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Abstract: Owning to the massive growth in internet connectivity, smartphone technology, and
digital tools, the use of various online social networks (OSNs) has significantly increased. On the
one hand, the use of OSNs enables people to share their experiences and information. On the
other hand, this ever-growing use of OSNs enables adversaries to launch various privacy attacks to
compromise users’ accounts as well as to steal other sensitive information via statistical matching.
In general, a privacy attack is carried out by the exercise of linking personal data available on the
OSN site and social graphs (or statistics) published by the OSN service providers. The problem
of securing user personal information for mitigating privacy attacks in OSNs environments is a
challenging research problem. Recently, many privacy-preserving solutions have been proposed to
secure users’ data available over OSNs from prying eyes. However, a systematic overview of the
research dynamics of OSN privacy, and findings of the latest privacy-preserving approaches from a
broader perspective, remain unexplored in the current literature. Furthermore, the significance of
artificial intelligence (AI) techniques in the OSN privacy area has not been highlighted by previous
research. To cover this gap, we present a comprehensive analysis of the state-of-the-art solutions that
have been proposed to address privacy issues in OSNs. Specifically, we classify the existing privacy-
preserving solutions into two main categories: privacy-preserving graph publishing (PPGP) and
privacy preservation in application-specific scenarios of the OSNs. Then, we introduce a high-level
taxonomy that encompasses common as well as AI-based privacy-preserving approaches that have
proposed ways to combat the privacy issues in PPGP. In line with these works, we discuss many state-
of-the-art privacy-preserving solutions that have been proposed for application-specific scenarios
(e.g., information diffusion, community clustering, influence analysis, friend recommendation, etc.) of
OSNs. In addition, we discuss the various latest de-anonymization methods (common and AI-based)
that have been developed to infer either identity or sensitive information of OSN users from the
published graph. Finally, some challenges of preserving the privacy of OSNs (i.e., social graph data)
from malevolent adversaries are presented, and promising avenues for future research are suggested.

Keywords: anonymization; online social network; privacy; privacy-preserving graph publishing;
utility; social network analysis; community clustering; friend recommendations

1. Introduction

In recent years, the adoption of online social networks (OSNs) has significantly in-
creased (e.g., only Facebook owns 1.23 billion monthly active users), and OSNs have become
one of the most famous platforms for social interactions. People use OSNs to interact as
well as to share personal experiences and information with their friends. Many companies
are using social media platforms to engage with their customers as well as to advertise their
products/events. Due to the continuously growing popularity of OSNs, a large amount
of personal big data is generated on daily basis (for example, Twitter generates about 500
million tweets each day and around 200 billion tweets per year). These data can assist in
improving people’s quality of life as well as benefit various companies (e.g., advertisers,
application developers, recommendation companies, content creators and sellers, policy
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makers, and so on). However, these data encompass sensitive information about people’s
social interaction, spatial-temporal activities, demographics, finance, disease, mobility,
religious/political views, etc., that needs privacy preservation to protect it from prying
eyes. In recent years, privacy preservation has become more challenging due to rapid ad-
vancements in data mining and artificial intelligence tools and the availability of personal
data (e.g., user profiles on OSN sites). These tools are good at finding sensitive information
from large-scale data as well as predicting sensitive information using pre-trained models.
Hence, privacy preservation of user data has become one of the most urgent research
problems in OSNs.

OSNs are structures that depict a set of entities (i.e., users) and the ties/relations
between them [1]. OSNs are usually represented with an undirected graph, G, G = (V, E),
where V denotes the set of users (i.e., V = {v1, v2, . . . , vN}), and E is the set of edges (i.e.,
E ⊆

(
V
2
)
). In simple words, vi is any real-world user of SN, and |E| denotes the links of vi

with other N − vi users. The link between any two users, vi and vj, can be correspondence,
friendship, collaboration, affiliation to a group/party, etc. In addition to set E, each node v
in a G usually encompasses a set of attributes A, where A = {a1, a2, . . . , aP}. The labels for
these attributes can be age, gender, race, and zipcode. For instance, A = {a1 = age, a2 =
gender, a3 = race, . . . , aP = zipcode}. The domain of values for each attribute can be
different, for example, if a2=gender, then a2 = {M, F}. In addition to the non-identifying
attributes, in some cases, A can contain one/two types of sensitive information (SI), denoted
with S, where S = {s1, s2, . . . , sI}. Hence, the overall structure of attribute set δ can be
represented as δ = {A, S}, where A and S denote the basic attributes, known as quasi-
identifiers (QIDs) and SI, respectively. The G, when nodes contain attribute information as
well, can be denoted as G = (V, E, δ). A conceptual overview of the G is shown in Figure 1.

In Figure 1, there are nine users labeled as v1 → v9, and the number of edges is distinct
for each user. For example, v1 has three edges, and v4 has one edge. The |E| of any node (vi)
is also called the degree of that respective node, denoted as deg(vi). Each node has QIDs as
well as SI. For the sake of simplicity, we mark SI with bold fonts in Figure 1. The structure
of δ can be denoted as δ = {A, S}, where A = {a1 = name, a2 = gender, a3 = age}, and
S = {income}. The G can be directed, undirected, weighted, labeled, unlabeled, etc.,
depending upon the scenario [2].

Figure 1. Overview of SN data (friends network) modeling/representation with G.

In recent years, the distribution of G with researchers/data miners has become a
routine matter to find insights from G about people [3]. The sharing and analysis of G
have a wide range of benefits for people. For example, better service/product recommen-
dations by community-based clustering [4], information diffusion to targeted users [5],
appropriate friend recommendations [6], point of interest recommendations [7], traffic
incidents analysis [8], influence spreading [9], and route recommendations [10], to name a
few. The usage of SN offers users many other benefits such as increasing their reputation,
influencing others, recieving brand offers, receiving support, and connecting with a huge
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community [11] . However, the flip side of using OSN analysis or mining is the loss of
privacy and the inherent consequences of this. Therefore, SNs’ service providers and users
are still struggling to find a proper balance of social benefits as well as the potential privacy
risks [12]. With the rapid digitization, both the scale and scope of OSN privacy breaches are
expanding, impacting millions of users with either the loss of data or dignity. OSNs’ service
providers are constantly integrating privacy-protection tools and upgrading the existing
privacy settings to combat privacy issues. In this paper, we focus on privacy violations in
G, and therefore, we discuss most concepts concerning G analysis, mining, and sharing.

There are two famous and state-of-the-art approaches for privacy preservation in G
publishing, named naïve and structural anonymization [13]. In the former category, only the
structure of G is published by removing all attributes of nodes and edges (see Figure 2a). In
contrast, the latter category modifies the structure of G to preserve privacy (see Figure 2b).
In Figure 2b, five new edges have been introduced to anonymize G.

Figure 2. Overview of SN data anonymization by using original G given in Figure 1.

Researchers have noticed that naïve anonymization may not be sufficient to provide
strong resilience against privacy breaches [14]. In contrast, structural anonymization
provides a relatively higher defense against privacy breaches by modifying graph structures.
In Figure 2, five new edges have been introduced to change the structure of G for privacy
preservation. Recently, many solutions have been proposed to preserve the privacy of SN
users in G publishing [15–21]. These solutions have been used to preserve either nodes’ or
edges’ privacy in the release of G. Recently, differential privacy-based solutions have also
been proposed to alter the G’s structure for privacy preservation [22]. Despite the success
of these solutions, privacy issues can stem in multiple formats, and robust solutions are
needed to overcome all types of privacy issues.

The existing surveys related to G publishing cover many important aspects such as
graph anonymization/de-anonymization techniques [23], graph anonymization operations
[24], brief taxonomies of privacy models [25], anonymity frameworks for graph data [26],
privacy/utility evaluating metrics employed by the anonymization mechanisms [27,28],
random G modeling [29], and data mining from G [30]. Although we fully affirm the
contributions of these surveys, these studies have the following five research gaps: (i) most
surveys provided very limited knowledge about most aspects concerning OSN privacy,
especially privacy-preserving G publishing and critical information that needs privacy
preservation in G; (ii) the critical and experimental details of most studies have not been
reported thoroughly; (iii) the discussion/analysis of privacy preservation in application-
specific scenarios of OSNs has not been investigated in detail; (iv) the high-level taxonomy
of privacy-preserving approaches (i.e., common + AI) used in publishing G for data mining
and analytical purposes has not been provided; (v) the significance of artificial intelligence
(AI) techniques in the context of graph publishing as well jeopardizing user’s privacy has
not been comprehensively highlighted. Table 1 presents a detailed comparison of this
review paper with existing SOTA surveys and review papers. Many current surveys either
present a single type of anonymization or lack basic examples/knowledge that an early
researcher needs to gain access to or understand this domain. Furthermore, the role of AI
in the privacy of OSNs has not been thoroughly explained. This review article resolves the
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aforementioned limitations of the existing reviews and provides sufficient knowledge of
privacy (or privacy disclosures) in OSNs from a broader perspective.

Table 1. Overview and comparisons of existing surveys with our review paper.

Ref.
Coverage of Anonymization Methods Coverage of de-aAnonymization Methods Privacy in Multiple Scenario (s) of OSNs

Experimental Details
MM CM PAGCM DPM AIM HM Common AI Common AI

Du et al. [3] × × × X × × × × × × ◦
Alemany et al. [11] X × × × X × × × ◦ × X

Shejy et al. [12] ◦ ◦ ◦ ◦ ◦ ◦ X X X × ×
Majeed et al. [13] X X ◦ ◦ × × X × ◦ × ×
Avinash et al. [17] ◦ ◦ × × × × X × × × X

Ji et al. [23] X × × ◦ × X X × X × ◦
Casas et al. [24] X X × × × × X × ◦ × ◦
Zhou et al. [25] X X × × × × X × ◦ × ×
Wu et al. [26] X X × × × × × × × × ×

Praveena et al. [27] X × × X × × X × × × ◦
Joshi et al. [28] X X ◦ × × × X × X × ◦

Droby et al. [29] X X X ◦ X ◦ X ◦ X × ×
Injadat et al. [30] X X × × X × X ◦ × ◦ ×

This review paper X X X X X X X X X X X

Abbreviations: MM (modification methods), CM (clustering methods), PACGM (privacy-aware graph computing
methods), DPM (differential privacy-based methods), AIM (artificial intelligence-based methods), HM (hybrid
methods). Key: X⇒ available/reported and ×⇒ not available/not reported, ◦ → partially covered.

The major contributions of this article to OSNs’ privacy are summarized as follows.

• It presents a comprehensive analysis and the findings of the state-of-the-art (SOTA)
solutions that have been proposed to address privacy issues in OSNs;

• It provides a high-level taxonomy of common as well as AI-based privacy-preserving
approaches that have proposed as ways to combat the privacy issues in PPGP along
with recent studies in each category;

• It discusses many practical solutions that have been proposed for privacy preservation
in application-specific scenarios (e.g., information diffusion, community clustering,
influence analysis, friend recommendation, etc.) of OSNs that remained unexplored
in the recent literature;

• We discuss various generic and AI-based de-anonymization techniques that have been
developed to infer SI from the anonymized graph (a.k.a. the de-anonymization of G);

• Technical challenges of preserving privacy in OSNs in recent times and promising
opportunities for future research are discussed in detail;

• The novelty of our work is to provide a systematic analysis of SOTA methods focusing
on OSNs from two aspects (e.g., defense→ anonymity and attack→ de-anonymity),
identify novel application scenario(s) of OSNs and corresponding privacy-preserving
approaches, analyze the role of AI in privacy preservation of OSNs (or privacy
breaches), identify major users’ privacy challenges that OSNs’ service providers
are facing or can likely face in the coming years, and list potential research avenues
for researchers. Lastly, this work makes a timely contribution towards responsible
data science (https://redasci.org/ accessed on 2 May 2022) amid rapid technical
advancements in OSNs services/sites in recent years.

The rest of this article is organized as follows. Section 2 presents detailed background
of privacy concepts in OSNs. Section 3 discusses the taxonomy of privacy-preserving graph
publishing (PPGP) approaches and SOTA developments in each category. Section 4 presents
major developments regarding privacy preservation in application-specific scenarios of
SNs. Section 5 highlights the major developments in de-anonymization of G. Section 6
discusses the challenges to the privacy protection of G. Section 7 lists various research
directions that are vital to combat privacy issues in OSNs. Section 8 discusses the limitations
of this review. Finally, we conclude this paper in Section 9. Figure 3 presents the high-level
structure of this review article.

https://redasci.org/
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Figure 3. Comprehensive overview of the structure of this review paper.

2. Background

In this section, we provide a detailed analysis of threats to the validity of this review
article and comprehensive background concerning OSNs privacy. In the next subsection,
we state the search strings and databases that have been explored to find the related work
for this review article.

2.1. Threats to Validity

For this review article, we included the SOTA studies that (1) deal with the privacy
preservation of OSN data, (2) target privacy preservation in application-specific scenarios
of OSNs, (3) discuss the significance of AI techniques in privacy protection/disclosure in
OSNs, (4) deal with jeopardizing OSNs’ users’ privacy by either linking, statistical match-
ing, or background knowledge attacks, and (5) discuss the performance evaluation in terms
of privacy, utility, or computational complexity. We have used multiple phrases and combi-
nations of strings such as ‘privacy preservation in OSNs’ and ‘social graph publishing and
anonymization’ to extract the peer-reviewed articles from journals, renowned conference
proceedings, recently published book chapters, and technical reports. We have mainly
targeted eight databases, namely, IEEE Xplore, ScienceDirect, SpringerLink, Scopus, ACM
Digital Library, MDPI, Hindawi, and Web of Science. We took advantage of the Google
Scholar search engine for forward and backward searches. We have focused on papers that
have been highly cited by recent studies and are highly technical with improved results.
In total, 3500 documents were retrieved, and 1700 duplicated studies were removed. The
titles and the abstracts’ contents were carefully screened to identify potential papers. The
full texts of the 1780 studies were assessed to find the highly relevant papers to be included
in this review. We have excluded the articles that discussed (1) a defense solution other
than anonymization, privacy preservation of stored OSNs data, and content-based privacy
attacks in OSNs, (2) cyber attacks (e.g., denial of service) on OSN data, (3) threats to OSNs’
security and privacy breaches in interactions. With a backward and forward search, 16
more closely related studies were retrieved. In total, 291 studies were finally selected for
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data extraction purposes. Figure 4 depicts the process of the SOTA article selection for this
paper that was adopted from the previous SOTA reviews [31,32]. The findings of previous
surveys and review articles were also used in addition to these included papers to provide
distinctive features and a comprehensive performance evaluation.

Figure 4. Flow diagram demonstrating the SOTA article selection process for this systematic review.

2.2. Classification in the Scope of Privacy

The nature of privacy is highly subjective, meaning its perception varies from person
to person. In simple words, privacy is all about hiding SI from the prying eyes [33]. The
scope of privacy mainly falls into four categories [34], as demonstrated in Figure 5. This
work belongs to the first category, which is about handling (i.e., aggregation, storage,
analysis, anonymization, distribution, etc.) person-specific data.

Figure 5. Classification of the scope of privacy.

Person-specific data can be modeled in a variety of styles such as tables, graphs,
matrices, traces, logs, images, multimedia, and hybrid [35]. However, we consider personal
data represented in a graph form G, where G = (V, E, δ), in our work.

2.3. Operation Utility of Social Graphs

The publishing of G is vital for many analytical and data-mining purposes. The
operational utility, OU, offered by G can be one of the three cases listed in Equation (1):
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OU(l1/l2/l3) =


l1, Exposure of G structure only

l2, Exposure of profiles of nodes

l3, Exposure of both l1 and l2

(1)

In the first case/level, the SN service provides the release of only the structure of
G, and all profile information is usually hidden. In the second case, the structure of G is
hidden, but profile information is shared with a researcher. In the last level, both the G
structure and the δ of V is shared for analytical purposes [36].

2.4. Key Privacy Issues That Can Occur in Publishing G with Analysts

As stated earlier, publishing G is vital for many purposes, but it can introduce multiple
privacy issues. We summarize the five key privacy issues occurring in G publishing in
Figure 6.

Figure 6. Five famous and practical privacy threats that can occur in publishing G with researchers.

2.5. Anonymization Operation That Can Be Applied to G

Many techniques, such as anonymization, masking, encryption, obfuscation, water-
marking, zero knowledge proofs, and pseudonymization, are employed to preserve users’
privacy in G. Due to conceptual simplicity, anonymization techniques have been widely
used to preserve users’ privacy [37,38]. Various anonymity operations are performed in
order to provide sufficient resilience against contemporary privacy issues. Table 2 presents
the concise description of anonymization operations that are applied to G for privacy
protection. The strength/weakness and complexity of each operation vary depending upon
the size and nature of G.

Table 2. Summary of anonymization operations that can be applied to G for privacy preservation.

Anonymity Operation Brief Description Examples

G modification This operation modifies the structure of G by adding/removing vertices or edges. k-degree anonymity
G generalization This operation clusters the nodes and edges of G into super nodes/edges. Node grouping
G Obfuscation This operation adds noise in the form of fake edges/edges to preserve privacy. Node-level DP
G computation This operation computes properties from G, and releases them to analysts. Degree, size

G Hybrid Operation More than one anonymity operation are jointly used to perturb G. k-degree clustered G

2.6. Important Aspects of Privacy Preservation in OSN Data

OSNs contain a treasure of information, and sufficient care is needed to preserve the
privacy of most parts of that data [39]. In Figure 7, we present the different types of data
collected/processed in SN and the pieces of information that require privacy preservation
in publishing G. As shown in Figure 7a, there are three main types of data: identity, social,
and content in SNs. All these types need privacy preservation from prying eyes. For
example, if a rare user of an SN has a just one friend, and the respective friend is known
to be an HIV doctor, in this case, the SI of the SN user can be inferred (e.g., he/she might
have contracted an HIV disease) [40]. Similarly, profession information can lead to income
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disclosures. In G, anonymization methods need to preserve most parts of the SI shown
in Figure 7b. SN data need more care regarding privacy preservation because most data
can be available to the adversaries as background knowledge (BK) [41,42].

Figure 7. Different types of SN data and pieces of information concerning privacy in social graphs.

In Figure 8, we summarize important BK that can be within the adversaries’ access,
and which can lead to privacy breaches. Apart from the BK and other auxiliary types
of data, a new risk known as interdependent privacy risk (IPR) has become one of the
major privacy threats in SNs in recent times [43–45]. Furthermore, inference attacks [46],
ML-based attacks [47], privacy leakage in health SNs [48], profile cloning [49], profile
matching [50], community-based threats [51], cross-SN user matching [52], and privacy
concerns in different OSN services (e.g., recommendation systems [53], query evaluations
[54], and sentiment analyses [55]) have made privacy preservation in OSNs an active area
of research.

Figure 8. Types of BK employed by the adversaries to jeopardize users’ privacy in a released G.

2.7. Role of Artificial Intelligence in the Domain of OSNs

Recently, AI has been extensively used in the information privacy domain for multiple
purposes. It has been used to safeguard the personal data from prying eyes as well as for
de-anonymizing large G-encompassing data of a substantial number of users [56–58]. We
summarize the role of AI from three different perspectives as follows:

1. AI as a protection tool: AI can be used to preserve the privacy of SN data;
2. AI as an attack tool: AI can be used to compromise a user’s privacy from SN data;
3. AI as protection of target: Privacy concepts can be used to secure AI systems.

Recently, many graph-type–specific, attack-specific, domain-specific, application-
specific, and AI-powered anonymization techniques have been developed. In the rest
of this paper, we summarize the major developments concerning G privacy.
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3. Overview of Privacy-Preserving Graph Publishing (PPGP) and Taxonomy of PPGP
Approaches Used for Online Social Networks

In this section, we discuss the life cycle of PPGP, the basic concepts of G anonymization,
and the taxonomy of PPGP approaches. We arrange and discuss the concepts in three
different subsections. In the next subsection, we discuss the life cycle of PPGP.

3.1. Overview of the Life Cycle of Ppgp

The typical PPGP process contains six steps. A concise description of all the steps is
given below. In Step A, appropriate data are collected from relevant users. Examples of
data collection are account-opening procedures in an SN website, or a check-up from a
diagnostic center. In both of these scenarios, some basic information (i.e., QIDs) as well
as SI is obtained. In this research, we assume that G has already been collected by the SN
service providers (a.k.a. data owners). In Step B, the collected G data are stored in safe
repositories/databases for further analysis. Storage can be in graph form (e.g., SN data)
or tabular form (e.g., hospital/bank data) depending upon the nature of the data. Due to
the recent advancements in technology, storage capacity has become significantly large,
and fine-grained data can now be stored for utilization in multiple contexts. In Step C,
pre-processing is applied to the collected G. During this step, the G is cleaned (outliers
and isolated nodes are removed, and redundant nodes/edges are removed). In Step D,
the cleaned G from Step C are anonymized. During data anonymization, the structure of
the original G is modified to preserve privacy, leaving the anonymized G, which is useful
for analysis. The anonymization can be performed in multiple ways (e.g., DP methods,
constrained methods, etc.) In Step E, the anonymized G is published for SN analysis and
data-mining purposes. In the final step, analytics techniques are applied to the published
G in order to extract useful information from it. The extracted information can be used for
hypothesis generation/verification or for policy making.

A conceptual overview of the anonymization techniques applied to raw data given in
a raw G form for PPDP is demonstrated in Figure 9. As shown in Figure 9, both privacy
risks and graph utility are higher at the beginning. Anonymization is applied to G to strike
a balance between utility and privacy [59]. The anonymization approaches usually modify
the structure of the G in such a way that both privacy and utility are preserved. In the next
subsection, we present a conceptual overview of anonymizing G along with an example.

Figure 9. Overview of the anonymization process applied to G for PPDP.

3.2. The Basic Concepts of G Anonymization

Basically, the anonymization approaches change the structure of G into a new graph,
G
′
. The size (# of nodes and edges) of G

′
can/cannot be the same as that of G. Hereafter,

we refer to G as an original graph, and to G6 as an anonymized graph. In Figure 10, we
demonstrate an overview of the G anonymization with examples. The G

′
given in Figure

10 satisfies the k-degree anonymity, where k = 2 because each node has at least two edges.
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Thus far, many graph anonymization approaches have been developed for sharing G
′

with
the researchers/analysts [60–62]. In the next subsection, we present a taxonomy of graph
anonymization approaches and the major developments in each category.

Figure 10. Overview of the G anonymization by adding edges and nodes and edges for PPGP.

In the next subsection, we present a high-level taxonomy of anonymization approaches
that have been proposed to foster graph data publishing, and discuss the SOTA approaches
in each category.

3.3. High-Level Taxonomy of PPGP Approaches

There exist plenty of graph anonymization approaches in the literature. In Figure 11,
we present a detailed taxonomy of PPGP approaches. The taxonomy presented in this
paper is more detailed and complete than existing surveys. The rest of this subsection
summarizes the major developments in terms of the SOTA approaches in each category.

Figure 11. High-level taxonomy of the anonymization techniques applied to G for PPGP.

3.3.1. Graph Modification Methods

The graph modification methods modify the G’s structure by deleting/adding nodes
or edges to protect the privacy of users (see Figure 10). In addition to the add/delete
operations, in some cases, the positions of vertices or edges are switched or re-organized
to preserve users’ privacy. The graph modification methods are classified into two types:
unconstrained and constrained. In the former type, the structure of G is modified without
strict criteria. Moreover, the later type stops anonymity when some condition/criteria is
being met (e.g., all nodes have achieved the same degree). Both types have been extensively
studied in the literature for SN users’ privacy preservation. We demonstrate an example of
unconstrained (a.k.a. random) anonymization adopted from [63] in Figure 12. In Figure 12b,
two edges have been removed (i.e., ([v4, v5], [v2, v3])) while two new edges have been added
(i.e., ([v8, v9], [v6, v7])) to produce G

′
. In contrast, G

′
, shown in Figure 12c, was obtained
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by the random edge switch method. In this example, two edges have been switched
as: {(v1, v2) → (v1, v2), (v4, v5) → (v2, v5)}. As shown in Figure 12, there is no specific
constraint/condition to be met while converting G → G

′
.

Figure 12. Example of G anonymization by the unconstrained (a.k.a. random) anonymization method.

The constrained anonymization methods usually follow the same strategy as uncon-
strained (a.k.a. random) anonymization, but the strength of nodes/edges is bounded by
some constraints (e.g., degree, node counts, the number of edges to be switched/modified,
etc.). We present an example of constrained anonymization adopted from [63] in Figure 13.
The G

′
shown in Figure 13b is two-degree anonymous (i.e., k = 2). The degree sequence

was changed from deg(G) = {2, 4, 2, 1, 3, 2, 2, 2, 2} → deg(G
′
){2, 3, 2, 2, 3, 2, 2, 2, 2} by the

edge modification/switching method. In this particular example, the constraint was related
to the number of edges in the network. The G

′
shown in Figure 13c is also two-degree

anonymous, and it was obtained by applying the new edges and vertex addition. Two new
edges ((v4, v10), (v5, v10)), and one node (i.e., v10) were included to convert G into G

′
. In

Figure 13c, the modification of G was bounded to the number of both edges and vertices.
The degree sequence of each node is as deg(G

′
= {2, 4, 2, 2, 4, 2, 2, 2, 2, 2}). In constrained

anonymization, the anonymization process stops on the completion of constraints related
to closeness, degree, and/or clustering co-efficient, etc.

Figure 13. Example of G anonymization by the constrained anonymization method.

There are six main modification techniques that can be applied to anonymize SN data
stored in a G form, as shown in Figure 14. The selection of modification techniques usually
depends on the graph type (e.g., simple, bipartite, labeled, and uncertain graphs.) and
objective of the PPGP.

Figure 14. Overview of graph modification methods. (adopted from [64]).
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We summarize and compare the SOTA G modification-based anonymity techniques
in Table 3. In Table 3, we compared the existing approaches in terms of assertion(s), study
nature, type of datasets on which experiments were performed, and anonymity type. The
reason to perform an evaluation based on these metrics is to provide basic as well as
experimental analyses that can help researchers to grasp the research status conveniently.
Furthermore, these analyses can help researchers to make a rational decision towards
conducting high-level research. For example, performance evaluation on a real dataset and
writing technical papers are handy takeaways from the below analysis, as most previous
studies have been evaluated on real datasets and their nature is technical.

Table 3. Summary and comparison of state-of-the-art graph modification-based techniques.

Ref. Nature of Study Key Assertion (s) Experimental Analysis G Anonymity Type Datasets Used

Wang et al. [65] Technical Defence against identity disclosure X Constrained R
Casas et al. [66] Technical Better utility of large-scale G X Constrained R
Ma et al. [67] Technical Defence against identity disclosure X Constrained R
Roma et al. [68] Technical Defence for identity and link disclosures X Constrained R
Hamideh et al. [69] Technical Fewer modifications while converting G→ G

′
X Constrained R,S

Mauw et al. [70] Technical Strong defense against identity disclosure X Constrained R,S
Yuan et al. [71] Conceptual Maintains stability of G’s structure. X(limited) Constrained S
Majeed et al. [72] Technical Protection of sensitive labels of users X Constrained R
Gangarde et al. [73] Technical Protection of nodes, edges, and attributes X Constrained R
Srivatsan et al. [74] Technical Lower information loss while changing G→ G

′
X Constrained R

Nettleton et al. [75] Technical Strong privacy protection in G
′

X Constrained R
Ying et al. [76] Theoretical Discussion of various privacy attacks in G

′
× Unconstrained -

Kiabod et al. [77] Technical Improve utility of G
′

for analysts/data miners X Unconstrained R
Masoumzadeh et al. [78] Technical Control distortion while changing G→ G

′
X Unconstrained R

Ren et al. [79] Technical Protection against three privacy attacks in G
′

X Unconstrained R
Ninggal et al. [80] Technical Significantly improves the utility of anonymized graph X Unconstrained R
Zhang et al. [81] Technical Controls re-identification of users from G

′
X Unconstrained R,S

Xiang et al. [82] Technical Controls privacy issues in dynamic scenarios of G analysis X Unconstrained R
Zhang et al. [83] Theoretical Heuristic analysis-based privacy protection in G

′
X Unconstrained -

Kavianpour et al. [84] Technical Privacy protection in interactions between user and third parties X Unconstrained R
Lan et al. [85] Technical Effective resolution of privacy utility in G anonymization X Unconstrained R
Hamzehzadeh et al. [86] Technical Fewer changes in structure of G during anonymization X Unconstrained R

Key: X⇒ available/reported and ×⇒ not available/not reported, R⇒ real, S⇒ synthetic, and -⇒ not used.

The G modification techniques have been extensively studied in the recent literature.
In addition to the analysis presented in Table 3, we refer interested readers to previous
surveys for more detailed analyses of the vertex/edge modification techniques [87–90].

3.3.2. Graph Generalization/Clustering Methods

The generalization/clustering-based G anonymization methods perturb the graph
structure by partitioning it into different clusters/groups, and anonymity is applied sub-
sequently [91]. The core anonymization concepts of these methods closely resembles the
syntactic methods (i.e., k-anonymity, `-diversity, and t-closeness) of tabular data in terms of
classes/cluster formation and the generalization of nodes/edges. However, the size of clus-
ters and the degree of generalization is measured in such a way that maximal information is
preserved in G

′
for legitimate information consumers. In Figure 15, we present an example

of G’s anonymization using graph generalization/clustering methods. In this example, a
network G with seven nodes is given as input (see Figure 15a), where each node contains
the gender and age information of each user. Afterwards, user are arranged into three clus-
ters based on similarity in gender and age information as follows: C1 = {(62, F), (32, F)},
C2 = {(47, F), (46, M), (42, F)}, and C3 = {(21, M), (29, M)}. Later, all three clusters are
generalized to super nodes, as shown in Figure 15b. The two numbers in each super node
denotes the number of nodes and intra-cluster edges, respectively. The largest cluster is C2,
with three nodes and two intra-cluster edges. Due to the superior results in both utility and
privacy, generalization/clustering-based G anonymization methods have been extensively
investigated in the recent literature.
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Figure 15. Overview of graph generalization/clustering methods.

We summarize and compare the famous generalization/clustering-based G anonymiza-
tion techniques in Table 4.

Table 4. Summary and comparison of state-of-the-art graph clustering-based techniques.

Ref. Nature of Study Key Assertion (s) Experimental Analysis G Anonymity Type Datasets Used

Siddula et al. [92] Technical Privacy protection of nodes, edges, and attributes X Clustering R
Li et al. [93] Technical Prevention of inference attacks in SN data X Clustering R
Gangarde et al. [94] Technical Strong defense against users’ identities revelation in OSNs X Clustering R
Karimi et al. [95] Technical Privacy preservation of multiple SAs in G publishing X Clustering R
Jethava et al. [96] Technical Strong defense against Sybil attack detection attacks in SN data X Clustering R
Li et al. [97] Technical Strong defense against social identity linkage problem across SNs X Clustering R, S
Kiranmayi et al. [98] Technical Strong defense against attribute couplet attacks via factor analysis X Clustering R
Kaveri et al. [99] Conceptual Privacy and utility preservation in SN data anonymization × Clustering R
Langari et al. [100] Technical Defence against identity, attribute, link, and similarity attacks X Clustering R
Guo et al. [101] Technical Privacy and utility preservation in stream data handling X Clustering R
Sarah et al. [102] Conceptual Better utility preservation in G

′
by extracting maximum clique X Clustering R, S

Shakeel et al. [103] Technical Protection of identity disclosures in SN data publishing X Clustering R
Poulin et al. [104] Technical Protection of privacy and information loss in anonymizing G X Clustering S
Ghate et al. [105] Conceptual Protection of privacy by restricting more changes in G X(limited) Clustering S
Sihag et al. [106] Conceptual Controls heavier changes in the structure of G during anonymity X(limited) Clustering R
Yu et al. [107] Technical Strong defense against identity disclosure by injecting false targets X Clustering R
Ros et al. [108] Technical Strong defense against identity disclosure in large-scale graphs X Clustering R
Yazdanjue et al. [109] Technical Improves runtime of G anonymization by greedy approaches X Clustering R
Tian et al. [110] Technical Ensure strong privacy in crawling and mining SN graph data X Clustering R

Key: X⇒ available/reported and ×⇒ not available/not reported., R⇒ real and S⇒ synthetic

In addition to the analysis given in Table 4, further information about clustering-based
anonymization can be gained from previous surveys centering solely on these techniques
[111–113]. Recently, clustering-based anonymization methods have gained popularity from
multiple perspectives [114].

3.3.3. Privacy-Aware Graph Computing Methods

Privacy-aware graph computing methods do not perturb the structure of G; instead,
they compute interesting characteristics that can be helpful from multiple perspectives.
These methods share the analysis of the computation rather than the whole G. The privacy-
aware graph computing methods extract useful statistics from G in such a way that the
privacy of users is preserved while computed statistics remain applicable for SN anal-
ysis and mining purposes [115]. The useful analysis provided by privacy-aware graph
computing methods are: G density, count of edges, relationships degree, distributions of
degrees, size of the G, closeness, centralities, average similarity/distance between users,
the number of subgraphs, top k-users with higher connections, clustering coefficients, path
length, the number of communities, hypergraphs, the number of users with d degree,
where d can be any real number, tie strength among people, trust/influence of people in G,
communication/interactions, etc. We highlight an example of degree computation from G
in Figure 16. The G shown in Figure 16 has the degree counts as follows: deg(G) = {v1 =
1, v2 = 3, v3 = 1, v4 = 1, v5 = 2, v6 = 5, v7 = 3, v8 = 3, v9 = 2, v10 = 1}. The distribution of
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degrees can be determined using the following formula: Pdeg(degree value). For instance,
the fraction of nodes for degree 1 can be computed as: Pdeg(1) = 2

5 , as shown in Figure 16.
Only graph statistics (i.e., degree) are published, thereby preserving users’ privacy. The
degree information gives important information concerning G’s structure.

Figure 16. Overview of degree computation from G by privacy-aware graph computing methods.

Instead of degree distributions, many such statistics (i.e., subgraphs [116]) can be
computed from G. In Figure 17, we present an example of triangle computations from
G. Aside from triangles, the start can also be computed for finding influential people in
SNs. These statistics can be used for information diffusion/contagion purposes, market-
ing, collaborative filtering, opinion/preference mining and analysis, and epidemiological
investigations.

Figure 17. Overview of triangle computations from G by privacy-aware graph computing methods.

The key findings of the latest SOTA privacy-aware graph computing methods are
summarized as follows. Shun et al. [117] developed a simple, fast, and in-memory parallel
triangles computing algorithm for large-scale SN data. The proposed method requires
fewer parameter tunings and is scalable. Yang et al. [118] developed a linear-algebra-
based platform for computing multiple statistics from G on GPU platforms. Mazlumi et al.
[119] explored the possibility of using SN analysis concepts in the IoT domain regarding
path length optimization, critical nodes identification, and advancing IoT applications.
Specifically, the authors used SN concepts in the IoT domain for improving multiple aspects
of the IoT domain. Behera et al. [120] developed a large clique finding (and missing cliques
finding) method from SN graphs. The proposed method has a number of applications such
as community detection, pattern recognition, and clustering in SN analysis. Sahraoui et
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al. [121] applied the SN concepts in the early prevention of the COVID-19 pandemic by
detecting contacts in real time. The proposed method detects the communities of people that
have likely been exposed to COVID-19 in an analogous way to community detection in SN
via analyzing online relationships. Rezvani et al. [122] devised a new and very fast method
for detecting communities in SN by using the k-triangle computing method. Laeuchli
et al. [123] developed a centrality measurement method in large-scale G. The proposed
method has abilities to compute three types of centralities, such as Laplacian, eigenvector,
and closeness centralities, from G. A new and low-cost subgraph counting method based
on fuzzy set theory for SN data was developed by Hou et al. [124]. Nunez et al. [125]
developed a privacy-aware frequent sequential patterns mining method from large-scale
G with applications to recommender systems. Further information about privacy-aware
graph computing methods can be obtained from the book chapters and reviews in [126,127].
Recently, this category of G privacy has been religiously investigated due to the rapid
developments in AI methods and tools.

3.3.4. Differential Privacy-Based Graph Anonymization Methods

Differential privacy (DP) has become a central part of the privacy domain, and it has
been extensively investigated in the graph data publishing field [128,129]. DP, in the SN
data privacy context, can be defined in simple words as follows. Let us say a query function
f is to be evaluated on a graph G. We want to have a privacy-preserving algorithm A running on G
and returning A(G) as an output/answer, and A(G) should be f (G) with a minimal amount of
noise added. Hence, the goal of DP is to make A(G) ≈ f (G) in order to preserve data utility, and at
the same time have A(G) protect all entities’ privacy in G. The DP concept has been widely used
in SN for multiple purposes, such as computing statistics from G, answering analyst queries
by perturbing the output (see Figure 18), and privacy preservation in application-specific
scenarios (i.e., recommendations, community clustering, etc.).

Figure 18. Overview of query output perturbation in DP model.

As shown in Figure 18, DP can be achieved by injecting an appropriate amount of
noise to the query answer, that is, A(G) = f (G) + Z, where Z is the noise. Adding too
much Z may damage data utility, while adding too little Z may yield an insufficient privacy
guarantee. Therefore, deciding the appropriate value of Z that can strike the balance well
between privacy and utility is a very challenging task. Sensitivity, which denotes the largest
change to the query answers caused by deleting/adding any node/edge in the G, is a key
parameter to find the magnitude of added Z.
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In the DP model, any anonymity algorithm, =, satisfies the ε-DP property if for all
pairs of neighbors S ⊆ Range(=) and for all G1, G2 such that d(G1, G2) = 1 (e.g., G1 differs
from the G2 by just one node):

Pr(=(G1) ∈ S)
Pr(=(G2) ∈ S)

≤ exp(ε) (2)

where ε represents the privacy loss budget, and the ε value is usually higher than 0 (i.e.,
ε > 0).

If ε = 0, full protection can be guaranteed at the expense of utility. Determining an
appropriate value for ε is very challenging. DP has been extensively used in different
settings for fulfilling the expectation of data owners. Furthermore, it has been extended in
multiple ways. Its new variants, such as (ε,δ)-DP, offer a better trade-off between utility
and privacy. DP can be used to compute important statistics from G that can be handy in
performing analytics (see Figure 19).

Figure 19. Overview of important statistics determined by DP model from G.

There are two types of DP models: local and global [130]. In the former type, noise is
added to the personal data before sharing it with the curator, and the server is assumed
to be untrustworthy. In the latter type, the original G is curated at some central place (i.e.,
the server is assumed to be trustworthy), and noise is added at the time of G’s release to
the analysts/parties. In Figure 20, we present both settings of the DP model in real-world
settings.

Figure 20. Overview of two famous settings of the DP model.

We summarize and compare the famous DP-based G anonymization techniques in
Table 5.
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Table 5. Summary and comparison of state-of-the-art DP-based G anonymity techniques.

Ref. Nature of Study Key Assertion (s) Experimental Analysis DP Anonymity Type Datasets Used

Gao et al. [131] Technical Better utility in G
′

under same privacy level X Node-level R
Gao et al. [132] Technical Reduction in noise scale while anonymizing G X Node-level R,S
Gao et al. [133] Technical Protection of important structures of G X(limited) Node-level R
Gao et al. [134] Technical Preserves G’s structure using dK-1, dK-2, and dK-3 X Node-level R
Zhang et al. [135] Technical Privacy preservation of degree sequence in G

′
X Node-level R

Zheng et al. [136] Technical Privacy preservation at G collection time in IoTs X Node-level R
Fang et al. [137] Technical Construction of a synthetic G

′
which is close to G X Node-level S

Yin et al. [138] Technical Graph data publishing with controlled utility loss X Node-level R
Huang et al. [139] Technical Solves privacy–utility trade-off in converting G→ G

′
X Node-level R

Macwan et al. [140] Technical Protection of degree distributions in answering queries X Node-level R
Zhu et al. [141] Technical Strong privacy in G

′
by perturbing edges and nodes X Node-level R

Huang et al.[142] Conceptual Privacy preservation by generating synthetic G X Node-level S
Macwan et al. [143] Theoretical Privacy guarantees of G with anonymity and node DP × Node-level -
Macwan et al. [144] Technical Preserving higher utility in G

′
for mining purposes X Node-level R

Liu et al. [145] Technical Preservation of G structural properties without privacy loss X Node-level R
Iftikhar et al. [146] Technical Reduction in noise to achieve ε-DP for better utility in G

′
X Node-level R

Li et al. [147] Technical Privacy preservation of edge weights in G
′

X Edge-level R
Guan et al. [148] Technical Privacy preservation of link disclosure in G

′
X Edge-level R

Wang et al. [149] Technical Privacy preservation of links’ attributes in G
′

X Edge-level R
Yang et al. [150] Technical Privacy preservation of degrees of links in G

′
X Edge-level R

Wang et al. [151] Technical Privacy protection in G
′

by injecting noise in probability model only X Edge-level R
Wang et al. [152] Technical Preserving topological structure of G

′
for better utility X Edge-level R

Lv et al. [153] Technical Preserving privacy of users by modifying edge structure in G
′

X Edge-level R
Wang et al. [154] Technical Preserving privacy of users by dividing G into subgraphs X Edge-level S
Lei et al. [155] Technical Preserving privacy of sensitive edge weights using DP model X Edge-level R
Reuben et al. [156] Conceptual Stresses the need of edges’ privacy preservation in G

′
X Edge-level -

Yan et al. [157] Technical Better utility and privacy preservation in SN data X Hybrid R
Yan et al. [158] Technical Reduces information loss in G anonymity without sacrificing privacy X Hybrid R
Qian et al. [159] Technical Privacy preservation of social links between users via ε-DP model X Hybrid R
Qiuyang et al. [160] Technical Privacy preservation based on sub-graph reconstruction and local DP model X Hybrid R
Qu et al. [161] Technical Privacy preservation in dynamically evolving G data with better utility X Hybrid R
Iftikhar et al. [162] Technical Privacy protection in DP-based computations for releasing G’s distributions X Hybrid R

Key: X⇒ available/reported and ×⇒ not available/not reported, R⇒ real, S⇒ synthetic, and -⇒ not used.

Due to the rigorous privacy guarantees, DP has been widely used with diverse data
formats (i.e., tables, graphs, images, texts, matrices, etc.). Detailed information about the DP
model in the context of SNs can be learned from DP-specific surveys [163–165]. Recently,
DP has been extensively used with emerging technologies, such as federated learning, to
preserve privacy [166]. Furthermore, DP has been used to preserve the privacy of patients’
COVID-19 data [167]. In the coming years, the synergy and applications of DP are expected
to increase drastically.

3.3.5. Artificial Intelligence-Based Graph Anonymization Methods

AI has revolutionized almost every discipline with automated decision-making abili-
ties. In the privacy field, AI-based techniques have been widely used to either safeguard or
compromise privacy. Recently, AI has been increasingly used in graph data anonymization
[110]. Liu et al. [168] presented the link between machine learning and OSN privacy. The
authors highlighted the significance of ML in the privacy domain, and vice versa. In Figure
21, we demonstrate the role of AI in OSNs’ privacy.
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Figure 21. AI role in the privacy (or de-anonymization) of OSNs.

As shown in Figure 21, AI and privacy can complement each other in three different
ways. The first category is out of the scope of this paper and is about securing AI systems
themselves by using either anonymization or DP-based techniques. This area of research
(i.e., securing AI systems) is capturing researchers’ interest drastically [169]. The second
category is about employing AI methods to safeguard users’ privacy in publishing G

′

[68]. As shown in Figure 21, AI techniques (i.e., machine and deep learning) can assist
in preserving OSN users’ privacy in multiple ways. The last category is about the dark
sides of AI techniques in the information privacy domain. In this category, the adversary
takes advantage of the AI techniques in order to predict/infer the private information of
individuals from G

′
[170–172]. In recent years, the synergy between AI and OSNs’ privacy

has been extensively investigated in the literature [173]. We summarize and compare the
famous AI-based G anonymization techniques used for PPGP in Table 6.
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Table 6. Summary and comparison of state-of-the-art AI-based G anonymity techniques.

Ref. Nature of Study Key Assertion (s) Experimental Analysis AI technique Used Datasets Used

Bilogrevic et al. [174] Conceptual Predicts the level of detail for each sharing decision in OSNs X Logistic Regression S
Caliskan et al. [175] Technical Predicts the SI in a G using ML and suggests how to safeguard it X NB, SVM, RF S
Yin et al. [176] Technical Strikes a balance between privacy and utility in distributing G

′
X k-means algorithm R

Wang et al. [177] Technical Privacy preservation of degree information in releasing G
′

X k-means algorithm R
Ju et al. [178] Technical Strong privacy of V in G

′
along with higher accuracy and utility X k-means algorithm R

Zheng et al. [179] Technical Strong privacy of V in G
′

and fewer changes to G’s structure X GNN algorithm R
Paul et al. [180] Technical Preserves the structural properties of G in anonymization process X k-means algorithm R
Hoang et al. [181] Technical Preserves the privacy of SN users modelled via knowledge of G X k-ad algorithm R
Hoang et al. [182] Technical Preserves the privacy of SN users when G is subject to multiple releases X CTKGA algorithm R
Chen et al. [183] Technical Privacy preservation of SN users when G contains outliers and categorical attributes X DBSCAN clustering R
Narula et al. [184] Technical Privacy preservation of identity and emotion-related information in OSN data X CNN algorithm R
Zitouni et al. [185] Technical Privacy preservation by concealing the identity in image data X CNN and LSTM R
Ahmed et al. [186] Technical Privacy preservation by concealing the identity and other SI in images X Neural Network R
Matheswaran et al. [187] Technical Privacy preservation of image data in retrieval and storage in clouds X Watermarking R
Li et al. [188] Technical Both anonymity- and utility-preserving solutions for OSN data X GAN Algorithm R
Lu et al. [189] Technical Privacy preservation by reducing the prediction accuracy of sensitive links in G X VGAE and ARVGA R
Li et al. [190] Technical Privacy preservation using profile, graph structure, and behavioral information X GCNN algorithm R
Wanda et al. [191] Technical Privacy preservation of vulnerable nodes in G using dynamic deep learning X CNN architecture R
Li et al. [192] Technical Privacy preservation of users when a user’s job/education-place changes with time X Supervised ML R
Bioglio et al. [193] Technical Privacy preservation of contents in OSN platforms based on sensitivity analysis X Deep NN R
Hermansson et al. [194] Technical Preserves better accuracy for data-mining and analytical tasks from G

′
X SVM algorithm R

Kalunge et al. [195] Technical Preserves better utility (path length and IL) for data-mining-realted tasks from G
′

X SVM algorithm R,S
Zhang et al. [196] Technical Strong privacy preservation of users against text-based user-linkage attack X SVM algorithm R
Halimi et al. [197] Technical Strong privacy preservation by identifying the vulnerable users profiles from G X PCA algorithm R
Kumar et al. [198] Technical Strong privacy preservation of graph structure without degrading utility of G X PageRank algorithm R
Kumar et al. [199] Technical Strong privacy preservation while showing better utility in three data-mining tasks X PPRA algorithm R
Li et al. [200] Technical Strong privacy preservation of communities in G with better usability of G

′
X Pregel model R

Chavhan et al. [201] Technical Strong privacy preservation in G
′

by identifying initial cluster centers X DST algorithm R
Wang et al. [202] Technical Strong privacy preservation in G

′
by dropping the nodes with sparse edges X Kruskal & Prim S

Kansara et al. [203] Theoretical Strong privacy preservation in G
′

by using non-cryptographic techniques × Multiple algorithms -
Ma et al. [204] Technical Strong privacy preservation of user’s location while executing queries on G X KNN algorithm R
Zhang et al. [205] Technical Minimization of privacy disclosures in G

′
and influence maximization X Bayesian Network R

Mauw et al. [206] Technical Strong privacy preservation in G
′

in the presence of sybil nodes X K-MATCH algorithm R
Maag et al. [207] Technical Strong privacy preservation against multiple attacks in publishing G

′
X EDA algorithm R

Gao et al. [208] Technical Solves multi-objective optimization problem in anonymizing G
′

by rewiring edges X GAN model R

Key: X⇒ available/reported and ×⇒ not available/not reported, R⇒ real, S⇒ synthetic, and -⇒ not used.

The AI-based approaches have improved various critical aspects of OSN data anonymiza-
tion. In the coming years, AI will be a central element in privacy-preservation solutions of
most data styles because AI-based techniques are more robust than traditional anonymiza-
tion solutions. Further details about AI’s role in privacy domains can be learned from the
previous surveys in [209–211]. AI-based methods are improving traditional G anonymity
methods from multiple perspectives. Although AI has brought a huge revolution in the
privacy domain as a defense tool, the computing complexity (CC) of some models can
be very high. Shaukat et al. [212] described the CC of many famous machine learning
algorithms. In general, the time complexity of any AI model depends on the nature of the
data, the input size (e.g., n), the number of iterations/steps (e.g., k), and the parameters
(e.g., N). For example, the complexity of simple decision tree is O(mn2) for tabular data,
where n denotes the number of tuples, and m denotes the number of columns. In contrast,
the time complexity of a deep belief network (BBN) is O((n + N)k), where n is the number
of records, k denotes the iterations, and N is the number of parameters.

3.3.6. Hybrid Graph Anonymization Methods

Hybrid G anonymization methods employ more than one anonymity operation/method
while converting G into G

′
. For example, graph modification and clustering methods can

be jointly applied to anonymize OSN data enclosed in a G form. Many SOTA hybrid G
anonymization methods have been proposed to anonymize OSN data with a better balance
of privacy and utility. Liu et al. [213] presented a hybrid anonymization algorithm (e.g.,
k-anonymity and randomization) for OSN data. The proposed algorithm employs the
k-anonymous concept to hide the SI in natural groups/classes of OSN data and uses a
randomization approach to process the residual data. The proposed algorithm is more
stable and changes the G less than the k-degree anonymity and randomization algorithms.
Later, k-anonymity and randomization were jointly used to lower the structural changes in
the anonymization of G [214]. Mortazavi et al. [215] used both k-anonymity and `-diversity
concepts to anonymize OSN data. The proposed method optimizes the privacy–utility
trade-off in PPGP and is more computationally efficient than previous algorithms. Liao
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et al. [216] used both k-degree anonymity and a genetic algorithm in order to anonymize
OSN data enclosed in a G form for recommendation purposes. A hybrid algorithm based
on fuzzing SI and converting user’s association into an uncertain form was given by Wang
et al. [217]. Specifically, the authors define a new attack model in a G and propose an
algorithm and safety parameter to safeguard against such attacks.

Qu et al. [218] proposed a hybrid method for a location as well as identity privacy
preservation by using a game-based Markov decision process. A new framework that
optimizes the utility of G

′
by employing multiple anonymization techniques was given

by Wang et al. [219]. A generic and hybrid anonymization method that guarantees users’
privacy and utility in OSN data was proposed by Mortazavi et al. [220]. Similarly, a low-
cost G anonymization method based on k-degree anonymity and contractions (i.e., inverse
operation, vertex cloning, connectivity, etc.) was proposed by Talmon et al. [221]. A contact
G-based approach to anonymize OSN data was proposed by An et al. [222]. The proposed
method uses a k-anonymity-based method and contact graphs with location patterns to
anonymize G. Although hybrid methods yield better performances in most cases, their
complexity is relatively higher than the individual methods. Furthermore, applying the
hybrid anonymization method can severely degrade either privacy or utility in some cases.
Hence, more efforts are needed to improve the technical aspects of the hybrid anonymity
method as well as to determine the correct application scenarios for them.

In summary, all anonymization methods developed for G have their own merits
and demerits. For example, graph modification methods expose the G’s structure, which
can be helpful to analyze the G for recommendation and marketing purposes. In contrast,
clustering methods provide better privacy but suppress the G’s structure, which may hinder
knowledge discovery in G

′
from all perspectives. Privacy-aware G computing methods

ensure the strong privacy of users without degrading the utility. The DP-based methods
ensure better privacy even if most parts of G are already exposed to the adversaries.
However, utility is the main concern of DP-based anonymization methods. AI-based
methods are good at striking the balance between utility and privacy. However, pre-mature
convergence and deciding optimal values for hyperparameters are the main challenges
in AI-based anonymity methods. Hybrid anonymization methods are computationally
expensive and may lead to the redundant usage of some techniques. In the current literature,
clustering, DP, and AI-based methods are more popular than others. In the coming years,
most studies and enhancements are expected in clustering, DP, and AI-based methods.
Furthermore, some recent studies have hinted that hybrid anonymization methods are
more useful in safeguarding users’ privacy in dynamic settings (e.g., federated learning,
collaborative learning, etc.). We compare the methods based on various factors in Table 7.
Furthermore, we rate the approaches based on their protection level and future research
potential. This analysis can pave the way for choosing the right privacy solutions as well as
for exploring the research possibilities of these methods.

Table 7. Comparison of anonymization methods (a.k.a. privacy-preserving solutions) used in OSNs.

Ref. Privacy and Utility Results Status Future Research Potentials Rating in Discipline (OSNs)
Privacy Utility

Modification methods Acceptable High Medium 3
Clustering methods High Acceptable High 3

PAGC methods High Low High 4
DP-based methods High Low Very High 4
AI-based methods High Acceptable Very High 4
Hybrid methods High High Very High 5

Abbreviations: PAC (Privacy-aware graph computing); Rating criteria: 5: very high and 1: very low.

4. Major Developments in Privacy Preservation in Application-Specific Scenarios
of OSNs

With the passage of time, the services of OSNs are expanding in both scale and
scope. For example, OSNs enable the formation of communities of like-minded people
where people can interact and share their activities/events [223]. OSNs enable information
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sharing at a much faster pace than any other medium by identifying and delivering
information to influential people [224]. They enable friend recommendations by analyzing
the demographic, spatial, and interest similarities among users in a seamless manner
[225]. Moreover, OSNs enable topic modeling and event detection (i.e., earthquakes,
pandemics, floods, etc.) [226]. In the coming years, OSNs are likely to play a key role in
assisting mankind in multiple ways. We refer to these services (i.e., community detection,
information spread/control, friend recommendations, topic modeling, events detection,
etc.) of OSNs as application-specific scenarios of OSNs. We demonstrate an overview of the
community detection from G in Figure 22 before presenting privacy-preserving solutions
in different application-specific scenarios of OSNs.

Figure 22. Overview of community detection, (a) G with nine nodes, and (b) G with three communties.

In Table 8, we summarize and compare the SOTA anonymization techniques proposed
for privacy preservation in application-specific scenarios of OSNs.

Table 8. SOTA techniques proposed for privacy preservation in OSNs’ application-specific scenarios.

Ref. Nature of Study Key Assertion (s) Experimental Analysis Application Scenario Datasets Used

Zheng et al. [227] Technical Privacy protection of sensitive link information in OSNs X Community detection R
Wang et al. [228] Technical Controls privacy leakage to the application server using ZKPs X Friend recommendations R
Li et al. [229] Technical A secure plugin for privacy preservation of bystanders in OSNs X Content sharing R
Yi et al. [230] Technical Privacy protection of profiles in OSNs using multiple servers and encryptions X Profile matching R
Wei et al. [231] Technical Privacy protection of social content using ε-LDP approach X Topic recommendations R
Valliyammai et al. [232] Technical Privacy protection of sensitive topics by detecting sensitive content X Diffusion of sensitive topics R
Casas et al. [233] Technical Privacy protection and utility enhancements of users’ data in OSNs X Analytics and mining of G R
Gao et al. [234] Technical Privacy protection in partitioning and mining G for analytical purposes X Subgraph mining from G R
Li et al. [235] Technical Privacy protection of online communities in sensitive content sharing X Content recommendation R
Mazeh et al. [236] Technical Privacy protection of online activity data and purchase histories X Recommender systems R
Yargic et al. [237] Technical Privacy protection of users’ sensitive preferences in OSN environments X Collaborative filtering R
Bahri et al. [238] Theoretical Privacy protection of users when OSN data is located in multiple locations × Decentralized services -
Dong et al. [239] Technical Social proximity analysis with privacy guarantees identification of potential friends in OSNs X Friend discovery S
Liu et al. [240] Technical Analyzes the risk of community privacy and suggests ways to hide them in OSNs X Hiding community structure S
Guo et al. [241] Technical Quantifies the influence of users based on attributes with privacy preservation in OSNs X Influence estimation R
Yin et al. [242] Technical Privacy preservation in OSNs by analyzing the relationship between pairs of users X Social relationship R,S
Kukkala et al. [243] Technical Designs a privacy-preservation protocol based on secure multi-party computation for OSNs X Influential spreaders S
Yuan et al. [244] Technical Designs a privacy-preservation method for OSNs with restricted changes in the structure of G X Node relationships R
Gao et al. [245] Technical Privacy preservation in OSN data by minimally removing edges/nodes from the original G X Data publishing R
Zheng et al. [246] Technical Privacy preservation in OSNs by controlling higher distortion in G through DP method X Mining and analytics R
Ferrari et al. [247] Technical Privacy preservation in OSN data by clustering and anonymizing people in G X Pattern extraction R
Aljably et al. [248] Technical Privacy preservation of the user information from OSNs utilizing restricted LDP X Anomaly detection R
Liang et al. [249] Technical Privacy preservation of the user action in OSNs via suboptimal estimator X Users action privacy R
Shan et al. [250] Technical Privacy preservation based on user’s privacy preferences in OSN environments X Personalized privacy R
Stokes et al. [251] Technical Incidence geometries and clique complexes based privacy preservation of OSN data X Statistical analysis R
Wen et al. [252] Technical Privacy preservation of OSN data by identifying and hiding the vulnerable nodes in G X Recommendation systems R

Key: X⇒ available/reported and ×⇒ not available/not reported, R⇒ real, S⇒ synthetic, and -⇒ not used

Apart from the famous application-specific scenarios of OSNs listed in Table 8, OSN
privacy preservation has been improved by many of the latest techniques, such as federated
learning [253]. Therefore, application-specific scenarios of OSNs will be expanded further
in the coming years. Furthermore, in some cases, application scenarios of OSNs were
used to protect the privacy of OSN users. For example, Rajabzadeh et al. [254] used
the community detection concept in a k-degree-based anonymization method in order to
preserve the privacy of OSN users (as shown in Figure 23). The proposed method can
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safeguard users’ privacy without degrading the utility of G
′
. Bourahla et al. [255] discussed

the method of privacy preservation in dynamic scenarios (i.e., sequential publishing) of
OSNs. Further information concerning OSN privacy in application-specific scenarios can be
learned from previous studies [256,257]. Lastly, privacy preservation in application-specific
scenarios of the OSNs is expected to become an emerging avenue of research in the coming
years.

Figure 23. Overview of G anonymization using community detection concept.

5. Major Developments in De-Anonymization of OSNs

The research in OSN privacy is continued in two tracks: defense and attack. The
former is concerned with privacy protection from adversaries (a.k.a. anonymization) and
the latter is concerned with breaching privacy (a.k.a. de-anonymization). Recently, a
substantial number of de-anonymization approaches have been proposed to compromise
the privacy of OSN users. The basic goal of the de-anonymization approaches is to re-
identify the people uniquely from G

′
even though a strong anonymization is performed.

The de-anonymization is usually performed by exploiting the weaknesses of the anonymity
methods, linking G

′
and auxiliary graphs, and/or background knowledge available to

adversary. In Figure 24, we demonstrate an example of how de-anonymity is performed on
G
′
. As shown in Figure 24d, adversaries can exploit the structural information between

two graphs, and can infer the identity/SI of OSN users.
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Figure 24. Overview of G de-anonymization using auxiliary graph (adopted from [258]).

Recently, many de-anonymization methods have been proposed, and some methods
have accuracies of over 80% in correctly identifying nodes from G

′
[259]. Recently, due

to rapid developments in digitization, the availability of personal information on various
OSNs is rising rapidly, leading to a variety of privacy problems [260–265]. These develop-
ments indicate the eve-increasing interest of researchers in de-anonymization rather than
anonymization. In Table 9, we summarize the findings of various SOTA de-anonymization
approaches proposed for OSNs.

Table 9. SOTA de-anonymization approaches proposed for breaching users’ privacy in OSNs.

Ref. Nature of Study Key Assertion (s) Privacy Attack Items Exploited Datasets Used

Ji et al. [266] Technical Privacy disclosure by exploiting attribute and G
′

structure Identity disclosure User’s attributes R
Li et al. [267] Technical DNN is adopted to learn features for node matching from G

′
Identity disclosure Structure of G

′
R

Jiang et al. [268] Technical Privacy disclosure through structure and attribute similarity Identity disclosure Node properties R
Sun et al. [269] Technical Privacy disclosure through spectrum-partitioning method Identity disclosure Subgraphs of G

′
S

Qu et al. [270] Technical FBI-based method to extract identities of real-world users Identity disclosure Profile, G
′

structure, & friendship R
Qu et al. [271] Technical RCM-based user matching across OSNs using similarities of concepts Identity disclosure Salient features R
Desai et al. [272] Technical Semantic knowledge-based private users’ information disclosure SI disclosure Background knowledge R
Hirschprung et al. [273] Technical Identification of people through music preference data Identity disclosure Music interests R
Mao et al. [274] Technical Identification of people by thoroughly analyzing the structure of G

′
SI disclosure Structure of G

′
R

Qian et al. [275] Technical Identification of sensitive data by linking G
′

& knowledge graphs SI disclosure Structure of G
′

R
Li et al. [276] Technical NHDS-based method for revealing sensitive data of the users of OSNs SI disclosure G

′
structure and profiles R

Feng et al. [277] Technical Link privacy breaches in OSNs using three types of similarity metrics Link prediction Structure of G
′

R
Gulyás et al. [278] Technical Correct re-identification of a large number of nodes using similarity function Re-identify nodes Auxiliary graphs R
Horawala et al. [279] Technical Correct re-identification of a large number of nodes using ML techniques Re-identify nodes Node attributes R
Wu et al. [280] Technical Matching a large number of users via overlapped communities concepts Re-identify nodes Overlapping Communities R
Zhou et al. [281] Technical Identify multiple accounts of a same person in different OSNs Identity linkage Social interactions R
Chen et al. [282] Technical Identify a user by analyzing the social content (i.e., text and images) Linking users’ identities Social contents R
Halimi et al. [283] Technical Identify a user’s profiles with high probability using ML User’s profiles Auxiliary data R
Tang et al. [284] Technical Matching users to extract SI in different G using embedding vectors Link prediction Neighbors’ information R
Zhou et al. [285] Technical Correctly linking same users across OSNs using graph neural network Identity linkage Node distribution R
Chen et al. [286] Technical Correctly linking the identity of user using semi-supervised method Identity linkage Semantic features R
Wang et al. [287] Technical Correctly links a profile of users across multiple OSN platforms Profile linkage Duplicate profiles R

Key: R⇒ real, S⇒ synthetic, and -⇒ not used

This topic (i.e., graph de-anonymization) has become a mainstream research area
in OSN privacy in recent times. Many approaches have been proposed in order to infer
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identity, SI, membership, and degree information by linking G
′

and graph data available at
external sources. Recently, the use of AI techniques have advanced the de-anonymization
area, and many approaches have been proposed for cross-OSN users matching, content-
based identity linkage, link prediction, and social connection information disclosure, to
name a few. We refer interested readers to learn more about de-anonymizibility from
previous surveys focusing solely on privacy attacks in OSNs [288–290]. In the coming years,
more developments are expected in the graph de-anonymization area amid the rapid rise
in auxiliary information as well as the maturity of AI tools.

6. Challenges of Preserving Privacy in Online Social Networks

The privacy preservation of OSNs is relatively more challenging than the tabular data
due to the existence of more information in G data [291]. As stated above, OSN privacy
can be compromised in various ways, and therefore, privacy preservation in OSN data is
highly challenging. In Figure 25, we present a high-level overview of challenges in OSN
privacy preservation.

Figure 25. High-level overview of challenges in OSN privacy preservation.

In Figure 25, we classified the challenges into four categories (i.e., flexible anonymity
methods, privacy preservation from AI-powered attacks, incorporating privacy preferences
in the design of anonymity methods, and accurately quantifying the privacy and utility
levels in G

′
). Apart from these challenges, devising evaluation metrics for G data, evading

the power of data mining tools, and resisting the linking of multiple Gs are also very
challenging. These challenges can be addressed by devising innovative technologies in the
future.

7. Promising Future Research Directions

Researchers are constantly devising new privacy-enhancing techniques for OSNs
because the scale and scope of the privacy threats are expanding due to the higher adoption
of OSNs across the globe. Privacy preservation of OSNs is more challenging compared
to hospitals/banks because a lot of personal data (e.g., user profiles) has already been
exposed to adversaries. There are a variety of research tracks in OSNs, for example, privacy
preservation in publishing G, de-anonymization of G

′
, metrics for measuring privacy and

utility in PPGP, privacy preservation in mining and crawling users’ data from OSNs’ sites,
and privacy preservation using AI tools/methods, to name a few. In the coming years,
more practical and robust techniques will be developed in each track cited above. In Figure
26, we list promising avenues for future research based on the extensive analysis of the
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published literature, the developed anonymization tools, the challenges in OSNs privacy,
and dedicated surveys. We believe that the list of research opportunities listed in Figure 26
offers a starting point for early researchers in the OSN privacy area. Furthermore, these
research gaps require further investigation/research from the research community amid
the rapid rise in OSN privacy breaches.

Figure 26. List of promising opportunities for future research in the area of OSN privacy preservation.

The development of privacy-preserving approaches that can incorporate the prefer-
ences (e.g., users can decide which item among their attributes is most sensitive and thereby
needs stronger privacy, or users can specify how their data should be processed in OSN
environments) of users is an important avenue for future research. The development of
anonymization methods that can be tuned easily based on the type of graph is an active
area of research. Devising privacy-preserving solutions that can ensure defense against
well-known and executable privacy attacks (e.g., background, linking, minimality attacks,
etc.) is a vibrant area of research. Recently, to optimize privacy guarantees, many AI-
based techniques have been integrated with traditional anonymization methods. Therefore,
exploring the opportunities of AI techniques in terms of privacy preservation in OSNs
is an active area of research. The development of anonymization methods that require
fewer parameters and that can be used in resource-constrained environments (e.g., cell
phones, gadgets, etc.) is another important research direction. The development of hybrid
privacy-preserving solutions (e.g., combining different techniques) that can overcome each
other’s weaknesses is a vibrant area of research. Developing new metrics that can tech-
nically measure the privacy strength from multiple perspectives (i.e., active and passive
adversary, across domains, etc.) is an important and active area of research. Developing
privacy solutions that can be used in multiple scenarios for privacy protection in OSNs is
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another potential research direction. Devising methods that can quantify the privacy loss
while mining/crawling OSNs data is a prominent area of research. In addition, devising
robust de-anonymization methods is a handy direction for the future as it can accelerate
development from defense perspectives. Optimizing privacy utility is a longstanding
research problem in the privacy domain, and requires technical solutions from the research
community. Lastly, developing strong privacy-enhancing techniques to provide resilience
against AI-powered attacks/tools is a very hot research area in recent times.

Apart from the research opportunities cited above, exploring the role of the federated
learning paradigm in the OSN privacy area is also expected to be a vibrant area of research
in the coming years [292]. Recently, a relatively new risk to the individual’s privacy,
named interdependent privacy (i.e., co-location and location information), is emerging
[293,294]. Therefore, advanced privacy-preserving methods are imperative to addressing
this emerging risk [295]. Recently, synthetic data-generation methods are also posing a
threat to OSN users’ privacy by creating data similar to real data [296,297]. Therefore,
many privacy-preserving approaches are needed to provide resilience against these threats.
Additionally, some anonymization methods that are proposed for other data styles (e.g.,
tabular, traces, sets, matrices, etc.) can be adopted to preserve the privacy of OSN users in
the PPGP. Finally, devising practical methods that can restrict user identity linkages across
OSNs is also one of the hot research topics for future endeavours.

8. Limitations of This Review Article

Although this review is more systematic, comprehensive, and insightful than previous
reviews, certain limitations exist concerning the number of studies and the coverage domain.
For example, we could not find many studies that ensured the anonymity of multimedia
data (i.e., images or text written over images) in OSNs, which is one of the hot research
topics in recent times. In addition, we could not present any analysis or categorization
based on the types of social graphs because the anonymization methods proposed for
one type of graph cannot be directly applied to another type of graph (e.g., let us say the
PPGP approaches proposed for the directed graph cannot be straightforwardly used for
the undirected graph, and vice versa). In addition, this paper does not include studies
that have adopted the OSN concept for other services. For example, OSNs’ data modeling
concepts have been widely used in the COVID-19 arena for infection-spread modeling
and analysis. In addition, many OSN concepts have been used for clinical data processing,
modeling, and knowledge derivation. Furthermore, we could find some studies that can
be simultaneously applied to multiple (i.e., friend recommendations and fried discovery,
information spread and contagion, etc.) service scenario(s) in OSNs. This article did not
highlight the AI methods in detail (e.g., workflow, parameters, time and space complexity,
convergence rates, etc.) but rather focus on AI use in OSNs’ privacy preservation (or
breaches). Lastly, we mainly focused on recent studies, and we did not consider a span
(e.g., the last 5 years, or the last decade) while searching for the studies. However, these
limitations do not significantly undermine the quality of this review and can be investigated
in future reviews.

9. Conclusions and Future Work

In this paper, we have presented a systematic review of SOTA and recent anonymiza-
tion techniques that have proposed ways to combat privacy issues in OSNs. Specifically, we
have classified the privacy dilemma into two categories: privacy preservation in publishing
G and privacy preservation in application-specific scenarios of OSNs. We have presented
an extended (i.e., common approaches + AI approaches) taxonomy of anonymization
approaches concerning graph data publishing. Moreover, we have presented various repre-
sentative techniques that are being developed to address privacy issues in the application-
specific scenarios (i.e., community clustering, topic modeling, information diffusion, friend
recommendations, etc.) of OSNs. We also described various methods that are used to infer
identity or private information from published G. Lastly, we discussed various challenges
related to OSN privacy and suggested promising opportunities for future research. Through
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an extensive analysis of the literature, we found that the privacy preservation of OSNs is a
very trendy topic among other data styles (e.g., tabular, set, logs, etc.). Many developments
are stemming from both anonymization and de-anonymization perspectives. In the coming
years, privacy preservation in OSNs will be more challenging, as OSNs are being adopted
by an increasingly large number of people across the world. Furthermore, our reliance on
OSNs is also increasing over time, leading to the exposure of more fine-grained data on
OSNs sites. In this article, we highlighted the latest SOTA developments concerning the
privacy of OSN users. To the best of our knowledge, this is the first work that discusses
OSN privacy from a broader perspective, including AI approaches, in the OSN domain.
The detailed analysis presented in this article can pave the way for grasping the status of the
latest research as well as for developing secure privacy-preserving methods to safeguard
OSN users’ privacy from prying eyes. Most importantly, our work aligns with the recent
trends toward responsible data science (i.e., preventing misuse of personal data). In the
future, we intend to explore the role of the latest technologies, such as federated learning,
in preserving users’ privacy in OSNs. We intend to explore privacy and utility metrics that
can be used to quantify the level of privacy and utility offered by anonymization methods
in PPGP. Lastly, we intend to explore the role of AI in the privacy domain in heterogeneous
data formats (e.g., tables, graphs, matrix, logs, traces, sets, etc.), and multiple computing
paradigms such as OSNs, cloud computing, location-based systems, Internet of Things,
recommender systems, telemedicine, and AI-based services.
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