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Abstract: The RGB and thermal (RGB-T) object tracking task is challenging, especially with various
target changes caused by deformation, abrupt motion, background clutter and occlusion. It is critical
to employ the complementary nature between visual RGB and thermal infrared data. In this work,
we address the RGB-T object tracking task with a novel spatial- and channel-aware multi-modal
adaptation (SCA-MMA) framework, which builds an adaptive feature learning process for better
mining this object-aware information in a unified network. For each type of modality information,
the spatial-aware adaptation mechanism is introduced to dynamically learn the location-based
characteristics of specific tracking objects at multiple convolution layers. Further, the channel-aware
multi-modal adaptation mechanism is proposed to adaptively learn the feature fusion/aggregation
of different modalities. In order to perform object tracking, we employ a binary classification module
with two fully connected layers to predict the bounding boxes of specific targets. Comprehensive
evaluations on GTOT and RGBT234 datasets demonstrate the significant superiority of our proposed
SCA-MMA for robust RGB-T object tracking tasks. In particular, the precision rate (PR) and success
rate (SR) on GTOT and RGBT234 datasets can reach 90.5%/73.2% and 80.2%/56.9%, significantly
higher than the state-of-the-art algorithms.

Keywords: spatial- and channel-aware multi-modal adaptation; RGB-T object tracking

1. Introduction

Object tracking, which is an important yet challenging task in the field of computer
vision, has been widely applied in video surveillance, traffic monitoring and self-driving,
etc. Although general object tracking with the signal-modal RGB data source has achieved
significant advances during the past few years [1–5], there are still various existing difficul-
ties due to the challenges of low illumination, smog and darkness, etc. Meanwhile, thermal
infrared data are insensitive to the lighting condition and have a strong ability to penetrate
haze and smog [6], but they cannot represent targets well in good lighting conditions
compared with visual images. Recently, the RGB-T object tracking problem [7–10] has
received more and researchers have aimed to integrate visible and thermal infrared data
for robust object tracking in the severe conditions mentioned above.

Much previous work has been devoted to RGB-T object tracking to improve the target
representation with visible and thermal data [7–10]. One stream aims to extract important
and expressive information from multi-modal data and then designs target descriptors
for boosting the tracking performance [10–12]. For example, Li et al. chose more reliable
deep feature layers to construct a target descriptor [11], learned the weights of patches
cropped from multi-modal data as nodes and represent the target as a graph [10,12]. These
methods only use a portion of all features to reconstruct the target descriptor, and they
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omit a lot of background information, which may limit the potential tracking performance.
Another stream aims to learn modality weights to achieve adaptive feature fusion for robust
object tracking [8,13–15]. Early weight-based methods added [14] or concatenated [15]
multi-modal information together directly. Lan et al. [7] used the max-margin principle
to optimize the modality weights according to classification scores, and Zhu et al. [13]
adaptively learned the modality weights via convolutional neural networks. Although
these above methods consider the reliability degree in different modalities to a certain
extent, they cannot well consider how to adaptively perform the feature fusion aggregation
of heterogeneous modalities for achieving robust target representation.

To solve the above-mentioned problem, we propose a novel spatial- and channel-aware
multi-modal adaptation (named SCA-MMA) framework for boosting the performance of
the RGB-T tracking task. The SCA-MMA can not only dynamically focus on the spatial
location information of specific targets, but also adaptively learn the weight of each channel
based on the assumption that all the feature channels have different reliabilities [16,17].
Here, the channel weights of multi-modal representation can be adaptively learned in the
process of feature aggregation. We further integrate the spatial-aware mechanism in our
SCA-MMA framework, which will dynamically learn the location-based characteristics
of specific tracking objects at multiple convolution layers and decrease the suppression
of background for robust target representation [18,19]. In order to complete the object
tracking task, we employ a binary classification with two fully connected layers to predict
the bounding boxes of specific target and K branches in the training stage to learn multi-
domain knowledge [4]. Extensive experiments on two public datasets demonstrate that
our SCA-MMA framework can achieve state-of-the-art performance when addressing the
RGB-T tracking problem. We summarize the major contributions of this work as follows.

• We propose a novel spatial- and channel-aware multi-modal adaptation (SCA-MMA)
framework for robust RGB-T object tracking in an end-to-end fashion. The proposed
SCA-MMA can dynamically learn the location-based characteristics of specific tracking
objects and simultaneously adopt channel-aware multi-modal adaptation for better
consideration of the complementarity of RGB and thermal information.

• We introduce a feature aggregation mechanism to adaptively reconstruct the tar-
get descriptor for performing RGB-T object tracking. In particular, our proposed
spatial-aware mechanism can adaptively learn spatial awareness to enhance the target
appearance. Furthermore, we present a channel-aware multi-modal adaptation mech-
anism to aggregate visual RGB and thermal infrared data, which can adaptively learn
the reliable degree of each channel and then better integrate the global information.

• We evaluate the proposed SCA-MMA framework on large-scale datasets (including
GTOT [8] and RGBT234 [20]). The SCA-MMA achieves 90.5%/73.2% and 80.2%/56.9%
in PR/SR performance, and reaches state-of-the-art performance when compared with
other RGB-T trackers [9,13,21].

2. Related Work

According to its relevance to our work, we review related work in the following two
aspects: feature aggregation methods for RGB-T object tracking and multi-domain object
tracking.

2.1. Feature Aggregation Methods for RGB-T Object Tracking

RGB-T object tracking, which is a sub-branch of visual object tracking, aims to aggre-
gate visible and thermal infrared images for robust object tracking in challenging conditions
such as low illumination, heavy occlusion and significant appearance changes [8,20]. Ex-
isting methods focus on robust target representation via integrating multi-modal source
data [10,12,13,22]. One research stream aims to reconstruct the target descriptor via extract-
ing effective features from multi-modal data. To perform the object tracking, Li et al. [10]
proposed a weighted sparse representation regularized graph learning algorithm by con-
structing the specific target as a graph-based descriptor. A two-stage modality-graph
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regularized manifold ranking algorithm [22] was proposed to rank all patches of multi-
modal data for robust target representation. A cross-modal manifold ranking algorithm [12]
was then proposed to rank cropped patches from the target while considering the hetero-
geneous property between different modalities and noise effects. Li et al. [11] proposed
FusionNet to calculate the partial derivative of loss on channels and selected these higher
parts for target representation.

Another stream aims to adaptively learn modality weights, and then concatenates
them together as the target descriptor [14,15]. For example, Li et al. [8,12] regularized the
modality weight via reconstruction residues, Lan et al. [7] used the max-margin principle to
optimize modality weights according to classification scores, and Zhu et al. [13] adaptively
learned modality weights via a convolutional neural network. To employ the temporal
continuity in a video sequence, the history information was integrated to obtain fusion
features by computing the adaptive weights of previous frames [23]. Tang et al. [24]
proposed multiple fusion strategies from different perspectives (including pixel-level,
feature-level and decision-level) to boost the performance of multi-modal object tracking
in video.

2.2. Multi-Domain Object Tracking

Visual object tracking is one of the fundamental branches of computer vision and
has received more and more attention in the last few decades. The pivotal branch of vi-
sual object tracking regards the object tracking problem as a one-shot binary classification
task [3,4,25]. For example, Nam et al. [4] proposed a multi-domain learning framework
across multiple tracking sequences in the training stage and then detected the foreground
in the tracking stage. Park et al. [25] exploited the metalearning algorithm in the MDNet [4]
framework, which adjusted an initial model via temporal information in tracking sequences
for quick optimization in the tracking stage. Jung et al. [3] introduced the RoIAligh method
to extract more accurate representations for the specific target. In [26,27], multi-domain
feature representation networks have been proposed to perform information fusion across
frame and event domains for improving the performance of the visual object tracking
task. A semi-supervised multi-domain tracking framework [28] was proposed to learn the
domain-invariant and domain-specific representations through employing an adversarial
regularization. Further, a filtering-based multi-sensor data fusion technique[29] was pro-
posed to obtain improved navigational data for unmanned surface vehicle navigation. For
the radar tracking problem, the decentralized fusion of Kalman and neural filters has been
proposed to deal with the multi-sensor tracking of marine targets [30]. In [31], an adaptive
fusion strategy was used to integrate multiple feature cues into an observation model for
improved underwater target tracking.

3. Proposed Framework

In this section, we introduce the details of the proposed SCA-MMA framework,
including the network architecture and spatial-aware and channel-aware multi-modal
adaptation mechanisms.

3.1. Network Architecture

The overall network architecture of the SCA-MMA model is shown in Figure 1. The
SCA-MMA mainly consists of three parts: feature extraction sub-network, feature ag-
gregation sub-network and binary classification sub-network. In particular, each feature
extraction sub-network is built with three convolutional layers to extract a target repre-
sentation. The spatial-aware block is employed after the front two layers to obtain spatial
awareness and enhance target representation. The feature aggregation sub-network first
integrates these extracted features from visible as well as thermal images, and then adap-
tively learns channel-wise weights via the channel-aware block and aggregates the features
in terms of the channel. As in [4], the binary classification sub-network, which is adopted to
distinguish the specific target and background information, has K branches after two fully



Electronics 2022, 11, 1820 4 of 11

connected layers to learn multi-domain knowledge in the training stage. After finishing
the multi-domain learning, the multiple branches of domain-specific layers are replaced by
a single branch in the tracking stage.

SAB SAB

CAB σ 

Weighting              

Element add            

SAB Spatial-Aware Block

σ 

Convolutional Layer    

Fully Connection Layer 

CAB

SAB SAB

Sigmoid Function

Channel-Aware Block

Extract Feature Sub-nework

Feature Aggregation
 Sub-network

Binary Classification Sub-network

Figure 1. The overview of the proposed SCA-MMA framework for the RGB-T tracking task.

3.2. Spatial-Aware Mechanism

As shown in Figure 1, we employ the spatial-aware block in the front two convolutional
layers. The details of the spatial-aware block are shown in Figure 2a. The first convolutional
layer is followed by the rectified linear unit (ReLU) and local response normalization (LRN)
process, and the sigmoid function is adopted after the second convolutional layer to
generate spatial awareness. Here, we summarize the operations of the spatial attention
block in the following equations:

F1 = LRN(ReLU(Conv(input)))

Foutput = Sigmoid(Conv(F1)),
(1)

where Conv, ReLU, LRN and Sigmoid denote the convolutional layer, rectified unit,
local response normalization and sigmoid function. input and output are the input and
output of the spatial-aware block. The whole feature extraction sub-network can be sum-
marized as follows:

Fm
1 = Conv(input)

Fm
2 = Conv(Fm

1 + SAB(Fm
1 ))

Fm = Conv(Fm
2 + SAB(Fm

2 )),

(2)

where SAB denotes the spatial-aware block and Fm denotes the output feature of m-th
modality source data, m ∈ M = {rgb, thermal} in the experiment.
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Figure 2. Diagram of spatial-aware block (a) and channel-aware multi-modal adaptation block (b).

3.3. Channel-Aware Multi-Modal Adaptation Method

The channel-aware multi-modal adaptation method can better consider heterogeneity
in channel-wise weights within a single modal data. As shown in Figure 2b, the channel-
aware block concatenates these extracted feature maps from two modalities. The concate-
nated features are fed into two fully connected layers, where each layer with 1024 output
units is followed by a ReLU function. In the last layer, the dropout and softmax functions
are employed in each channel dimension to obtain these channel-wise weights. Finally,
under the guidance of these channel-aware weights, we can fuse these learned features
for constructing a target descriptor. Here, we summarize the operations of the feature
aggregation sub-network in the following equations:

Fconcat = FR ] FT

{FR
2 , FT

2 } = f c( f c(Fconcat))

ωR, ωT = so f tmax({FR
2 , FT

2 }, dim = channel)

F = (ωR ⊗ FR
2 )⊕ (ωR ⊗ FT

2 )

(3)

where ], ⊗ and ⊕ denote the concatenation, channel weighting and element-wise fusion
processes, f c(·) refers to a fully connected layer followed by ReLU as well as dropout
operation, so f tmax(·) denotes the softmax function. ωR, ωT and F denote the learned
channel-wise weights and reconstructed target descriptor by multi-modal data.

4. Experiment
4.1. Experiment Setting

We evaluate the proposed SCA-MMA framework on two large-scale benchmarks:
GTOT [8] and RGBT234 [20] datasets. GTOT is an RGB-T tracking benchmark proposed
by [8]. It has 50 video sequences with well-labeled visible and thermal image pairs. It is
annotated with seven attributes and thus partitioned into seven subsets for analyzing the
attribute-sensitive performance of RGB-T tracking approaches. RGBT234 is a large RGB-T
tracking dataset, extended from the RGBT210 [10] dataset. It contains 234 video sequences,
reaching approximately 23,400 frames in total and with 8000 frames for the longest video.
It is annotated with 12 attributes. We use the precision rate (PR) and success rate (SR)
to evaluate the quantitative performance on these two datasets. PR is the percentage of
frames whose predicted location is within a threshold distance with groundtruth. SR is
the percentage of frames whose overlap ratio between predicted location and groundtruth
is larger than a threshold. Following the same protocols as in [8,9,13,15,20], we set the
threshold to be 5 pixels for the GTOT dataset and 20 pixels for the RGBT234 dataset to
evaluate PR performance. We employ the area under the curve (AUC) of the success rate as
SR for quantitative performance evaluations.

The whole network is trained in an end-to-end manner. We first initialize the parame-
ters of the convolutional layer (Conv1-Conv3) in each feature extraction sub-network using
the pre-trained MDNet model [4] and randomly initialize the parameters of all the remain-
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ing layers. Then, we crop positive and negative samples in training sequences randomly
and minimize the cross-entropy loss by the stochastic gradient descent (SGD) algorithm,
where each domain is handled separately. In the process of iteration, we randomly choose
8 frames and crop 32 positive as well as 96 negative samples in each frame to construct a
minibatch in each video sequence. For positive samples, we set the IoU overlap ratio in
the range 0.7∼1.0, while the negative samples are within the range 0∼0.5 IoUs. For the
multi-domain learning, we set K branches for K video sequences and train the network
with 100K iterations. In the front 10K iterations, we set the learning rate as 0.0001 for the
feature extraction sub-network and 0.001 for the feature aggregation sub-network as well
as binary classification sub-network, respectively. In the next iterations, we change the
learning rate of the feature aggregation sub-network from 0.001 to 0.0001. The weight decay
and momentum are fixed to 0.0005 and 0.9, respectively.

In the tracking stage, the K branches in the binary classification sub-network for multi-
domain learning are replaced by a single branch for each test sequence. We then fine-tune
the pretrained network in the first frame pair and update the model in subsequent frame
pairs. In the fine-tuning stage, we crop 500 positive samples and 5000 negative samples
with the given groundtruth bounding box. For positive samples, we set the overlap ratio
in range 0.7∼1.0, while the negative samples are within the range 0∼0.5 IoUs. We fit all
parameters of the feature extraction sub-network and feature aggregation sub-network.
For the binary classification sub-network, we set the learning rate as 0.0001 for the front
two fully connected layers and 0.001 for the last layer. We fine-tune the whole network
end-to-end for 30 iterations, and train a bounding box regression model. For the given t-th
frame, we crop 256 samples as candidates {xi

t} with the guidance of the predicted result
in t− 1-th frame, and then obtain positive scores { f+(xi

t)} and negative scores { f−(xi
t)}.

The candidate with the maximum positive score can be found as:

x∗t = arg max
xi

t

f+(xi
t). (4)

We find the top k candidates (i.e., k = 5). The regression technology is employed to
improve target localization accuracy, and the optimal target state x∗ can be seen as the
mean value.

4.2. Result Comparisons

We utilize the full RGBT234 [20] dataset to construct training data and train our model
for the experiment on the GTOT [8] dataset. We compare the proposed SCA-MMA with
state-of-the-art trackers, including FANet [13], SGT [9], MDNet+RGBT, Struck+RGBT, L1-
PF [15], ECO [32] and KCF [2]. We concatenate features used in trackers from RGB and
thermal modalities as the RGB-T input of corresponding tracking algorithms [8]. Figure 3
shows that the SCA-MMA performs obviously better than the other trackers on the GTOT
dataset. It gains 2.0%/3.4% in PR/SR promotion over the second-best state-of-the-art
tracker. The predominant performance demonstrates that the proposed SCA-MMA can
obtain the robust tracking target even in challenging conditions.
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Figure 3. Performance comparisons on the GTOT dataset against state-of-the-art trackers.

We construct training data using the full GTOT dataset and train the model on the
RGBT234 dataset. We compare the proposed framework with state-of-the-art trackers,
including single modal trackers such as MDNet [4], ECO [32], C-COT [33], SOWP [34],
SRDCF [35], CSR-DCF [36] and CFNet [37], as well as RGB-T trackers such as SGT [9],
FANet [13], MDNet + RGBT, SOWP + RGBT, CSR-DCF + RGBT, L1-PF [15] and CFNet
+ RGBT. Here, we only display the top 12 trackers. As shown in Figure 4, the SCA-
MMA framework performs the best with different evaluation metrics. Compared with the
second state-of-the-art tracker, the SCA-MMA framework achieves 80.2%/56.9% in PR/SR
and gains a 3.8%/3.7% improvement over the second performance tracker, as well as an
8.0%/7.4% improvement over the baseline MDNet + RGBT.
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Figure 4. Performance comparisons on the RGBT234 dataset against state-of-the-art trackers.

The attribute-based results on the RGBT234 dataset are shown in Table 1. The best,
second and third results are in red, green and blue colors, respectively. It contains all
12 attributes annotated on the RGBT234 dataset: no occlusion (NO), partial occlusion
(PO), heavy occlusion (HO), low illumination (LI), low resolution (LR), thermal crossover
(TC), deformation (DEF), fast motion (FM), scale variation (SV), motion blur (MB), camera
moving (CM) and background clutter (BC). As shown in Table 1, our framework achieves
the best performance in all attributes. Compared with the baseline MDNet+RGBT, we
obtain over 10%/8% PR/SR improvement in DEF (deformation) and BC (background
clutter) challenges with the sharp target appearance changes. It demonstrates that the
proposed spatial-aware mechanism can learn spatial awareness adaptively and enhance
the target information for robust object tracking. In the challenging conditions, including
HO (heavy occlusion) and TC (thermal crossover), the performance of the SCA-MMA
framework is significantly higher than the baseline, which demonstrates the efficiency of
the proposed channel-aware multi-modal adaptation mechanism.



Electronics 2022, 11, 1820 8 of 11

Table 1. Attribute-based PR/SR score(%) on the RGBT234 dataset against other RGB-T trackers.

L1-PF [15] CFNet + RGBT CSR-DCF + RGBT SOWP + RGBT SGT [9] MDNet + RGBT FANet [13] Ours

NO 56.5/37.9 76.4/56.3 82.6/60.0 86.8/53.7 87.7/55.5 86.2/61.1 84.7/61.1 90.5/66.8
PO 47.5/31.4 59.7/41.7 73.7/52.2 74.7/48.4 77.9/51.3 76.1/51.8 78.3/54.7 83.0/58.8
HO 33.2/22.2 41.7/29.0 59.3/40.9 57.0/37.9 59.2/39.4 61.9/42.1 70.8/48.1 72.9/50.7
LI 40.1/26.0 52.3/36.9 69.1/47.4 72.3/46.8 70.5/46.2 67.0/45.5 72.7/48.8 82.7/56.0
LR 46.9/27.4 55.1/36.5 72.0/47.6 72.5/46.2 75.1/47.6 75.9/51.5 74.5/50.8 80.7/55.4
TC 37.5/23.8 45.7/32.7 66.8/46.2 70.1/44.2 76.0/47.0 75.6/51.7 79.6/56.2 82.6/59.7

DEF 36.4/24.4 52.3/36.7 63.0/46.2 65.0/46.0 68.5/47.4 66.8/47.3 70.4/50.3 85.3/55.3
FM 32.0/19.6 37.6/25.0 52.9/35.8 63.7/38.7 67.7/40.2 58.6/36.3 63.3/41.7 74.3/49.3
SV 45.5/30.6 59.8/43.3 70.7/49.9 66.4/40.4 69.2/43.4 73.5/50.5 77.0/53.5 78.7/56.5
MB 28.6/20.6 35.7/27.1 58.0/42.5 63.9/42.1 64.7/43.6 65.4/46.3 67.4/48.0 69.9/51.1
CM 31.6/22.5 41.7/31.8 61.1/44.5 65.2/43.0 66.7/45.2 64.0/45.4 66.8/47.4 74.5/54.0
BC 34.2/22.0 46.3/30.8 61.8/41.0 64.7/41.9 65.8/41.8 64.4/43.2 71.0/47.8 78.3/52.7

ALL 43.1/28.7 55.1/39.0 69.5/49.0 69.6/45.1 72.0/47.2 72.2/49.5 76.4/53.2 80.2/56.9

4.3. Algorithm Analysis

Figure 5 presents the qualitative comparison of our proposed framework versus state-
of-the-art RGB-T trackers on four video sequences, including SGT and MDNet+RGBT.
Overall, our SCA-MMA framework is effective in handling these challenging conditions,
such as low illumination, occlusion, thermal cross, deformation, background clutter and
appearance change. For the elecbike10 sequence, our framework performs well in low
illumination and heavy occlusion conditions, while other trackers lose the target when
occlusion happens. For the fog sequence, when occlusion and bad weather happen, our
framework can achieve the robust tracking target by adaptively aggregating the visible and
thermal data.

(a) (b)

(c) (d)

Ours MDNet+RGBT SGT GroundTruth

Figure 5. Qualitative performance against state-of-the-art RGB-T trackers on four video sequences.
(a) diamond; (b) elecbike10; (c) fog; (d) maninglass.

To demonstrate the effectiveness of our proposed channel-aware adaptation and
spatial-aware adaptation methods, we perform pruning experiments under two exper-
imental settings on the RGBT234 dataset, including the object tracker with only with
channel-aware adaptation (named “Ours-CA”) and the tracker with only spatial-aware
adaptation (named “Ours-SA”). The detailed performance comparisons are shown in
Figure 4. The object tracker with only channel-aware adaptation can achieve 79.1% and
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55.5% in terms of PR and SR, which are lower by 0.9% and 1.1% than the SCA-MMA. The
tracker with only spatial-aware adaptation obtains 78.4 and 55.4% in terms of PR and SR,
and its performance also reduces when compared with both “Ours-CA” and SCA-MMA
methods. It clearly demonstrates that both the channel-aware adaptation and spatial-aware
adaptation mechanisms can improve the performance of the RGB-T object tracking task to
some extent. From the attribute-based performance shown in Table 2, we can see that in the
challenges of low illumination and thermal crossover, the CA framework performs better
than the SA framework. In background clutter and deformation conditions with large
target appearance changes, the SA framework is far more robust than the CA framework.
It demonstrates that the spatial-aware mechanism can promote target appearance in the
feature extraction stage, and the channel-aware multi-modal adaptation method can handle
the target reconstruction task via learning channel-wise weights in challenging conditions.
Our proposed framework integrates both spatial- and channel-aware feature adaptation
and achieves state-of-the-art performance.

We further employ the proposed SCA-MMA framework on the platform of Pytorch
with E5-2620 V4 @2.10GHz and NVIDIA TITAN Xp. As shown in Table 3, the mean speed
of our framework on the GTOT and RGBT234 datasets can reach 1.3 FPS, while the MDNet
and MDNet+RGBT are 3.2 FPS and 1.6 FPS, respectively. Compared with the MDNet+RGBT
tracker, the SCA-MMA framework gains an 8.0%/7.4% improvement on the RGBT234
dataset and 10.5%/9.5% improvement on the GTOT dataset with a comparable tracking
speed (1.3 FPS versus 1.6 FPS).

Table 2. Attribute-based PR/SR scores (%) on RGBT234 dataset in ablation experiment.

NO PO HO LI LR TC DEF FM SV MB CM BC ALL

Ours-CA 87.3/64.8 83.8/59.4 68.9/47.3 82.3/55.6 78.4/53.6 79.0/55.6 72.0/52.7 68.0/45.4 77.1/55.3 68.5/50.1 72.2/52.1 74.5/50.6 78.4/55.4
Ours-SA 88.6/64.8 84.4/59.3 69.2/48.2 80.3/54.8 78.3/53.6 76.8/54.6 84.9/54.6 71.5/46.2 78.5/55.3 69.5/50.9 72.2/52.2 76.7/52.2 79.1/55.8

Ours 90.5/66.8 83.0/58.8 72.9/50.7 82.7/56.0 80.7/55.4 82.6/59.7 85.3/55.3 74.3/49.3 78.7/56.5 69.9/51.1 74.5/54.0 78.3/52.7 80.2/56.9

Table 3. PR/SR score(%) and runtime of our framework against baseline MDNet+RGBT on GTOT
and RGBT234 datasets.

MDNet MDNet + RGBT Ours

GTOT PR/SR 81.2/63.3 80.0/63.7 90.5/73.2

RGBT234 PR/SR 71.0/49.0 72.2/49.5 80.2/56.9

FPS 3.2 1.6 1.3

5. Conclusions

In this work, we have proposed a novel spatial- and channel-aware multi-modal
adaptation (SCA-MMA) framework for boosting the performance of RGB-T object track-
ing. In particular, we have built an adaptive and effective learning process to explore the
complementarity between two heterogeneous modalities. SCA-MMA has introduced a
spatial-aware mechanism to enhance the feature representations of interested objects in
the spatial domain. Further, we have adaptively learned these channel-wise weights with
the channel-aware multi-modal adaptation mechanism for achieving the final enhanced
features of tracking targets. Extensive experiments on the RGBT234 and GTOT datasets
have demonstrated that the proposed SCA-MMA has achieved the state-of-the-art per-
formance when addressing the RGB-T tracking problem. In the future, we will focus on
how to design more robust feature learning methods via the metalearning methods on the
multi-modal understanding tasks, such as multi-modal object recognition, detection and
object tracking.

Author Contributions: C.X.: Conceptualization, supervision and project administration, analysis
data, writing and editing manuscript; R.S.: mathematical formulation, data analysis and experiment,



Electronics 2022, 11, 1820 10 of 11

writing manuscript. C.W.: data analysis and interpretation, editing manuscript; G.Z.: checked the
numerical results and corrected the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grants
Nos. 61972204), the Natural Science Foundation of Jiangsu Province (Grant No BK20191283).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010;
pp. 2544–2550.

2. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern
Anal. Mach. Intell. 2014, 37, 583–596. [CrossRef]

3. Jung, I.; Son, J.; Baek, M.; Han, B. Real-time mdnet. In Proceedings of the European Conference on Computer Vision (ECCV),
Munich, Germany, 8–14 September 2018; pp. 83–98.

4. Nam, H.; Han, B. Learning multi-domain convolutional neural networks for visual tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4293–4302.

5. Mehmood, K.; Jalil, A.; Ali, A.; Khan, B.; Murad, M.; Khan, W.U.; He, Y. Context-aware and occlusion handling mechanism for
online visual object tracking. Electronics 2020, 10, 43. [CrossRef]

6. Gade, R.; Moeslund, T.B. Thermal cameras and applications: A survey. Mach. Vis. Appl. 2014, 25, 245–262. [CrossRef]
7. Lan, X.; Ye, M.; Zhang, S.; Yuen, P.C. Robust collaborative discriminative learning for RGB-infrared tracking. In Proceedings of

the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.
8. Li, C.; Cheng, H.; Hu, S.; Liu, X.; Tang, J.; Lin, L. Learning collaborative sparse representation for grayscale-thermal tracking.

IEEE Trans. Image Process. 2016, 25, 5743–5756. [CrossRef] [PubMed]
9. Li, C.; Wang, X.; Zhang, L.; Tang, J.; Wu, H.; Lin, L. Weighted low-rank decomposition for robust grayscale-thermal foreground

detection. IEEE Trans. Circuits Syst. Video Technol. 2016, 27, 725–738. [CrossRef]
10. Li, C.; Zhao, N.; Lu, Y.; Zhu, C.; Tang, J. Weighted sparse representation regularized graph learning for RGB-T object tracking.

In Proceedings of the 25th ACM international conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017;
pp. 1856–1864.

11. Li, C.; Wu, X.; Zhao, N.; Cao, X.; Tang, J. Fusing two-stream convolutional neural networks for RGB-T object tracking.
Neurocomputing 2018, 281, 78–85. [CrossRef]

12. Li, C.; Zhu, C.; Huang, Y.; Tang, J.; Wang, L. Cross-Modal Ranking with Soft Consistency and Noisy Labels for Robust RGB-T
Tracking. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 808–823.

13. Zhu, Y.; Li, C.; Lu, Y.; Lin, L.; Luo, B.; Tang, J. FANet: Quality-Aware Feature Aggregation Network for RGB-T Tracking. arXiv
2018, arXiv:1811.09855.

14. Leykin, A.; Hammoud, R. Pedestrian tracking by fusion of thermal-visible surveillance videos. Mach. Vis. Appl. 2010, 21, 587–595.
[CrossRef]

15. Wu, Y.; Blasch, E.; Chen, G.; Bai, L.; Ling, H. Multiple source data fusion via sparse representation for robust visual tracking. In
Proceedings of the 14th International Conference on Information Fusion, Chicago, IL, USA, 5–8 July 2011; pp. 1–8.

16. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

17. Li, X.; Wang, W.; Hu, X.; Yang, J. Selective Kernel Networks. arXiv 2019, arXiv:1903.06586.
18. Huang, P.; Yu, G.; Lu, H.; Liu, D.; Xing, L.; Yin, Y.; Kovalchuk, N.; Xing, L.; Li, D. Attention-aware Fully Convolutional Neural

Network with Convolutional Long Short-Term Memory Network for Ultrasound-Based Motion Tracking. Med. Phys. 2019, 46,
2275–2285. [CrossRef] [PubMed]

19. Su, K.; Yu, D.; Xu, Z.; Geng, X.; Wang, C. Multi-Person Pose Estimation with Enhanced Channel-wise and Spatial Information.
arXiv 2019, arXiv:1905.03466.

20. Li, C.; Liang, X.; Lu, Y.; Zhao, N.; Tang, J. RGB-T object tracking: Benchmark and baseline. arXiv 2018, arXiv:1805.08982.
21. Luo, C.; Sun, B.; Yang, K.; Lu, T.; Yeh, W.C. Thermal infrared and visible sequences fusion tracking based on a hybrid tracking

framework with adaptive weighting scheme. Infrared Phys. Technol. 2019, 99, 265–276. [CrossRef]
22. Li, C.; Zhu, C.; Zheng, S.; Luo, B.; Tang, J. Two-stage modality-graphs regularized manifold ranking for RGB-T tracking. Signal

Process. Image Commun. 2018, 68, 207–217. [CrossRef]
23. Wang, Y.; Wei, X.; Tang, X.; Shen, H.; Zhang, H. Adaptive Fusion CNN Features for RGBT Object Tracking. IEEE Trans. Intell.

Transp. Syst. 2021. [CrossRef]
24. Tang, Z.; Xu, T.; Li, H.; Wu, X.J.; Zhu, X.; Kittler, J. Exploring Fusion Strategies for Accurate RGBT Visual Object Tracking. arXiv

2022, arXiv:2201.08673.

http://doi.org/10.1109/TPAMI.2014.2345390
http://dx.doi.org/10.3390/electronics10010043
http://dx.doi.org/10.1007/s00138-013-0570-5
http://dx.doi.org/10.1109/TIP.2016.2614135
http://www.ncbi.nlm.nih.gov/pubmed/28114068
http://dx.doi.org/10.1109/TCSVT.2016.2556586
http://dx.doi.org/10.1016/j.neucom.2017.11.068
http://dx.doi.org/10.1007/s00138-008-0176-5
http://dx.doi.org/10.1002/mp.13510
http://www.ncbi.nlm.nih.gov/pubmed/30912590
http://dx.doi.org/10.1016/j.infrared.2019.04.017
http://dx.doi.org/10.1016/j.image.2018.08.004
http://dx.doi.org/10.1109/TITS.2021.3073046


Electronics 2022, 11, 1820 11 of 11

25. Park, E.; Berg, A.C. Meta-tracker: Fast and robust online adaptation for visual object trackers. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 569–585.

26. Zhang, J.; Zhao, K.; Dong, B.; Fu, Y.; Wang, Y.; Yang, X.; Yin, B. Multi-domain collaborative feature representation for robust
visual object tracking. Vis. Comput. 2021, 37, 2671–2683. [CrossRef]

27. Zhang, J.; Yang, X.; Fu, Y.; Wei, X.; Yin, B.; Dong, B. Object Tracking by Jointly Exploiting Frame and Event Domain. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 13043–13052.

28. Meshgi, K.; Mirzaei, M.S. Adversarial Semi-Supervised Multi-Domain Tracking. In Proceedings of the Asian Conference on
Computer Vision, Kyoto, Japan, 30 November–4 December 2020.

29. Liu, W.; Liu, Y.; Bucknall, R. Filtering based multi-sensor data fusion algorithm for a reliable unmanned surface vehicle navigation.
J. Mar. Eng. Technol. 2022, 1–17. [CrossRef]

30. Stateczny, A.; Kazimierski, W. Multisensor Tracking of Marine Targets: Decentralized Fusion of Kalman and Neural Filters. Int. J.
Electron. Telecommun. 2011, 57, 65–70. [CrossRef]

31. Zhang, T.; Liu, S.; He, X.; Huang, H.; Hao, K. Underwater target tracking using forward-looking sonar for autonomous
underwater vehicles. Sensors 2019, 20, 102. [CrossRef] [PubMed]

32. Danelljan, M.; Bhat, G.; Shahbaz Khan, F.; Felsberg, M. ECO: Efficient convolution operators for tracking. In Proceedings of the
IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6638–6646.

33. Danelljan, M.; Robinson, A.; Khan, F.S.; Felsberg, M. Beyond correlation filters: Learning continuous convolution operators for
visual tracking. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October
2016; pp. 472–488.

34. Kim, H.U.; Lee, D.Y.; Sim, J.Y.; Kim, C.S. Sowp: Spatially ordered and weighted patch descriptor for visual tracking. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3011–3019.

35. Danelljan, M.; Hager, G.; Shahbaz Khan, F.; Felsberg, M. Learning spatially regularized correlation filters for visual tracking. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4310–4318.

36. Lukezic, A.; Vojir, T.; Cehovin Zajc, L.; Matas, J.; Kristan, M. Discriminative correlation filter with channel and spatial reliability.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21– 26 July 2017;
pp. 6309–6318.

37. Valmadre, J.; Bertinetto, L.; Henriques, J.; Vedaldi, A.; Torr, P.H. End-to-end representation learning for correlation filter based
tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21– 26 July
2017; pp. 2805–2813.

http://dx.doi.org/10.1007/s00371-021-02237-9
http://dx.doi.org/10.1080/20464177.2022.2031558
http://dx.doi.org/10.2478/v10177-011-0009-8
http://dx.doi.org/10.3390/s20010102
http://www.ncbi.nlm.nih.gov/pubmed/31878003

	Introduction
	Related Work
	Feature Aggregation Methods for RGB-T Object Tracking
	Multi-Domain Object Tracking

	Proposed Framework
	Network Architecture
	Spatial-Aware Mechanism
	Channel-Aware Multi-Modal Adaptation Method

	Experiment
	Experiment Setting
	Result Comparisons
	Algorithm Analysis

	Conclusions
	References

