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Abstract: Global quadratic stability and L2 performance in probability (quadratic stability and L2

gain γ in probability: abbreviated as GQL2(γ)-P) is studied for switched systems consisting of
linear stochastic subsystems with norm-bounded uncertainties. Under the assumption that there
is no single subsystem achieving GQL2(γ)-P, it is shown that if there exists a convex combination
of subsystems achieving GQL2(γ)-P, then a state-dependent switching law, based on the convex
combination of subsystems, is proposed under which the switched system achieves GQL2(γ)-P. Then,
the discussion is extended to the case involving state feedback controller gain. A numerical example
and the application to DC–DC boost converters are provided to demonstrate the proposed design
condition and the algorithm.

Keywords: switched uncertain stochastic systems (SUSS); state-dependent switching laws; norm-
bounded uncertainties; global quadratic L2 performance γ in probability (GQL2(γ)-P); convex
combination; linear matrix inequalities (LMIs)

1. Introduction

In the last three decades, there has been extensive interest and quantities of papers
in switched systems, which are regarded to be good models representing practical sys-
tems; refer to [1–7] and the references therein. It is well-known that there are three basic
problems in the area of switched systems and control, and the third one (most challenging
problem) is to design a stabilizing switching law (strategy) for the case where each single
subsystem is not stable as desired. When the switched linear systems are composed of
unstable LTI deterministic subsystems, there are a few existing results. In [8,9], it is shown
that if there exists a stable convex combination of subsystem matrices, then there exists a
state-dependent switching rule quadratically stabilizing the switched system. For switched
continuous-time and discrete-time linear systems with polytopic uncertainties, quadratic
stabilizability via state-dependent switching has been discussed [10]. Ref. [11] investigates
quadratic stability/stabilization of a class of switched nonlinear systems by using a non-
linear programming (Karush–Kuhn–Tucker condition) approach. Ref. [12] extends the
discussion and results in [8,9] to achieve quadratic stability for switched linear systems
with norm-bounded uncertainties, and a state-dependent switching law has been proposed
for quadratic stabilization.

Recently, the results in [8,9] were extended in Ref. [13] to quadratic stabilization of
switched linear systems where norm-bounded uncertainties exist in the subsystems. In
that context, a convex combination of subsystems is defined including the subsystem
matrices and the matrices denoting uncertainties, and is represented by a condition ofH∞
norm. It was shown in [13] that if we manage to obtain such a convex combination of
subsystems, which is Hurwitz, and the H∞ norm is smaller than the specified value, we
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can design a state-dependent switching law such that the switched system is quadratically
stable, even though each subsystem is not. The convex combination approach was further
discussed for switched affine systems in [14], and later extended to quadratic stabilization
of switched uncertain stochastic systems (SUSS) by state- and output-dependent switching
laws in [15,16].

Encouraged by these existing contribution, we here aim to study the convex com-
bination approach developed in [8,9,13,15,16] for global quadratic L2 performance in
probability (quadratic stability and L2 gain γ in probability: abbreviated as GQL2(γ)-P)
for SUSSs, which consist of a finite number of linear stochastic subsystems where there
are norm-bounded uncertainties. As in the above literature, we challenge the third basic
problem, i.e., we consider the situation that for a specified positive scalar γ, there is no
subsystem that achieves GQL2(γ)-P. For our control problem, we define a new convex
combination of subsystems that incorporates the norm-bounded uncertainties, L2 gain,
and stochastic disturbance attenuation in an integrated manner. This is a major extension
to the existing convex combination approach. If we can obtain such a convex combina-
tion of subsystems that achieves GQL2(γ)-P, then we propose a switching law using the
Lyapunov matrix obtained by the convex combination system matrices, and prove the
SUSS achieves GQL2(γ)-P under the switching law. When it is difficult to find such an
appropriate convex combination, we proceed to consider designing the state feedback
controller for each subsystem so that the convex combination approach may be applied for
the closed-loop subsystems.

The outline of this manuscript is as follows. Some preliminaries are first recalled in
Section 2 for general and linear stochastic control systems, quadratic stability, and quadratic
L2 performance in probability; then, the control problem in this paper is formulated.
Next, Section 3 introduces the new convex combination of subsystems and proposes a
state-dependent switching law for the SUSS under consideration. It is shown that if we
can obtain a convex combination of subsystems that achieves GQL2(γ)-P, then a state-
dependent switching law can be designed such that the SUSS achieves GQL2(γ)-P. A
numerical example is provided to show effectiveness of the proposed method. In Section 4,
the simultaneous design of state feedback controllers and state-dependent switching laws
is studied so that more flexibility is earned for the control system, and the application to a
type of DC–DC boost converters is dealt with. Finally, Section 5 concludes the paper.

Notations Descriptions

<n n-dimensional Euclidean space
In Identity matrix of size n× n
A> transpose of A
Tr(A) trace of square matrix A
He{A} A + A>

W � 0 (W ≺ 0) W is symmetric and positive (negative) definite
W � 0 (W � 0) W is symmetric and non-negative (non-positive) definite
E[·] expectation value of a random variable
A is Hurwitz all eigenvalues of A have negative real parts
SUSS Switched uncertain stochastic systems
GQS-P (GAS-P) globally quadratically (asymptotically) stable in probability
GQL2(γ)-P global quadratic L2 performance γ in probability

2. Preliminary Results and Problem Formulation

We first recall some stability results concerning stochastic control systems. For a more
detailed description, refer to, for example, Ref. [17]. At the end of this section, we explain
the control problem considered in this paper.

Let us start with the general stochastic system

dx(t) = f (x(t))dt + g(x(t))dw(t) (1)
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where x(t) ∈ <n is the state, w(t) is an r-dimensional normalized Wiener process defined on
an appropriate probability space, and dx(t) is a stochastic differential of x(t). f : <n → <n

is the vector field, g : <n → <n×r is the diffusion rate matrix function, and both functions
are locally Lipschitz satisfying f (0) = 0, g(0) = 0. Similar to the Lyapunov stability
theory [18] for deterministic systems, the following theorem provides the Lyapunov stability
condition for the stochastic system (1).

Lemma 1 ([19]). If there exist a C2 function V(x), two class K∞ functions α1 and α2, and a class
K function α3, satisfying

α1(|x|) ≤ V(x) ≤ α2(|x|)

LV(x) =
∂V
∂x

f (x) +
1
2

Tr
(

g>
∂2V
∂x2 g

)
≤ −α3(|x|) ,

then, the equilibrium x = 0 of (1) is globally asymptotically stable in probability (GAS-P).

If the function V(x) in Lemma 1 is obtained having the form V(x) = x>Px, where
P � 0, we say the equilibrium of the system (or simply the system) is globally quadratically
stable in probability (GQS-P). Actually, when f and g in (1) are linear with respect to x, i.e.,
taking the form of

dx(t) = Ax(t)dt + Hx(t)dw(t) (2)

where A, H ∈ <n×n are constant matrices, we can consider a candidate quadratic Lyapunov
function V(x) = x>Px with P � 0 for it. Translating Lemma 1 with this V(x) and
f (x) = Ax, g(x) = Hx, we obtain the following result.

Lemma 2. If there exists a matrix P � 0 satisfying the linear matrix inequality (LMI) [20]

He{PA}+ H>PH ≺ 0 , (3)

then, the equilibrium x = 0 of (2) is GQS-P.

Now, we deal with the case of involving uncertainties in the stochastic system (2) as

dx(t) = (A + DF(t)E)x(t)dt + Hx(t)dw(t) (4)

where D ∈ <n×m, E ∈ <p×n are constant matrices, F(t) ∈ <m×p denotes the norm-bounded
uncertainty and assumes ‖F(t)‖ ≤ 1 without losing generality. According to Lemma 2, the
equilibrium x = 0 of (4) is GQS-P if there exists a matrix P � 0 satisfying

He{P(A + DF(t)E)}+ H>PH ≺ 0 (5)

for any F(t) within the norm bound.
The next well-known lemma is used to analyze the matrix inequality (5).

Lemma 3 ([21]). Assume that U ∈ Rn×m and W ∈ Rp×n are constant matrices. Then,

He{UFW} � UU> + W>W (6)

holds for any F ∈ Rm×p satisfying ‖F‖ ≤ 1.

Using the above lemma and the Schur complement lemma for the matrix inequality (5),
we obtain the following result.
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Lemma 4. If there exists a matrix P � 0 satisfying the LMI[
He{PA}+ H>PH + E>E PD

D>P −Im

]
≺ 0 , (7)

then, the equilibrium x = 0 of (4) is GQS-P.

Next, we consider the following uncertain stochastic system, which corresponds to
the system (4) with disturbance input and controlled output.{

dx(t) = [(A + DF(t)E)x(t) + Bv(t)]dt + Hx(t)dw(t)

z(t) = Cx(t)
(8)

Here, v(t) ∈ <q is the disturbance input; z(t) ∈ <r is the controlled output; and B, C
are constant matrices with proper dimension.

Definition 1. The system (8) is said to achieve global quadratic L2 performance γ in probabil-
ity (GQL2(γ)-P) if it is GQS-P, and moreover, when x(0) = 0,

E
{∫ t

0
z>(τ)z(τ) dτ

}
< γ2

∫ t

0
v>(τ)v(τ) dτ (9)

holds for any time t > 0 and any disturbance input v(t) satisfying
∫ ∞

0 v>(τ)v(τ) dτ < ∞.

Lemma 5 ([19]). If there exists a matrix P � 0 satisfying the LMI
He{PA}+ H>PH + E>E + C>C P

(
D 1

γ B
)

(
D>
1
γ B>

)
P −Im+q

 ≺ 0 , (10)

or equivalently,

He{PA}+ H>PH + E>E + C>C1 + P
(

DD> +
1

γ2 BB>
)

P ≺ 0 , (11)

then, the system (8) achieves GQL2(γ)-P.

With the above preparation, we now proceed to describe our control problem in detail.
Consider the switched uncertain stochastic system (SUSS){

dx(t) = [(Aσ + DσF(t)Eσ)x(t) + Bσv(t)]dt + Hx(t)dw(t)

z(t) = Cσx(t)
(12)

where x(t) ∈ <n is the state, v(t) ∈ <q is the disturbance input, z(t) ∈ <r is the controlled
output, and w(t) and dx(t) are the same as in (1). The switching law (signal) σ(t) : [0, ∞)→
IN determines the index number of the active subsystem at every time instant, where
IN = {1, 2, . . . , N} is the index set. Thus, there are N subsystems that may be activated,
and the dynamics of the i-th subsystem is represented by{

dx(t) = [(Ai + DiF(t)Ei)x(t) + Biv(t)]dt + Hx(t)dw(t) ,

z(t) = Cix(t) , i = 1, 2, . . . ,N
(13)
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where Ai, H ∈ <n×n, Bi ∈ <n×q, Ci ∈ <r×n, Di ∈ <n×m, Ei ∈ <p×n are constant matrices
and F(t) ∈ <m×p denotes the norm-bounded uncertainty as in (4). It is assumed, as in the
literature, that there is no jump in state x at the switching instants.

The control problem is formulated as follows: For given γ > 0, design a state-dependent
switching law σ(x(t)) such that the SUSS (12) achieves GQL2(γ)-P .

If there is one subsystem in (13) achieving GQL2(γ)-P, we can choose to activate that
subsystem for all time (without any switching) and, certainly, the switched system has the
same performance. If there are more than two subsystems in (13) achieving GQL2(γ)-P, we
may discuss the average dwell time approach [22–24] and multiple/piecewise Lyapunov
functions approach [25–27]. Since we are here challenging the third basic problem in
switched systems and control, we assume the following throughout this paper.

Assumption 1. There is NO single subsystem in (13) achieving GQL2(γ)-P in the sense of
Lemma 5. Alternatively, there is NOT any subsystem such that there exists P � 0 satisfying
the LMI 

He{PAi}+ H>PH + E>i Ei + C>i Ci P
(

Di
1
γ Bi

)
(

D>i
1
γ B>i

)
P −Im+q

 ≺ 0 , (14)

or equivalently,

He{PAi}+ H>PH + E>i Ei + C>i Ci + P
(

DiD>i +
1

γ2 BiB>i

)
P ≺ 0 . (15)

3. Convex Combination Based State-Dependent Switching Law

In this section, we define our new convex combination of subsystems and then de-
sign the state-dependent switching law, based on the convex combination, such that
the SUSS (12) achieves GQL2(γ)-P. A numerical example is then provided to illustrate
the approach.

3.1. Design Condition and Switching Law

To describe our design condition, we first define the convex combination system of the
subsystems in (13) as{

dx(t) = [(Aλ + DλF(t)Eλ)x(t) + Bλv(t)]dt + Hx(t)dw(t) ,

z(t) = Cλx(t)
(16)

where

Aλ =
N
∑
i=1

λi Ai , (17)

Bλ, Cλ, Dλ, Eλ are constant matrices satisfying

BλB>λ =
N
∑
i=1

λiBiB>i , C>λ Cλ =
N
∑
i=1

λiC>i Ci ,

DλD>λ =
N
∑
i=1

λiDiD>i , E>λ Eλ =
N
∑
i=1

λiE>i Ei ,

(18)

and λi (i = 1, . . . ,N ) are non-negative scalars satisfying ∑Ni=1 λi = 1 .

Remark 1. For given Bi’s, Ci’s, Di’s, Ei’s in the subsystems and λi’s, the matrices Bλ, Cλ, Dλ,
and Eλ satisfying (18) can be computed efficiently by using Cholesky decomposition method, which
was numerically implemented in MATLAB.
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Next, in addition to Assumption 1, we make the following assumption throughout
this paper, which is actually the design condition of the switching law for the SUSS.

Assumption 2. There exists a convex combination system (16) achieving GQL2(γ)-P in the sense
of Lemma 5.

Recalling Lemma 5 and the Schur complement lemma, we observe that Assumption 2
is equivalent to the design condition of finding P � 0 and λi’s such that

He{PAλ}+ H>PH P
(

Dλ
1
γ Bλ

)
C>λ E>λ(

D>λ
1
γ B>λ

)
P −Im+q 0 0

Cλ 0 −Ir 0

Eλ 0 0 −Ip


≺ 0 . (19)

Thus, how to solve the above matrix inequality is crucial. Due to the terms He{PAλ},
PDλ, and PBλ, (19) is a bilinear matrix inequality (BMI) with respect to P and λi’s, and
it is commonly known to be difficult to solve a general BMI globally. It is noted that one
necessary condition for (19) is

N
∑
i=1

λi He{PAi} ≺ 0⇐⇒ He{PAλ} ≺ 0 , (20)

which is equivalent to Aλ being Hurwitz. This motivates that if we can manage to find
the scalars λi such that Aλ is Hurwitz, we can use those scalars to solve the inequality (19)
with respect to P � 0. However, it is commonly known that to find the set of stabilizing
scalars, λi is generally difficult. One comparatively efficient strategy to achieve such task
(to solve (20) with λi’s and P � 0) is the so-called gridding method (or traversal search),
which is based on the observation of λi ≥ 0 and ∑n

i=1 λi = 1. Here, we extend the gridding
method in the following algorithm to solve (19) with respect to λi’s and P � 0. Due
to continuity with respect to the scalars λi, if the matrix inequality (19) is feasible, the
algorithm will succeed when the division integer m is large enough.

Algorithm for solving (19)

Step 1 Set the division number m of the interval [0, 1] as a moderate integer—for example, m = 10—
and defineM = {0, 1

m , · · · , m−1
m }.

Step 2 (1) choose λ1 fromM in ascending order; (2) fix λ1 and choose λ2 fromM in ascending
order under the constraint λ1 + λ2 ≤ 1; (3) fix λ1, λ2 and choose λ3 fromM in ascending
order under the constraint λ1 + λ2 + λ3 ≤ 1; . . . (i) fix λ1, . . . , λi−1 and choose λi fromM
in ascending order under the constraint ∑i

j=1 λj ≤ 1, and so on, until λN is chosen.

Step 3 Solve (19) with the λi’s chosen in Step 2. If (19) is feasible, record the solution and end the
algorithm. If (19) is not feasible, go back to Step 2 for another set of λi’s. Or, go back to Step 1
to increase the division integer m.

Here is an example for searching parameters in Step 2. When N = 3, m = 3, we
are actually checking the linear matrix inequality (19) in P by fixing the parameters λi in
sequence as

(λ1, λ2, λ3) =

(
0,

1
3

,
2
3

)
,
(

0,
2
3

,
1
3

)
,
(

1
3

, 0,
2
3

)
,
(

1
3

,
1
3

,
1
3

)
,

(
1
3

,
2
3

, 0
)

,
(

2
3

, 0,
1
3

)
,
(

2
3

,
1
3

, 0
)

.
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The bigger m is, the more searching parameters there are in Step 2. Again, since the
left side of the matrix inequality (19) is continuous in the parameters λi, we can expect to
find a feasible solution for (19) when the division integer m is large enough.

Remark 2. It is noted that the design condition (19) is reduced to

He{PAλ}+ H>PH + E>λ Eλ + C>λ Cλ + P
(

DλD>λ +
1

γ2 BλB>λ

)
P ≺ 0 , (21)

or equivalently,

N
∑
i=1

λi

(
He{PAi}+ H>PH + E>i Ei + C>i Ci

)
+
N
∑
i=1

λiP
(

DiD>i +
1

γ2 BiB>i

)
P ≺ 0 , (22)

which turns out to be a convex combination of (15). This implies that, although we are in the
situation that each single subsystem in (13) does not achieve GQL2(γ)-P, Assumption 2 requires
the existence of a convex combination system (16) that should achieve GQL2(γ)-P, guaranteed by a
convex combination of the matrix inequalities in (15).

Now, we use the obtained positive definite matrix P to define the state-dependent
switching law as

SW1 : σ(x) = arg min
i∈IN

fi(x) (23)

fi(x) = x>(He{PAi}+ E>i Ei + C>i Ci)x + x>P
(

DiD>i +
1

γ2 BiB>i

)
Px . (24)

Theorem 1. Under Assumptions 1 and 2 and the switching law SW1, the SUSS (12) achieves
GQL2(γ)-P.

Proof. Since the matrix inequality (21) is satisfied, there always exists a positive scalar η
such that

He{PAλ}+ H>PH + E>λ Eλ + C>λ Cλ + P
(

DλD>λ +
1

γ2 BλB>λ

)
P + ηP ≺ 0 , (25)

and thus, for any x ∈ <n,

x>
(

He{PAλ}+ H>PH + E>λ Eλ + C>λ Cλ

)
x

+x>P
(

DλD>λ P +
1

γ2 BλB>λ

)
Px ≤ −ηx>Px .

(26)

With the definitions in (17) and (18), we obtain

∑Ni=1 λix>
(

He{PAi}+ H>PH + E>i Ei + C>i Ci
)
x

+∑Ni=1 λix>P
(

DiD>i P +
1

γ2 BiB>i

)
Px ≤ −ηx>Px .

(27)

Notice that the left side of the above inequality is

N
∑
i=1

λi fi(x) + x>H>PHx .

Then, under the switching law SW1, since fσ(x) ≤ fi(x) holds for all i, we have

x>
(

He{PAσ}+ H>PH + E>σ Eσ + C>σ Cσ

)
x

+x>P
(

DσD>σ P +
1

γ2 BσB>σ

)
Px ≤ −ηx>Px .

(28)
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To show the SUSS (12) is GQS-P, we compute the Ito differential of V(x) = x>Px along
solutions of (12) as

dV = LV(x)dt +
∂V
∂x

Hx dW = LV(x)dt + x>(H>P + PH)x dW (29)

LV(x) = x>
(

He{P(Aσ + DσFEσ)}+ H>PH
)

x + x>PBσv . (30)

When v = 0, it is obtained from (30) and (28) that

LV(x) ≤ x>
(

He{PAσ}+ H>PH
)

x + x>
(

PDσD>σ P + E>σ Eσ

)
x ≤ −ηV(x) . (31)

According to Lemma 1, the SUSS (12) is GQS-P.
Next, we proceed to prove the GQL2(γ)-P property. First, using Lemma 3 for (30),

we obtain

LV(x) = x>
(

He{P(Aσ + DσFEσ)}+ H>PH
)
x +

(
1
γ x>PBσ

)
(γv)

≤ x>
(

He{PAσ}+ H>PH
)
x + x>

(
PDσD>σ P + E>σ Eσ

)
x

+
1

γ2 x>PBσB>σ Px + γ2v>v .
(32)

Letting Γ(t) = z>(t)z(t)− γ2v>(t)v(t), we obtain from (32) and (28) that

LV(x) + Γ(t) ≤ −ηV(x) . (33)

Combining the above discussion into (29), we have

d(eηtV) = ηeηtV dt + eηt dV = eηt(ηV dt + dV)

≤ −eηtΓ(t)dt + eηtx>(H>P + PH)x dW

≤ −Γ(t)dt + eηtx>(H>P + PH)x dW . (34)

Taking expectation and integrating both sides of the above inequality from 0 to t, with
the fact that E[dW] = 0, we reach

E[eηtV(x(t))]−V(x(0)) ≤ −E
[∫ t

0
Γ(τ) dτ

]
. (35)

Since V(x(t)) ≥ 0, this leads to (9) obviously when x(0) = 0. Thus, the SUSS achieves
GQL2(γ)-P.

Remark 3. It is observed from the proof of the theorem that if we desire the convergence rate
of α > 0 for the resultant switched system, we should replace Aλ with Aλ + αI in the convex
combination system (16) or the matrix inequality (19), and all the discussion remains valid.

3.2. Numerical Example

Example 1. Let us consider the SUSS (12) whose contant coefficient matrices are
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A1 =

[
−15.2 9.6

9.6 −0.8

]
, A2 =

[
−2.8 −13.6
−13.6 −23.2

]
,

B1 =

[
1

0

]
, B2 =

[
−1

1

]
C1 =

[
0.5 1.5

]
, C2 =

[
−1.0 0.5

]
,

D1 =

[
1 0.6
1 0.2

]
, D2 =

[
0.6 2.0
0.2 0

]
E1 =

[
2 0
2 2

]
, E2 =

[
1.5 −1.5
1.5 3.0

]
, H =

[
0.5 −1.0
1.0 1.5

]
(36)

and the uncertainty term

F(t) =
[

0.5 sin t− 0.1 cos t −0.2 sin t− 0.3 cos t
−0.3 sin t− 0.2 cos t 0.1 sin t− 0.4 cos t

]
satisfies ‖F(t)‖ ≤ 1 . It is easy to confirm that A1 and A2 are not Hurwitz. Therefore, Assumption 1
is true, and actually there is no P � 0 satisfying (14) for both subsystems.

When setting λ1 = 2
3 , λ2 = 1

3 , we find that

Aλ =
2
3

A1 +
1
3

A2 =

[
−11.0667 1.8667

1.8667 −8.2667

]
is Hurwitz, whose eigenvalues are {−12.0000,−7.3333}. Furthermore, for given γ = 0.5
and the same λ1, λ2, the matrix inequality (19) is feasible with

P =

[
1.5108 0.3939

0.3939 1.8546

]
,

which implies that Assumption 2 holds. In the present case, the coefficient matrices in the
convex combination system (16) are

Bλ =

[
1.0000 0
−0.3333 0.4714

]
, Cλ =

[
0.7071 0.4714

0 1.1667

]

Dλ =

[
1.5362 0
0.5121 0.6667

]
, Eλ =

[
2.6141 1.3070

0 2.1699

]
.

We set the initial state to x(0) =
[
−5 4

]>, and the disturbance input as w(t) =
2e−3t cos 2t. Then, we use the switching law (23) for the present SUSS, and utilize the well-
known Euler–Maruyama scheme for numerical simulation of the stochastic differential
equation. With several patterns of white noise, we obtain the state trajectories of the SUSS
plotted in Figure 1, which converge to zero quickly as desired. Further, the inequality (9)
holds for the sampled patterns of random noise, which implies the desired quadratic
stability and L2 performance in probability has been achieved.
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Figure 1. State trajectories of the SUSS under SW1 in Example 1.

4. State Feedback Controller Design

We focused our attention on design condition and the switching law in the previous
section. When Assumption 2 does not hold and feedback control is available, we shall
incorporate state feedback controller design together with the switching law in this section.

4.1. Controller Design

Introducing control inputs into the switched system (12), we have

dx(t) = [(Aσ + DσF(t)Eσ)x(t) + Bσv(t) + Gσu(t)]dt + Hx(t)dw(t) (37)

where u(t) ∈ <l is the control input and Gi ∈ <n×l is the constant input matrix.
In the case of state feedback, the design issue is to propose u = Kx with a constant

feedback gain K, such that Assumption 2 holds for the closed-loop system

dx(t) = [(Aσ + GσK + DσF(t)Eσ)x(t) + Bσv(t)]dt + Hx(t)dw(t) . (38)

Then, the discussion in the previous section is valid if we replace Aλ =
N
∑
i=1

λi Ai

with AKλ =
N
∑
i=1

λi(Ai + GiK) = Aλ + GλK, where Gλ =
N
∑
i=1

λiGi. In other words, we are

considering the following convex combination system of the subsystems in (37)

dx(t) = [(Aλ + DλF(t)Eλ)x(t) + Bλv(t) + Gλu(t)]dt + Hx(t)dw(t) . (39)

Using the matrix inequality (19) with Aλ replaced by AKλ, we obtain the design
condition 

He{PAKλ}+ H>PH P
(

Dλ
1
γ Bλ

)
C>λ E>λ(

D>λ
1
γ B>λ

)
P −Im+q 0 0

Cλ 0 −Ir 0

Eλ 0 0 −Ip


≺ 0 . (40)
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It is noted that in addition to the coupling between λi’s and P, the term PAKλ includes
the matrix product PGiK in the above matrix inequality. To make (40) more trackable, we
use the Schur complement lemma for (40) to reach

He{PAKλ} PDλ
1
γ PBλ C>λ E>λ H>

D>λ P −Im 0 0 0 0
1
γ B>λ P 0 −Iq 0 0 0

Cλ 0 0 −Ir 0 0

Eλ 0 0 0 −Ip 0

H 0 0 0 0 −P−1


≺ 0 . (41)

Multiplying the first row and column of (41) by Q = P−1, we obtain

He{AλQ + Gλ M} Dλ
1
γ Bλ QC>λ QE>λ QH>

D>λ −Im 0 0 0 0
1
γ B>λ 0 −Iq 0 0 0

CλQ 0 0 −Ir 0 0

EλQ 0 0 0 −Ip 0

HQ 0 0 0 0 −Q


≺ 0 (42)

where M = KQ. Therefore, if the matrix inequality (42) is feasible with the variables Q � 0,
M, and λi’s, the state feedback gain is computed by K = MQ−1, and the matrix P = Q−1

will be used in the switching law defined later.
To summarize the above discussion up to now, we obtain the following theorem.

Theorem 2. If there exist matrices Q � 0, M and non-negative scalars λi satisfying ∑Ni=1 λi = 1
such that the matrix inequality (42) holds, then the SUSS (37) together with the state feedback
u = MQ−1x achieves GQL2(γ)-P under the switching law

SW2 : σ(x) = arg min
i∈IN

gi(x) (43)

gi(x) = x>
(

He{Q−1(Ai + GiK)}+ E>i Ei + C>i Ci+

Q−1(DiD>i +
1

γ2 BiB>i )Q−1
)

x . (44)

Proof. If the matrix inequality (42) holds, we obtain (40). Since He{PAKλ} = He{P(Aλ +
GλK)} = ∑Ni=1 He{P(Ai +GiK)}, by using the proof of Theorem 1, the switched system (38)
achieves GQL2(γ)-P under the switching law (44).

Remark 4. The matrix inequality (41) is equivalent to

N
∑
i=1

λi

(
He{P(Ai + GiK)}+ H>PH + E>i Ei + C>i Ci + P(DiD>i P +

1
γ2 BiB>i )P

)
≺ 0 , (45)

which is a convex combination of the matrix inequalities for each subsystem to achieve GQL2(γ)-P
through a state feedback. Therefore, the condition of Theorem 2 requires that a convex combination
of subsystems should achieve GQL2(γ)-P by a switching state feedback, although every single
subsystem cannot make it. In this sense, this condition can be regarded as the state feedback version
of the design condition in the previous section.
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4.2. Application to Boost Converters

We consider the DC–DC boost converter model dealt with in [28], which is depicted
in Figure 2. For simplicity and easiness to follow, suppose that there is only one transistor–
diode switch S; thus, the system is composed of two subsystems. In the case of more than
two switches in the circuit, the number of subsystems will be more than three, but the
discussion and the results can be applied in the same manner.

Figure 2. A boost converter with inductor ESR.

Let the inductor current i(t) and the capacitance voltage uc(t) be the state variables,
and combine them into the state vector x(t) =

[
i(t) uc(t)

]> . Suppose that E(t) is the
control input u(t), v(t) is the disturbance input of the input voltage, and the capacitance
voltage uc(t) is the controlled output z(t). Moreover, suppose that there are independent
stochastic disturbance with the states i(t) and uc(t).

Then, when the switch S is closed, the state space model is

dx(t) =

([
− R0+∆R0

L 0

0 − 1
(R+∆R)C

]
x(t) +

[
1
L

0

]
(u(t) + v(t))

)
dt

+

[
κ1 0

0 κ2

]
x(t)dw

z(t) =
[

0 1
]
x(t) ,

(46)

and when the switch S is open, the state space model is

dx(t) =

([
− R0+∆R0

L − 1
L

1
C − 1

(R+∆R)C

]
x(t) +

[
1
L

0

]
(u(t) + v(t))

)
dt

+

[
κ1 0

0 κ2

]
x(t)dw

z(t) =
[

0 1
]
x(t) .

(47)

In the above, ∆R0 and ∆R denote the variations of the load resistance R0 and R, which
are supposed to be bounded by |∆R0| ≤ ∆R0MAX and |∆R| ≤ ∆RMAX , respectively.

Observing the nominal part and the uncertain part in the system matrices of (46)
and (47), we see that the above switched system takes the form of (13), where

A1 =

[
− R0

L 0

0 − 1
RC

]
, A2 =

[
− R0

L − 1
L

1
C − 1

RC

]
, B1 = B2 = G1 = G2 =

[ 1
L

0

]

C1 = C2 =
[

0 1
]

, D1 = D2 = I2 , E1 = E2 =

[ ∆R0MAX
L 0

0 ∆RMAX
R2C

]
(48)
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and Fi(t)>Fi(t) � ζ2 I2 with ζ = 1. It is noted that the first-order Taylor expansion is used
in the above to separate the uncertainty from the term 1

(R+∆R)C . Moreover, although we
have only assumed the uncertainties in the load resistance R0 and R, we can use the same
formulation to deal with bounded uncertainties in L and C.

To perform the numerical simulation, we need to set up the physical parameters in
the above state space models. Here, we assume L = 102 mH, C = 105µF, R = 100 Ω,
R0 = 0.1 Ω, and the uncertainties are ∆R0 = 0.05 sin(100t)R0, ∆R = 0.1 cos(100t)R .
Substituting the above parameter values together with ∆R0MAX = 0.05, ∆RMAX = 0.1
into (48), we obtain the coefficient matrices

A1 =

[
−1.0 0

0 −0.1

]
, A2 =

[
−1.0 −10.0

10.0 −0.1

]

B1 = B2 = G1 = G2 =

[
10

0

]
C1 = C2 =

[
0 1

]
, D1 = D2 = I2 ,

E1 = E2 =

[
0.5 0

0 0.0001

]
, H =

[
0.2 0

0 0.3

]
.

Since both A1 and A2 are Hurwitz, the achievable L2 gain γ is essential. First, we try
to solve the design condition (19) with γ = 0.2 by adjusting the combination parameters λ1
and λ2, but there is no feasible solution, which means the desired quadratic stability with
L2 gain γ = 0.2 cannot be achieved through switching if there is NO state feedback.

Next, we set λ1 = 0.8 (and thus, λ2 = 0.2) to solve the design condition (42) with

Aλ =

[
−1.0 −2.0

2.0 −0.1

]
.

It turns out that the condition (42) is feasible when γ = 0.2, and the solutions are

Q =

[
4.0310 −1.2201

−1.2201 1.8291

]
, M =

[
−125.4222 −0.3109

]
.

Then, the feedback gain matrices K is computed by

K = MQ−1 =
[
−39.0499 −26.2189

]
.

To activate the switching laws (43) and (44), as stated in Theorem 2, we use

P = Q−1 =

[
0.3108 0.2073

0.2073 0.6850

]
.

With the initial value x(0) =
[

2 −1
]> and the disturbance input w(t) = e−2t sin t,

the state trajectories of x1, x2 in the switched system are depicted in Figure 3, which present
good convergence. Moreover, it is confirmed that the inequality (9) holds for any t > 0
on average when several trials are performed, which implies that the desired quadratic
stability and L2 performance in probability has been achieved.
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Figure 3. State trajectories of the boost converter under SW2.

5. Conclusions

We have dealt with the global quadratic L2 performance analysis problem for a class
of switched uncertain linear stochastic systems. Under the assumption that no single
subsystem achieves GQL2(γ)-P but a convex combination of the subsystems can make
it, we proposed a state-dependent switching law such that the SUSS achieves the desired
GQL2(γ)-P. We also extended the discussion to the design of switching state feedback
controller, together with its application to quadratic stabilization of a boost converter.

It is noted that the convex combination approach proposed in this paper incorporates
norm-bounded uncertainties, L2 gain analysis (attenuation ofH∞ disturbance attenuation),
and stochastic noise reduction in an integrated manner; thus, it is a major extension
to the existing results in the literature. Our future work will consider the applicability
and extension of such a convex combination approach to switched positive systems [29],
switched affine systems [30,31], switched dynamical output feedback [32], fault detection
observer design [33], and event-triggered control [34] for switched and hybrid systems.
Furthermore, it is important to apply the proposed design condition and the algorithm for
more practical electronic circuits and other real systems.
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