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Abstract: Staff safety is not assured due to the indoor substation’s high environmental risk factor.
The Chinese State Grid Corporation has been engaged in the intelligentization of substations and the
employment of robots for inspection tasks. The autonomous navigation and positioning system of
the mobile chassis is the most important feature of this type of robot, as it allows the robot to perceive
the surrounding environment information at the initial position using its own sensors and find a
suitable path to move to the target point to complete the task. Automatic navigation is the basis for
the intelligentization of indoor substation robots, which is of great significance to the efficient and
safe inspection of indoor substations. Based on this, this paper formulates a new navigation system,
and builds a chassis simulation environment in the Robot Operating System (ROS). To begin with,
we develop a novel hardware and sensor-based chassis navigation system experimental platform.
Secondly, to conduct the fusion of the odometer and inertial navigation data, the Extended Kalman
Filter (EKF) is used. The map’s creation approach determines how the environmental map is created.
The global path is scheduled with the A* algorithm, whereas the local path is scheduled with the
Dynamic Window Method (DWA). Finally, the created robot navigation system is applied to an
auxiliary operation robot chassis suited for power distribution cabinet switch and the navigation
system’s experimental analysis is conducted using this platform, demonstrating the system’s efficacy
and practicability.

Keywords: wheeled mobile robot; multi-sensor data fusion; ROS; path planning

1. Introduction

The high operating voltage of the substation creates electromagnetic radiation and
other unfavourable conditions, such that personnel safety is not guaranteed and accidents
are not uncommon. Staff can do the work from a remote location. The robots can also
eliminate many missed and erroneous inspections [1].

Substation robots belong to the class of modern intelligent mobile robots. Their main
functions are to familiarize themselves with their environment and find an appropriate path
to the goal point to complete the entire mission. Autonomous navigation is the basis for the
realization of robot intelligence, and it is also the key to realizing the robot’s autonomous
walking to reach the destination and complete specific tasks. During autonomous naviga-
tion, the robot not only ensures its own safety but also does not damage the surrounding
environment. A complete navigation system has three aspects of autonomous positioning,
map construction, and planning control [2]; these three aspects correspond to the above
three problems. When constructing an environmental map, the robot must recognize its
position information, the positioning and mapping of the robot are studied and analyzed
as one aspect, and the navigation path planning is analyzed as another aspect, aiming
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at the safety of the robot; stopping and avoiding obstacles in the navigation process are
analyzed as a third aspect. The existing navigation methods include trajectory naviga-
tion, inertial navigation, Global Position System (GPS) navigation, visual navigation and
laser navigation.

Trajectory navigation lays a guideline on the ground that the robot will pass; the robot
body is equipped with a guideline recognition device, and the robot can walk along the
guideline without deviation through the control algorithm. The advantage is that it is stable
and reliable, but its disadvantages are also obvious: the environment needs to be modified,
the later maintenance cost is high, and the movement of the robot is also restricted by the
guideline [3–5].

Inertial navigation is a typical relative positioning navigation method. The robot’s
posture information is obtained by integrating the sensor data of the Inertial Measurement
Unit (IMU), including the magnetometer, accelerometer, and gyroscope. The track esti-
mation in the mileage measurement system also belongs to inertial navigation, and the
track estimation is to obtain the robot’s posture information through the motor encoder
and robot kinematics. Compared with the inertial measurement unit, the track calculation
is more accurate. Inertial navigation can have a good effect on short-distance positioning
and navigation, while longer distances will cause serious accumulated errors. Inertial
navigation alone cannot achieve accurate navigation and positioning effects [6].

GPS navigation is an absolute positioning navigation method, such that there is no
cumulative error. Because this kind of navigation method obtains the posture by receiving
the GPS signal, the strength of the signal and the interference to the signal will have a greater
impact on the method, and it is even more difficult to receive in the indoor environment,
but this method is relatively stable for the outdoor environment. It has been applied to
mobile phones, cars, and map navigation. It is also used as a positioning data application in
some outdoor robots. It is integrated with other data to improve positioning and navigation
accuracy [7].

Visual navigation [8] is the hottest research direction in recent years; the main hardware
includes monocular, binocular and depth cameras. This technology is also called visual
Simultaneous Localization and Mapping (SLAM) [9] technology. Due to the plentiful
feature information contained in the environmental image obtained by the camera, which is
similar to human eyes, advanced algorithms can construct a three-dimensional map of the
environment and determine the pose of the robot’s environment. Compared with LIDAR,
the camera is inexpensive and reduces hardware costs. However, this method is still in the
early stage of research and requires high computing capabilities; most of them are based on
experiments and have not yet been truly commercialized. Vision is based on light, and all
of the information about the characteristics of the night environment will be lost, such that
all-weather autonomous navigation cannot be achieved by vision alone.

Laser navigation has been the most popular navigation method in recent years. Be-
cause laser navigation can use SLAM technology to build maps without modifying the
environment, which greatly improves the versatility of the robot, and it can also be applied
to indoor and outdoor environments. Nowadays, most robots construct navigation systems
by combining multiple navigation methods. Laser navigation is usually combined with
inertial navigation to realize the autonomous navigation of robots, but the price of LIDAR
is higher, which greatly increases the cost of the robot [10].

In the method, predecessors did a lot of research. Guastella et al. concluded that
perception plays a vital role in complex environments because it provides the necessary
information to make vehicles aware of their states and surroundings, all of which have the
unstructured nature of the environment under consideration. However, these methods are
still in the embryonic stage; in indoor substations in this structured environment, mature
use is still quite far away [11]. Seçkin et al. proposed a natural navigation method to
track paths from 2D maps, which aims to utilize the memory of previous paths and then
follow the same path, with the problem that mobile robots can reach a target at a lower
error rate without accumulating errors, even in a multi-bend system, but a sequence of
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symmetrical or repetitive objects leads to the robot detecting similar patterns and making
wrong decisions [12]. Yan et al. proposed a mapless navigation method based on two-
dimensional LIDAR in complex and unknown environments, which does not depend on
global planning or an environmental map. However, when it comes to moving obstacles,
the optimal sub-target will be changed due to the movement of obstacles, which will lead
to the problem of inaccessible targets [13].

Laser SLAM is currently the most stable and mainstream positioning and navigation
method. The main mapping methods for laser SLAM include Gmapping, HectorSLAM,
and KartoSLAM. Gmapping is currently the most widely used 2D SLAM method; it can
construct indoor maps in real time, and has good mapping effects in long corridors and
low-feature scenes. The disadvantage is that it depends on odometry, it is not applicable to
unmanned aerial vehicles or uneven ground areas, and there is no loop. HectorSLAM has
relatively high requirements for sensors, it does not use odometry, and it can adapt to the
situation of uneven ground areas. The disadvantage is that the update frequency of the
LIDAR is required to be high, and the measurement noise is small. KartoSLAM is a graph-
based SLAM approach that uses the mean value of the graph to represent the map; each
node represents the sensor measurement dataset and a position point of the robot trajectory.
In this paper [14], the algorithms were compared in the size simulation environment,
the actual environment, and CPU consumption, and it was found that KartoSLAM and
Gmapping have more advantages. Due to the small amount of calculation and the effective
use of odometer information, this paper chooses the Gmapping mapping method.

This article focuses on the chassis of the robot, including the selection of the sports
chassis model and the realization of autonomous navigation functions. Firstly, the EKF
is used to realize the data fusion of odometry and inertial navigation, and the Gmapping
method is used to construct the environment map. Secondly, the A* algorithm is used to
plan the global path, and then the DWA is used to plan the local path to achieve dynamic
obstacle avoidance. At the same time, the safety touch sensor is used to realize the robot’s
stop function. Finally, the researched chassis navigation system is applied to the functional
indoor substation switch cabinet operation robot, and it is verified in the process of detection
and evaluation.

2. Construction of the Robot Chassis
2.1. Overall Design of the Robot Chassis

A robot application scenario was developed in an indoor substation; the environment
has flat ground, the corridors are narrow, and the operating robot needs a pan-tilt operating
module and mobile module, which are heavy and have high centres of gravity. The robot
has high flexibility requirements such that it can adjust the posture of its body in a small
range in-real time. Based on the above conditions, an omnidirectional mecanum wheel
was chosen, as it meets the load requirements, has high versatility, and can flexibly change
its posture.

Figure 1 shows the navigation structure of the robot chassis. The hardware system
mainly includes an industrial controlling computer, motor drive, encoder, IMU, LIDAR
sensor, safety edge sensor, battery power supply, transformer, and Controller Area Network
(CAN) analyzer. The industrial control computer is the robot’s brain, where all data
processing is realized. The IMU [15] sensor performs data fusion with the position and
posture for more accurate positioning. The LIDAR sensor is mainly used to sense and
extract environmental information in an unknown environment to achieve autonomous
navigation. The safety edge sensor can realize automatic obstacle avoidance and stop.
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Figure 1. Navigation system framework of the robot chassis.

Positioning and navigation are accomplished using 2D LIDAR, which does not need to
change the environment when acquiring environmental information. The fusion of LIDAR
and other sensor information enables the construction of a more accurate environment
map following a certain proportion. The robot’s posture is determined when the laser
beam coincides with the map. The robot body can be protected by the safety edge sensor
when the laser scan is not available for irregularly shaped obstacles. Functions such as
autonomous navigation can be achieved in the Gazebo simulation environment, and the
code is migrated to the experimental platform to verify and improve the navigation system
and to test its stability.

2.2. Mecanum Wheel Chassis Kinematics and Odometer Model

Stable control is very important for mobile robots in subsequent autonomous nav-
igation. In order to control the motion of a mobile robot, we must first understand its
kinematics. For a single Mecanum wheel, its motion analysis is shown in Figure 2, and the
oblique line in the figure is the roller with which the Mecanum wheel contacts the ground.
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Where r is the radius of the wheat wheel, α is the offset angle of the roller, ωi is the
rotation speed of the hub (i = 1, 2, 3, 4), vir is the rotation speed of the roller, and vi is the
speed of the center position of the wheat wheel:

vi =

[
0 sin α
r cos α

][
ωi
vir

]
(1)

The motion analysis of the entire chassis structure of the mobile robot is shown in
Figure 3. Where ly is half the distance between the two Mecanum wheels in the longitudinal
direction, lx is half the distance between the two Mecanum wheels in the transverse
direction, vx is the speed of the chassis on the axle, vy is the speed of the chassis on the axis,
and ω is the angular velocity of the chassis, then the speed of each wheel is

v1 =

[
1 0 −ly
0 1 lx

] vx
vy
ω

, v2 =

[
1 0 −ly
0 1 −lx

] vx
vy
ω

, v3 =

[
1 0 −ly
0 1 −lx

] vx
vy
ω


v4 =

[
1 0 ly
0 1 lx

] vx
vy
ω

 (2)
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Take wheel 1 as an example: combine Equation (1) with Equation (2) (usually the
most-used angle is 45◦), then

ω1 =
1
r
[
−1 1 lx + ly

] vx
vy
ω

 (3)

The speed of the other three Mecanum wheels can be obtained in the same way, and
the inverse kinematics of the chassis as shown in Equation (4):

ω1
ω2
ω3
ω4

 =
1
r


−1 1 lx + ly
1 1 −lx − ly
−1 1 −lx − ly
1 1 ly + ly


 vx

vy
ω

 (4)
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After transformation from Equation (5), the linear velocity and angular velocity of
chassis motion can be obtained:

 vx
vy
ω

 =
r
4

 −1 1 −1 1
1 1 1 1
1

lx+ly
− 1

lx+ly
− 1

lx+ly
1

lx+ly




ω1
ω2
ω3
ω4

 (5)

During the movement of the mobile robot, the motor encoder can record the moving
distance and rotation angle of the mobile robot. The higher the accuracy of the motor
encoder, the more accurate the odometer of the mobile robot. Odometers provide position
and attitude information for mobile robots. The method and principle of the encoder
providing the odometer is shown in Figure 4:
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Where OW XWYW is the world coordinate system and Oi is the center of the chassis.
The sampling time is very short, the motion is regarded as linear motion, the rotation speed
of the wheel is considered unchanged, and the pose of the mobile robot at the moment of t
is (xt, yt, θt); then, the odometer isxt+1

yt+1
θt+1

 =

xt
yt
θt

+

cos θt − sin θt 0
sin θt cos θt 0

0 0 1

∆x
∆y
∆θ

 (6)

Let the sampling cycle time be ∆t, the angle that the wheel turns during the sampling
cycle interval is ∆γi, r is the radius of the wheel, lx is half the distance between the centers
of the horizontal two wheels, and ly is half the distance between the centers of the two
vertical wheels. From Equation (5), we can obtain

∆x
∆y
∆θ

 =

vx
vy
ω

∆t =
r
4

 −1 1 −1 1
1 1 1 1
1

lx+ly
− 1

lx+ly
− 1

lx+ly
1

lx+ly




ω1
ω2
ω3
ω4

∆t =
r
4

 −1 1 −1 1
1 1 1 1
1

lx+ly
− 1

lx+ly
− 1

lx+ly
1

lx+ly




∆γ1
∆γ2
∆γ3
∆γ4

 (7)

The mobile robot position is estimated using the encoder data by Equation (7). Let
∆ei be the data change of the encoder in the sampling period, and let ∆ξ be the number of
pulses. Therefore, the pose of the robot at any time in the world coordinate system can be
obtained from Equations (6) and (7):
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xt+1
yt+1
θt+1

 =

xt
yt
θt

+
2πr

4× ∆ξ

cos θt − sin θt 0
sin θt cos θt 0

0 0 1



 −1 1 −1 1

1 1 1 1
1

lx+ly
− 1

lx+ly
− 1

lx+ly
1

lx+ly




∆e1
∆e2
∆e3
∆e4


 (8)

3. Robot Multi-Sensor Data Fusion Slam

The autonomous navigation system uses multi-sensor fusion SLAM technology, robot
path planning technology, and robot automatic obstacle stop and obstacle avoidance
technology. The chassis includes a mileage measurement unit formed by a motor encoder
and an inertial navigation unit formed by the heading sensor; the data obtained by the
two navigation and positioning methods [16] are used to obtain more accurate relative
position coordinates. Gmapping is used to construct an environment map, in the case
of a known map, according to laser point cloud data and the robot’s relative positioning
method; Adaptive Monte Carlo Localization (AMCL) realizes the robot’s relocation, which
reduces the accumulated positioning error in the long-term movement of the robot.

3.1. Data Fusion Positioning of Mileage Measurement and Inertial Navigation Based on EKF

The combination of multiple navigation methods is most useful to increase the pre-
cision of the robot’s navigation [17–19]. The fusion of multiple sensor data compensates
for the sensors’ shortcomings to enhance the steadiness and robustness of the navigation
and positioning.

Because the wheel odometer will have accumulated errors, sudden acceleration or
deceleration and wheel slippage during sharp turns will also cause errors. In order to
prevent this error from interfering with the mapping, an IMU (Inertial Measurement Unit)
sensor is added. The sensor data of the IMU is stable, has high precision, and has a wide
range of applications. In the ROS system, the extended Kalman filter can be used to fuse
the two data, reduce the cumulative error of the odometer, and provide more accurate pose
information for the mobile robot.

IMU and odometer data fusion can use EKF. EKF will first predict the system state
and then update the observation. The system state transition and observation model can be
differentiable nonlinear functions:

xk = f (xk−1, uk−1) + wk wk ∼ N(0, Qk)
zk = h(xk) + vk vk ∼ N(0, Rk)

(9)

where f is the nonlinear system model, h is the measurement model, wk is system noise,
vk is measurement noise, and wk, vk all are zero-mean Gaussian noise [20], the covariance
matrix is

wk ∼ N(0, Qk) wk ∼ N(0, Qk) (10)

Taking as input the increment of the odometer from time k− 1 to k, thenxk|k−1
yk|k−1
θk|k−1

 =

xk−1|k−1
yk−1|k−1
θk−1|k−1

+

u(1) ∗ cos(θk−1|k−1)

u(1) ∗ sin(θk−1|k−1)

θk−1|k−1 + u(2)

 (11)

where u(1) is the odometer distance increment and u(2) is odometer yaw increment.
The corresponding Jacobian matrix is

Fk =

1 0 −u(1) ∗ sin(θk−1|k−1)

0 1 u(1) ∗ cos(θk−1|k−1)

0 0 1

 (12)
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The prediction process is

∧
Xk = f (

∧
X+

k−1,uk)

P−k = FkPk−1FT
k + Qk

(13)

The update process is

Kk = P−k HT
k (HkP−k HT

k + Rk)

∧
X+

k =
∧
X−k +Kk(zk − h(

∧
X−k ))

P+
k = P−k − Kk HkP−k

(14)

where Fk is the last state quantity,
∧
X+

k−1 is the state transition matrix at the corresponding
moment, uk is the control input vector, and Hk is the observation state matrix that the
actual state space is mapped to the observation space. In order to build a robot model in
the Gazebo simulation environment, the odometer data of the robot are set to be “odom”,
which includes the current position and posture of the robot and the speed information at
that time. The inertial navigation data is “imu”, and the data information after fusion is
named “odom_combined”; this node is the data fusion node of the EKF algorithm, which
subscribes to the information of “odom” and “imu”.

Figure 5 shows that the robot is controlled to complete a square movement with
and without EKF in the Gazebo robot simulation environment. Through the path of the
simulated robot, it can be found that its posture when fused with EKF has less drift, making
its positioning more accurate.
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3.2. The Method and Application of the Robot’s Mainstream SLAM Mapping (Gmapping)

The environment information is acquired by 2D LIDAR, which is single-plane laser
point cloud data, such that its feature information is less than that of a visual sensor,
the feature map [21] representation is excluded firstly. In order to ensure stable and
accurate navigation and prevent the loss of position information, the topological map [22]
representation is excluded. After the above comprehensive consideration, the grid map [23]
representation is used to build the robot environment map.

The SLAM is the process of sizing up the robot’s location and environment information
in the unknown environment from the current environment measurement, previous time
position information, and control input.

The filter is indispensable to robot SLAM. The most representative is the SLAM
algorithm based on a Particle Filter (PF), in which Gmapping is ameliorated based on a
Rao-Blackwellized Particle Filter (RBPF) [24]. This method has two problems.
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1. There is a high demand for robot posture accuracy when constructing the map. Only
the posture information obtained from the motion model can construct the map, but
the error will be large, which causes a mismatch between the real environment and
the built environment map. The proposed distribution is too scattered, which is quite
different from the real distribution; to increase the number of particles near the actual
distribution requires more particles overall, which will increase the computational cost.

2. Frequent resampling leads to particle dissipation. Each particle is a posture state of
the robot, which contains all of the posture and map information; frequent resampling
causes the particles to gather at one point, which decreases diversity quickly, and even
the correct particles tend to be discarded, causing the loss of location information.

Gmapping proposes an improved proposal distribution for the number of particles in
RBPF and selective resampling for the frequent resampling of RBPF to reduce the amount of
resampling [25]. Gmapping is used to build the robot simulation environment map, and to
start the robot simulation environment built by ROS [26]. Figure 6 shows the map obtained.
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Figure 6. Map of the robot simulation environment.

3.3. AMCL Relocation Based on LIDAR Data

With data fusion and the positioning of the robot’s internal sensors complete, environ-
ment information is observed by LIDAR, and a more accurate map is constructed. With
a known map, it is difficult to maintain positioning accuracy for a long time with only
the relative positioning mode of the robot’s internal sensors, such that LIDAR is used to
obtain the environment information and then match with the known map; the position and
posture information are obtained according to the external environment in order to correct
the accumulated error of relative positioning, so as to ensure the accuracy of positioning.
Only when autonomous positioning is realized can path planning and navigation be better
realized. This process is called the robot’s relocation process; this process also solves the
problems of robot wheels slipping, the robot drifting, and being moved in a small range by
a human. AMCL is used to realize this process.

The small black line in Figure 7 represents the particle swarm estimated by the robot’s
position, the large white arc represents the mean value of the particle swarm, the small
white circle represents the robot’s true position relative to the map, and the grey robot
mark in the figure finally coincides with the real position through this process to realize
autonomous positioning. Figure 4 shows the AMCL process.
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Firstly, as shown in Figure 7a, each particle represents the position of the robot, and
each has the same confidence. Then, bring every particle into the motion equation of
the robot, make all particles move with the robot, and eliminate some particles that have
moved out of the map, as shown in Figure 7b. Next, compare the remaining particles
with the observed map environment information, change the confidence of each particle,
improve the confidence of highly matched particles, and redistribute particles according to
confidence to increase the number of accurate particles, as shown in Figure 7c. Finally, by
repeatedly going through the above two steps, all of the particles are gathered around the
robot, as shown in Figure 7d, thus completing the global localization process.

If a wheel drifts or the robot is moved by a human, it is separated from its real position
in the environment, as shown in Figure 7e, and this is corrected by AMCL repositioning.
The process is described as follows: First of all, the sudden decrease of the average particle
score indicates that the robot has deviated from its intended real position; at this time,
some particles are scattered around the robot map environment, as shown in Figure 7f.
Afterwards, through the scattered particles, the map information is rematched for each
particle, its confidence is calculated, and the number of particles with high matching
degrees is increased, as shown in Figure 7g. Ultimately, through the above iterative process,
the robot can obtain its position information again in order to realize the robot relocation,
as shown in Figure 7h.

According to the analysis, AMCL needs the robot’s motion information and LIDAR
data, which also needs map information, Transform Frame (TF) conversion, and the mean
and variance of the initialization particle filter for robot positioning.

The method is verified in the simulation environment and displayed by the RViz visual-
ization tool of ROS. Figure 8a shows the initial state—the particles will gather slowly as the
robot moves—and Figure 8b shows the final result. Each small arrow represents a particle,
and all of the particles are updated iteratively such that that they gather around the robot.
By the above methods, the robot cannot obtain the real position quickly, such that an initial
position of AMCL is usually given, which doesn’t need to be very accurate; AMCL enables
the robot to quickly complete the initialization in order to meet real-time requirements.
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4. Research on the Path Planning of a Robot Autonomous Navigation System

Path planning analysis is performed from two aspects: global and local path planning.
Common global path planning algorithms include Dijkstra, A* [27], the Probabilistic Road
Map (PRM), and Rapidly exploring Random Tree (RRT). The Dijkstra algorithm is a classic
breadth-first search algorithm. That is to say, the algorithm starts from the initial point and
searches the entire free space layer by layer until it reaches the target point; this algorithm
can obtain the shortest distance between two points, but it will greatly increase the time
and data cost. The A* algorithm adds a heuristic function on the basis of Dijkstra, thereby
improving the efficiency of Dijkstra’s algorithm. The PRM algorithm first obtains sampling
points in the environment and connects them to form a probabilistic road map. When
setting the start and final points, it will find the sampling points closest to the start and
endpoints. By contrast, we find it is relatively simple to search for the global path through
the A* or the Dijkstra algorithm, but the route is not the shortest for the Dijkstra algorithm.
Furthermore, it is also difficult to sample in narrow and long areas. The RRT algorithm
takes the starting point as the root node and randomly samples the posture, and the tree is
repeatedly expanded according to the reachable condition until the destination is added
to the branch of the tree. It is strange that although this method directly considers the
control, the route is not the shortest. In summary, A* was selected as the familiar global
path planning algorithm.

The Dijkstra algorithm and the A* algorithm are provided in the navigation function
package in ROS. Table 1 is a comparison of the running time of Dijkstra’s algorithm and
the A* algorithm.

Table 1. Dijkstra algorithm and A* algorithm traversal times.

Starting Point
Coordinates

End Point
Coordinates

Running Time of
Dijkstra’s
Algorithm

without Obstacles

The Running
Time of the A*

Algorithm
without Obstacles

Running Time of
Dijkstra’s

Algorithm with
Obstacles

The Running
Time of the A*

Algorithm with
Obstacles

(1, 1) (18, 18) 2.8 s 1.9 s 3.8 s 2.1 s

It can be seen from Table 1 that the time taken by Dijkstra’s algorithm is always longer
than that of the A* algorithm, whether there is no obstacle or there is an obstacle.
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4.1. Global Path Planning for Robots Based on A*

Global path planning can be described as the planning of a complete path from the
starting spot to a goal spot when the environment map is completely known. The A* is
depicted as follows.

Assume that the starting spot of the robot is O, the goal spot is G, and the current node
is N. A* uses a cost evaluation function:

f (n) = g(n) + h(n) (15)

where n is the search node; f (n) is the cost of the robot to move from O through n to G;
g(n) is the actual cost to move from O to N, which is called the dissipation function; and
h(n) is the estimated cost to move from N to G, which is called the heuristic function.

A* improves the Dijkstra algorithm [28] by adding a heuristic function; Figure 9 shows
the influence of h(n) on A*. When h(n) = 0, the heuristic function does not work, and A* is
the Dijkstra algorithm; the larger h(n), the more restricted its search space, and the harder
it is to ensure an optimal search. The h(n) is usually determined by the Euclidean distance
and the Manhattan distance from the starting spot to the goal spot. The specific flow chart
of A* is shown in Figure 10.
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Figure 9. Impact graph of the heuristic function.

Figure 11 shows the process in the form of a graph, where the upper-left, lower-left,
and lower-right corners of each square represent f (n), g(n) and h(n), respectively. Among
them, yellow represents the starting point, gray represents the ending point, red represents
the optimal path, and black represents the obstacle.

Based on the above analysis, Figure 12 shows the simulation results of the A* algorithm,
where the black square represents the wall, dark green is the starting spot, red is the goal
spot, light blue-green represents the search space traversed during the path planning, and
the yellow solid line represents the optimal path planned from the starting spot to the
goal spot.
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4.2. Robot’s Local Path Planning Based on DWA

In local path planning, the robot plans the best local available path and issues speed
commands to control its movement according to the real dynamic environment information
from LIDAR. Universal local path planning algorithms include Artificial Potential Field
(APF) [29], Vector Field Histogram (VFH) [30], and DWA. According to the robot’s indoor
application environment and the environmental representation in the grid map, DWA was
chosen; according to the characteristics of the dynamic environment, DWA can realize the
function of real-time obstacle avoidance.

DWA forecasts the trajectory based on the multi-group velocity sampling of the robot
motion state according to the model of the robot chassis motion; it chooses the best-
predicted trajectory so as to avoid the robot crashing, and then the speed command of the
robot is issued to control it along the best local path.

5. Research on Automatic Stopping and Avoiding Obstacles

During the development of the robot navigation system, it is equally important to
ensure the safety of the robot body and the surrounding environment. The local path
planning based on the dynamic window method (DWA) is carried out under the dynamic
environment map. The real-time information obtained by the laser can detect whether
there are obstacles in front of the robot and the distance information of the obstacles [31],
and then realize the autonomous navigation and obstacle avoidance function of the robot.
However, because the data acquired by the 2D LIDAR comes from a single plane, it is
impossible to test shorter roadblocks. Therefore, a safety edge sensor is used to detect
shorter roadblocks and stop the robot’s movement based on real-time feedback.

The safety edge, also known as a bumper strip, is a pressure-sensitive switch that
appears as a soft, bendable ribbon. It can be fixed around the moving vehicle body to
prevent collision. Generally, it is normally open logic. When triggered, these safety edges
are compressed and deformed due to their softness. Then, a closed IO signal is generated
through sensing and transmitted to the core controller, which feed back the information that
the moving car body has collided with the object. The significance of installing the safety
edge is that because the mobile robot usually uses a two-dimensional laser to perceive the
scene, it can only identify and detect objects in the laser plane, but there may be three-
dimensional obstacles on the user’s site. It is impossible to perceive the protruding part at
the bottom of the object. At this time, the protruding lower part will touch the anti-collision
bar, and the robot will stop immediately after sensing the triggering of the anti-collision
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bar. Therefore, the anti-collision strip is generally installed on the plane that cannot be
scanned by the laser; it is generally installed relatively low, and the anti-collision strip will
be installed before and after the robot.

For the robot itself, the control of the safety edge sensor is set as the highest priority,
followed by the keyboard control, and finally the robot autonomous navigation process
control. The robot’s safety has a preference based on this priority, and when the safety edge
sensor receives a collision pressure signal, the robot will stop immediately.

6. Practical Application Platform of the Autonomous Navigation System

By analyzing the operating mechanism of the robot ROS system [32], a complete
navigation software system for the robot chassis was built, and it was all concentrated in a
ROS workspace; multiple processes took place simultaneously to achieve the autonomic
navigation function of the robot chassis and completed the chassis software system design.
The researched robot navigation system was applied to actual robots, the new chassis
physical parameters were recalibrated, and we analyzed and verified the system through
practical application.

Figure 13 shows the robot body; the main function is to assist substation workers in
the detection of a distribution switch cabinet. The robot has three main parts, including a
Mecanum wheel chassis, a three-axis robot arm platform movement module, and a spindle
operation pan-tilt module.
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We used the power distribution switchgear robot to achieve positioning and mapping;
we also used the Gmapping method to build a map, and used the map_server of ROS to
save the map file. The saved map file provides a reference for the later navigation process.
In the same indoor environment, the map created by the mobile robot using the Gmapping
algorithm through the single odometer method is shown in Figure 14a, and the map created
by integrating the odometer and IMU data is shown in Figure 14b. All of the maps have
a resolution of 5 cm. Through the comparison of the two maps, it can be seen that in the
initial period of time, the maps created by the two are basically not much different. With
the accumulation of time and the increase of the moving distance of the mobile robot, the
contour of the single-wheel odometer method gradually appears tilted and deformed when
the map is constructed, and the constructed map has a certain deviation compared with
the actual indoor environment, as shown in the red box in Figure 14a. The map is tilted
by 2◦. However, the map constructed by combining the odometer and IMU data has a
clear outline and can accurately estimate the pose information of the mobile robot in the
indoor environment, and the constructed map can accurately and truly express the indoor
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environment. Through comparative analysis, it can be seen that the map results created by
the latter are more accurate.

Electronics 2022, 11, x FOR PEER REVIEW 16 of 21 
 

 

14a. The map is tilted by 2°. However, the map constructed by combining the odometer 

and IMU data has a clear outline and can accurately estimate the pose information of the 

mobile robot in the indoor environment, and the constructed map can accurately and truly 

express the indoor environment. Through comparative analysis, it can be seen that the 

map results created by the latter are more accurate. 

  
(a) (b) 

Figure 14. Multi-sensor laser SLAM and single-sensor laser SLAM. (a) Raster map created by a sin-

gle-wheel odometer; (b) raster map created after fusing IMU. 

The widths of the two sides and three positions in the middle of the corridor were 

selected for measurement, and the measured values of the grid map were used for com-

parison. The experimental data are shown in Tables 2 and 3. By comparing Tables 2 and 

3, it can be seen that the error of the map accuracy in the early stage is relatively small. 

With the increase of the grid map, the error of the map created by a single odometer is 

larger than that of the odometer and IMU. The composition effect is better after the fusion 

of the odometer and IMU. 

Table 2. Accuracy of a single-odometer grid map. 

Location Measurements/m Map Values/m Absolute Error/m Relative Error/% 

1 2.450 2.424 0.026 1.06 

2 3.425 3.359 0.066 1.93 

3 2.430 2.305 0.125 5.15 

Table 3. Raster map accuracy of the fusion odometer and IMU. 

Location Measurements/m Map Values/m Absolute Error/m Relative Error/% 

1 2.450 2.428 0.022 0.89 

2 3.425 3.380 0.045 1.31 

3 2.430 2.366 0.064 2.63 

We need to achieve autonomous navigation in the environment, without rebuilding 

the map. The constructed indoor substation environment map is shown in Figure 15. 

Figure 14. Multi-sensor laser SLAM and single-sensor laser SLAM. (a) Raster map created by a
single-wheel odometer; (b) raster map created after fusing IMU.

The widths of the two sides and three positions in the middle of the corridor were
selected for measurement, and the measured values of the grid map were used for compar-
ison. The experimental data are shown in Table 2 andTable 3. By comparing Tables 2 and 3,
it can be seen that the error of the map accuracy in the early stage is relatively small. With
the increase of the grid map, the error of the map created by a single odometer is larger
than that of the odometer and IMU. The composition effect is better after the fusion of the
odometer and IMU.

Table 2. Accuracy of a single-odometer grid map.

Location Measurements/m Map Values/m Absolute Error/m Relative Error/%

1 2.450 2.424 0.026 1.06
2 3.425 3.359 0.066 1.93
3 2.430 2.305 0.125 5.15

Table 3. Raster map accuracy of the fusion odometer and IMU.

Location Measurements/m Map Values/m Absolute Error/m Relative Error/%

1 2.450 2.428 0.022 0.89
2 3.425 3.380 0.045 1.31
3 2.430 2.366 0.064 2.63

We need to achieve autonomous navigation in the environment, without rebuilding
the map. The constructed indoor substation environment map is shown in Figure 15.
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Figure 15. Indoor environment map.

For the analysis of the autonomous navigation system of the robot, we mainly analyzed
the positioning accuracy of the robot reaching the target point during the cyclic navigation
process. As shown in Figure 16, we set the starting point and the target point for the robot,
and used tape to mark the initial pose state of the robot at the starting point and endpoint
of the robot. Then, we set the robot to continuously cycle between two points, recording
the position and attitude of each navigation to the target point.
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Southern Power Grid.

According to the analysis of many experiments, after the mobile robot reached the
target point, we used a tape measure to measure the actual position of the mobile robot, com-
pared it with the position data in rviz, and took the maximum error, minimum error and av-
erage error in the 10 sets of data. The accuracy is shown in Table 4. We can see that the accu-
racy of the autonomous navigation of mobile robots meets the experimental requirements.
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Table 4. Autonomous navigation accuracy.

Type Maximum Error/cm(◦) Minimum Error/cm(◦) Average Error/cm(◦)

X direction 8.5 4.0 5.5
Y direction 7.2 4.3 5.2

attitude 21.8 6.5 15.6

In order to ensure the safety of the robot, we analyzed its obstacle avoidance and stop
function, as shown in Figure 17. Without affecting the LIDAR data, the robot autonomously
bypasses the obstacle to avoid obstacles when the LIDAR scans an obstacle. The safety
edge reads the collision signal and stops the robot from moving again when an obstacle
that cannot be scanned by the radar is placed on the robot’s navigation path and a collision
occurs. After we manually remove the obstacle, the robot resumes navigation.
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Figure 18 shows the actual operation process of the robot, whereas Figure 18a shows
the initial position and charging position; the initial and charging positions can be different,
according to the tasks published by the server, and the robot autonomously navigates to
the target point of the task assignment. Figure 18b shows the robot movement process.
Figure 18c shows the robot reaching the goal spot. Through analysis, we know that the
autonomous navigation system can meet the navigation and positioning requirements of
the distribution switch cabinet operating robot. By using this platform, the practical value
of the developed robot navigation system was verified. Finally, we tested and certified the
complete functions and performance indicators of the robot through a third-party testing
agency which meets the project indicators and requirements.
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7. Conclusions

Real-time and accurate chassis navigation is a core function to enable substation robots
to complete inspection tasks. The autonomous navigation system is a key technology
of robot intelligence. This study focused on the research and implementation of the
autonomous navigation system of an auxiliary operation robot in an indoor substation
environment; our main achievements are as follows.

1. The three-dimensional model of the robot experimental chassis was developed and
designed, and the robot simulation environment was built in ROS; the real navigation
system experimental platform was built to prepare for navigation system research.

2. The autonomous navigation system has three parts: multi-sensor data fusion posi-
tioning and mapping, robot navigation path planning, and automatic stopping and
obstacle avoidance. For multi-sensor data fusion positioning and mapping, the EKF
algorithm was used for data fusion, and the Gmapping method was used to build the
environmental maps. For the robot navigation path planning, the A* was used for
global path planning, and the DWA algorithm was used for local path planning; the
local path also realized the dynamic obstacle avoidance effect. For automatic stopping
and obstacle avoidance, the safety edge sensor was used to guarantee the security of
the robot as well as the surroundings, and to realize the stopping and obstacle function.
According to the above research and analysis, the software development and design
of the navigation system were completed with the help of ROS.

3. The designed navigation system was applied to a switchgear auxiliary operating robot,
the physical structure parameters of the chassis were calibrated for the new navigation
system, and experimental analysis was conducted on the complete autonomous navi-
gation system. The results indicate that the developed system contains the indicators
and demands of the distribution switchgear auxiliary operation robot project, and the
practical value of the system was verified.

4. There are still deficiencies in the design of our current navigation system. When
there is a fixed obstacle below the scanning range of the LIDAR, the mobile robot will
stop at the obstacle, resulting in the inability to continue to run to the target point,
which greatly affects the follow-up distribution box inspection work. In addition, the
navigation system we designed is only suitable for structured and flat environments
such as indoor substations, and it is difficult to apply in complex environments.
Therefore, future research can solve the navigation disruption problem by adding
a multi-line radar or a depth camera, and by adding a perception algorithm based
on deep learning. Then, the wide applicability of the model can be improved by
modifying the chassis structure to be more suitable for complex environments.

5. Our ultimate goal is to detect the target of the distribution box. The design of the
indoor substation wheeled robot navigation system in this paper provides the basis
for the subsequent target detection. In object detection algorithm [33] provides an
effective and efficient framework to detect different growth stages under a complex
orchard scenario which can be extended to the detection of different fruits and crops,
disease detection, and different automated agricultural applications. They proposed a
real-time object detection framework, Dense-YOLOv4, based on an improved version
of the YOLOv4 algorithm including DenseNet in the backbone to optimize feature
transfer and reuse. Furthermore, a modified path aggregation network (PANet) was
implemented to preserve fine-grain localized information. Liu et al. [34] provided a
comprehensive review of recently developed deep learning methods for small object
detection. Firstly, they summarized challenges and solutions of small object detection,
and presented major deep learning techniques. Then they discussed related techniques
developed in four research areas, including generic object detection, face detection,
object detection in aerial imagery, and segmentation. In addition, they also compared
the performances of several leading deep learning methods for small object detection—
including YOLOv3, Faster R-CNN, and SSD—based on three large benchmark datasets
of small objects. The robot platform we designed can carry out the target detection
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algorithm mentioned above. Therefore, in the future, the mentioned target detection
algorithm can be burned into the robot platform we designed for testing, and can
further complete the follow-up detection of apparent defects in distribution boxes.
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