1

α=0

∂F(γ(x, y, α))

∂γ(x, y, α)
dα (10)

Let

L(x, y, α) =
∞

∑
m=−∞

∞

∑
n=−∞

1
π ∗ α

e
x2+y2

α z(x−m, y− n) (11)

be the discrete convolution of the input signal with 2D Gaussian kernel with variance α
(also known as the scale parameter)

BlurIG is obtained by accumulating the gradients along the path defined by varying
the α parameter:

BlurIG(x, y) =
∫ 0

α=∞

∂F(L(x, y, α))

∂L(x, y, α)

∂L(x, y, α)

∂α
dα (12)

Implementation wise, the integral can be approximated using a Riemann sum:

BlurIG(x, y) =
s

∑
i=1

∂F(L(x, y, αi))

∂L(x, y, αi)

∂L(x, y, αi)

∂αi

αmax

s
(13)

where αi = i αmax
s ans s is the number of steps in the Riemann approximation

Attributions and explanations are based on perturbations. BlurIG prescribes a specific
set of perturbations to the input (gradient computation). If the perturbations destroy ‘infor-
mation’, then the resultant change in prediction can be interpreted as feature importance;
this is the desired interpretation. However, if the perturbation creates information, then the
resultant change in score is not due to a feature present in the input, and the result will be a
misleading, uninterpretable explanation.

CNN explanation is a powerful tool that can be used to improve the performance
of deep neural networks. By identifying the importance of each pixel to the prediction,
CNN explanation can help us understand how these networks work and why they produce
certain results. This information is essential for debugging and improving the performance
of these networks.

5. Discussion

There is a lot of talk about the role of artificial intelligence (AI) in radiology and how
it will shape the future of the field, while there is no doubt that AI can play an important
role in helping to improve radiologic diagnosis, it is important to understand that this
is not a simple task. Proper integration of AI solutions into the next future radiology
workflow requires a deep understanding of both the medical and scientific background
behind disease detection [40].

One thing that often gets lost in all the discussion around AI is just how complex image
classification and detection really are. There are many factors that need to be considered
when making a diagnosis, including patient history, physical examination findings, and
laboratory results as well as images. It is not simply enough for an algorithm to be able
to correctly identify lesions on images; it must also take into account all other relevant
information in order to make an accurate diagnosis.
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This complexity means that those working with AI solutions need to have a strong
understanding not only of computer science but also of medicine and pathology. Only
by having this comprehensive knowledge can they properly integrate these solutions into
radiologic workflows and help ensure accuracy in diagnoses.

There are many reasons why in our work we believe that it is very important to have
two-stage of explanation. The first one is how we can choose the best architecture means
the best accuracy than in the second a visual explanation to understand their decision but
also their drawbacks.

Choosing a CNN architecture for our project is not an easy task. It is like making a
choice between several different paths, all of them with advantages and disadvantages.
We need to be sure that whatever decision we make will bring us closer to our goal and
will not cause any problems along the way. That is why having more than one stage of
explanation is so important—it allows us to make informed decisions based on accurate
information. The first stage of explanation is analytical—it helps us understand what each
option offers and how well it meets our needs. This part is crucial, because if we do not
know what each path entails, we cannot possibly choose the right one for us. It is like
trying to find your way in the dark—you might stumble upon something interesting, but
you are also likely to end up lost or injured . The second stage of explanation provides a
visual representation of each option. This helps us see not only how well they meet our
needs, but also their potential drawbacks. For example, if two options seem equally good
on paper, this stage can help us decide which one would be better suited for our project
based on its specific requirements . Having two-stage of explanations allow us not only
choose the right architecture but also to understand their effectiveness and why they were
decided up on interest place.

In this paper, we investigated two major directions for explaining convolutional neural
networks: feature-based post hoc explanatory methods and preliminary analysis for choice
of the model architecture. For both directions, we investigated the question of verifying a
good architecture and why it is good. Post hoc explanations describe the decision-making
processes of the models that they aim to explain, while preliminary analysis focuses on
choosing an appropriate model architecture. We found that both approaches are neces-
sary for understanding how convolutional neural networks work; post hoc explanations
help us understand why a particular network performs well on a task, while prelimi-
nary analysis can help us choose an appropriate network structure from among many
possible alternatives.

Our future work will focus on integration into a radiology unit in order to study their
impact on the radiology workflow in a real case. This will allow us to gain an understanding
of how our work can be integrated into the medical field as a whole and help us to continue
making progress in this area.

6. Conclusions

The objective of our work is to put at the disposal of any beginner researchers, students
and teachers a tool of explanation that allows us to understand the bases of this field of
research and to show the importance of this kind of work. In our work, we obtained good
results that help us to understand how the CNNs work. The convolutional neural network
(CNN) is a model that has been found to be very effective for image recognition with
an accuracy of 98% ± 0.156%. Through our experiments, we have found that there are a
number of factors that control the behaviour and effectiveness of this model, from 36 CNN
architectures with different configurations, we choose the best one for the next level of
explanation based on the performance metric in the first step. The first stage is important
because it determines which research model is most appropriate for the data at hand. The
main considerations are number of convolution blocks, batch size, and the learning rate.
After selecting an appropriate model, we can move on to stage two—explaining the results
in detail. Medical specialists often need visuals to help them understand complex models
and results. Our article includes several figures that illustrate how our approach works
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in practice. We believe that these visuals will be helpful for both researchers and medical
specialists alike.
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