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Abstract: In cognitive radio networks, wireless nodes adapt to the surrounding radio environment
and utilize the spectrum of licensed users. The cognitive radio environment is dynamic, and wireless
channels are accessible by both legitimate and illegitimate users. Therefore, maintaining the security
of cognitive radio networks is a challenging task, which must be addressed thoroughly. Further,
with the recent exponential surge in wireless nodes and associated high data rate requirements,
energy consumption is also growing at an unprecedented rate. Hence, energy efficiency becomes an
important metric that must be considered in the design of future wireless networks. Accordingly,
by considering the great ecological and economic benefits of green wireless networks, this work
focus on energy-efficient resource allocation in secure cognitive radio networks. Since physical-layer
security is an emerging technique that improves the security of communication devices, in this paper,
an ergodic secure energy efficiency problem for a cognitive radio network is formulated with a
primary user, a secondary user, and an eavesdropper. As the formulated problem is non-convex, a
concave lower bound is applied to transform the original non-convex problem into a convex one.
Further, by adopting the fractional programming and dual decomposition techniques, optimal power
allocation strategies are obtained with the aim of maximizing the ergodic secure energy efficiency of
the secondary user with constraints on the average interference power and average transmit power.
Numerical examples are used to demonstrate the effectiveness of the proposed algorithm.

Keywords: ergodic secure energy efficiency; green cognitive radio; physical-layer security; power
allocation; optimization

1. Introduction

Cognitive radio is a promising technique that utilizes unused spectrum bands and
improves the network’s spectral efficiency (SE). Apart from spectral efficiency, energy effi-
ciency (EE) is another important design criterion that should be considered for future green
wireless networks [1]. The unprecedented increase of mobile devices and the escalating
high data rate requirements have contributed to the sharp growth of energy consumption
and greenhouse gas emission. It is reported that 2% to 10% of the global energy con-
sumption and 2% of the greenhouse gas are generated by information and communication
technologies [2]. Accordingly, green cognitive radio is an attractive technology that can
improve both the spectral efficiency and energy efficiency of a wireless network simulta-
neously. In such a green cognitive radio spectrum-sharing system, a secondary user (SU)
coexists with the primary user (PU) and transmits information in the same spectrum bands
of the PU in an energy-efficient way on the condition that the interference caused to the PU
by the SU is tolerable within specific margins [3].

However, due to the dynamic nature of a cognitive radio environment, security is
also an important issue that has been attracting growing attention [4]. There may exist
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malicious users that may (i) illegitimately access the PU bands or change the radio envi-
ronment, resulting in the inability of the legitimate SU to use PU bands, or (ii) intercept
confidential information transmitted by the legitimate SU. Traditionally, cryptographic
techniques through data encryption at the application layer have been applied to guarantee
that confidential information is reliably transmitted. However, cryptographic techniques
have significant implementation complexity, which significantly increases the overhead
of networks and decreases the efficiency of the communication system [5]. This high
implementation complexity consumes too much energy, which contradicts the vision of
green communication. In this regard, security at the physical layer can improve the secu-
rity of green cognitive radio, which is based on the physical-layer characteristics of the
wireless channels and, hence, has reduced the implementation complexity. Recently, work
on physical-layer security in cognitive radio has made considerable progress. In [6], the
authors provide an information-theoretic perspective of the physical-layer security of a
secondary user in a multiple-input single-output cognitive radio channel. Next, in [7], the
authors show that the secrecy capacity (SC) of the secondary user is limited by the channel
state information (CSI). In order to overcome this limit, multiple-input multiple-output
techniques and cooperative relaying techniques have been exploited. For example, in [8],
the authors study the achievable rates of the multi-antenna or multiple-input multiple-
output secrecy channel with multiple single/multi-antenna eavesdroppers and show that
the maximum achievable secrecy rate is obtained by maximizing the minimum difference
between the channel mutual information of the secrecy user and those of the eavesdrop-
pers. Similarly, ref. [9] studies the secure multiple-antenna transmission over slow fading
channels and maximizes the secrecy throughput by designing beamforming and power allo-
cation between the information signal and the artificial noise of the SU. The authors in [10]
investigate the physical-layer security of cognitive radio transmissions in the presence of
multiple eavesdroppers and proposes the multi-user scheduling scheme with the primary
quality of service (QoS) constraint. However, in this work, the authors did not consider
user fairness in the multi-user scheduling for improving the cognitive radio security against
eavesdropping attacks. Further, in [11], the authors derive the secrecy outage probability
and study the diversity performance of a multi-user multi-eavesdropper cognitive radio
system in the presence of coordinated and uncoordinated eavesdroppers with a primary
QoS constraint. However, here, the authors study the physical-layer security of cogni-
tive transmissions by ignoring the security of the primary network. Some other works
include [12], where the authors examine secure ergodic resource allocation problems in
an orthogonal frequency division multiple-access-based relay-assisted underlay cognitive
radio network in the presence of passive eavesdroppers where the objective is to maximize
the secrecy rate, and [13], where the authors analyze multi-objective resource allocation for
secure communication in cognitive radio. In the latter, the trade-off among total transmit
power, energy harvesting efficiency, and interference power was reported, while it was
shown that the secrecy could be significantly improved by using multi-input multi-output
techniques or cooperative relaying techniques.

In addition to the security requirements, energy efficiency is also a vital issue in cogni-
tive radio networks because of the high energy requirement of modern wireless networks,
which has both economic and ecological implications. The following discussion elaborates
on a few pieces of literature that study energy efficiency in cognitive radio networks. The
authors in [14] proposed an energy-efficient joint pilot and data power allocation scheme
with a max–min fair energy efficiency guarantee in an uplink massive multiple-input
multiple-output cognitive radio network. In [15], an energy-efficient resource allocation
scheme for orthogonal frequency division multiple-access-based cognitive radio networks
is proposed under the constraints of the system power budget, primary users’ interference,
secondary users’ rate requirements, fairness, and channel uncertainty. A fast power alloca-
tion algorithm and an efficient heuristic sub-channel allocation algorithm are given that
yield a good trade-off between energy efficiency and computational complexity. Similarly,
ref. [16] investigated energy-efficient transmissions for multiple-input multiple-output
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cognitive radio networks and optimized the time allocations and beamforming vectors
to minimize the energy consumption of the SU, and [17] studied the cooperative sens-
ing scheduling by considering both sensing performance and energy efficiency under a
practical scenario where both PU channels and SUs have heterogeneous characteristics.
Next, the energy-efficient resource allocation in an orthogonal frequency division multiple-
access-based cognitive radio network is investigated in [18] under the constraints of the
transmission power budget of the cognitive radio system, interference threshold of primary
users, and traffic demands of secondary users, and a fast barrier method is developed to
speed up the computation of the Newton step, while [19] studies the energy efficiency
of cognitive relay networks, where a cognitive capacity harvesting network architecture
was proposed, and a spectrum- and energy-efficient relay station placement strategy was
developed. In [20], the authors study the energy-efficient resource allocation in hetero-
geneous cognitive radio networks with femtocells. The resource allocation problem is
formulated as a three-stage Stackelberg game, and an iteration algorithm is given to obtain
the Stackelberg equilibrium solution for the energy-efficient resource allocation. However,
the authors only considered perfect channel state information scenarios in this work and
did not consider uncertainties in the channel parameters. Similarly, in [21], the authors
designed sensing-access strategies to maximize the energy efficiency of multi-channel cogni-
tive radio networks using sequential channel sensing. The design problem is formulated as
a stochastic sequential decision-making problem and was solved by dynamic programming.
In [22], the authors studied the energy efficiency of full-duplex cognitive radio. Using
discrete-time embedded Markov-chain modeling, the effect of the frequency of sensing is
analyzed on the energy efficiency, throughput, and probability of collision for a target false
alarm and miss detection levels. By using sleeping times in the sensing mechanism, the
system performance was analyzed in different average power consumption distributions
for the transmitting and sensing operations of the cognitive device. The performance of
full-duplex cognitive radio was compared with a conventional half-duplex cognitive radio,
and the results verified that even under poor channel conditions, the full-duplex cognitive
radio can achieve a higher level of energy efficiency without compromising its throughput.
Finally, in [23], the authors proposed an energy-efficient power allocation scheme by taking
into consideration the various types of probabilities associated with the sensing process
as performance parameters. Based on these probabilities, the authors proposed a new
method to utilize PU carriers. The trade-off between the sensing quality and the achiev-
able sum rate while using PU sub-carriers was used for allocating the optimal transmit
power. Regarding the energy efficiency issue in traditional secure wireless communication
networks [24–28], there are many challenges for energy efficiency maximization in secure
green cognitive radio networks. In particular, in a secure green cognitive radio, the inter-
ference by the SU to the PU must be considered while maintaining the quality of service
at the PU. Recently, energy-efficient secure communication in cognitive radio networks
has been investigated in several research articles. In [29], the authors studied a secure
energy efficiency maximization problem for a guaranteed minimum secrecy capacity of
an SU under a peak interference power constraint and an average/peak transmit power
constraint. In [30], the authors obtained the maximum secrecy energy efficiency of an
underlay cognitive relay network in the presence of an eavesdropper over a multi-antenna
relay. Similarly, in [31], the authors investigated a secure energy efficiency optimization
problem in a multiple-input single-output underlay cognitive radio network in the presence
of an unauthorized energy harvesting energy receiver. However, these works consider only
the perfect channel state information scenario. To our best knowledge, the secure energy
efficiency maximization problem has not been studied in secure cognitive radio from the
perspective of green communications.

In this paper, unlike the above-mentioned works, an ergodic secure energy efficiency
maximization problem is considered for a secure cognitive radio network, where the SU
and PU coexist in the presence of an eavesdropper and fading channel, subject to the
average interference power constraint identified as the metric for protecting the quality of
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service of the PU and the average transmit power constraint that limits the SU transmit
power. An iterative algorithm is proposed to find the optimal power allocation policy for
the designed framework based on dual-decomposition.

The remainder of the paper is organized as follows. Section 2 presents the system
model. The ergodic secure energy efficiency maximization problem subject to the AIP
and ATP constraints is presented in Section 3. Section 4 presents a model extension for
robust power allocation. Section 5 presents the simulation results. Section 6 gives the
concluding remarks.

2. System Model

In this section, we first expatiate the network model, followed by the transmission
model. Lastly, we describe power constraints necessary for secondary user transmission
and to protect the primary user from interference generated by the secondary user.

2.1. Network Model

Figure 1 shows an underlay cognitive radio model, which consists of a single PU and
SU pair. The SU opportunistically accesses the spectrum unused by the PU if and only if the
engendered interference is not traded off with the performance of the PU. There is a passive
eavesdropper (ED) in the wire-tap link. The secure green cognitive radio system operates
on a spectrum sharing program, where the SU-Tx intends to send a confidential message to
the SU-Rx on the same narrow-band as the PU-Tx. At the same time, the eavesdropper tries
to eavesdrop and intercept the information sent by the SU-Tx. The passive eavesdropper
attempts to intercept the SU’s information without modifying it or misleading the SU,
and also, the SU does not receive any feedback or trust any feedback from the passive
eavesdropper. All the terminals have one antenna.

All the links between the SU-Tx and PU-Rx (interference link), Su-Tx-SU-Rx (SU-
link), and SU-Tx and ED-Rx (ED-link) are block faded with independent and identically
distributed (i.i.d) channel power gains with continuous probability density functions.
The block fading additive white Gaussian noise channels are the general class of block-
interference channels as described in [32]. It happens that, in several wireless communica-
tion conditions, variations in the propagation environment take place on a very slow time
scale with respect to the signaling rate. The channel coefficient stays constant during each
transmission block, but probably changes from one block to a new block [33]. Blocks can
be assumed as separated either in time (e.g., in a time division multiple access system as
in [34]), as separated in frequency (e.g., in a multi-carrier system as in [35]), or as separated
both in frequency and time (e.g., in a slow frequency–time hopping system as in [36].

This paper considers a point-to-point flat fading channel. A wireless channel is thought
to be flat fading if its gain is constant and it has a linear phase response over a bandwidth
that is greater than the bandwidth of the transmitted signal [37]. The flat fading channel
can cause a decrease in the signal-to-noise ratio (SNR) [38]. The flat fading channels are also
known as amplitude-varying channels or narrow-band channels as the signal is narrow
with respect to the channel bandwidth [39]. This channel model is also well fitted to the
case of a multi-carrier system with B parallel sub-channels, possibly located at non-adjacent
carrier frequencies [40].

It is assumed that the interference at the SU-Rx and the eavesdropper from the PU-Tx
are circularly symmetric complex Gaussian. This model for the interference is a worst-
case model and was used in [41]. Thus, the interference and the noise at the SU-Rx and
the eavesdropper are circularly symmetric complex additive white Gaussian noise with
variance σ2

ss and σ2
se, respectively.

The secondary user is assumed to have perfect knowledge of instant channel state
information (CSI) for all fading states. The interference channel state information from
the SU transmitter to the PU receiver can be obtained at the SU transmitter through
cooperation with the PU. For the ED link, the statistical channel state information is
available at the legitimate transmitter, which is generic and extensively adopted in the
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literature (see [21–23]). In practice, this corresponds to the scenario where the eavesdropper
was a legacy user previously, but now identified as an eavesdropper since the SU-Tx
wants to transmit some confidential message to the SU-Rx and keeps it a secret from
the eavesdropper. In this work, nodes are static for simplicity, and the focus is more on
the energy efficiency aspects of cognitive radio networks. Note that for readability, key
notations are depicted in Table 1.

PU Tx

SU Tx

PU Rx

SU Rx

In
te

rf
er

en
ce

PU Link

SU Link

ED Rx

ED Link

Figure 1. An illustration of the considered CR model.

Table 1. Key notations.

Notation Definition

PU-Tx PU Transmitter

PU-Rx PU Receiver

SU-Tx SU Transmitter

SU-Rx SU Receiver

ED-Rx Eavesdropper Receiver

Ps(ν) SU Transmit Power at Fading State ν

gss Gain of SU Channel

gsp Gain of SU-Tx to PU-Rx Channel

gse Gain of SU-Tx to ED-Rx Channel

Ppeak Peak Power Budget of SU

Pavg Average Power Budget of SU

Pin f Average Interference Power

E(.) Expectation Operator

η Energy Efficiency

f (η) Energy Efficiency Function

2.2. Transmission Model

In this paper, the objective is to find the optimal cognitive power that maximizes the
energy efficiency for a given channel realization and with respect to power and interference
constraints. The energy efficiency can be calculated as ratio of spectral efficiency and total
consumed power. The total consumed power is the sum of transmit power and circuit
power Pc. The circuit power includes the consumption of analog-to-digital converters,
filters, mixers, amplifiers, etc. The circuit’s output power Pc plays an important part in
determining the optimal power for maximizing the EE. Indeed, if Pc = 0, the power that
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optimizes the EE tends to zero, and the problem is addressed immediately. The rest of the
study assumes that Pc > 0, implying that the optimal power is not zero.

Let hp, hs, and he represent the channel coefficients of the links from SU-Tx to PU-
Rx, SU-Tx to SU-Rx, and SU-Tx to ED-Rx, respectively. The channels may follow any
distribution, e.g., Rayleigh, Nakagami, Rician, etc. For simulation and numerical results,
we adopted a Rayleigh fading distribution. All channels are block fading and experience
independent and identical Rayleigh fading. Let gsp(ν) = | hp |2, gss(ν) = | hs |2, gse(ν) =

| he |2 represent instantaneous channel power gains for the channel from the SU transmitter
to the PU receiver, the channel from the SU transmitter to the SU receiver, and the channel
from the secondary user transmitter to the eavesdropper, respectively. Here, ν denotes
the fading index for all related channels. Given the transmission power at the secondary
transmitter is Ps(ν), the received signals at the SU-Rx and ED-Rx are given as

ys =
√

Ps(ν)hsxs + ws (1)

ye =
√

Ps(ν)hexs + we (2)

respectively. Here, xs represents the transmitted symbol from the SU-Tx. ws and we are
independent complex additive white Gaussian noise (AWGN) with zero mean and σ2

ss and
σ2

se variances.
The capacity of the channel between the SU-Tx and SU-Rx, considering the unit

bandwidth, is given by

CS = log2(1 + γssPs(ν)), (3)

where γss =
gss(ν)

σ2
ss

. Similarly, the capacity of the channel between the SU-Tx and ED-Rx for
the unit bandwidth is

CE = log2(1 + γsePs(ν)), (4)

where γse = gse(ν)

σ2
se

. The secrecy rate or secrecy capacity (SC) of the secondary user is
given by

RSec(ps(ν)) = [CS − CE]
+ (5)

where [.]+ denotes max[., 0].

2.3. Power Constraints

There are two types of power constraints with respect to secondary user communica-
tion, namely peak transmit power (PTP) and average transmit power (ATP) constraints. The
PTP constraint is due to the non-linearity of power amplifiers, while the ATP constraint’s
aim is to satisfy the long-term power budget of the SU. The ATP/PTP constraints can be
written as

C1 : Ps(ν) ≤ Ppeak, ∀ ν (6a)

C2 : E{Ps(ν)} ≤ Pavg, ∀ ν (6b)

C3 : Ps(ν) ≥ 0, ∀ ν, (6c)

where, Ps(ν) is the transmit power of the SU in fading state ν. Ppeak and Pavg represent
the maximum PTP and the maximum ATP of the SU, respectively. E(.) is the expectation
operator. To protect the primary user from interference generated by secondary user
transmission, an interference power constraint must be imposed on the secondary user. It
is shown in [42] that the average interference power (AIP) constraint can better shield the
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primary user from secondary user transmission. Hence the AIP constraint is considered
here on the secondary user and can be written as

C4 : E {gsp(ν)Ps(ν)} ≤ Pin f , ∀ ν, (7)

where Pin f denotes the maximum tolerable AIP. Note that this work uses only the ATP and
AIP constraints.

3. Ergodic Secure EE Maximization under Average Transmit Power and Average
Interference Power Constraints

In this section, the ergodic secure energy efficiency maximization problem is studied
under the AIP and ATP constraints. The corresponding ergodic secrecy capacity (SC)
maximization problem is also simulated and investigated to present a benchmark. The
energy-efficient optimal power allocation strategy for the ergodic secure EE maximization
and the optimal power allocation strategy for the ergodic SC maximization are proposed.

3.1. Problem Formulation and Transformation

According to [43], a source can reliably transmit data to a destination with a non-zero
rate when the desired receiver has better channel conditions than the eavesdropper. As
presented in [5], the SC of the SU is the difference between the capacity of the secondary
link and that of the wire-tap link, denoted by RSec(Ps(ν)) and given as

RSec(ps(ν)) =
[
log2(1 + γssPs(ν))− log2(1 + γsePs(ν))

]
xs(ν), (8)

where γss = gss(ν)/σ2
ss and γse = gse(ν)/σ2

se. Here, xs(ν) is an indicator function for
whether the SU transmits information or not in fading state ν. For γss > γse, xs(ν) = 1,
and xs(ν) = 0 for γss ≤ γse. As discussed in [12], the ergodic SC is the long-term average
SC. Thus, the ergodic secure EE maximization can be formulated as problem P1 and can be
given as

P1 : max
Ps(ν)

ηEE(Ps(ν)) =
E{RSec(Ps(ν))}

E{ξPs(ν)xs(ν)}+ PC
(9a)

s.t. C2, C3, C4 (9b)

C5 : xs(ν) ∈ {0, 1}, ∀ν, (9c)

where ηEE(Ps(ν)) denotes the ergodic EE function of Ps(ν). ξ and PC represent the amplifier
coefficient and the constant circuit power consumption of the SU-Tx, respectively.

Lemma 1. When xs(ν) is non-zero, RSec(Ps(ν)) is non-convex with respect to Ps(ν).

Proof. This can be shown by taking the second-order derivative of RSec(Ps(ν)) with respect to
Ps(ν), i.e.,

R
′′
Sec(ps(ν)) =

1
log 2

[
− γ2

ss
(1 + γssPs(ν))2 +

γ2
se

(1 + γsePs(ν))2

]
. (10)

As the second-order derivative of RSec(ps(ν)) is the summation of concave plus convex terms,
hence the optimization problem is non-convex.

Now, the optimization problem P1 is non-convex in nature due to (i) the fractional
form of the objective function in (9a) and (ii) C5 being a mixed binary integer non-linear
programming problem [44]. There is no standard technique to solve such an optimization
problem. Therefore, to determine the optimal resource allocation policies, the original
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optimization problem needs to be transformed into an analytically tractable form. First,
apply the change of variable to RSec(Ps(ν)) by putting P̃s(ν) = log2(Ps(ν)) as follows:

R∗Sec(Ps(ν)) =
1

log 2
[
log(1 + γsseP̃s(ν))− log(1 + γseeP̃s(ν))

]
xs(ν) (11)

Using R∗Sec(Ps(ν)), problem P1 can be equivalently written as

P1a : max
P̃s(ν)

η∗EE(P̃s(ν)) =
E{R∗Sec(P̃s(ν))}

E{ξeP̃s(ν)xs(ν)}+ PC
(12)

s.t. C2, C3, C4

C5 : xs(ν) ∈ {0, 1}, ∀ν

The new constraints after the change of variable are given below:

C2 : E{eP̃s(ν)} ≤ Pavg, ∀ ν (13)

C3 : eP̃s(ν) ≥ 0, ∀ ν (14)

C4 : E {gsp(ν)eP̃s(ν)} ≥ Pin f , ∀ ν (15)

C5 : xs(ν) ∈ {0, 1}, ∀ν. (16)

Furthermore, use the successive convex approximation approach to transform the problem
P1a into a tractable one by maximizing a lower-bound of the achievable sum rate in
the following:

R∗Sec,LB(Ps(ν)) =
1

log 2
[αss log(Γss) + βss − αse log(Γse)− βse]xs(ν) ≤ R∗Sec(Ps(ν)) (17)

where Γss = γsseP̃s(ν) and Γse = γseeP̃s(ν). Using R∗Sec,LB(Ps(ν)), problem P1a can be rewrit-
ten as

P1b : max
P̃s(ν)

η∗EE,LB(P̃s(ν)) =
E{R∗Sec,LB(P̃s(ν)}

E{ξeP̃s(ν)xs(ν)}+ PC
(18)

s.t. C2, C3, C4

C5 : xs(ν) ∈ {0, 1}, ∀ν.

The lower bound relationship is always valid if the coefficients are chosen as follows [45]:

αss =
Γss

1 + Γss
, (19)

βss =
1

log 2
[log(1 + Γss)− αss log(Γss)]. (20)

Similarly,

αse =
Γse

1 + Γse
, (21)

βse =
1

log 2
[log(1 + Γse)− αse log(Γse)]. (22)

The lower bound becomes tight with equality when the coefficients are selected as speci-
fied above.
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3.2. Optimal Power Allocation

Because of the fractional form, the objective function in P1b is still non-convex. By
utilizing the properties of non-linear fractional programming, which is useful to deal
with the concave-over-convex fractional function in an iterative manner, the objective
function can be transformed in subtractive form. Let S1 denote the set S1 = {Ps(ν)|Ps(ν) ∈
{C2, C3, C4, C5}}. According to Dinkelbach’s method [46], problem P1b can be equivalent
to a parameter optimization problem, denoted by P2, given as

P2 : max
P̃s(ν)∈S1

f (η) =E{R∗Sec,LB(P̃s(ν))}

− η
(
E{ξeP̃s(ν)xs(ν)}+ PC

)
, (23)

where η is a non-negative parameter. It is seen that η can be regarded as the cost factor of
the power consumption.

Remark 1. When η approaches zero, it implies that the cost for power resource utilization is negli-
gible, and the power allocation policy bears resemblance to an ergodic secure capacity maximization
problem. However, when the values of η increase, the network utility stresses the importance of the
power resource for the design of power allocation in cognitive radio networks. No transmission will
be the best strategy to maximize the EE when η → ∞.

Let P̃s
opt

(ν) and ηopt denote the EE optimal transmit power of the SU in terms of
maximizing the ergodic secure EE and the optimal η of P2, respectively. The EE optimal
power allocation strategy can be obtained by using Theorem 1, given as follows.

Theorem 1. The EE optimal power allocation, P̃s
opt

(ν), achieves the maximum ergodic secure EE
if and only if

max
P̃s(ν)∈S1

f (ηopt) =E{RSec(P̃s
opt

(ν))}

− ηopt

(
E{ξ P̃s

opt
(ν)xs(ν)}+ PC

)
, (24)

=0.

Proof. Let P̃s
opt

(ν) and ηopt denote the EE optimal solution of P2 and the corresponding
maximum ergodic secure EE. Then,

ηopt = max
P̃s∈S1

E{RSec(P̃s(ν))}
E{xiP̃s(ν)xs(ν)}+ PC

=
E{RSec(P̃s

opt
(ν))}

E{ξ P̃s
opt

(ν)xs(ν)}+ PC
. (25)

Accordingly,

E{RSec(P̃s(ν))}
E{ξ P̃s(ν)xs(ν)}+ Pc

≤ E{RSec(P̃s
opt

(ν))}
E{ξ P̃s

opt
(ν)xs(ν)}+ PC

(26)

Based on Equations (25) and (26),

E{RSec(P̃s(ν))} − ηopt
(
E{ξ P̃s(ν)xs(ν)}+ PC

)
≤ 0

E{RSec(P̃s
opt

(ν))} − ηopt

(
E{ξ P̃s

opt
(ν)xs(ν)}+ PC

)
= 0. (27)



Electronics 2022, 11, 1952 10 of 19

Now, according to Equations (27), the maximum of f (η) is zero and is achieved when the
EE optimal power is adopted and the maximum ergodic secure EE is obtained.

Now, for a given η, the Lagrange duality method can be applied to solve problem P2.
The Lagrangian function of P2 can be given as

L
(

P̃s(ν), λ, µ
)
=E
{

R∗Sec,LB(P̃s(ν))
}

− η
(
E
{

ξeP̃s(ν)xs(ν)
}
+ PC

)
− λ

(
E{eP̃s(ν)} − P̄avg

)
− µ

(
E {gsp(ν)eP̃s(ν)} − P̄in f

)
, (28)

where λ and µ denote the non-negative dual variables. Then, the Lagrange dual function
of P2 can be given as

g(λ, µ) = max
Ps(ν)∈S2

L
(

P̃s(ν), λ, µ
)

(29)

where S2 = {Ps(ν)|Ps(ν) ∈ {C3, C5}}.
The problem is decomposed and solved via two iterative steps: (i) the first step is

related to a subproblem for finding the solutions of the power control, and (ii) the second
step involves a master dual problem for updating the Lagrangian multipliers. Thus, by
taking the partial derivative of L

(
P̃s(ν), λ, µ

)
with respect to P̃s(ν) and equating the result

to zero, the optimal P̃s(ν)? can be obtained. In the master problem, for the obtained P̃s(ν)?

in the sub-problem, the Lagrangian multipliers λ and µ are updated using the sub-gradient
method [44]. The proposed iterative algorithm is summarized in Algorithm 1.

Algorithm 1 Iterative ergodic secure EE maximization algorithm.

1: Set the maximum number of iterations Imax and the step sizes;
2: Initialize the iteration counter k = 0, αss[(k)] = αse[(k)] = 1 and βss[k] = βse[k] = 0;
3: Initialize η[k] = 0.001.
4: repeat
5: repeat
6: Solve P2.
7: Update λ and µ.
8: until convergence to the optimal solution P̃s(ν)opt;
9: Update the coefficients αss, αse, βss, and βse;

10: Set P̃s(ν)[k + 1]← P̃s(ν)opt[k] and k← k + 1.

11: Update η as η ← E{RSec(P̃s
opt

(ν))}
E{ξ P̃s

opt
(ν)xs(ν)+PC}

.

12: until convergence or k > Imax.

4. Limitations of Proposed Scheme and Model Extension for Robust Power Allocation

In this work, nodes are static for simplicity, and the focus is more on the energy
efficiency aspects of cognitive radio networks. However, the mobility of the wireless nodes
and the distance between nodes also affects the performance of cognitive radio networks.
The mobility of nodes and distance are interrelated. When the mobile nodes move, the
mutual distance between the primary user and cognitive users changes dynamically [47].
As a result of this, the channel between them is time-varying. Therefore, even if at a
particular time, the cognitive radio user detects the presence of the PU accurately, this
situation might change after the movement of the PU or cognitive radio user [48]. If
spectrum sensing algorithms are aware of these topological changes, then it would protect
primary users from interference. Mobility also affects other network characteristics such
as network connectivity [49], routing [50], capacity [51], coverage [52], etc. Mobility also
plays a critical role in latency.

Mobility is also an intrinsic feature to support distinct kinds of wireless services in
cognitive radio networks. The IEEE 802.22 Working Group has recently adopted an amend-
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ment for the operation of portable devices [53]. Allowing node mobility in cognitive radio
networks will introduce numerous challenges, making it necessary to revisit the current
system design and protocols, such as mechanisms for spectrum sensing, interference man-
agement, and routing. Despite its importance, however, mobility is still largely unexplored
in the context of dynamic spectrum access. Therefore, the mobility of nodes affects the
performance of cognitive radio networks in a big way.

Here, we assume that channels are flat fading. However, frequency-selective fading
would provide an extra facet for optimization (e.g., more power can be transmitted oppor-
tunistically at frequencies where the secondary–primary channel has higher attenuation).
To report the result of sensing, one or more reporting channels are needed. The reporting
channel uses a different band from that used for sensing. In this work, we are assuming
that sensing results are transmitted using the PU’s spectrum when the absence of the PU
is confirmed. Here, the potential interference to the PU is controllable, and hence, we can
meet the PU’s outage probability requirements. However, because of the misdetection
probability of the PU, this method still generates interference to the primary user, and
therefore, we need a specific reporting channel design. The reporting channel design can
be explored in a future extension of this research.

In this work, we assumed that all the channel state information (CSI) is perfectly
known at all transceivers. The CSI for the secondary link can be obtained by the classic
channel training, estimation, and feedback mechanisms. However, obtaining the CSI of
the link from the secondary transceiver to the primary receiver and eavesdropper link is
a challenging task as this CSI knowledge requires the primary user and eavesdropper to
cooperate. If there is no cooperation of the users, then there is the possibility of interference
in the primary communication link. Therefore, timely and accurate knowledge of the CSI
requires considerable resource overhead. In the next part of this section, we extend our
proposed framework to the non-perfect CSI scenario.

In practice, perfect CSI is challenging to obtain due to the inherently time-varying
nature of wireless channels, delay, noise, and limited bandwidth in feedback channels and
other factors. This section considers a more practical scenario where cognitive radio users
do not have perfect CSI knowledge [54] and proposes a robust resource allocation policy.
The proposed design framework can be easily extended to accommodate this scenario by
replacing the channels with the following:

Ĝss = Gss + εi, ∀i (30)

Ĝse = Gse + ζ j, ∀j (31)

Ĝsp = Gsp + χk, ∀k (32)

where Ĝss, Ĝse, and Ĝsp are the estimated channels and εi ∼ CN
(
0, σ2

e
)
, ζ j ∼ CN

(
0, σ2

e
)
,

and χj ∼ CN
(
0, σ2

e
)

are the channel estimation errors. The proposed power allocation
schemes obtained under imperfect CSI are beneficial in practical settings and give insight
into the impact of channel uncertainty on the system performance. At the same time, the EE
in the presence of perfect CSI of the transmission and interference links serves as a baseline
to compare the performances attained under the assumption of imperfect CSI.

5. Numerical Results

This section presents simulation results to demonstrate the SU’s achievable maximum
ergodic secure EE with the proposed EE optimal power allocation strategies under the ATP
and AIP constraints. The achievable maximum ergodic secure EE is compared with that
achieved with the optimal power allocation strategies for the ergodic SC maximization
(SCM). The values of PC and ξ are 0.01 W and 0.2, while σ2

ss and σ2
se were set as 0.001 and

1, respectively. The maximum number of iterations for inner and outer loops is 10. The
maximum tolerance value is 10−5 along with 0.01 as the positive step sizes.

Figure 2 illustrates the convergence of the proposed iterative power allocation algo-
rithm. The values of the ATP and AIP were set as Pavg = 50 mW and Pin f = 50 mW,
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respectively. It can be observed that the obtained ergodic secure EE and SC of the pro-
posed algorithms monotonically increase with the number of iterations, and the number
of iterations required for convergence is less than four. The quick convergence, however,
comes at the expense of a lower ergodic secondary secrecy sum rate (weaker performance).
This is due to the algorithm skipping over certain possible solutions that would satisfy the
requirements and yield a greater sum rate. As a result, the designer may always strike a
balance between the problem’s complexity and the performance of the secondary network.
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Figure 2. Convergence behavior of iterative algorithms. (a) EE versus number of iterations, (b) SE
versus number of iterations.

Figure 3 shows the performance comparison of the proposed energy efficiency maxi-
mization (EEM) algorithm with that of the SCM. The AIP constraint was set as Pin f = 0.1 W.
Several interesting observations are noted from this figure. It can be seen that the average
ergodic secure EE of the SU achieved by both algorithms is identical for Pavg = 0.03 W.
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However, when Pavg ≥ 0.04 W, the maximum ergodic secure EE of the proposed EEM
algorithm is better than that of the SCM. This indicates that the power allocation strategy for
the ergodic SCM is not “optimal” with respect to the ergodic secure EE maximization. On
the other hand, the SCM algorithm outperforms the proposed EEM algorithm in terms of
the average ergodic SC for Pavg > 0.01 W. This is because the SU user utilizes the maximum
power to enhance the ergodic SC without being concerned about the ergodic secure EE.
Thus, the trade-off between the achievable ergodic secure EE and the ergodic SC of the SU
can be understood from Figure 3. Moreover, we can also observe that EEM has an average
ergodic EE gain of over 21% over SCM when Pavg = 0.07 W.
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Figure 3. Average ergodic secure EE and SC of SU versus Pavg. (a) Average ergodic secure EE of SU
versus Pavg, (b) Average ergodic SC of SU versus Pavg.

Figure 4 shows the ergodic EE and SC of the SU versus the ATP for the ergodic secure
EEM algorithm. The AIP constraint was set as Pin f = {0.01, 0.1} W. It is seen that the
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average ergodic EE and SC of the SU achieved for the ergodic EEM algorithm improve
with increasing AIP values. A higher AIP value indicates that the PU receiver can tolerate
higher interference power from the SU. Thus, the SU uses more power to improve ergodic
secure EE and ergodic SC. In the case of non-cognitive transmission, the positive value
of secrecy can be obtained when the secondary channel is strictly more robust than the
eavesdropper channel. However, for cognitive transmission, the interference temperature
limits the capacity regardless of transmit power.

Figure 5 shows the average ergodic EE and SC performance of the SU for different
AIP. The average ergodic EE and SC increase with increasing Pin f and become constant
after Pin f > 0.6 W. When ATP Pavg increases from 0.01 W to 0.1 W, the average ergodic
EE and SC achieved for the proposed algorithm also increase. This can be explained by
the fact that a higher ATP can provide more flexibility to the transmit power of the SU.
As given in [42], the AIP constraint is superior in terms of achievable ergodic and outage
capacity for secondary users and the PU. The same can be seen here, and the simulation
results confirmed that the SU’s various capacity limits also increase with increasing AIP
constraints. This is due to interference diversity, where a limit on randomized average
interference power over the different fading states increases the PU’s and SU’s capacity.
Hence, the AIP constraint results in larger capacities for both the SU and PU. As shown
in Figure 4, the EE of the SU also increases with the ATP and AIP, which agree with the
analytical results obtained in Section 3. Here, it is assumed that perfect CSI is available
for the PU interference channel at each fading state. The discussion of the AIP presented
in this paper can be extended for the more general case where only statistical knowledge
is available.
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Figure 4. Average ergodic secure EE and SC of SU versus Pavg.

Finally, Figure 6 shows how the proposed EEM algorithm compares to the EEM
algorithm in a network without an eavesdropper in terms of average ergodic EE and SC
performance. Here, the value Pavg = 0.1. In both cases, the value of the average EE and
average SC for the SU increases with increasing Pin f . As seen earlier, the higher AIP value
indicates that the PU receiver can tolerate higher interference power from the SU. Thus, the
SU user uses more power to improve ergodic secure EE and ergodic SC. The average EE
becomes constant after Pin f = 0.06 in both cases, and the average capacity becomes constant
after Pin f = 0.05. As expected, the average EE and average capacity values are quite higher
when there is no eavesdropper. This is because the presence of the eavesdropper causes
several channel impairments, and hence, the average EE and SE of the network decrease.
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Here, we can see that EEM without the eavesdropper has an average secure EE gain of
around 16% over secure EEM.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P
inf

 [Watt]

250

255

260

265

270

275

280

285

A
v
e

ra
g

e
 e

rg
o

d
ic

 s
e

c
u
re

 E
E

 [
b
it
s
/J

o
u
le

/H
e
rt

z
]

P
avg

=0.01

P
avg

=0.1

(a)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P
inf

 [Watt]

2.6

2.8

3

3.2

3.4

3.6

3.8

A
v
e
ra

g
e
 e

rg
o

d
ic

 S
C

 [
b

it
s
/s

e
c
/H

e
rt

z
]

P
avg

=0.01

P
avg

=0.1

(b)

Figure 5. Average ergodic secure EE and SC of SU versus Pin f . (a) Average ergodic secure EE of SU
versus Pin f , (b) Average ergodic secure EE and SC of SU versus Pin f .
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Figure 6. Average ergodic secure EE and SC of SU versus average capacity of the network with-
out eavesdropper. (a) Average ergodic secure EE of SU versus Pin f , (b) Average ergodic secure EE
and SC of SU versus Pin f .

6. Discussion and Conclusions
6.1. Discussion

In this work, we investigated the issue of eavesdropping in underlay cognitive radio
networks where the eavesdropper reduces the secrecy capacity of the secondary link. To
gain an insight into the convoluted effects that system parameters such as the transmission
power and interference power have on the underlay network’s performance, we exclusively
focused on characterizing various key aspects that may have potential impacts on secure
underlay CRNs. We examined the spectrum sharing cognitive radio (CR) systems where
either a peak or an average power constraint and average interference power constraint
are assumed and found the power that maximizes the EE despite its non-convexity. An
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algorithm for energy efficiency maximization was proposed, and it was seen that the
running time of the algorithm is fast and the algorithm converges quickly. We also highlight
the discrepancy in performances between adopting the EE criterion and adopting the SE
criterion. It was seen that the maximum ergodic secure EE of the SU achieved for the ergodic
secure EE maximization is not less than that achieved for the ergodic SC maximization,
irrespective of the ATP constraint or the PTP constraint. This indicates that the power
allocation strategy for the ergodic SC maximization is not “optimal” with respect to the
ergodic secure EE maximization, while the proposed EE optimal power allocation strategies
can guarantee that the SU achieves the maximum ergodic secure EE. It was seen that the
ergodic SC of the SU achieved for the ergodic SC maximization is larger than that obtained
for the ergodic secure EE maximization, irrespective of the ATP constraint or the PTP
constraint. In other words, the SU cannot be guaranteed to achieve the maximum ergodic
secure EE and the maximum ergodic SC simultaneously. If the SU wants to achieve the
maximum ergodic secure EE, the achievable ergodic SC of the SU may decrease and vice
versa. It was seen that the ergodic secure EE of the SU first increases with the looser ATP
constraint and then decreases with the looser ATP constraint when the optimal power
allocation strategies for the ergodic SC maximization are used, while the ergodic SC of the
SU always increases with the looser ATP constraint. This shows that there exists a trade-off
between the ergodic secure EE and ergodic SC of the SU. It is interesting to note that the
ergodic secure EE achieved for the ergodic EE maximization is the same as that achieved
for the ergodic SC maximization when the ATP constraint is very tight compared with the
AIP constraint. The reason is that only the ATP constraint is active when the ATP/PTP
constraint is very tight.

6.2. Conclusions

In this paper, physical-layer security from an energy efficiency perspective was studied
in a green CR network with a spectrum sharing paradigm. The ergodic secure energy-
efficient maximization problem was formulated under the AIP and ATP constraints. Using
fractional programming techniques and the Lagrange duality method, the EE optimal
power allocation strategies were designed to maximize the ergodic secure EE of the SU.
An iterative power allocation algorithm was proposed to solve the ergodic secure EE
maximization problem. The optimal power allocation strategies for maximizing the ergodic
SC of the SU were also proposed. With the help of simulations, the achievable maximum
ergodic secure EE of the SU with the proposed EE optimal power allocation strategy
was demonstrated.
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Abbreviations
The following abbreviations are used in this manuscript:

SE Spectral efficiency
EE Energy efficiency
SC Secrecy capacity
SU Secondary user
PU Primary user
CSI Channel state information
QoS Quality of service
PU-Tx Primary user transmitter
SU-Tx Secondary user transmitter
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PTP Peak transmit power
ATP Peak transmit power
AIP Average interference power
SCM Secrecy capacity maximization
EEM Secrecy capacity maximization
SNR Signal-to-noise ratio
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