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Abstract: Vehicle classification is an important part of intelligent transportation. Owing to the
development of deep learning, better vehicle classification can be achieved compared to traditional
methods. Contemporary deep network models have huge computational scales and require a large
number of parameters. Binarized convolutional neural networks (CNNs) can effectively reduce
model computational size and the number of parameters. Most contemporary lightweight networks
are binarized directly on a full-precision model, leading to shortcomings such as gradient mismatch or
serious accuracy degradation. To addresses the inherent defects of binarization networks, herein, we
adjust and improve residual blocks and propose a new pooling method, which is called absolute value
maximum pooling (Abs-MaxPooling). The information entropy after weight binary quantization is
used to propose a weight distribution binary quantization method. A binarized CNN-based vehicle
classification model is constructed, and the weights and activation values of the model are quantified
to 1 bit, which saves data storage space and improves classification accuracy. The proposed binarized
model performs well on the BIT-Vehicle dataset and outperforms some full-precision models.

Keywords: lightweight; binary neural networks; deep learning; vehicle classification

1. Introduction

The number of urban vehicles has been increasing every year; to efficiently manage
traffic, the traffic monitoring information system of each city is being continuously im-
proved. Image-based vehicle classification technology has become a popular research topic
in the intelligent transportation domain.

Convolutional neural networks (CNNs) have greatly improved vehicle classification
accuracy; however, complex CNN models based on floating-point multiplication oper-
ations, such as VGG [1] and ResNet [2], have huge computational scales and require a
large number of parameters. These models consume a large amount of computational and
memory resources, which seriously hinders their application in small devices. A binarized
neural network (BNN) [3] can be used to quantize 32-bit floating-point parameters into
1-bit fixed-points. Moreover, the large number of floating-point multiplication and addition
operations in CNNs can be converted into more efficient logic operations (such as XNOR
and POPCOUNT) owing to the 1-bit advantage. It decreases the consumption of storage
resources for model deployment as well as the computational load of the model, greatly
accelerating the forward inference process of the neural network. Because of the high com-
pression ratio and acceleration effect, BNNs have received considerable attention in recent
years and are a popular research topic in the study of lightweight deep learning models.

Contemporary BNNs need improving in the following areas [4–6]: (1) The current
lightweight method of direct binarization of full-precision networks does not consider
the weak information representation of the binarized model, which leads to a less rich
information flow of the binarized network; moreover, the downsampling layer introduces
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a large number of 1 × 1 floating-point convolutions to expand the number of channels,
adding too many additional floating-point parameters and calculations. (2) The existing
binarization network backpropagation process only considers the approximation of the
symbolic function, ignoring the problem that the parameters cannot be updated effectively
in some intervals; there is also a serious gradient mismatch problem. (3) Most reported
methods recover the loss of weight quantization by introducing floating-point scaling;
however, this operation introduces additional floating-point parameters and computations,
which increases the storage and operation burden of binarized CNNs.

Based on the above analysis, the contributions of this study are as follows:

(1) Based on absolute value maximum pooling, we propose a downsampling method.
The residual block of ResNet is adjusted and improved to make it more suitable for
binary CNNs. In the pooling operation, the value with the largest absolute value
in each pooling block is retained, and thus, the information of the feature map after
binary quantization is retained more effectively. Such a downsampling layer does not
require a full-precision convolution operation, which greatly reduces the number of
floating-point operations used in the model.

(2) For approximating the gradient of the symbolic function, a dynamic and progres-
sive method is proposed that approximates the backpropagation gradient of the
binarization function step-by-step during training. This method is used to more effi-
ciently train the binarized CNN, addressing the problem that the model parameters
cannot be updated in some intervals. The gradient of the later period gradually ap-
proaches the gradient of the symbolic function, considerably mitigating the gradient
mismatch problem.

(3) Herein, an information gain method is proposed, which is called the binarization of
weight redistribution. The full-precision weights are standard deviation normalized
before the weights are binarized. Floating-point gain terms that are introduced in
most networks to reduce binary quantization errors are discarded, which enhances
the information representation capability of the binary network and decreases the
storage and operation burden of the traditional floating-point scaling gain.

The rest of the paper is organized as follows: Section 2 presents a review of current
research on binarized CNNs and vehicle classification and analyzes the current problems.
Section 3 details the proposed improvement method. In Section 4, the improved residual
blocks are used with the cifar10 dataset [7]; the experimental results demonstrate the
effectiveness of our proposed improvement. Subsequently, extensive experiments are
conducted on the BIT-Vehicle public dataset [8], and the experimental results show that the
proposed binarized CNN model outperforms contemporary binarized models, as well as
the partial full-precision CNN.

2. Related Works
2.1. Binarized Convolutional Neural Networks

In full-precision CNNs, the weights and activation values are 32-bit floating-point
numbers. In forward inference, the convolutional operation contains a large number of
floating-point multiplication and addition operations, which causes inefficiency; moreover,
the 32-bit floating-point weights occupy considerable storage space. Binarized CNNs
binarize the weights and activation values into {+1, −1}, which considerably compresses
the storage space and replaces the complex floating-point operations by more efficient logic
operations (XNOR and POPCOUNT).

Bengio et al. proposed the first truly binarized CNN in 2016. This model binarized both
weights and activations in a CNN for the first time. Since then, more advanced BNNs, such
as XNOR-Net [9], Bi-Real-Net [10], IR-Net [11], and ReActNet [12], IE-Net [13], DPBNN [14],
have been proposed with improved performance; these models enable real-time application
of binarized CNNs. Wang et al. applied binary CNNs to wireless interference recognition.
They proposed two techniques to minimize quantization noise and create multiple routes
to update the parameters of BNNs for solving the bottleneck of the serious performance
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degradation of BNNs, resulting in further improvement in performance [15]. Qian et al.
developed BNNs for speech recognition. They developed several types of BNNs and
related model optimization algorithms for large vocabulary continuous speech recognition
acoustic modeling, decreasing the computational cost during the inference stage [16].
Jing et al. proposed a lightweight multispectral classification method called CABNN based
on BNNs that had an effective trade-off between model performance and computational
cost. CABNN has higher efficiency and better comprehensive performance than several
state of-the-art methods [17].

2.2. Vehicle Classification

In traditional vehicle classification methods, manually designed feature descriptors,
such as scale-invariant feature transformation (SIFT), can only focus on the shallow features
of an image, which requires a high-quality image, are easily affected by the background,
and are not sufficiently robust. In recent years, with the continuous development of
deep learning, some scholars have applied deep learning algorithms to the field of vehicle
classification. In deep learning, CNNs use a large amount of data to automatically learn how
to extract the depth features of an image, achieving much better classification performance
than traditional methods. Hasan et al. proposed a ResNet-50-based pre-trained deep
learning model for migration learning for the recognition and classification of native vehicle
types in Bangladesh, which achieved an accuracy of 98.00% [18]. Habib et al. developed an
optimized automatic surveillance and auditing system to detect and classify vehicles of
different categories, achieving 96.04% accuracy on vehicle type classification [19]. Chen et al.
proposed a novel model to classify five distinct groups of real-life vehicle images based on
the AdaBoost algorithm and deep CNNs, and their performance was significantly better
than that of traditional algorithms such as SIFT-SVM, HOG-SVM, and SURF-SVM [20].

2.3. Current Problems

Analysis of current research status shows that the following problems exist in the field
of intelligent vehicle recognition.

(1) In current approaches, to lighten the model by directly binarizing the full-precision
network, the information flow is not sufficiently rich, and the use of 1 × 1 con-
volution for downsampling adds too many additional floating-point parameters
and computations.

(2) Existing approximation methods for symbolic functions of binarized networks ignore
the problem that the parameters cannot be updated effectively in some cases, and
there is a serious gradient mismatch problem.

(3) The introduction of floating-point scaling in binarization networks to recover the
weight quantization loss introduces additional floating-point parameters and compu-
tations, which increases the storage and operation burden of binarization CNNs.

In this study, we address these problems in binarized CNNs. We improve the model
structure, training method, and weight quantization method to enable binarized CNN and
achieve better results in vehicle classification tasks.

3. Methods

Unlike full-precision networks, in binarized CNNs, discrete quantization values limit
their ability to learn richly distributed expressions; moreover, it is challenging for binarized
networks to retain and transfer information efficiently. Furthermore, in the binarized
quantization process, quantization errors occur and there is a mismatch between the
gradients of forward and backward propagation during the training of binarized CNNs,
decreasing the accuracy of binarized CNNs. This affects the final classification. Therefore,
we address these problems and improve the accuracy of the binarized CNNs for vehicle
classification by learning the effective features of information.

In this section, we describe our binarized CNN model in detail. We first describe how
to improve the building blocks of ResNet to fit the binarized network for achieving higher
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accuracy with a more streamlined structure and propose a new pooling method in that
structure. Then, a weight redistribution binarization method is used. Finally, we present
how to train the binarization model more effectively.

3.1. Improved Binarized Residual Network

In network models such as VGG and GoogLeNet [21], the network accuracy saturates
and even decreases, and gradient disappearance and gradient explosion occur when the
network depth increases. The residual network proposed by He et al. in 2016 incorporates
a residual unit for constant mapping through a short-circuiting mechanism, which can
effectively solve these problems. The residual units also enhance the number of network
information transfer paths, allowing effective training of deeper network models while
ensuring a higher accuracy.

An improved residual block is illustrated in Figure 1. Unlike ResNet, in a binarized
CNN, the binary quantization of activation values and weights leads to serious loss of
network information; thus, we use a denser residual connection to ensure more effective
retention of the information in the network and improve the expressiveness of the network.
In a traditional residual network, in the downsampling layer, after full-precision 1 × 1
convolution and normalization layer to ascend and downsample, the main function is to
obtain an output with the same size as the output of the convolutional output path, to not
make the improvement of the network performance too obvious. In the binary quantized
network, such a structure also adds additional floating-point operations; accordingly, this
study proposes a new downsampling method, called absolute value maximum pooling
(Abs-MaxPooling) (Figure 2), which can reserve the number with the largest absolute value
in each pooling block of the input feature map.

Furthermore, the binarized convolution in the downsampling layer is not expanded
by the number of channels, and the two are subsequently stitched together as the input
to the next layer. Thus, the downsampling layer has fewer floating-point operations due
to the 1 × 1 convolution and normalization layers, and the binary convolution kernel is
reduced by a half.

For a feature map of a binary distribution, we assume that it obeys a Bernoulli distri-
bution with a probability distribution function:

f (xb) =

{
p,
1− p,

i f
i f

xb = +1
xb = −1

(1)

where p is the probability of taking the value +1, p ∈ (−1, 1), xb is the binarized value;
then, the information entropy of the distribution after binarization is expressed using
Equation (2):

H(xb) = −p ln(p)− (1− p) ln(1− p) (2)

For the binarized distribution to retain the maximum amount of information, the
information entropy of the binarized distribution should be maximized:

max(H(xb)) (3)

Under the binomial distribution, the information entropy value of the binomial quan-
tized values is maximum when p = 1 − p, i.e., p = 0.5, which means that the values of
the binomial quantization should be uniformly distributed, i.e., the probabilities of +1
and −1 should be almost equal. Experiments showed that Abs-MaxPooling has the maxi-
mum information entropy with the number of +1 and −1 close to 1:1 in the feature map
after binarization.
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3.2. Binarization of Weight Redistribution

Equation (3) clearly shows that in the binarized distribution, the information entropy
is maximum when the number of +1 and −1 is close, which means that the values of the
binarized quantization should be uniformly distributed. Therefore, when we train the
binarization network, we perform Z-score normalization on the full-precision weights
before the weights are binarized; first, the mean of the full-precision weights is subtracted
and divided by the standard deviation for normalization. This can turn weights of different
orders of magnitude into the same order of magnitude and eliminate the effect of different
orders of magnitude. The weight normalization formula is given using Equation (4):

W∗ =
W − µ

σ
(4)

where µ and σ are the mean and deviation of the full-precision weights, respectively. The
weights that are not normalized are binarized, and their signs determine the value after
binarization, and whenever the weight value crosses 0 after a certain update, the weight
after binarization also switches (−1 becomes +1 or +1 becomes −1). The distribution of the
full-precision weights approximates a Gaussian distribution, and a large number of weights
are close to 0, which leads to a high update frequency of the weights after binarization and
an unstable training process. However, the normalized full precision facilitates the update
of the binarized weights in the network, making the binary weights more stable during the
training process.

3.3. Dynamic Progressive Training

Similar to training a full-precision neural network model, a gradient descent-based
backpropagation algorithm is used to update the parameters when training the binarized
model. The binarized weights and activation values are used in the forward propagation
process, and the full-precision parameters are updated in the backpropagation so that
the model is fully trained. However, the derivative value of the sign function is almost
always 0, which can lead to the disappearance of the gradient and the parameters cannot
be updated for training purposes; thus, the gradient approximation is inevitably needed in
backpropagation. In this study, three common approximation methods are used (Figure 3).
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The first one uses the identity function (i.e., y = x) to directly transfer the gradient
information of the output value to the input value, completely ignoring the effect of
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binarization, which leads to a large gradient error due to the obvious gradient mismatch
between the actual gradient of sign and the constant function; moreover, it accumulates
errors during the backpropagation process, because of which the network training deviates
from the normal extreme value point, resulting in an under-optimized binary network and,
thus, seriously mitigating the performance.

The second method is a technique called the straight-through estimator (STE), pro-
posed by Hinton et al. The STE is defined using Equation (5):

y = clip(x,−1, 1) = max(−1, min(1, x)) (5)

The STE considers the effect of binary quantization on the part of cropping greater than
1 to reduce the gradient error. However, the STE can only pass the gradient information
within the interval [−1, +1], and beyond that range, the gradient becomes 0. That is,
once the value is outside the interval range [−1, +1], it can no longer be updated, and
a problem similar to the death of neurons in the ReLu (Rectified Linear Unit) activation
function occurs.

The third method is the ApproxSign function. Liu et al. proposed it in Bi-RealNet. The
ApproxSign function replaces the sign function for gradient calculation in backpropagation,
and it is expressed using Equation (6):

y =


2x− x2, i f 0 ≤ x ≤ 1
2x + x2, i f − 1 ≤ x < 0
1, otherwise

(6)

The gradient approximates the gradient of the sign function in the form of a triangular
wave, which is more similar to the impulse function than the STE, and thus more closely
approximates the calculation of the gradient of the sign function. However, there is still
the problem that the parameters are no longer updated once the values are outside the
[−1, +1] interval.

However, it is crucial to ensure that all parameters are updated effectively during the
model training process, especially at the beginning of the training.

To address this problem, we propose an incremental training method, i.e., we try to
ensure that all parameters are updated at the beginning of the model training. For this,
the gradient of the backpropagation of the sign function is gradually approximated in the
following training process. Instead of the sign for backpropagation, we design a function
expressed using Equation (7):

y = tanh(λx) (7)

where λ changes with the epoch during training expressed using Equation (8); k is a given
using Equation (9):

λ = 2k (8)

k = kmin + (kmax − kmin) ∗
i
N

(9)

where i is the number of epochs of the current training, N is the total number of epochs
trained, kmin set to −1 and kmax set to 2. Our approximation function can effectively train
parameters outside the interval [−1, +1]. As the training goes on, it is closer to the sign
function than other approximate functions (Figure 4).
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4. Experiments and Analysis of Results

To verify the effectiveness of the proposed method, in this section, we first present
experiments conducted on the improved residual blocks using the cifar10 dataset. Then,
extensive comparison experiments are conducted on the BIT-Vehicle public dataset, and
ablation experiments are performed on the three proposed improvements.

4.1. Experimental Data Set and Experimental Parameters

The BIT-Vehicles dataset was collected and organized by the laboratory of Beijing
Institute of Technology. All images were intercepted from the actual road surveillance
videos, and an example from the dataset is shown in Figure 5. The BIT-Vehicle dataset
contains 9850 images (sizes of images may be 1600 × 1200 pixels or 1920 × 1080 pixels)
of vehicles, which were captured using two cameras at different times and locations. In
these images, there are variations in lighting conditions, scale, vehicle surface color, and
perspective. Because of the capture delay and size of the vehicle, some top or bottom
portions of the vehicle are not included. Two vehicles in the dataset appear in 203 images.
After segmenting images containing multiple vehicles and separating the targets, there were
10,053 images, and the vehicles were classified into six categories; namely, bus, microbus,
minivan, sedan, SUV, and truck, with 558, 883, 476, 5922, 1392, and 822 number of vehicles,
respectively. The dataset was divided into a training set and a test set according to the ratio
of 4:1.

This experiment was performed on a high-performance computer with a discrete
graphics card, and a binary CNN was built using the Pytorch deep learning framework on
an Ubuntu 16.04 operating system. The parameters of the development environment are
shown in Table 1.

Table 1. Experimental environmental parameters.

Item Parameter

CPU Intel Core i5-9400F 2.9 GHz x6
GPU NVIDIA GeForce RTX 2060

Operating system Ubuntu 16.04 LTS
Memory 16 GB

Deep learning framework version Pytorch 1.7.1
Development languages Python 3.6
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The parameters of the experimental training are set as follows: using the parameter
update using an Adam optimizer, a weight reduction factor of 0.0001 was obtained, the
Batchsize was set to 64, the initial learning rate was 0.001, and the learning rate was adjusted
to 10% of the original when training 15, 30, and 40 epochs; a total of 50 epochs are trained.

4.2. Experimental Comparison and Analysis

We used Resnet18 as the benchmark model and binarized the network; except for the
first convolutional layer and the fully connected layer, the rest of the layers were binarized
with weights and activations. To improve the feature extraction ability of the binarization
model for vehicle images from road surveillance viewpoints, a residual block adapted to the
binarization network was designed, Abs-MaxPooling was proposed instead of traditional
maximum pooling and average pooling, a weight redistribution binarization method
was used in weight binarization, and a symbolic function gradient approximation and
progressive training were used for training the binarized CNN. To ensure more an objective
evaluation of the effectiveness of the proposed method, experimental results obtained using
this method were compared with contemporary binarization models. Accuracy was used
as the evaluation index; it was calculated by dividing the number of correctly predicted
samples by the total number of samples.

To verify the advantages of the structure designed for the binarization model, the
proposed binary residual block structure was analyzed with the number of parameters and
the number of floating-point multiplication operations and compared with the number of
heterogeneous or non-homogeneous operations in other studies (Table 2).

Table 2. Comparison of number of parameters and calculation values of different descending
sampling layers.

Downsampling Mode
Number of Participants Floating-Point Multiplication

Operands in Convolution
XNOR Operands in

Convolution32 bit 1 bit

ResNet 10CinCout + 2Cout 0 10Wout HoutCout 0
Bi-Real-Net CinCout + 2Cout 9CinCout Wout HoutCout 9Wout HoutCout

Ours 0 9CinCout 0 9Wout HoutCout

Cin, Cout, Wout, and Hout indicate the number of input channels, number of output
channels, output feature map width, and output feature map height of the downsampling
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layer, respectively. Our downsampling structure discards the number of floating points and
floating-point multiplication operations, reducing storage-related overhead and improving
model efficiency. To verify that our proposed structure works effectively, we experimented
on the CIFAR-10 dataset using a binarized ResNet-20, and the experimental results are
shown in Table 3.

Table 3. Accuracy of binarized ResNet-20 was evaluated using the CIFAR-10 data set.

Model Dataset Binary Model Weight/Activation (bit) Accuracy (%)

ResNet-20 CIFAR-10

Full Precision 32/32 91.2
DSQ [22] 1/1 84.1

IR-Net 1/1 86.8
ReActNet 1/1 85.8

Ours 1/1 86.3

Our structure can achieve the same accuracy as the contemporary best binarized
networks, but it is more streamlined and has fewer parameters and operations, indicating
that our residual block structure is accurate as well as fast.

We compared our method with various contemporary binarized CNNs and full-
precision networks; the experimental results are shown in Table 4. The experimental results
show that our method outperforms other binarized CNNs; the accuracy difference of
full-precision networks is only 1.89%, which indicates that our method is effective.

Table 4. Comparison with classical binarization model.

Dataset Binary Model Model Size (Mb) Weight/Activation (bit) Accuracy (%)

BIT-Vehicles

Full-Precision (ResNet-18) 42.65 32/32 96.66
BNN 2.43 1/1 76.19

Bi-RealNet-18 9.20 1/1 89.60
XNOR-Net 2.47 1/1 82.07

IR-Net (ResNet-18) 2.05 1/1 92.33
Our model (ResNet-18) 1.29 1/1 94.77

To verify the effectiveness of Abs-MaxPooling, a comparison experiment was con-
ducted using different pooling approaches as variables, and the experimental results are
shown in Table 5. The positive and negative eigenvalues in the binarized CNN have equal
contribution on the network. The maximum pooling focuses more on the positive features,
while the average pooling distributes the gradient equally to all eigenvalues when the
network is backpropagated; however, often, the eigenvalue with the largest absolute value
in the pooling block affects the pooling results. Abs-MaxPooling solves the problems of the
traditional pooling method in the binarized model and performs well in the binary CNN.

Table 5. Effects of using different pooling methods.

Pooling Method Accuracy (%)

AvgPooling 93.92
MaxPooling 93.84

Abs-MaxPooling 94.77

4.3. Ablation Experiments

To verify the effectiveness of the proposed methods, one of them is considered a
control variable in the surveillance image dataset for ablation experiments, and the experi-
mental results are shown in Table 6. All three proposed improvements bring gains to the
binarized CNN.
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Table 6. Comparison of ablation experiment Settings and corresponding accuracy.

Experiment
Number

Binarized
Residual Block

Binarization of
Weight

Redistribution

Dynamic
Progressive

Training
Accuracy (%)

1 82.51
2

√
90.84

3
√

92.64
4

√
84.27

5
√ √

93.91
6

√ √
93.89

7
√ √

91.85
8

√ √ √
94.77

From the above experiments, we can see that both the improved binarization residual
block and the weight redistribution binarization method can improve the classification
accuracy of the binarization model. This is because in the binarized network, only a
few parameters are outside the [−1, +1] interval after normalization, and the progressive
training mainly plays a role in updating this part of the parameters. The training loss curve
(Figure 6) and the test accuracy curve (Figure 7) are from the experimental result curves for
Experiment 8.
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5. Conclusions and Future Work

In this study, a binarized CNN-based vehicle classification method is proposed. First,
the problems of full-precision CNN that inhibit direct binarization are addressed; to do this,
the residual block adapted to the binarization model is redesigned, and Abs-MaxPooling is
proposed. Then, the weights are binarized with weight redistribution, while discarding the
additional floating-point gain terms, which reduces the number of floating-point parame-
ters, and computation of the binarized network ensures the retention of the information
of the binarized quantized weights and makes the training smoother. The progressive
training method is used for training the binarization network so that the gradient is gradu-
ally closer to the symbolic function, which ensures that the parameters can be effectively
updated during the training process while better matching the symbolic function gradient
in the later stage of training. Experiments on the publicly available dataset CIFAR10 show
that the proposed binary residual block structure leads to improved performance of the
binarized CNN model. To verify the situation under real-time road conditions, further
extensive experiments are conducted on the BIT-Vehicle dataset, and the results show that
all the improvements demonstrate good results in the vehicle classification task under real-
time surveillance.

Considering the limited distribution information representation capability of binarized
networks, there is still a large gap between binarized models and full-precision models for
more challenging tasks such as vehicle fine-grained classification and road surveillance
vehicle detection. In future research, we will explore how binarized CNNs can be used to
accomplish more complex tasks.
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