
Citation: Haubelt, C.; Rausch, A.

Improving Symbolic System-Level

Synthesis by Solver Coordination and

Domain-Specific Heuristics.

Electronics 2022, 11, 1888. https://

doi.org/10.3390/electronics11121888

Academic Editor: Akash Kumar

Received: 6 May 2022

Accepted: 13 June 2022

Published: 16 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Improving Symbolic System-Level Synthesis by Solver
Coordination and Domain-Specific Heuristics
Christian Haubelt 1 and Alexander Rausch 2,*

1 Applied Microelectronics and Computer Engineering, University of Rostock, 18051 Rostock, Germany;
christian.haubelt@uni-rostock.de

2 Robert Bosch GmbH, Corporate Research, Robert-Bosch-Campus 1, 71272 Renningen, Germany
* Correspondence: alexander.rausch3@de.bosch.com

Abstract: Deciding binding, routing, and scheduling within system synthesis for hard real-time
systems can be a challenging task. Symbolic methods leveraging results from the area of satisfia-
bility modulo theories (SMT) solving have shown to be scalable methods for this by splitting the
work between a logic solver for routing and binding, and a background theory solver performing
schedulability analysis. For these methods, in order to prune the search space of infeasible implemen-
tations efficiently, a feedback by the background theory is required. It can be observed that previous
approaches might fail here as feedback cannot be derived within a reasonable amount of time. We
propose a coordinated synthesis approach that overcomes this issue. Here, we leverage an answer
set solver as logic solver that is enhanced with a scheduling-aware binding and routing refinement.
Based on the answer set solver’s decisions for binding and routing, a background theory solver
then computes time-triggered schedules to resolve resource access conflicts. If no feasible schedule
exists, a feedback to the answer set solver can be derived within reasonable time. Our experiments
synthesizing massively parallel hardware architectures show that our approach increases the appli-
cability of symbolic synthesis considerably. While more than half of the investigated instances in
our experiments cannot be solved in the non-coordinated approach already at small 2-dimensional
3× 3 tiled mesh hardware architectures with 60% average computational utilization per tile, the
coordinated synthesis approach scales up to 5× 5 architectures with average utilization of 70% per tile
(2.8× the hardware architecture size than before). Furthermore, we increase the scalability and the
robustness of our approach by encoding our domain-knowledge within domain-specific heuristics
in our designated answer set solver. Within our experiments, we observe that the domain-specific
heuristics enable us to scale up to 6× 6 architectures with 70% average utilization per tile.

Keywords: system synthesis; background theory; answer set programming

1. Introduction

In the process of developing a novel embedded system, developers often start at the
electronic system level. During system synthesis, the fundamental design decision binding,
routing and scheduling are decided [1]. A binding contains for each computational task of
an application model an assignment to a processing element (PE) of a platform model. If
information between computational tasks is exchanged via messages, a routing for each
message consists of an ordered set of connected hardware resources. Finally, scheduling
resolves concurrent access to shared resources by applying a suitable policy.

In recent years, system synthesis has become more and more challenging due to
increasing system complexity. Concerning the automotive domain, one major contribution
to this complexity are parallel hardware architectures. These parallel architectures have
become a necessity in the control-dominated systems in the automotive industry in order
to meet performance requirements, e.g., due to customer demands for new features or the
need to implement sophisticated algorithms to meet environmental goals.

Electronics 2022, 11, 1888. https://doi.org/10.3390/electronics11121888 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11121888
https://doi.org/10.3390/electronics11121888
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1568-5423
https://orcid.org/0000-0002-3466-1734
https://doi.org/10.3390/electronics11121888
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11121888?type=check_update&version=1

Electronics 2022, 11, 1888 2 of 25

While multi-core architectures offer enough performance to realize the currently re-
quested requirements [2], many-core architectures will become necessary in the foreseeable
future. Regarding the interconnect implemented by these hardware architectures, it is likely
that one or more network-on-chip (NoC) interconnects are a reasonable choice as they scale
well with an increasing number of PEs and are very power-efficient [3,4].

Despite that many-core architectures with NoCs offer scalable performance, they
introduce a new set of challenges for system synthesis in control-dominated domains like
the automotive domain. First of all, synthesis approaches have to handle a significant
increase in the number of entities for which binding, routing and scheduling have to be
decided. Additionally, and most of the time far more challenging, the timing constraints
of automotive hard real-time applications have to be satisfied. Here, satisfying the timing
constraints becomes a considerably challenging task if system specifications become more
intricate and decisions during synthesis become interdependent. As manual approaches
are likely to fail in this setting, symbolic approaches based on satisfiability modulo theories
(SMT) emerged as scalable automated decision making approaches in the area of system
synthesis, e.g., [5–7].

In SMT-based system synthesis, the workload of synthesis is split between a logic
solver and a background theory solver (T -solver), see Figure 1. This decoupling enables
more scalable symbolic synthesis for hard real-time systems [6].

Figure 1. Overview of the contributions within the symbolic system synthesis approach presented in
this paper.

In the paper at hand, similar to [6], the logic solver decides the binding of computa-
tional tasks to PEs of the hardware architecture and the multi-hop routing of messages.
These decisions are then the input for the T -solver in order to decide schedulability of
the logic solver’s assignments. Thus, the solution space for the T -solver is constrained.
If the T -solver proves that there exists no feasible schedule with respect to the decided
binding and routing, the background theory computes a feedback that allows to prune the
search space of the logic solver. With this feedback, the SMT-based synthesis is able to learn
infeasible solutions and therefore is able to avoid them in the subsequent search process.

Unfortunately, as we will show in the experimental section (Section 8) of this paper,
one can observe that deciding schedulability based on the logic solver’s decisions might
consume an excessive amount of time if the logic solver is allowed to perform its decisions
in arbitrary orders and particularly without knowledge of the downstream scheduling task.
As a result, the feedback of the background theory is considerably deferred, hence limiting
the applicability and scalability of SMT-based system synthesis.

Electronics 2022, 11, 1888 3 of 25

As a remedy, Figure 1 highlights the main contributions of our work that enable us to
realize and significantly increase the applicability, scalability and robustness of SMT-based
system synthesis:

(I) We present a coordinated SMT-based synthesis approach that eases the task of the
T -solver to compute a feedback to the logic solver. This is realized by introducing a
scheduling-aware binding and routing refinement in the logic solver.

(II) We present how domain-specific heuristics (DSH) applied within the logic solver allow
us to further increase scalability of our approach by utilizing our domain knowledge.

In our experimental evaluation, we show that both our contributions on the one hand
significantly increase applicability and on the other hand considerably enhance scalability
of SMT-based system synthesis. Here, our instance sets leverage an automotive domain
oriented application model that comprises both serial and parallel characteristics, namely
two-terminal series-parallel task graphs [8]. Hence, we address an application model
suitable for future parallel hardware architectures due to inclusion of the fork-join pattern.
However, at the same time, we respect the more sequential processing characteristics of
today’s control applications with a not-negligible length of chained tasks in the series-
parallel task graphs.

The remainder of this paper is structured as follows: Section 2 explains the concepts
and limitations of current SMT-based approaches in detail and motivates our contributions.
In Section 3, we summarize related work while Section 4 introduces our platform and appli-
cation model. We summarize how our approach leverages answer set programming (ASP)
as logic solver in Section 5 and briefly illustrate the relevant points of our time-triggered
scheduling formulation within the background theory in Section 6. Section 7 explains how
we couple the logic solver and the background theory in order to derive the feedback to
prune the search space of the logic solver efficiently. Our experimental results in Section 8
demonstrate that our coordinated approach can improve the applicability of symbolic system
synthesis considerably and that our DSH allow to increase the scalability and robustness of
our approach. Section 9 finalizes this paper by proving concluding remarks.

2. Coordinated SMT-Based Synthesis Approach: Motivation & Detailed Overview

In this section we present a succinct summary of the integral parts of our SMT-based
system synthesis implementation. We start with introducing state-of-the-art classical SMT-
based system synthesis, which is similar to work presented in [5–7,9,10]. Then, we sketch
the obstacles that motivated us to integrate our extensions in order to realize our proposed
coordinated synthesis approach.

2.1. (Classical) SMT-Based System Synthesis

Figure 2 illustrates the elements of SMT-based synthesis. For the classical synthesis
approach, all shown elements are vital, except the two boxes in green and cyan, those are
part of our extension within the coordinated synthesis approach.

The system specification is the starting point. It consists both of an instance of our
application model and platform model (yellow boxes in Figure 2) for which we decide a
binding, routing and scheduling during synthesis. Our platform model focuses on scalable
tile-based architectures implementing a NoC [4]. Furthermore, our graph-based application
model is geared to real-world periodic control applications with hard real-time constraints
from the automotive domain.

Electronics 2022, 11, 1888 4 of 25

The system specification is an input for the logic solver which decides the static
binding of periodic computational tasks from the application model to processing elements
(PEs) of the platform model. Furthermore, the logic solver computes the static multi-hop
routing of periodic messages between computational tasks. It is important to note that our
synthesis approach employs an answer set solver from the area of answer set programming
(ASP) [11–13] as logic solver in contrast to most related approaches that use a Pseudo-
Boolean SAT solver for the same task. Here, related work [14] encouraged us to favor an
answer set solver since ASP allows a more scalable determination of multi-hop routes of
messages for densely connected hardware architectures implementing a NoC.

Figure 2. Detailed overview of SMT-based system synthesis with the extensions of the scheduling-
aware binding and routing refinement (green box) in the coordinated synthesis approach and the
coordinated+DSH approach (green and cyan box).

With the logic solver computing a binding and routing implementation candidate, this
solution is subsequently passed to the T -solver for a scheduling analysis. Here, scheduling
instances are generated on basis of indicator variables that have an interpretation in both the
logic solver as in the T -solver. These indicator variables are also used to express feedback
of the T -solver to the logic solver in order to learn unschedulable bindings and routings.
In our approach, the indicator variables correspond to the binding of a computational task
to a PE and the hops in the route of a message.

Deciding the scheduling in the background theory solver to resolve resource access
conflicts assumes a time-triggered scheduling policy on all resources of the hardware
platform. Here, each computational task on a PE and each packet of a message on each
resource on the message’s route through the NoC is assigned a dedicated start time. At this
start time, the resource starts the associated computations or the transfer of a packet. The
T -solver decides whether a time-triggered schedule exists such that all timing constraints
of computational tasks and messages are satisfied. If a schedule exists for all computa-
tional tasks and all messages based on the logic solver’s binding and routing decisions,
the synthesis stops and returns a feasible implementation.

However, in the first iteration of SMT-based synthesis approaches it is unlikely that the
background theory will find a feasible scheduling right at the start. Usually, the T -solver
proves that early bindings and routes computed by the logic solver cannot be scheduled.
Similar to other work [7], in order to speed up the time to decide schedulability, we propose
a hierarchical scheduling scheme (orange box in Figure 2). In our hierarchical scheduling
scheme, the T -solver decides feasibility of smaller sub-problems before the feasibility of
the scheduling for the complete system is decided. Usually proving the infeasibility of

Electronics 2022, 11, 1888 5 of 25

small sub-problems is much faster than proving the infeasibility of the complete system
scheduling. If a sub-problem is already deemed infeasible it follows that the complete
system cannot be scheduled. In Section 7 we will introduce the hierarchical scheduling
stages in detail.

If the background theory solver proves that a scheduling (sub-)problem cannot be
solved, a subsequent conflict analysis (red box in Figure 2) is started. Here, we also benefit
from the hierarchical scheduling scheme as it usually speeds up the conflict analysis since
smaller sub-problems have to be analyzed. During conflict analysis, an minimal unsatisfiable
core (or justification, unsatisfiable core or irreducible inconsistent subset) [15] is derived why no
time-triggered schedule exists. For example, assume a schedule cannot be derived for a
PE with five computational tasks bound to it. However, the minimal unsatisfiable core for
the conflict could be that only two of these tasks prevent scheduling due to their timing
parameters. All combinations including both two tasks are thus infeasible. And this is also
true for bindings, which have not been seen up to this point. Related work [6] has shown
that deriving a minimal unsatisfiable cores in a conflict analysis can significantly speed
up the scalability of symbolic system synthesis as it can enable an extensive pruning of
the logic solver’s search space. Revisiting our previous example, all solutions where the
two conflicting computational tasks are bound to the same PE will not result in a feasible
implementation and should therefore be excluded in the search space of the logic solver.

Thus, a feedback to the logic solver is generated that restricts the subsequent binding
and routing solutions of the logic solver (purple box in Figure 2). Here, as mentioned earlier,
the indicator variables are used to constrain the search space by adding so-called integrity
constraints to the set of rules of the logic solver (see Section 5). All following binding and
routing implementation solution candidates will avoid all conflicts from the background
theory that have been learned so far. The iterative coupling between logic solver and
T -solver stops with a successfully hierarchical scheduling or if the logic solver returns the
result UNSAT (unsatisfiable). In the latter case the SMT-based synthesis approach proved
that there exists no feasible implementation with respect to the system’s specification.

Regrading the complexity of the system specifications that the classical approach is
able to synthesize, this approach can face serious applicability issues, as we will see later
within our experimental section (Section 8). This is due to the often very complex and time
consuming time-triggered scheduling analysis within the background theory solver. The
upper timeline in Figure 3 illustrates the observation that is usually made.

Here, the logic solver is able to compute a binding and routing solution within a very
short amount of time (blue box in Figure 3), often even within milliseconds. However,
the subsequent scheduling analysis and conflict analysis (orange and red boxes in Figure 3)
are very time consuming and several magnitudes higher than the time spent in the logic
solver. Hence, the necessary feedback from the T -solver to the logic solver cannot be
derived within a reasonable amount of time which can ultimately limit the applicability
of classical SMT-based system synthesis. Usually, the classical approach is stopped after a
certain timeout without providing a solution to the synthesis problem (see experiments in
Section 8).

As a remedy, we propose a coordinated SMT-based synthesis approach with the logic
solver computing a binding and routing solution such that the T -solver is able to decide
feasibility within a reasonable amount of time.

Electronics 2022, 11, 1888 6 of 25

Figure 3. Illustration of the disadvantages of the classical synthesis approach along wit the advantages
of the coordinated and coordinated+DSH approach. The classical approach spends a considerable amount
of time within the background theory until reaching a timeout. The coordinated synthesis approach
significantly increases the applicability of symbolic system synthesis by introducing an additional
scheduling-aware binding and rounting refinement. The coordinated+DSH approach, which includes
domain-specific heuristics (DSH) in the logic solver, furthermore increases the scalability of the
coordinated approach and reduces the average synthesis time, too.

2.2. Coordinated SMT-Based System Synthesis

In the work at hand, we realize the coordination between logic solver and background
theory solver by introducing a scheduling-aware binding and routing refinement (highlighted
green in Figure 2) in the logic solver. With the scheduling-aware binding and routing
refinement, the logic solver is assigned an additional fixed amount of time to solely perform
an lexicographical optimization of an initially derived binding and routing solution. Here,
the optimization includes load balancing and a minimization of both the number of sent
messages by computational tasks and the overall number of hops of messages in the
routing. In contrast to the initial solution, that can be compared to the binding and routing
solutions computed in the classical approach, the T -solver is expected to decide feasibility
and perform a conflict analysis on the refined solutions within a reasonable amount of time,
as shown in the timeline in the middle of Figure 3 (orange and red boxes). This comes
with the cost that now more time is spent in the logic solver during synthesis. On the one
hand, this is due to the additional time assigned for the refinement of an initial binding
and routing solution (green boxes in Figure 3). On the other hand, additional rules are
necessary to realize the refinement’s objectives which results in larger instances for the logic
solver. For the hardest system specifications we consider in this paper (see Section 8), this
results in an increase of up to 40% in the number of variables and up to 35% in the number
of constraints in the logic solver. Thus we observe a larger blue box for the coordinated

Electronics 2022, 11, 1888 7 of 25

approach in Figure 3. Nevertheless, despite the additional effort for the logic solver (blue
and green box in Figure 3), the coordinated SMT-based synthesis significantly increases the
applicability of SMT-based system synthesis as we will show in the experimental section.

2.3. Increasing Scalability of Coordinated SMT-Based Synthesis by Domain-Specific Heuristics

Despite the significant increase in applicability of SMT-based synthesis that can be
achieved with a coordinated approach, another significant gain in scalability and robustness
of the approach can be realized if one leverages exclusive domain knowledge. In this paper
we incorporate our domain knowledge by enriching the state-of-the-art search heuristic in
the logic solver by domain-specific heuristics (DSH) (cf. cyan box in Figure 2). Here, we use
particular heuristic predicates within the modeling language of our designated logic solver,
the answer set solver clasp [16,17], to express our domain knowledge based on the system’s
specification (see Section 5). We integrate the DSH together with the scheduling-aware
binding and routing refinement that form the novel coordinated+DSH synthesis approach.
While this approach does not only lead to a decrease in the average time spent in the logic
solver as well as in the background theory (see Figure 3), we further increase the scalability
of the coordinated approach considerably (see experiments in Section 8).

3. Related Work

To keep up with the increasing complexity of system specification, symbolic system
synthesis approaches based on Pseudo-Boolean satisfiability (PB-SAT), e.g., [18], emerged
as solutions to handle challenging system specifications where previous (meta-)heuristic
approaches may fail. While these methods are able to efficiently restrict parts of the
infeasible search space, they are mostly limited to linear constraints and potential binary
encodings of integer domains tend to an exponential growth in variables. As a remedy,
to handle non-linear functional constraints such as hard real-time timing constraints which
require large numeric domains, new symbolic synthesis approaches leverage results form
the area of satisfiability modulo theories (SMT) solving [15,19]. Thereby, SMT solvers
decide the satisfiability of decision problems on logical formulae and these formulae are
then interpreted by background theories. In a lot of approaches the propositional part of an
SMT solver is realized by a SAT solver whereas a solution with respect to the background
theory is computed by a so-called T -solver.

As one of the first publications regarding SMT-based system synthesis, the authors
in [20] make use of the SMT-solving’s decomposition principle to increase the scalability.
Here, the T -solver solves a graph-theoretic sub-problem. In [21] latency computation
is used for scheduling analysis in the T -solver and the authors were able to increase
performance more than an order of magnitude. Similar to our time-triggered scheduling
model, the work of [22] presents an SMT-based with linear arithmetic for adding worst-case
execution times within the background theory. While all the work above are SMT-based
approaches, they do not incorporate the multi-hop routing and scheduling of messages.

Fundamental work in SMT-based system synthesis also including the computation
of multi-hop routes has been done by Reimann et al. [5]. The authors use Modular Perfor-
mance Analysis (MPA) in combination with Real-Time Calculus [23] for timing analysis in
the background theory. Furthermore, the work in [5] shows that analyzing partial models,
i.e., checking parts of the proposed full binding and routing solution, outperforms existing
approaches. The same authors further increase the performance of their approach in [6] by
deducing justifications (i.e., reasons why a task violates its deadline) within the background
theory to prune the search space of their SAT-solver more efficiently. With these extensions,
the speed-up in time to derive a feasible system synthesis in their case studies ranges from a
factor of 10× up to more than 160×. The approach of deducing a justification is based on an-
alyzing the critical path set of a computational task t which violates its deadline. The critical
path set is defined by all computational tasks or messages that are predecessors of task t in
the same application graph. In contrast to the work at hand, the authors do not incorporate
a hierarchical scheduling scheme, e.g., starting with scheduling all computational tasks

Electronics 2022, 11, 1888 8 of 25

on the same resource independently, which could lead to smaller justifications (in terms
of variables) and hence a more efficient pruning of infeasible search space. Additionally,
the derived justifications are not necessarily minimal as no filter algorithm is implemented
to derive minimal unsatisfiable cores (see Section 7).

Kumar et al. [10] build on the same T -solver like [5,6] but also consider delay, buffer
and energy constraints of incomplete models. By using incomplete models, the variables
of bindings and multi-hop routings proposed to the T -solver are only partially assigned
other than required by the system specification. As a benefit, infeasible regions of the
search space can be pruned more efficiently which considerably enhances the capabilities
of symbolic synthesis to prove the absence of feasible system implementations.

Lukasiewycz and Chakraborty [7] present an SMT-based architecture optimization
and scheduling approach. While they focus on time-triggered automotive bus systems,
the authors implement several techniques that are also used within the work at hand, e.g., a
hierarchical scheduling scheme to increase performance.

All the work discussed above leverages (PB-)SAT-solvers as logic solvers in their
SMT-based approaches. In [14], Andres et al. show that using answer set programming
(ASP) [11,13] has advantages for highly connected architectures. While their work does
not include a background theory to decide scheduling, their work shows that deciding the
multi-hop routes of messages is more scalable for NoC-based architectures. Hence, their
work encouraged us to leverage ASP to decide the binding and multi-hop routing in our
synthesis approach.

Regarding ASP and a coupling to a background theory for system synthesis,
Neubauer et al. [9] tightly couple answer set programming with the same background
theory as in this paper for scheduling analysis. By leveraging technical advances in a new
version of the answer set solver clingo [24] the authors are able to analyze incomplete
models which was not possible at the time we developed our coordinated approach. An addi-
tional difference to our work is that the authors do not use a hierarchical scheduling scheme
and do not investigate the influence of domain-specific heuristics (DSH) in their approach.
Furthermore, the experiments in [9] indicate that our coordinated approach based on partial
models can have advantages w.r.t. the total synthesis time for feasible system specifications.

An extension of the work in [9] can be found in [25]. While the same limitations
in comparison to our work exist as in [9], the novelty of [25] lies in the integration of a
multi-objective optimization into the background theory allowing for an automatic design
space exploration. This extension is orthogonal to our work.

Note that all related work presented above does not consider a coordination between
the logic solver and the background theory. As we will show in our experimental section
(cf. Section 8), an approach without coordination considerably suffers applicability as
the feedback by the T -solver might not be provided within a reasonable amount of time.
Furthermore, we investigate how symbolic system synthesis can be enhanced by domain-
specific heuristics within the logic solver in order to increase scalability and robustness.

Our approach is based on previous preliminary work [26,27] that has been extended
with refinements in several directions. The work at hand uses a portfolio solving approach
in the background theory (see Section 8.2), also in order to show that the classical approach
does only scale to a certain limit even if different strategies and configurations are used
within the background theory. Additionally, a scheduling constraint within the logic solver
(the so-called Korst-constraint, see Section 5) considerably reduces couplings between logic
solver and background theory and, to the best of our knowledge, has not been implemented
in related symbolic synthesis approaches before. Regarding the modeling of more realistic
applications, e.g., from the automotive domain, our application model is based on two
terminal series-parallel (TTSP) application graphs [28] that capturing characteristics of
today’s and future automotive software for (massively) parallel hardware architectures.
In our experiments, we evaluated our approach on considerably harder benchmarking
instances incorporating TTSP application graphs as compared to [26,27].

Electronics 2022, 11, 1888 9 of 25

4. System Model

In this section, we introduce our formal system model which builds the foundation of
the remainder of this paper. Furthermore, we provide a formal problem formulation based
on the introduced system model.

4.1. Platform Model

Our platform model is a versatile abstract model which enables modeling of several
crucial aspects of heterogeneous parallel architectures, e.g., inhomogeneous performance
of processing elements and the on-chip communication infrastructure. Since tile-based
architectures interconnected by a NoC are considered to be a scalable reference design
for massively parallel hardware platforms [3,4], these type of platforms are of our special
interest and therefore in the main focus of our platform model.

We model the topology of tile-based many-core hardware platforms as a directed
graph gp = (R, Ep), the platform graph.

The platform graph’s set of vertices R summarizes all potentially shared resources of
the hardware architecture whereas the directed edges Ep ⊆ R×R represent interconnec-
tions between shared resources. Shared resources R = Rpe ∪Rni ∪Rrtr can be categorized
into processing elements (PEs) Rpe, network interfaces (NIs) Rni and routers Rrtr of the
NoC. As part of our synthesis approach, we resolve resource contention on all shared
resources via time-triggered scheduling at design time. This requires the computation and
communication resources of a platform to be in sync, e.g., via a global clock. Note that in
a more elaborate platform model, we also model more details of the routers Rrtr, namely
the internal switching of the routers to capture different NoC implementations. We omit
further details here for brevity and refer the interested reader to [29].

A processing element r ∈ Rpe is able to perform computations and is linked to the
NoC of the platform by a network interface r̃ ∈ Rni. As an auxiliary hierarchical element
we introduce tiles Rt. A tile r′ ∈ Rt integrates exactly one PE, one NI and local memory
(not explicitly modeled) that can be accessed by both the PE and the NI of the same tile.

We assume that the transport of data through the NoC follows a store-and-forward
routing protocol, i.e., packets are atomic entities that are transferred between routers on a
per-hop basis [3].

In the following section we address the (potential heterogeneous) processing capabil-
ities of resources modeled within our application model. This requires to introduce the
associated entities of the application model properly.

4.2. Application Model

Our application model is derived from periodic control applications, e.g., from the
automotive domain, where each application Ai has to be bound, routed and scheduled
on the shared resources represented by our platform model. An independent application
Ai ∈ A from the set of applications A is represented by the tuple

Ai = (gA
i , Pi, Di). (1)

Applications in hard real-time systems often control potential safety critical mechanical
components and therefore request to be executed periodically with the strict period Pi.
In order to guarantee stability of the physical plant under control, the control algorithms
implemented in applications Ai ∈ A have to complete all computation and communication
before the constraint relative deadline Di ≤ Pi.

The communication dependencies in an application Ai are defined by an acyclic
directed connected graph gA

i = (Ti, EA
i), the application graph (cf. the graph in Figure 4).

The set of nodes Ti = Tt
i ∪Tm

i is the union of the set of computational tasks of an application
Tt

i and the set of messages of an application Tm
i . The directed edges EA

i ⊆ (Tt
i ×Tm

i)∪ (Tm
i ×

Tt
i) specify the data dependencies between between computational tasks and messages or

vice versa.

Electronics 2022, 11, 1888 10 of 25

Figure 4. Example of a two terminal series-parallel (TTSP) application graph.

Each computational task t ∈ Tt
i is associated with a worst-case execution time (WCET)

Cr
t ∈ N for each PE r ∈ Rpe of a heterogeneous hardware platform. Note that we write

all execution times or delays in units of clock cycles of the global clock of the hardware
platform, such that Pi, Di ∈ N, too. For accuracy, the utilization of a computational task
t ∈ Tt

i on a PE r ∈ Rpe is defined in per mill as Ur
t = d(1000 ·Cr

t)/Pie (Ur
t ∈ N). If a platform

only contains homogeneous PEs, we simplify the equal WCET of each computational task
on all tiles to Ct and likewise the utilization of a task to Ut. Furthermore, as a result of task
scheduling in the system synthesis process (see Section 6), each computational task t ∈ Tt

i
is assigned a start time sr

t of a time-triggered schedule on the PE r ∈ Rpe it is executed on.
During the system’s runtime, a computational task is executed without preemption in the
time frame [k · Pi + sr

t , k · Pi + sr
t + Cr

t] with k ∈ N.
Messages m ∈ Tm

i of application Ai are the high-level entities that are exchanged
between computational tasks for communication. Following [3], we assume that packets
are the atomic entities transferred on the NoC. Depending on the amount of data in a
message and the size of a data word of the hardware platform, a message is divided into
several packets for the transfer on the NoC. For each message m ∈ Tm

i , the set of packets
Pm = {pm

1 , pm
2 , . . .} summarizes the decomposition of a message into packets. As packets

are the atomic entities transferred on the NoC, we define for each resource of the NoC
r ∈ Rni ∪Rrtr a processing delay Cr

p ∈ N that holds for all packets in the system for this

Electronics 2022, 11, 1888 11 of 25

particular resource. Note that this definition still enables the modeling of heterogeneous
resources (NIs and routers) in the NoC. Similar to computational tasks, each packet p ∈ Pm

of a message m ∈ Tm
i that is routed on a tree of resources Rp

route ⊆ Rni ∪Rrtr of the NoC is
assigned a start time sr

p in a time-triggered schedule on each resource r ∈ Rp
route.

Concerning the topology of applications graphs gA
i , as mentioned earlier, the paper at

hand investigates a particular class of graphs, namely two terminal series-parallel (TTSP)
application graphs [8]. Note that the graph depicted in Figure 4 is a TTSP application
graph, as well as the yellow shaded sub-graphs. The TTSP application graphs capture
the currently considerable sequential nature of control applications from the automotive
domain as well as allow us to model the results of parallelizing these applications. The
class of TTSP application graphs is defined recursively as follows:

Definition 1. Two terminal series-parallel (TTSP) application graph (adapted from [8]):

(i) An application graph gA
i with two computational tasks t, t̃ ∈ Tt

i exchanging one message
m ∈ Tm

i is a TTSP application graph.
(ii) If the application graphs gA

j and gA
k are TTSP application graphs, so is the resulting application

graph of the following two operations:

(a) Two terminal parallel composition: Replace the source computational task tsrc ∈ Tt
j

of TTSP graph gA
j with the source computational task t̃src ∈ Tt

k of TTSP graph gA
k and

replace the sink computational task tsnk ∈ Tt
j of gA

j with the sink computational task
t̃snk ∈ Tt

k of gA
k .

(b) Two terminal series composition: Replace the sink computational task tsnk ∈ Tt
j of

TTSP graph gA
j with the source computational task t̃src ∈ Tt

k of TTSP graph gA
k .

The source computational task tsrc of a TTSP application graph gA
i is the computational

task which is not connected to a message via an incoming edge, i.e., tsrc ∈ Tt
i , ∀m ∈ Tm

i :
@(m, tsrc) ∈ EA

i . Similar, the sink computational task tsnk of a TTSP application graph gA
i

is the computational task with no outgoing edge to a message, i.e., , tsnk ∈ Tt
i , ∀m ∈ Tm

i :
@(tsrc, m) ∈ EA

i . As an example, in Figure 4, the source computational task is t8 as well
as the tasks t1, t19 and t4, if we look at the yellow shaded graphs individually. The sink
computational task is t12, were again t3, t24 and t7 are the sink computational tasks of the
yellow shaded graphs. In Section 8.1 we describe how we generated the application graphs
in our test instances and detail how we realized the merging of TTSP graphs.

4.3. Formal Problem Formulation

With the formal specifications presented in the previous two subsections, we provide
a formal problem formulation of the synthesis problem during the design of time-triggered
real-time systems.

The task of system synthesis is to find a valid implementation I = (B, Rpkts
route, S),

consisting of a binding
B ⊆

(⋃
Ai∈A Tt

i
)
×Rpe,

the routing of all packets Rpkts
route on resources of the NoC, and a feasible global time-triggered

schedule S for all computational tasks and packets of the application model.
A binding B contains for each computational task t ∈ Tt

i of an application Ai ∈ A

exactly one PE r ∈ Rpe it is executed on. The routing Rpkts
route contains the specific route Rp

route
of each packet p ∈ Pm of each message m ∈ Tm

i from its sending computational task to the
receiving computational task on a set of connected resources of the NoC. Note that packets
are not routed in the NoC if the sender of a message and the receiver of a message are bound
on the same PE, i.e., t, t̃ ∈ Tt

i , (t, r), (t̃, r) ∈ B, (t, m), (m, t̃) ∈ EA
i → ∀p ∈ Pm : Rp

route = ∅.
A time-triggered schedule S contains the start times of all computational tasks on PEs and
the start times of each packet on the resources of it route on the NoC. The time-triggered

Electronics 2022, 11, 1888 12 of 25

schedule has to resolve all resource access conflicts of shared resources and ensures that
the deadlines of all applications are met (see Section 6).

In the following sections we will describe in detail how we solve the subproblems of
binding, routing and scheduling in our coordinated system synthesis approach.

5. Answer Set Programming (ASP)—Binding & Routing

In the following section we briefly summarize how our coordinated synthesis approach
leverages answer set programming (ASP) as logic solver (cf. Figure 2) to solve two sub-
problems in system synthesis: the binding B of computational tasks to PEs and routing
Rpkts

route of packets for inter-task communication on resources of the NoC. We refrain from
introducing the ASP syntax as this would go beyond the scope of this paper. Instead, we
point the interested reader to the relevant literature.

Answer set programming is a declarative problem solving approach with its origins
in solving problems in the domain of knowledge representation and reasoning [11–13].
Among others, one of ASP’s distinguishing features is a rich and expressive, but yet simple
modeling language, merged with state-of-the-art high performant solving techniques [16].
For system synthesis, ASP quite recently became an interesting alternative choice instead
of Pseudo-Boolean satisfiability solving (PB-SAT) [14]. The authors showed that ASP
scales better for densely connected architectures, such as NoC, compared to equivalent
PB-SAT approaches. Here, the increased scalability is enabled by the possibility to express
reachability within the modeling language of ASP directly, which is beneficial for multi-hop
routing. These promising results encouraged us to favor ASP instead of PB-SAT solving to
decide the routing Rpkts

route and the binding B in system synthesis.
Based on our formal system model (see Section 4), a problem instance for an answer

set solver is formulated containing the information of the platform model and the send and
receive dependencies of messages between computational tasks from the application model.
A solution is then described in a problem encoding derived from [14], which captures
relevant constraints of a feasible binding and routing: each computational task has to be
bound to exactly one PE, the utilization of a PE should not exceed 100% and a route from
sender to receiver should be acyclic. Furthermore, we include a necessary and sufficient
condition to schedule two computational tasks on one resource non-preemptively [28]:
Two computational tasks t1 and t2 with periods Pt1 and Pt2 and WCET Ct1 and Ct2 are
schedulable if and only if

gcd(Pt1 , Pt2) ≥ Ct1 + Ct2 . (2)

The benefit of adding this condition to the problem encoding of the answer set solver
is that every pair of computational tasks can be scheduled on the same PE which therefore
has not to be checked within the background theory. To the best to our knowledge, our
work is the first one to include this constraint within the logic solver of an SMT-based
synthesis approach.

5.1. Scheduling-Aware Binding & Routing Refinement

As mentioned before, in our coordinated SMT-based synthesis approach, we add addi-
tional lexicographical optimization goals to the answer set solver such that the background
theory solver can decide schedulability within a shorter amount of time—a scheduling-aware
binding and routing refinement. In Section 8 of this paper, we will show that despite adding
the optimization goals introduces an additional overhead in terms of number of constraints
and variables to the answer solver, this approach can significantly increase the scalability
of symbolic system synthesis. Parts of the used encoding for lexicographical optimization
goals can be found in [27]. Concerning the priorities of the optimization, we encode a load
balancing strategy for the PEs of the platform with the highest priority. This is followed by
minimizing the total number of routed messages on the platform and the total number of
hops of all messages. With the lowest priority, we discourage sharing hardware resource

Electronics 2022, 11, 1888 13 of 25

between different applications since the complexity of the time-triggered scheduling in-
creases considerably if hardware resources are shared by computational tasks or packets
that do not belong to the same application.

5.2. Domain-Specific Heuristics in ASP

While ASP provides a rich modeling language together with highly performant yet
general-purpose solving techniques, these general-purpose solving capabilities can further
be boosted by utilizing domain-specific heuristics that are exploited at non-deterministic
choice points [17]. Thus, the search heuristics already implemented in answer set solvers
can be enriched with the knowledge of domain experts and potentially a better solution
may be obtained within a shorter amount of time.

In the paper at hand, we focus on the heuristic presented in [27] which contains the
most domain-specific knowledge and has also turned out to be most effective. In this
heuristic, the answer set solver decides the binding of all computational tasks of one
application before it decides the binding of any other computational tasks. Furthermore,
the sending and the receiving computational task of a message should be bound to the
same tile. If it is not possible to to bind all communicating tasks of one application to the
same tile, e.g., due to load balancing computational load, we encode that next neighboring
tiles should be preferred.

6. Time-Triggered Scheduling

We implemented time-triggered scheduling in our synthesis approach in order to
resolve resource access conflicts on all resources of our hardware platform, namely all PEs
for computation and the resources of the NoC for communication. Here, our time-triggered
scheduling encoding [26,29] was originally based on refinements of [7,30] to fit different
NoC-based architectures and includes improvements also presented in [31] in order to
reduce scheduling constraints.

Note that several other work exists that mainly focuses solely on symbolic time-
triggered scheduling without considering the overall system synthesis (binding, routing
and scheduling). Some literature considers scheduling of messages only [32–34], whereas
other work respects the more general problem of co-scheduling computational tasks and
messages like in this paper [31,35–37].

In the following, we relinquish from presenting the full scheduling encoding for
brevity. The interested reader may find more details in [29,31]. Overall, the constraints of
the time-triggered scheduling ensure that a resource is at most used by one entity at the
same time and precedence constraints among computational tasks and messages/packages
are met. A feasible time-triggered schedule

S = {sr
t | (t, r) ∈ B, t ∈ Tt

i , Ai ∈ A, r ∈ Rpe} ∪
{sr

p | r ∈ Rp
route, p ∈ Pm, m ∈ Tm

i , Ai ∈ A}

contains periodic start times for all computational tasks and all packets contained the the
system’s specification (cf. Section 4.2).

7. Coupling ASP and Background Theory

Given a binding B and routing Rpkts
route derived by the logic solver, a scheduling S can

be computed. However, in a first iteration of our SMT-based approach, two unfortunate
observations can be made. First, deciding whether a binding and routing solution is
schedulable takes considerable time, even if one uses our proposed coordinated approach.
Second, early binding and routing solutions of the logic solver often cannot be scheduled.

A reason for the first observation is that in common approaches all computational
tasks and packets are scheduled at once on the resources of the hardware platform. Thus,
this results in a potentially large scheduling problem and usually long runtimes of the
background theory in order to decide schedulability. Though, deciding feasibility of

Electronics 2022, 11, 1888 14 of 25

solution candidates in the background theory in a fast manner is a key ingredient for
the performance of the whole synthesis approach. As a remedy, we address the first
observation by introducing a hierarchical scheduling scheme suiting our system model
based on modifications of the scheme introduced in [7] (see Figure 5).

Figure 5. Detailed overview of the flow within the coupling of the answer set solver and the
background theory solver.

Instead of analyzing the whole system at once, we step through the stages of our
scheme and decide on essential sub-problems:

1. Schedule computational tasks on each tile independently (TS),
2. Schedule computational tasks on each tile with the incoming and outgoing packets of

the tile independently (CS),
3. Schedule clusters of independent applications independently (AS).

Deciding the scheduling feasibility of the sub-problems usually takes considerably
less time compared to deciding the complete system. Furthermore, if, e.g., already the
computational tasks on one tile cannot be scheduled, scheduling the whole system is also
not possible and further effort in stepping through the hierarchical scheduling scheme can
be saved.

If all sub-problems of one stage are feasible, the problems of the subsequent stage in
our hierarchical scheduling scheme are analyzed. Ultimately, if all sub-problems of the
final stage can be solved, a feasible implementation is found. In contrast, if a sub-problem
is infeasible, we are again in the situation of the second observation as stated above.

The second observation is addressed by providing accurate feedback from the back-
ground theory to the answer set solver as common in SMT-based approaches. Here,
the feedback should at least prohibit that the exact same infeasible binding and routing is
not proposed a second time. From related work, e.g., [6], we know that the scalability of
symbolic system synthesis can further be significantly increased by deriving a minimal
unsatisfiable core (MUC), i.e., a minimal reason why a schedule cannot be derived. Hence,
if the MUC is propagated back to the answer set solver, often considerable amounts of
infeasible design space can be pruned.

Once a sub-problem in the stage (TS) is infeasible, we apply a set-based deletion
filter algorithm (see Algorithm 1) to deduce one MUC, similar to [7]. Let Tt

⊥ be the set
of all computational tasks on one tile r ∈ Rt that form the infeasible set of constraints
C⊥. In contrast to deletion filters known form the related work, e.g., [38], the set-based
deletion filter requires only |Tt

⊥| instead of |C⊥| iterations. Thus, deriving a MUC can

Electronics 2022, 11, 1888 15 of 25

be considerably faster since the number of tasks is noticeably lower than the number of
constraints. Note that using the set-based deletion filter does not have any downsides in
terms of expressiveness of the MUC since the logic solver does not relate to constraints
c ∈ C⊥ that are used in the T -solver. For example, in the case of scheduling computational
tasks on tiles, the logic solver can only relate to entities of computational tasks.

Given a MUC of a problem in the (TS) stage in form of a set of computational tasks,
an integrity constraint is propagated back to the answer set solver (see Figure 5). This
constraints ensures that the same set of computational tasks within the MUC are not bound
together on any tile of the hardware platform again. Thus, all bindings of the design space
that contain this subset of an infeasible binding are effectively pruned.

Algorithm 1 Set-based Deletion Filter for stage (TS).

Input: Unsatisfiable scheduling problem constraints C⊥ of stage (TS) and the correspond-
ing set of tasks Tt

⊥
Output: A minimal set of infeasible computational tasks Tt

MUC
1: C = C⊥
2: Tt

MUC = Tt
⊥

3: for t ∈ Tt
⊥ do

4: if (C \Ct
⊥) =⊥ then

5: C = C \Ct
⊥

6: Tt
MUC = Tt

MUC \ t
7: end if
8: end for
9: return Tt

MUC

Regarding infeasible scheduling problems within stage (CS) and (AS), we found
a forward filter [38] most suitable as it computes MUCs starting from smaller sets of
constraints. Again, we modified the forward filter with a set-based approach to reduce the
number of iterations to derive a MUC.

However, one main difference is that as sub-problems in the hierarchical scheduling
stages (CS) and (AS) might also contain packets within the constraint set. Thus, the MUC
also potentially contains packets as well as computational tasks. Without breaking sym-
metries, in our current setting the MUC is fed back to the answer set solver with the exact
binding of computational tasks to tiles and the exact routing of messages. Since massively
parallel architectures are often computation-centric and discourage a lot of communication
by software design, the impact of not breaking symmetries can be considered negligible.

We note that the answer set solver is not restarted while the scheduling of implementa-
tion candidates is investigated within the background theory. Rather, the answer set solver
is halted and “waits” for feedback. Thus, already learned knowledge in the answer set
solver search algorithm, e.g., about optimally of solutions within the coordinated synthesis
approach, is not lost.

8. Experimental Results

In the following section we present the experimental results showing the advantage of
a coordinated SMT-based synthesis approach. We start by introducing our test instances
and how they were generated and summarize our experimental setup. Furthermore, we
discuss the experimental results of the classical non-coordinated synthesis approach, the co-
ordinated synthesis approach and the coordinated synthesis approach that is enhanced
with domain-specific heuristics.

8.1. Test Instances

The NoC-based hardware platforms of our test cases were regular N × N 2D-meshes
with N ∈ {3, 4, 5, 6} such that a platform contained N2 = {9, 16, 25, 36} tiles in total. The
resources of the platform (PEs, routers, . . .) were selected to be homogeneous. Thus, all

Electronics 2022, 11, 1888 16 of 25

computational tasks had the same WCET on all tiles and all packets were forwarded on
the resources of the NoC within the same delay (∀Ai ∈ A : ∀λ ∈ (Tt

i ∪ Tm
i) : ∀r, r̃ ∈

R : Cr
λ = Cr̃

λ). The delay of all packets was set to 10 cycles on all NIs and routers
(∀r ∈ (Rni ∪Rrtr) : Cr

p = 10). In order to convert time, e.g., computational time or periods
of computational tasks and messages, into clock cycles of the hardware platform we used
a common frequency of f = 200 MHz in available micro controllers for automotive or
industrial applications [2].

The applications in our test cases are of synthetic nature and we do not rely on
open-source benchmarks. There are two main reasons for this. First, massively parallel
platforms cannot be computationally utilized in a meaningful way with control software
that is running on current multi-core embedded systems. Thus, with multi-core software
characteristics such as described in [39], the vast bulk of the hardware platform would be in
idle state. As a remedy, our applications are oriented on the characteristics of state-of-the-art
control software [39] (periods, amount of inter-task communication, . . .) but extrapolate
towards higher system utilization.

Second, to the best to the authors’ knowledge, there is no published open-source
benchmark for automotive control applications that respects the parameters described
in [39] and allows us to systematically investigate scalability of our proposed methods.
Also, note that we rather need a scheme that allows us to increase the computational
utilization and total number of messages along with the increase in the size of our tiled
mesh hardware architectures, rather than plain benchmark instances. In the following, we
summarize the scheme we used to create synthetic test cases for a systematic evaluation of
our approach. The source code of an implementation of this scheme together with the test
cases that are investigated in this work can be obtained by mailing the paper’s last author.

In order to generate the applications to be executed on a given platform with N2

tiles, we applied an algorithm including randomization in order to achieve diversity
of the test cases within certain limits. As an important parameter in our generation
scheme, the utilization factor U f act ∈ {50%, 60%, 70%} defines the percentage the overall
computational resources of the platform, i.e., all PEs, are utilized. For each of our test
cases, we incrementally added randomized applications Ai to the system until the total
computational load of the system Usys reached the desired overall computational load:

Usys = ∑
Ai∈A,t∈Tt

Ct

Pi
= U f act · N2. (3)

To generate the TTSP graph topology of one randomized application Ai = (gA
i , Pi, Di) ∈

A, we choose a simplified scheme based on five templates to create new TTSP graphs. Three
of these templates are shown in Figure 4 as the yellow shaded TTSP graphs, whereas the
two remaining templates are two TTSP graphs with three computational tasks in parallel,
respectively, four parallel computational tasks in parallel. As a first step, one topology
template was chosen randomly out of the set of five predefined template TTSP graphs.
Then, each computational tasks that is not a sink or a source of the chosen TTSP template
was replaced by a sub-graph that was at random either one of the TTSP templates or a
single computational task. The resulting topology of the application graph gA

i is again
a TTSP graph since it could also be created by the TTSP definition shown in Section 4.2.
Note that the application graph in Figure 4 is one example which could result from the
introduced two-step procedure.

For the parameters of each randomized application Ai, we chose a random period Pi
from a set of non-harmonic periods Pi ∈ {1 ms, 2 ms, 5 ms, 10 ms, 20 ms, 50 ms, 100 ms}
common in the automotive domain [31,39]. The deadline Di of each application Ai was
constrained to its deadline, i.e., Di = Pi. The WCET of a computational task t ∈ Tt was
implicitly defined by randomly selecting a utilization of a computational task Ut = Ct/Pi ∈
{10h, 15h, 20h, 25h, . . . , 80h}. Regarding the messages exchanges between tasks, based
on the task communication of real-world automotive applications [39], we chose for each

Electronics 2022, 11, 1888 17 of 25

message m ∈ Tm a random number of packets in |Pm| = {5, 6, 7, . . . , 15}. Since packets
are the entities that are scheduled on the resource of the platforms NoC, the number of
packets relating to a routed message influence considerably the number of constraints in
the time-triggered scheduling problem in system synthesis (cf. Section 6).

Table 1 summarizes the average values of key characteristics of each of our testcase
instance sets.

Table 1. Overview instances: average numbers with standard deviation of 25 instances per sys-
tem specification.

Set Applications Tasks Messages Packets
3 × 3-50 9.5 ± 1.3 129.9 ± 5.4 163.6 ± 8.0 1641.2 ± 97.4
3 × 3-60 11.2 ± 1.1 156.0 ± 4.3 198.8 ± 7.6 1980.8 ± 75.8
3 × 3-70 13.3 ± 1.2 179.5 ± 4.2 228.8 ± 7.2 2293.0 ± 101.0
4 × 4-50 17.2 ± 1.9 227.5 ± 6.1 286.3 ± 8.7 2853.6 ± 102.8
4 × 4-60 19.6 ± 1.4 272.8 ± 7.2 346.3 ± 11.7 3467.9 ± 118.5
4 × 4-70 23.8 ± 1.7 319.9 ± 7.5 405.1 ± 13.5 4046.6 ± 135.6
5 × 5-50 26.9 ± 2.1 359.9 ± 6.8 453.5 ± 12.5 4516.1 ± 140.8
5 × 5-60 31.8 ± 3.1 433.4 ± 10.4 548.4 ± 16.4 5491.0 ± 170.8
5 × 5-70 37.1 ± 2.1 501.0 ± 9.0 634.2 ± 12.0 6339.4 ± 124.7
6 × 6-50 38.8 ± 2.7 515.1 ± 11.3 649.8 ± 15.3 6488.0 ± 163.2
6 × 6-60 46.1 ± 2.8 620.2 ± 10.7 788.1 ± 15.0 7888.8 ± 180.0
6 × 6-70 53.4 ± 2.8 723.6 ± 13.1 916.2 ± 19.5 9118.6 ± 174.2

We label the sets of instances with N×N-U f act using the dimension N of the 2D mesh of
the NoC and the total computational utilization factor U f act. Each set of instances consists of
25 randomly generated instances that where generated as described above. Table 1 reports
the average total number of applications, the average total number of computational tasks,
average total number of messages and average total number of packets of a test instance in
the associated instance set along with the standard deviation. With increasing N and U f act,
we assume that the problem of synthesis becomes harder to solve as more tasks have to be
bound, more messages to be routed on a larger NoC and overall more entities have to be
scheduled. Note that for all the instances there exists at least one feasible synthesis. This
has been checked independent of the results presented in the next section.

8.2. Experimental Setup

All experiments where performed on a workstation with a hexa-core Intel Xeon CPU
E5-1650v2 at 3.50GHz running Ubuntu Linux as operating system. The total amount
of accessible RAM in our experiments was limited to 62GB (note that the average RAM
consumption over all synthesis runs within our experiments was 6.45GB.) using the tool
benchexec [40].

To decide the binding and routing, we used clingo (version 5.2.2) [16] which combines
the answer set solver clasp and the grounder gringo. As configuration of the answer set
solver we used an automatic configuration (–configuration=auto) and also leveraged
the parallel solving capabilities (–parallel-mode=6,split) where the search for answer
sets is split onto the available six cores of our benchmarking workstation. In the coor-
dinated approach, the optimization strategy was set to unsatisfiable core optimization
strategy using (–opt-strategy=usc,4). Since this optimization strategy cannot be used to-
gether with domain-specific heuristics, we used a branch and bound optimization strategy
(–opt-strategy=bb,2) when necessary. Both optimization strategies where selected based
on the results of initial tests with the different optimization strategies that the used answer
set solver has to offer.

For the coordinated approach, we further limited the optimization time for the answer
set solver to 10 s. Note that this limited time is always additional for the optimization
of a found initial solution for the binding and routing problem. After this time limit for

Electronics 2022, 11, 1888 18 of 25

optimization, the currently best solution is analyzed in the background theory. The answer
set solver might also stop earlier, in this case it has proved that it found the best solution
w.r.t. the prioritization of the optimization statements (cf. Section 5).

In the background theory, in order to test the limits of the classical uncoordinated
approach to some extend independent of a background theory solver configuration, we
made use of a portfolio solving approach. Here, any occurring scheduling problem is tried
to be solved by the two SMT-solvers yices (version 2.5.4) [41] and Z3 (version 4.6.0) [42]
in different configurations. Note that related work has shown that often SMT-solvers
perform better in deciding the time-triggered scheduling problems considered in this
paper compared to integer linear programming (ILP) approaches [31]. Once a scheduling
problem is defined, different instances of the solver yices are started in parallel using the
algorithms Floyd-Warshall (command line parameter –arith-solver=floyd-warshall)
and the simplex algorithm (command line parameter –arith-solver=simplex) for the logic
quantifier-free integer difference logic (QF_IDL). Furthermore, the results of [43] encouraged
us to also start one instance of yices in quantifier-free linear integer arithmetic (QF_LIA)
in default configuration. However, for our test instance, the linear integer arithmetic
configuration does not show significant improvements compared to the integer difference
logic of yices as suggested in [43]. Along with the different configuration of the yices solver,
our portfolio approach also starts an instance of the Z3 solver in default configuration in
logic QF_IDL.

Furthermore, we also try to decide arising scheduling problems faster by incorpo-
rating an UNSAT-hypothesis approach. Here, in every scheduling problem the constraints
associated with scheduling computational tasks or messages on resources are incrementally
added as long as the preceding problem was decided as feasible. The benefit of this iterative
solving is that already a rather small (sub-)problem might be decided as infeasible within
a shorter amount of time. Including this technique also resembles to some extent other
approaches that try to decide on incomplete models (partial assignments on binding and
routing variables), e.g., [9,10], but in our work this is more adapted to be consistent with
the additions we made, e.g., the set-based deletion filter (cf. Section 7). Subsequently, if a
problem is decided unsatisfiable in the iterations within the UNSAT-hypothesis, the unsatis-
fiable core extraction starts on a smaller problem instance. Similar to the portfolio solving
approach for the background theory as described above, we invoke four different solver
configuration for each scheduling problem in the UNSAT-hypothesis

Independent of which hypothesis was used to decide a scheduling problem instance,
once any of the differently configured background theory solvers reached a point where it
determined a scheduling problem as unsatisfiable or satisfiable, this result is used (including
logging the respective runtime returned by the solver) and all other solver instances running
in parallel are stopped.

Regarding the hierarchical scheduling scheme (cf. Section 7), at each stage we decide
the feasibility of sub-problems iteratively. Once we found that a scheduling problem is not
feasible, the associated MUC is extracted and immediately returned to the logic solver as
explained in Section 7. Thus, no further sub-problems in a stage are tried to be solved once
an infeasible solution was found.

Since our coordinated approach is non-deterministic, each instance is always run 5 times
(what we also do for the classical approach). This non-determinism is due to the fact
that we ultimately use the timer of the operation system to interrupt the lexicographical
optimization in the answer set solver in the coordinated approach. Since the interruption
by the timer might only jitter minimally, this is enough that the answer set solver might
advance only a little bit in its solving process and other solutions are passed to the analysis
in the background theory. By running each instance 5 times we gather statistics over the
non-deterministic processes. The time limit for each run was always set to 3600 s in order
to derive a feasible system synthesis.

Electronics 2022, 11, 1888 19 of 25

8.3. Experimental Results
8.3.1. Results of Classical Approach without Coordination

Table 2 contains the results of the classical approach (columns “classical”) for the
different instance sets as N×N-U f act with the dimension N ∈ {3, 4, 5, 6} of the 2D mesh
of the NoC and the total computational utilization factor U f act ∈ {50%, 60%, 70%} (see
Section 8.1). The columns in Table 2 represent bins corresponding to the number of
successfully solved instances out of 5 independent synthesis runs.

Table 2. Overview of solved runs (up to five) for the 25 instances per instance set for the different
synthesis approaches.

Solved Runs (out of 5)
5/5 4/5 3/5 2/5 1/5 0/5

Instances Classical Coord DSH Classical Coord DSH Classical Coord DSH Classical Coord DSH Classical Coord DSH Classical Coord DSH
3 × 3-50 0 25 24 2 0 1 8 0 0 3 0 0 11 0 0 1 0 0
3 × 3-60 0 17 22 0 2 2 4 3 1 3 0 0 4 1 0 14 2 0
3 × 3-70 0 6 10 0 3 9 1 5 3 2 3 2 1 3 1 21 5 0
4 × 4-50 0 22 25 0 3 0 1 0 0 0 0 0 5 0 0 19 0 0
4 × 4-60 0 11 17 0 7 5 0 4 3 0 3 0 0 0 0 25 0 0
4 × 4-70 0 2 7 0 2 4 0 6 7 0 7 5 0 6 0 25 2 2
5 × 5-50 0 13 15 0 7 6 0 3 1 1 1 3 2 1 0 22 0 0
5 × 5-60 0 2 7 0 4 7 0 2 5 0 8 4 0 5 2 25 4 0
5 × 5-70 0 0 0 0 2 5 0 1 4 0 3 10 0 4 5 25 15 1
6 × 6-50 0 0 7 0 4 8 0 0 6 0 1 3 0 5 1 25 15 0
6 × 6-60 0 0 2 0 0 1 0 1 8 0 4 7 0 1 4 25 19 3
6 × 6-70 0 0 0 0 0 0 0 0 0 0 0 4 0 1 8 25 24 13

We observe that for “3 × 3-50-classic”, the platform where the 9 tiles are arranged in a
3 × 3 mesh grid with a total computational utilization of 50% of the platform, the classical
synthesis is almost able to solve all except one instance of the 25 instances within at least
one run of five runs per instance (based on the entry “1” in column “0/5” and column
“classical”). However, there was no instance for which all five independent runs were
solved. If the complexity of the synthesis problem is increased towards larger platforms
and higher computational utilization, the classical approach is almost not able to solve any
more instances. While the work at hand also includes refinements that should contribute to
the scalability of the classical approach (which, best to our knowledge, are not considered in
any other work on symbolic system synthesis), e.g., the Korst-constraint (cf. Equation (2))
in the answer set solver and the portfolio solving approach in the background theory,
the classical approach is still not able to scale as desired.

For the runs of instances that reached the timeout, the bar chart in Figure 6 shows the
average runtime distribution between the answer set solver (blue) and the background
theory solver (red). Regarding the number of couplings where the background theory
provided a feedback to restrict the search space of the answer set solver, this number was
between 2 and 4. In the bar chart we observe that for the unfinished runs in the classical
approach more than 90% of the time is spent on average in deciding whether a time-
triggered schedule exists. Hence, a significant imbalance exists between the effort spend
in the answer set solver and the background theory. A deeper evaluation also revealed
that this time is almost exclusively spend in the scheduling stage where tiles are scheduled
independently or the extraction of minimal unsatisfiable cores within tile schedules. This
observation especially encouraged us to develop the load balancing scheme within the
coordinated synthesis approach as discussed before (see Section 5).

Electronics 2022, 11, 1888 20 of 25

3×
3-5

0-c
las

sic

3×
3-6

0-c
las

sic

3×
3-7

0-c
las

sic

4×
4-5

0-c
las

sic

4×
4-6

0-c
las

sic

4×
4-7

0-c
las

sic

5×
5-5

0-c
las

sic

5×
5-6

0-c
las

sic

5×
5-7

0-c
las

sic

6×
6-5

0-c
las

sic

6×
6-6

0-c
las

sic

6×
6-7

0-c
las

sic

0

1000

2000

3000

timeout

Ti
m

e
[s
]

ASP BT

Figure 6. Average runtime distribution between answer set solver (blue) and background theory
solver (red) for the timeout runs in the classical approach. More than 90% of the total synthesis time is
spent on average within the background theory until the timeout. The vertical error bars show the
standard deviation.

8.3.2. Results of Coordinated Approach

Table 2 contains the number of solved runs for the different instances in the instance
sets for the coordinated approach (columns “coord”). First of all, we compare the entries of
the classical and the coordinated approach where none of the instances of an instance set is
solved (“0/5” column). We see that up to the 5 × 5-70 instances the coordinated approach
considerably more often is able to find at least one feasible synthesis out of five runs per
instance than the classical approach.

Table 2 also indicates the limitations of the coordinated approach. Starting with
the 5 × 5-70 instance set, considerably more instance cannot be synthesized within five
independent runs of an instance. Ultimately, for the hardest instances of 6 × 6-70, only one
run for one instance was solved. Despite this, by looking at the obtained results as a whole,
the coordinated approach is still a considerable improvement regarding the applicability
towards larger problem instances compared to the classical approach.

To one essential part, the increase in applicability of the coordinated approach is due to
the load balancing objective in the coordinated approach as we conjecture that deciding
schedulability of not fully utilized tiles can be considered as an easier task. Hence, in the
background theory, the tile scheduling stage of the hierarchical scheduling scheme con-
sumes significantly less time than in the classical approach. Furthermore, also the other
optimization statements contribute to the improvement of the coordinated approach as
these statements allow to decide scheduling faster within the independent application
scheduling stage in the hierarchical scheduling scheme.

However, adding the necessary auxiliary variables and the optimization of the co-
ordinated approach to the answer set solver comes with a non-negligible cost in terms of
additional variables and constraints. Looking at our instances, the additional number
of variables, which are reported by the answer set solver, increased between 9% for the
smaller instance up to 40% for the largest instances. Similarly, the number of additional
constraints increased between 22% for the smallest instances, respectively, 35% for the
largest instances. As one numerical example, for the 6 × 6-70 instances and the classical
approach, the average number of variables and constraints and the standart deviation
was 821,999 ± 16,971 variables and 3,848,766 ± 303,098 constraints. In contrast, for the
coordinated approach these values increase on average to 1,154,760 ± 35,410 variables and
5,198,396 ± 326,980 constraints.

Electronics 2022, 11, 1888 21 of 25

Often, having more variables and constraints in the answer set solver can increase the
time to derive a solution of the binding and routing sub-problem. Additionally, once an
initial solution is found, the answer set solver spends up to 10s to optimize this solution (or
prove that the found initial one is the optimal solution). While for all the 3 × 3 mesh grid
instances in the classical approach (note that more detailed data of the solved instances for
the classical approach is not shown for the sake of brevity.) the total average time spend in
the answer set solver in successful runs is less then 1s, for the same instances it is around
20 s in the coordinated approach.

Figure 7 summarizes the average total times spent in the respective parts of the answer
set solver and the background theory solver within the coordinated approach for the runs that
finished successfully (note that the figure also contains the runtime for the enhancements
with the DSH).

3×
3-5

0-c
oord

3×
3-5

0-c
oord

+ds
h

3×
3-6

0-c
oord

3×
3-6

0-c
oord

+ds
h

3×
3-7

0-c
oord

3×
3-7

0-c
oord

+ds
h

4×
4-5

0-c
oord

4×
4-5

0-c
oord

+ds
h

4×
4-6

0-c
oord

4×
4-6

0-c
oord

+ds
h

4×
4-7

0-c
oord

4×
4-7

0-c
oord

+ds
h

5×
5-5

0-c
oord

5×
5-5

0-c
oord

+ds
h

5×
5-6

0-c
oord

5×
5-6

0-c
oord

+ds
h

5×
5-7

0-c
oord

5×
5-7

0-c
oord

+ds
h

6×
6-5

0-c
oord

6×
6-5

0-c
oord

+ds
h

6×
6-6

0-c
oord

6×
6-6

0-c
oord

+ds
h

6×
6-7

0-c
oord

6×
6-7

0-c
oord

+ds
h

0

1000

2000

Ti
m

e
[s
]

ASP ASP+DSH BT

Figure 7. Overview of the average distribution of runtimes of the successful runs using the coordinated
approach and the coordinated+DSH approach for all instance sets. The vertical error bars show the
standard deviation.

Regarding the number of couplings between logic solver and background theory, this
number varies on average between 3 and 6. Note that the number of required couplings
to find a feasible synthesis in all experiments of the work at hand is generally reduced.
Here, the addition of the Korst-constraint (cf. Equation (2)) in the answer set solver,
missing in previous approaches [26,27], already ensures that all pairwise computational
task combinations on a tile are schedulable and potential pairwise scheduling conflicts are
not encountered in the background theory anymore.

The changed distribution of efforts in Figure 7 between answer set solving and back-
ground theory solver compared to the classical approach becomes more prominent if one
computes the quotient of averaged runtimes of the time spent in the background theory
divided by the time spent in the answer set solver. This quotient is between 70 and 600
for all instances with 3 × 3 mesh grids in the classical approach, whereas the quotient is
in the range 2–10 for all instances with any investigated mesh grid size in the coordinated
synthesis approach. Thus, w.r.t. to the share of the overall solving time in the coordinated
approach, considerable more effort is shifted to the answer set solver.

However, as already indicated earlier, starting with the 5 × 5-70 instances, also the
coordinated approach reaches its limits. The Tables 3–5 capture three different categories of
timeout runs of the coordinated approach.

Here, the runs reaching the set timeout for a synthesis run can be divided into two cat-
egories: Table 3 shows selected data of runs of different instance sets where a synthesis run
is dominated by the average time the coordinated approach spends within the background

Electronics 2022, 11, 1888 22 of 25

theory. This is similar to what we saw in the results for the classical approach but now we
make this observation at considerable harder instance sets.

Table 3. Runtime distribution and number of timeout runs within the coordinated approach with
timeout reached in the background theory (BT).

Instances ASP [s] BT [s] #Runs
5 × 5-70-coord 73.2 ± 59.29 3524.52 ± 61.79 101
6 × 6-50-coord 56.08 ± 38.35 3543.35 ± 38.98 16
6 × 6-60-coord 182.29 ± 262.79 3414.78 ± 265.51 43
6 × 6-70-coord 95.96 ± 69.58 3502.41 ± 71.61 88

However, as a new observation, Table 4 shows average times of synthesis runs where
the runtime until the timeout is mainly dominated by the answer set solver. In these cases,
the answer set solver could not find a new binding and routing candidate in the meanwhile
restricted search space after a few couplings with the background theory solver.

Table 4. Runtime distribution and number of timeout runs within the coordinated approach with
timeout reached in the answer set solver.

Instances ASP [s] BT [s] #Runs
6 × 6-50-coord 3544.33 ± 232.81 53.4 ± 232.83 61
6 × 6-60-coord 3406.34 ± 508.62 192.16 ± 508.21 63
6 × 6-70-coord 3429.24 ± 389.46 169.56 ± 389.26 36

The final and third category is that for larger instances the background theory allo-
cates memory reaching the overall synthesis memory limit and thus the synthesis run is
canceled (cf. Table 5). Thereby, the memory limit is always reached in the last stage of the
hierarchical scheduling scheme where the schedulability of independent app clusters is
decided. However, in these cases there is always only one large application cluster resulting
in scheduling problems spanning all hardware resources (PEs, NIs and routers) of the
hardware platform. As a consequence, these scheduling problems are too memory intense
to decide given our memory limit of 62 GB RAM.

Table 5. Number of runs that reached the memory limit within the background theory in the
coordinated approach.

Instances #Runs out of Memory in BT
5 × 5-50-coord 7
5 × 5-60-coord 2
5 × 5-70-coord 2
6 × 6-50-coord 25
6 × 6-60-coord 7

All the results presented in Tables 3–5 are not desired as they limit the scalability
of the coordinated synthesis approach, especially in the 6 × 6 mesh grid regime at higher
utilization (cf. Table 2). Thus, we enhanced the coordinated synthesis approach by including
domain-specific heuristics within the answer set solver. Again, the goal was to have “nicer”
solutions proposed to the background theory which can be decided within reasonable time
and without running into memory limitations. Furthermore, another goal was to reduce
the occurring long solving times in the answer set solver as observed for some 6 × 6 mesh
grid instances (cf. Table 4).

Electronics 2022, 11, 1888 23 of 25

8.3.3. Results of Coordinated Approach with DSH

Table 2 (columns “DSH”) shows the respective number of solved instances for the
coordinated+DSH approach. Furthermore, Figure 7 includes the average runtime distribution
between the answer set solver and the background theory for solved runs of instances.

By comparing the solved instances between the coordinated approach with the coordi-
nated+DSH approach we make two main observations. First and most obvious, the scaling
by using DSH is significant better which is evident by looking at the “0/5” bin column
starting at the 5 × 5-70 instance set. Second, by looking at the instances where more runs of
an instance where solved (“5/5” and “4/5” bin), noticeable more runs of instances were
solved in the regime of harder instance sets, i.e., those sets with 70% platform utilization.
Thus, by using our domain knowledge encoded in the DSH, we are able to make the
coordinated synthesis approach even more scalable and more robust (since more runs of
instances are solved).

Regarding the time to derive a feasible system synthesis, by comparing the bars in
Figure 7, the average time spend in the answer set solver and background theory solver
is also always lower in the coordinated+DSH approach, and therefore is the average total
synthesis time (with the exception of the single data point (single solved run) for 6 ×
6-70-coord in Figure 7 which is neglected in our statement due to statistical relevance.)

Note that the answer set solver does not report any overhead in terms of additional
variables or constraints if domain-specific heuristics are used within the coordinated
approach. As described in [17], the additional formulation of the domain-specific heuristics
are only used if non-deterministic choices have to be performed during the solving process
and have no immediate contribution to the underlying complexity to the problem that
needs to be solved.

While we also observed that the coordinated approach can spend a considerable amount
of time within the answer set solver (see Table 4), this issue does not occur anymore if we
use domain-specific heuristics together with the coordinated approach. Furthermore, not
one synthesis run reaches the memory limit anymore.

Overall, our experiments show that the combined coordinated+DSH approach enriched
with DSH considerably increases the scalability of the solely coordinated approach. Addi-
tionally, the average synthesis times are reduced. However, its limitations become more
noticeable especially for the hardest instance set where almost half the instances in the 6 ×
6-70 set could not be solved.

9. Concluding Remarks

Within our experimental section, we showed that previous related symbolic system
synthesis approaches may lack applicability to scale beyond 3 × 3 tiled mesh architectures.
In order to increase applicability towards larger and higher utilized architectures, we
presented the coordinated synthesis approach. We realized the coordination by implementing
a scheduling-aware binding and routing refinement in the logic solver, in our case an answer
set solver. With this approach the logic solver is able to provide solution candidates to the
background theory where schedulability can then be decided within a reasonable amount
of time, which otherwise is not the case.

While the coordinated approach enhances the applicability of SMT-based system syn-
thesis considerably, this approach reaches it limits around highly utilized 5 × 5-mesh ar-
chitectures. We demonstrate how domain-specific knowledge encoded in domain-specific
heuristics in the logic solver enables a further increase in scalability and robustness. Hence,
we are able to solve significantly more runs from our instances sets up to around 6 ×
6-mesh hardware architectures that are utilized on average at 70%.

Author Contributions: Conceptualization, A.R. and C.H.; methodology, A.R.; software, A.R.; validation,
A.R.; formal analysis, A.R.; investigation, A.R.; data curation, A.R.; writing—original draft preparation,
A.R. and C.H.; writing—review and editing, A.R. and C.H.; visualization, A.R.; supervision, C.H.; project
administration, C.H. All authors have read and agreed to the published version of the manuscript.

Electronics 2022, 11, 1888 24 of 25

Funding: This work was partially funded by the German Science Foundation (DFG) under grant HA
4463/4-2.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gerstlauer, A.; Haubelt, C.; Pimentel, A.D.; Stefanov, T.P.; Gajski, D.D.; Teich, J. Electronic System-Level Synthesis Methodologies.

IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2009, 28, 1517–1530. [CrossRef]
2. Infineon. AURIX 32-bit TriCore TC2xx Product Specification. Available online: https://www.infineon.com/cms/en/product/

microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc2xx/ (accessed on 14 June 2022).
3. Bjerregaard, T.; Mahadevan, S. A survey of research and practices of Network-on-chip. ACM Comput. Surv. 2006, 38, 1. [CrossRef]
4. Hennessy, J.L.; Patterson, D.A. Computer Architecture—A Quantitative Approach, 5th ed.; Appendix F: Interconnection Networks;

Morgan Kaufmann: Waltham, MA, USA, 2012.
5. Reimann, F.; Glaß, M.; Haubelt, C.; Eberl, M.; Teich, J. Improving platform-based system synthesis by satisfiability modulo

theories solving. In Proceedings of the 8th International Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS, Scottsdale, AZ, USA, 24–28 October 2010; pp. 135–144. [CrossRef]

6. Reimann, F.; Lukasiewycz, M.; Glaß, M.; Haubelt, C.; Teich, J. Symbolic system synthesis in the presence of stringent real-time
constraints. In Proceedings of the 48th Design Automation Conference, DAC, San Diego, CA, USA, 5–10 June 2011; pp. 393–398.
[CrossRef]

7. Lukasiewycz, M.; Chakraborty, S. Concurrent architecture and schedule optimization of time-triggered automotive systems.
In Proceedings of the 10th International Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS,
Tampere, Finland, 7–12 October 2012; pp. 383–392. [CrossRef]

8. Valdes, J.; Tarjan, R.E.; Lawler, E.L. The recognition of Series Parallel digraphs. In Proceedings of the 11th Annual ACM
Symposium on Theory of Computing, Atlanta, GE, USA, 30 April–2 May 1979; pp. 1–12. [CrossRef]

9. Neubauer, K.; Wanko, P.; Schaub, T.; Haubelt, C. Enhancing symbolic system synthesis through ASPmT with partial assignment
evaluation. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition, DATE, Lausanne, Switzerland,
27–31 March 2017; pp. 306–309. [CrossRef]

10. Kumar, P.; Chokshi, D.B.; Thiele, L. A satisfiability approach to speed assignment for distributed real-time systems.
In Proceedings of the Design, Automation and Test in Europe, DATE, Grenoble, France, 18–22 March 2013; pp. 749–754.
[CrossRef]

11. Baral, C. Knowledge Representation, Reasoning and Declarative Problem Solving; Cambridge University Press: Cambridge, UK, 2003.
[CrossRef]

12. Gelfond, M.; Kahl, Y. Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach;
Cambridge University Press: Cambridge, UK, 2014. [CrossRef]

13. Gebser, M.; Kaminski, R.; Kaufmann, B.; Schaub, T. Answer Set Solving in Practice; Synthesis Lectures on Artificial Intelligence and
Machine Learning; Morgan & Claypool Publishers: San Rafael, CA, USA, 2012. [CrossRef]

14. Andres, B.; Gebser, M.; Schaub, T.; Haubelt, C.; Reimann, F.; Glaß, M. Symbolic System Synthesis Using Answer Set Programming.
In Proceedings of the 12th International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR, Corunna,
Spain, 15–19 September 2013; Volume 8148, pp. 79–91. [CrossRef]

15. Barrett, C.W.; Sebastiani, R.; Seshia, S.A.; Tinelli, C. Satisfiability Modulo Theories. In Handbook of Satisfiability; IOS Press:
Amsterdam, The Netherlands, 2009; Volume 185, pp. 825–885. [CrossRef]

16. Gebser, M.; Kaufmann, B.; Schaub, T. Conflict-driven answer set solving: From theory to practice. Artif. Intell. 2012, 187, 52–89.
[CrossRef]

17. Gebser, M.; Kaufmann, B.; Romero, J.; Otero, R.; Schaub, T.; Wanko, P. Domain-Specific Heuristics in Answer Set Programming.
In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, Bellevue, WA, USA, 14–18 July 2013.

18. Lukasiewycz, M.; Streubühr, M.; Glaß, M.; Haubelt, C.; Teich, J. Combined system synthesis and communication architecture
exploration for MPSoCs. In Proceedings of the Design, Automation and Test in Europe, DATE, Nice, France, 20–24 April 2009;
pp. 472–477. [CrossRef]

19. Nieuwenhuis, R.; Oliveras, A.; Tinelli, C. Solving SAT and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–
Loveland procedure to DPLL(T). J. ACM 2006, 53, 937–977. [CrossRef]

20. Satish, N.; Ravindran, K.; Keutzer, K. A decomposition-based constraint optimization approach for statically scheduling task
graphs with communication delays to multiprocessors. In Proceedings of the Design, Automation and Test in Europe, DATE,
Nice, France, 16–20 April 2007; pp. 57–62. [CrossRef]

21. Liu, W.; Gu, Z.; Xu, J.; Wu, X.; Ye, Y. Satisfiability Modulo Graph Theory for Task Mapping and Scheduling on Multiprocessor
Systems. IEEE Trans. Parallel Distrib. Syst. 2011, 22, 1382–1389. [CrossRef]

22. Jackson, E.K.; Kang, E.; Dahlweid, M.; Seifert, D.; Santen, T. Components, platforms and possibilities: Towards generic automation
for MDA. In Proceedings of the 10th International Conference on Embedded Software, EMSOFT, Scottsdale, AZ, USA, 24–29
October 2010; pp. 39–48. [CrossRef]

http://doi.org/10.1109/TCAD.2009.2026356
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc2xx/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc2xx/
http://dx.doi.org/10.1145/1132952.1132953
http://dx.doi.org/10.1145/1878961.1878986
http://dx.doi.org/10.1145/2024724.2024817
http://dx.doi.org/10.1145/2380445.2380506
http://dx.doi.org/10.1145/800135.804393
http://dx.doi.org/10.23919/DATE.2017.7927005
http://dx.doi.org/10.7873/DATE.2013.160
http://dx.doi.org/10.1017/CBO9780511543357
http://dx.doi.org/10.1017/CBO9781139342124
http://dx.doi.org/10.2200/S00457ED1V01Y201211AIM019
http://dx.doi.org/10.1007/978-3-642-40564-8_9
http://dx.doi.org/10.3233/978-1-58603-929-5-825
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1109/DATE.2009.5090711
http://dx.doi.org/10.1145/1217856.1217859
http://dx.doi.org/10.1109/DATE.2007.364567
http://dx.doi.org/10.1109/TPDS.2010.204
http://dx.doi.org/10.1145/1879021.1879027

Electronics 2022, 11, 1888 25 of 25

23. Chakraborty, S.; Künzli, S.; Thiele, L. A General Framework for Analysing System Properties in Platform-Based Embedded
System Designs. In Proceedings of the Design, Automation and Test in Europe, DATE, Munich, Germany, 3–7 March 2003;
pp. 10190–10195. [CrossRef]

24. Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.; Schaub, T.; Wanko, P. Theory Solving Made Easy with Clingo 5.
In Proceedings of the Technical Communications of the 32nd International Conference on Logic Programming, ICLP, New York,
NY, USA, 16–21 October 2016, Volume 52, pp. 2:1–2:5. [CrossRef]

25. Neubauer, K.; Beichler, B.; Haubelt, C. Exact Design Space Exploration Based on Consistent Approximations. Electronics 2020,
9, 1057. [CrossRef]

26. Biewer, A.; Andres, B.; Gladigau, J.; Schaub, T.; Haubelt, C. A symbolic system synthesis approach for hard real-time systems
based on coordinated SMT-solving. In Proceedings of the Design, Automation & Test in Europe, DATE, Grenoble, France, 9–13
March 2015; pp. 357–362. https://dl.acm.org/doi/10.5555/2755753.2755834.

27. Andres, B.; Biewer, A.; Romero, J.; Haubelt, C.; Schaub, T. Improving Coordinated SMT-Based System Synthesis by Utilizing
Domain-Specific Heuristics. In Proceedings of the 13th International Logic Programming and Nonmonotonic Reasoninh
Conference, LPNMR, Lexington, KY, USA, 27–30 September 2015; pp. 55–68. [CrossRef]

28. Korst, J.H.M.; Aarts, E.H.L.; Lenstra, J.K.; Wessels, J. Periodic Multiprocessor Scheduling. In Proceedings of the Parallel
Architectures and Languages Europe, PARLE, Eindhoven, The Netherlands, 10–13 June 1991; pp. 166–178. [CrossRef]

29. Biewer, A.; Munk, P.; Gladigau, J.; Haubelt, C. On the Influence of Hardware Design Options on Schedule Synthesis in Time-
Triggered Real-Time Systems. In Proceedings of the Methoden und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen, MBMV, Chemnitz, Germany, 3–4 March 2015; pp. 105–114.

30. Lukasiewycz, M.; Schneider, R.; Goswami, D.; Chakraborty, S. Modular scheduling of distributed heterogeneous time-triggered
automotive systems. In Proceedings of the 17th Asia and South Pacific Design Automation Conference, ASP-DAC, Sydney,
Australia, 30 January–2 February 2012; pp. 665–670. [CrossRef]

31. Minaeva, A.; Akesson, B.; Hanzálek, Z.; Dasari, D. Time-Triggered Co-Scheduling of Computation and Communication with
Jitter Requirements. IEEE Trans. Comput. 2018, 67, 115–129. [CrossRef]

32. Steiner, W. An Evaluation of SMT-Based Schedule Synthesis for Time-Triggered Multi-hop Networks. In Proceedings of the 31st
IEEE Real-Time Systems Symposium, RTSS, San Diego, CA, USA, 30 November–3 December 2010; pp. 375–384. [CrossRef]

33. Steiner, W. Synthesis of Static Communication Schedules for Mixed-Criticality Systems. In Proceedings of the 14th IEEE
International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, ISORC
Workshops, Newport Beach, CA, USA, 28–31 March 2011; pp. 11–18. [CrossRef]

34. Huang, J.; Blech, J.O.; Raabe, A.; Buckl, C.; Knoll, A.C. Static scheduling of a Time-Triggered Network-on-Chip based on SMT
solving. In Proceedings of the Design, Automation & Test in Europe, DATE, Dresden Germany, 12–16 March 2012; pp. 509–514.
[CrossRef]

35. Craciunas, S.S.; Oliver, R.S. SMT-based Task- and Network-level Static Schedule Generation for Time-Triggered Networked
Systems. In Proceedings of the 22nd International Conference on Real-Time Networks and Systems, RTNS, Versailles, France,
8–10 October 2014; p. 45. [CrossRef]

36. Zhang, L.; Goswami, D.; Schneider, R.; Chakraborty, S. Task- and network-level schedule co-synthesis of Ethernet-based
time-triggered systems. In Proceedings of the 19th Asia and South Pacific Design Automation Conference, ASP-DAC, Singapore,
20–23 January 2014; pp. 119–124. [CrossRef]

37. Schweissguth, E.B.; Danielis, P.; Timmermann, D.; Parzyjegla, H.; Mühl, G. ILP-based joint routing and scheduling for time-
triggered networks. In Proceedings of the 25th International Conference on Real-Time Networks and Systems, RTNS, Grenoble,
France, 4–6 October 2017; pp. 8–17. [CrossRef]

38. Ostrowski, M.; Schaub, T. ASP modulo CSP: The clingcon system. Theory Pract. Log. Program. 2012, 12, 485–503. [CrossRef]
39. Kramer, S.; Ziegenbein, D.; Hamann, A. Real world automotive benchmarks for free. In Proceedings of the 6th International

Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems, WATERS, Lund, Sweden, 7 July 2015.
40. Beyer, D. Reliable and Reproducible Competition Results with BenchExec and Witnesses (Report on SV-COMP 2016).

In Proceedings of the 22nd International Conference Tools and Algorithms for the Construction and Analysis of Systems, TACAS,
Eindhoven, The Netherlands, 2–8 April 2016; Volume 9636, pp. 887–904. [CrossRef]

41. Dutertre, B. Yices 2.2. In Proceedings of the 26th International Conference on Computer Aided Verification, CAV, Vienna, Austria,
18–22 July 2014; Volume 8559, pp. 737–744. [CrossRef]

42. De Moura, L.M.; Bjørner, N. Z3: An Efficient SMT Solver. In Proceedings of the 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS, Munich, Germany, 29 March–6 April 2008; Volume 4963,
pp. 337–340. [CrossRef]

43. Pozo, F.; Rodríguez-Navas, G.; Hansson, H.; Steiner, W. SMT-based synthesis of TTEthernet schedules: A performance study.
In Proceedings of the 10th IEEE International Symposium on Industrial Embedded Systems, SIES, Siegen, Germany, 8–10 June
2015; pp. 162–165. [CrossRef]

http://dx.doi.org/10.1109/DATE.2003.10083
http://dx.doi.org/10.4230/OASIcs.ICLP.2016.2
http://dx.doi.org/10.3390/electronics9071057
https://doi.org/https://dl.acm.org/doi/10.5555/2755753.2755834
http://dx.doi.org/10.1007/978-3-319-23264-5_6
http://dx.doi.org/10.1007/BFb0035103
http://dx.doi.org/10.1109/ASPDAC.2012.6165039
http://dx.doi.org/10.1109/TC.2017.2722443
http://dx.doi.org/10.1109/RTSS.2010.25
http://dx.doi.org/10.1109/ISORCW.2011.12
http://dx.doi.org/10.1109/DATE.2012.6176522
http://dx.doi.org/10.1145/2659787.2659812
http://dx.doi.org/10.1109/ASPDAC.2014.6742876
http://dx.doi.org/10.1145/3139258.3139289
http://dx.doi.org/10.1017/S1471068412000142
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-319-08867-9_49
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1109/SIES.2015.7185055

	Introduction
	Coordinated SMT-Based Synthesis Approach: Motivation & Detailed Overview
	(Classical) SMT-Based System Synthesis
	Coordinated SMT-Based System Synthesis
	Increasing Scalability of Coordinated SMT-Based Synthesis by Domain-Specific Heuristics

	Related Work
	System Model
	Platform Model
	Application Model
	Formal Problem Formulation

	Answer Set Programming (ASP)—Binding & Routing
	Scheduling-Aware Binding & Routing Refinement
	Domain-Specific Heuristics in ASP

	Time-Triggered Scheduling
	Coupling ASP and Background Theory
	Experimental Results
	Test Instances
	Experimental Setup
	Experimental Results
	Results of Classical Approach without Coordination
	Results of Coordinated Approach
	Results of Coordinated Approach with DSH

	Concluding Remarks
	References

