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Abstract: The field of the Internet of Things (IoT) is growing at a breakneck pace and its applications
are becoming increasingly sophisticated with time. Fault injection attacks on IoT systems are aimed
at altering software behavior by introducing faults into the hardware devices of the system. Attackers
introduce glitches into hardware components, such as the clock generator, microcontroller, and
voltage source, which can affect software functioning, causing it to misbehave. The methods proposed
in the literature to handle fault injection attacks on IoT systems vary from hardware-based attack
detection using system-level properties to analyzing the IoT software for vulnerabilities against fault
injection attacks. This paper provides a systematic review of the various techniques proposed in
the literature to counter fault injection attacks at both the system level and the software level to
identify their limitations and propose solutions to address them. Hybrid attack detection methods
at the software level are proposed to enhance the security of IoT systems against fault injection
attacks. Solutions to the identified limitations are suggested using machine learning, dynamic code
instrumentation tools, hardware emulation platforms, and concepts from the software testing domain.
Future research possibilities, such as the use of software fault injection tools and supervised machine
learning for attack detection at the software level, are investigated.

Keywords: fault injection attack; attack detection; software vulnerability analysis; machine learning;
software fault injection; software testing

1. Introduction

As the application of IoT systems spreads across several domains, such as healthcare,
smart homes, and autonomous vehicles, the security of these systems becomes increasingly
important. While the attack surface for such systems is huge, significant work has been
undertaken to categorize, analyze, and counter them. Fault injection attacks (FIA) inject
faults into the IoT system’s hardware devices that result in abnormal behavior of the
software. The attacker exploits this aberrant behavior for a variety of purposes, including
obtaining personal information, disrupting program flow in order to bypass critical security
protections, and illegal system access and control. The faults introduced into the hardware
components can be transient faults or persistent faults that remain in the system and exploit
it repeatedly. Clock glitch, voltage glitch, and electromagnetic fault injection (EMFI) are
examples of transient faults. These are active attacks that occur while the system is running.
Fault injection attacks are different from other attacks on IoT systems as they span multiple
layers of the system. The attack is carried out at the physical layer on the IoT system’s
hardware devices, which affects the functioning of software components and programs on
other layers of the system. The software types that can be affected include device drivers,
the operating system, and application software [1]. For instance, the authors of [2] analyzed
how fault injection attacks are carried out on cryptographic devices to trick the encryption
algorithm into using a zero-encryption key. The attacker can then use a zero key to decrypt
and steal sensitive data. These types of attacks pose a significant threat to safety-critical
IoT devices. Since these attacks are initiated at the physical layer and affect the software at
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various layers of the IoT architecture, the methods proposed in the literature to counter
fault injection attacks range from attack detection using system-level physical and network
properties to software vulnerability analysis against the effects of such attacks.

Frameworks proposed in [3–5] enable the detection of fault injection attacks using
physical properties of the system, such as the voltage level, temperature level, and clock
frequency, or by monitoring the electromagnetic field around the IoT system [6]. These
frameworks use different methods, such as formal analysis, machine learning, and deep
learning, to analyze the data and subsequently detect or predict the attacks. The authors
of [4] proposed a framework in which a separate sensor board consisting of various digi-
tal sensors was used to continuously monitor the IoT system properties and used an AI
core to predict any abnormal events. On the other hand, studies such as [7–9] analyzed
the IoT software for vulnerabilities against the effects of fault injection attacks. Software
vulnerability analysis techniques aim to test the IoT software and identify exploitable
vulnerabilities either by replicating actual fault injection attacks on the IoT system or by
simulating the attacks directly on the IoT software. The authors of [8] proposed combin-
ing simulation-based software vulnerability detection with hardware-level verification
of the detected vulnerabilities. While attack detection methods have drawbacks, such as
the requirement of a separate physical hardware setup for monitoring the system-level
properties, simulation-based software vulnerability analysis techniques are not always able
to completely safeguard against all system-level threats due to fault injection attacks.

In this paper, a systematic literature review (SLR) of various frameworks proposed to
counter fault injection attacks on IoT systems is presented. The main contributions of the
paper are as follows:

• Analysis of the primary studies that propose frameworks to counter fault injection
attacks on IoT systems using attack detection and software vulnerability analysis
identifies the limitations and research gaps for each category.

• Proposal of hybrid attack detection methods at the software level that combine con-
cepts from both categories, such as the use of software fault injection, machine learning,
and code instrumentation tools, to address the limitations and improve the security of
IoT systems against fault injection attacks.

The remainder of this paper is organized as follows: Section 2 provides a summary of
the relevant background, terminologies, and definitions necessary to understand the paper.
Section 3 compares this literature review with other related surveys and establishes the
need for this survey. Section 4 details the method used to conduct the systematic literature
review, including the research questions addressed, the search process used to identify
the primary studies, the inclusion criteria, and the data extraction and analysis from the
primary studies undertaken. Section 5 presents the results, which consist of the list of
primary studies found and the answers to the research questions. This section presents a
detailed discussion of the limitations of existing methods and possible research directions
to address them. Finally, Section 6 concludes the paper and offers ideas for future work.

2. Background

This section provides background information for understanding fault injection attacks
and their effects on IoT systems.

2.1. Fault Injection Attacks on IoT Systems

Fault injection attacks inject faults into the hardware and devices of an IoT system
with the intention of modifying the software behavior. These attacks on IoT software invali-
date the common perception that hardware faults have no consequences on IoT software
functioning. These attacks can be carried out by introducing faults into various hardware
components, such as the external clock generator, voltage source, and input/output (I/O)
devices connected to the IoT system. The techniques used to carry out such attacks are
called fault injection techniques and include clock glitch, voltage glitch, electromagnetic
field injection, and optical injection, amongst many others. Figure 1 shows an example of a
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clock glitch fault injection attack (CGFI) that injects glitches into the system clock. Since
integrated circuits latch data and control signals at the rising or falling edge of the clock,
the clock glitches lead to propagation delays in the logic blocks, causing the IoT system
software to function abnormally for a brief period and to produce an unexpected output.
EMFI and optical attacks use electromagnetic field and light as the means of injecting faults
into the system, respectively. The faults injected by such methods may be transient glitches
or long-lived faults, such as changes to the memory region. EMFI-injected faults may affect
the microcontroller operation or interfere with the system voltage, causing the executing
software to behave abnormally. Faults introduced into I/O devices alter the input to the IoT
software, causing it to behave abnormally. The altered software behavior is subsequently
used by the adversary for malicious purposes, such as bypassing authentication mecha-
nisms due to control flow alterations [10], unsecured booting of the system firmware, and
data theft using side-channel analysis [11], amongst many others.
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Figure 1. Clock Glitch Fault Injection Attack.

2.2. Software Effects of Fault Injection Attacks in IoT

The faults injected by the adversary into the hardware components of an IoT system
subsequently propagate to and affect the software at different layers of the IoT architecture.
This stage is commonly referred to as the fault propagation stage. The software effects of
fault injection attacks are most commonly analyzed at the instruction level or the microarchi-
tectural level because these levels have the closest interaction with the IoT system hardware
components, such as the microprocessor, clock generator, and I/O devices. The instruction
level comprises the conversion of high-level software programs into assembly program
instructions, whereas the microarchitectural level is concerned with the hardware compo-
nents of a microprocessor involved in the correct execution of the assembly instructions,
such as the registers, execution unit, and memory. The types of software usually targeted
by attackers include cryptography software, access control software, device firmware, and
application software. The low-level effects of fault injection attacks are combined and
utilized in a targeted manner by the attackers, which results in software effects such as
instruction skip, and data corruption and manipulation. After the fault has successfully
penetrated into the software and taken effect, the attacker subsequently exploits these faults
for malicious purposes, such as obtaining unauthorized system access or corrupting and
accessing the software output to perform side-channel analysis attacks. This is the final
stage of the attack, called the fault exploitation stage. The following explains, and presents
examples of, the two important software effects of fault injection attacks.

2.2.1. Control Flow Modifications

Fault injection attacks can cause one or more assembly instructions of the software to
skip, resulting in control flow modifications. As a result of control flow modification or
instruction skip, the attacker may be successful in bypassing the authentication check in
a PIN verification software process used in an IoT device to obtain unauthorized device
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access. Figure 2 shows a control flow modification resulting in the authentication of an
invalid user PIN.

Electronics 2022, 11, x FOR PEER REVIEW 4 of 24 
 

 

2.2.1. Control Flow Modifications 

Fault injection attacks can cause one or more assembly instructions of the software to 

skip, resulting in control flow modifications. As a result of control flow modification or 

instruction skip, the attacker may be successful in bypassing the authentication check in a 

PIN verification software process used in an IoT device to obtain unauthorized device 

access. Figure 2 shows a control flow modification resulting in the authentication of an 

invalid user PIN. 

 

Figure 2. Instruction Skip in Pin Verification Software. 

There have been successful control flow modifications performed on cryptography 

devices reported in the literature which have forced the device software to use a zero-

encryption key [12]. If the attacker gets access to the encrypted data, they can easily de-

crypt it using a zero key and get access to confidential data that was supposed to be pro-

tected. Various types of instruction-level changes create control flow modifications. Sin-

gle-instruction skips lead to the skipping of a single assembly instruction in the software 

at a time. Barbu et al. [13] demonstrated the use of single instruction skip attacks to bypass 

authentication mechanisms on a java card 3.0. A single instruction skip has limited value 

because it only affects one assembly instruction, which is not sufficient to replicate the 

system-level effects of fault injection attacks. Multiple instruction skips lead to the simul-

taneous skipping of two or more instructions. Dehbaoui et al. [14] demonstrated the use 

of EMFI attack on AES implementation to achieve multiple instruction skips and retrieve 

the encryption key using differential analysis of the ciphertexts. Methods proposed in [14–

17] demonstrated multiple instruction skipping. Menu et al. [16] demonstrated multiple 

instruction skips on an ATmega328P microcontroller using electromagnetic fault injection 

as the method of physical attack. Breier et al. [17] utilized a laser injection attack to imple-

ment an instruction skip on the AES encryption algorithm running on an ATmega328P 

microcontroller. 

2.2.2. Data Corruption and Manipulation 

In this category, fault injection attacks affect the data being used in the targeted soft-

ware. This data can range from user-controlled data, hard-coded data, and configuration 

properties, amongst many others. The intention of the attacker is to modify the data flow 

of the program as intended by corrupting a single bit, a single byte, or multiple bytes of 

data. Such attacks can also benefit from software bugs that may lead to unexpected be-

havior, such as buffer overflow, memory changes, and memory corruption. There are var-

ious ways in which the data can be corrupted, such as flip, set, reset, and random changes 

at different levels, including bit, byte, or word levels. For instance, Barenghi et al. [2] 

demonstrated how different fault injection techniques, such as clock glitch, laser injection, 

and EMFI can be used to corrupt the cryptographic keys used in different encryption pro-
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There have been successful control flow modifications performed on cryptography
devices reported in the literature which have forced the device software to use a zero-
encryption key [12]. If the attacker gets access to the encrypted data, they can easily
decrypt it using a zero key and get access to confidential data that was supposed to be
protected. Various types of instruction-level changes create control flow modifications.
Single-instruction skips lead to the skipping of a single assembly instruction in the software
at a time. Barbu et al. [13] demonstrated the use of single instruction skip attacks to
bypass authentication mechanisms on a java card 3.0. A single instruction skip has limited
value because it only affects one assembly instruction, which is not sufficient to replicate
the system-level effects of fault injection attacks. Multiple instruction skips lead to the
simultaneous skipping of two or more instructions. Dehbaoui et al. [14] demonstrated
the use of EMFI attack on AES implementation to achieve multiple instruction skips and
retrieve the encryption key using differential analysis of the ciphertexts. Methods proposed
in [14–17] demonstrated multiple instruction skipping. Menu et al. [16] demonstrated
multiple instruction skips on an ATmega328P microcontroller using electromagnetic fault
injection as the method of physical attack. Breier et al. [17] utilized a laser injection attack to
implement an instruction skip on the AES encryption algorithm running on an ATmega328P
microcontroller.

2.2.2. Data Corruption and Manipulation

In this category, fault injection attacks affect the data being used in the targeted
software. This data can range from user-controlled data, hard-coded data, and configuration
properties, amongst many others. The intention of the attacker is to modify the data flow of
the program as intended by corrupting a single bit, a single byte, or multiple bytes of data.
Such attacks can also benefit from software bugs that may lead to unexpected behavior,
such as buffer overflow, memory changes, and memory corruption. There are various ways
in which the data can be corrupted, such as flip, set, reset, and random changes at different
levels, including bit, byte, or word levels. For instance, Barenghi et al. [2] demonstrated
how different fault injection techniques, such as clock glitch, laser injection, and EMFI can
be used to corrupt the cryptographic keys used in different encryption programs. On the
other hand, Joye et al. [18] proposed several countermeasures, such as parity-based error
detecting codes (EDCs), computation randomization, and signature detection against data
corruption due to instruction skipping.

2.3. Fault Models

Fault models are used to model the effects of fault injection attacks on the IoT system.
Hardware fault models are created by analyzing the different ways in which fault injection
attacks can induce faults in the hardware components of an IoT system in order to affect
their operation. These include clock-glitch-induced faults, temperature-induced faults, and
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voltage-induced faults, amongst many others. Hardware fault models are utilized in attack
detection methods that use system-level properties to monitor the IoT system. Software
fault models are created by considering the different effects that the injected faults into the
hardware can have on the system software. For example, instruction-level fault models
are created by replicating the effects of fault injection attacks at the software program
instruction-level. A single-bit fault model is used to replicate attacks that affect a single bit
of the software at a time. For example, a bit flip fault model modifies a single bit from 1 to
0 or 0 to 1. Similarly, there exist byte-level and word-level fault models. The jump fault
model is an example of a byte-level fault model which modifies a single byte in the jump
instructions extracted from the software. The jump fault model can be used to simulate
the instruction-skipping effect of fault injection attacks on IoT software. Software fault
models are utilized in simulation-based software vulnerability detection methods against
fault injection attacks.

3. Related Work

This section analyzes other surveys in the literature that address fault injection attacks
on IoT systems and devices to determine their shortcomings and justify the need for this
systematic literature review. Kazemi et al. [19] reviewed methods proposed in the literature
that utilize clock and voltage fault generators to physically replicate fault injection attacks
on the hardware devices of microcontroller based IoT systems. Their review article only
considered hardware design validation methods against clock and voltage fault injection
attacks, and focused on the methods for hardware security domain with primary studies
solely from the perspective of microcontroller-based IoT applications. They also proposed
a standard hardware testing platform for IoT systems and devices to be used during the
hardware design and system software development. Polychronou et al. [20] reviewed the
various fault injection attack vectors that do not require physical contact with the hardware
components of an IoT device. The review presented novel attack methods based on the
hardware vulnerabilities at the microarchitectural level in IoT devices. The objective of the
survey was to inform hardware designers of IoT devices about potential hardware vulner-
abilities against fault injection attacks. The survey also analyzed hardware-based attack
detection methods for attack vectors that targeted micro-architectural hardware vulnerabil-
ities in IoT devices and proposed modifications for precise detection. The modifications
proposed were based on the observed microarchitectural side-effects of the various attack
vectors. For instance, cache monitoring was proposed for faults injected into the IoT device
memory. The survey was primarily concerned with analyzing the hardware side-effects
of attack vectors, such as cache miss, cache hit, and changes in on-chip thermal monitors.
Bilgiday et al. [1] presented a survey on fault attack threats against embedded software that
manage the security of embedded devices and systems, such as cryptography and access
control software. The survey categorized the hardware fault attacks on embedded software
according to the level of attack, including application level, instruction level, microarchitec-
ture level, circuit level, and environment level. The survey focused on hardware attacks at
the microarchitecture level and below, which are architecture-dependent and inapplicable
to a wide variety of embedded devices. The primary studies included in the survey covered
fault exploitation techniques and vulnerability analysis of embedded security devices that
used hardware-based testing.

The above-mentioned surveys analyzed the various fault injection attack techniques
and detection methods at the hardware level. There exist other surveys in the literature that
have analyzed software vulnerability analysis techniques. Software vulnerability analysis
techniques are used to determine the fault tolerance of the IoT software against the effects of
fault injection attacks. Dureuil et al. [21] evaluated cryptography software implementations
on smartcard-embedded devices for robustness against fault injection attacks. They pro-
posed methodologies to detect software vulnerabilities in the cryptography software that
resulted in the smartcard providing unauthorized access. The survey examined various
fault models that have been used to simulate fault injection attacks on smart card devices at
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the architecture level and proposed predictive vulnerability rate as an evaluation metric for
software vulnerability analysis. However, the proposed metric is specific to cryptography
software implementations used in smartcard devices. Eslami et al. [22] presented a survey
that brought together and compared hardware-based and software-based approaches to
simulate fault injection attacks on digital devices. The survey covered hardware-based fault
injection and emulation-based fault injection using circuit instrumentation techniques and
hardware reconfiguration. Within the domain of software-based fault injection, the survey
analyzed static and dynamic methods for performing software fault injection. Software
fault injection is a simulation of the effects of fault injection attacks directly on the software.
The primary focus of the survey was on how fault injection attacks can be performed using
hardware emulation and software fault injection techniques rather than on attack detection
and software vulnerability analysis. Qasem et al. [23] presented a survey on automatic
software vulnerability detection in embedded devices and firmware. The primary focus
of their survey was on static code analysis, dynamic code analysis, and symbolic execu-
tion techniques to analyze software vulnerabilities in embedded and IoT device firmware.
The methods analyzed by the survey were not specific to hardware-based fault injection
attacks, which require techniques to analyze the software at least at the instruction level
or below. Lou et al. [24] reviewed methods for microarchitectural side-channel attacks.
Since fault injection attacks are used as a precursor for side-channel analysis, many of the
methods discussed in the survey are also applicable to fault injection attacks and give an
insight into novel countermeasures against fault injection attacks. The survey analyzed
various software countermeasures by categorizing them based on the IoT architecture
levels at which they are implemented. The countermeasures included in the survey are
analyzed at three levels: application, system, and architecture. Countermeasures, such as
monitoring run-time behavior and static software vulnerability detection, are proposed to
secure the IoT system at the application level, whereas architecture-level strategies include
hardware-resource partitioning for different running processes and hardware vulnerability
identification. The survey covered hardware designs and software implementations of var-
ious cryptography devices that are vulnerable and analyzed the existing countermeasures.
The analysis led to the suggestion of new attack vectors, rendering existing countermea-
sures ineffective. The primary focus of the paper was to discover new attack vectors and
suggest software countermeasures for them.

The literature surveys presented in [1,19,20,25] analyzed the various hardware attack
vectors to identify existing hardware vulnerabilities in components such as the microcon-
troller, clock generator, and voltage supply in the IoT system or device. The purpose of
these surveys was to inform IoT hardware designers of the threats posed by fault injection
attacks. The surveys presented in [1,2,24] were specifically aimed at cryptography devices
and software, making the survey results specific and not generalizable for all IoT systems.
The existing surveys do not focus on fault injection attack detection methods. There is a
need to analyze attack detection methods based on the type of IoT system features used to
detect the attacks, such as application, circuit, or physical level features. This will help to
discover their limitations and potential solutions. Simulation-based software vulnerability
analysis techniques are an effective method to safeguard against fault injection attacks but
have limitations, such as lack of usability in real-time and adaptability to new attack vectors.
This systematic literature review is intended to identify the limitations and research gaps
for each category of solutions proposed to counter fault injection attacks, with a major focus
on simulation-based software vulnerability analysis techniques. There is a lack of surveys
that compile the primary research studies on attack detection and software vulnerability
analysis methods. A combined analysis of existing methods in both categories is used
to propose hybrid software-level attack detection methods that combine concepts from
both categories, such as the use of software fault injection, machine learning, and code
instrumentation tools to improve the security of IoT systems against fault injection attacks.
The survey also investigates the possibility of utilizing concepts from the software test-
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ing domain, such as [26,27], for IoT software vulnerability analysis against fault injection
attacks.

4. Method

This systematic review follows the guidelines proposed by Kitchenham et al. [28]. This
section discusses the methodology used to conduct the literature review and the many
processes involved. It details how each stage was completed.

4.1. Research Questions

This study intends to produce responses to the following research questions (RQs):

RQ1: What solutions have been proposed for dealing with fault injection attacks?

Answering this question will shed light on the different types of solutions that have
been proposed to deal with fault injection attacks on IoT systems. For instance, some
studies have analyzed the system’s physical and network features to detect fault injection
attacks, while others have conducted software vulnerability analysis to ensure that the
appropriate software countermeasures are in place to withstand the impact, even if the
attack is successful.

RQ2: What are the limitations of the current solutions proposed and how can they be
addressed?

By addressing these concerns, a better understanding of the field’s current deficiencies
is possible, which helps us to explore potential solutions for addressing the limitations of
existing attack detection and software vulnerability methods.

RQ3: Can the limitations of existing attack detection and software vulnerability methods be
addressed by using hybrid solutions from both categories and techniques from the software
testing domain?

Answering this question will shed light on how hybrid solutions, machine learning,
software testing concepts, and code instrumentation tools can be utilized to make IoT
systems more resilient to fault injection attacks.

4.2. Inclusion Criteria

After the research questions were constructed, an inclusion criterion was determined
that was required to be satisfied by all the primary studies included in this systematic
literature review. This helped to establish a ground rule and to avoid any bias towards any
particular study. The primary studies were required to satisfy at least one of the following
inclusion criteria (IC):

• IC1: Addresses fault injection attacks on IoT systems
• IC2: Addresses detection and prevention of fault injection attacks in an IoT system or device
• IC3: Addresses software vulnerability analysis related to an IoT system or device

4.3. Search Process to Find Primary Studies

The search process utilized to find the primary studies included searching and thor-
oughly scanning multiple sources. The objective of this search was to locate the maximum
number of papers that were published related to fault injection attacks and solutions pro-
posed to deal with these attacks. The initial search for the primary studies was performed
on the Google Scholar search engine, which enables the search of indexed scholarly pub-
lished material. Google Scholar searches through the databases of most of the popular
publications. Apart from this, a manual search was also performed on the popular pub-
lication websites, such as IEEE Xplore, ScienceDirect, ACM Digital Library, MDPI, and
Springer. From the search results, the primary studies were selected by reviewing the
title and abstract and skimming through the content of the papers. Subsequently, all the
results from different search engines were merged, and any duplicate primary studies were



Electronics 2022, 11, 2023 8 of 24

eliminated from the list. The following list of keywords were used in the search engines to
find the primary studies:

• “IoT embedded security physical fault injection attacks”
• “IoT embedded fault injection attack detection”
• “IoT embedded fault injection attack software vulnerability analysis”

4.4. Data Extraction and Analysis from Primary Studies

The information below was extracted from the primary studies in order to answer the
research questions presented above:

• The source of publication
• The authors and their institution
• The year of publication
• The task performed by the security framework
• The methodology and techniques used in the proposed solution

5. Results

The results presented in this section provide answers to the proposed research ques-
tions. Research gaps in attack detection methodologies and software vulnerability detection
against fault injection attacks are identified and the use of emerging technologies, such as
code instrumentation tools, machine learning, and software testing concepts to address
them is proposed. By addressing these gaps, IoT systems can be made more secure and
resistant to fault injection attacks and their associated consequences.

5.1. Search Results

The search process resulted in the identification of 28 primary studies. Table 1 provides
an overview of the important primary studies. These primary studies are then used for
data extraction and analysis, to assist in answering the proposed research questions in this
systematic literature review. Table 1 also shows the statistics for the primary studies, such
as the year of publication, the source, and whether the primary study was published in
a journal, conference, or a book chapter. Hardware frameworks to counter fault injection
attacks [29] have been available since 2013, whereas software vulnerability analysis and
countermeasures [30,31] gained traction from 2014. Recent studies in both categories
utilized machine-learning techniques to analyze monitored data for attack detection [3,32]
and to identify vulnerability patterns for software vulnerability detection [7,33]. IEEE
Xplore has published the majority of the studies in this field.

Table 1. Statistics of primary studies.

Primary Study Year Source Type

Shrivastwa et al. [32] 2021 Springer B

Richter-Brockmann et al. [34] 2021 IACR J

Lacombe et al. [35] 2021 HAL C

Dutertre et al. [15] 2021 ScienceDirect J

Wei et al. [3] 2020 ScienceDirect J

Given-Wilson et al. [8] 2020 Springer J

Koylu et al. [33] 2020 IEEE Xplore C

Brejon et al. [36] 2019 ACM C

Mahmoud et al. [37] 2019 ACM C

Khosrowjerdi et al. [7] 2018 IEEE Xplore C
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Table 1. Cont.

Primary Study Year Source Type

Benevenuti et al. [2] 2017 IEEE Xplore J

Deshpande et al. [38] 2016 IEEE Xplore C

Kaliorakis et al. [39] 2015 IEEE Xplore C

Rivière et al. [9] 2015 Springer C

Holler et al. [40] 2015 IEEE Xplore C

Riviere et al. [41] 2015 IEEE Xplore C

Potet et al. [31] 2014 IEEE Xplore C

Moro et al. [30] 2014 Springer J

Hiroaki et al. [29] 2013 IEEE Xplore C
C = Conference, J = Journal, B = Book Chapter.

5.2. Addressing RQ1: Categorizing the Solutionss

Table 2 provides an overview of the categorization of primary studies used for this
systematic literature review. The proposed solutions can be broadly classified into two
categories. This section provides an overview of each category and discusses in detail some
methods from both categories that represent the state of the art and are both necessary
and sufficient for determining the strengths and limitations of existing methods in each
category.

Table 2. Overview of primary studies.

Primary Study Type Details

Shrivastwa et al. [32] AD EMFI and CGFI detection with FPGA-based sensor fusion monitoring

Facon et al. [42] AD EMFI detection with FPGA-based digital smart monitor

Deshpande et al. [38] AD FPGA-based monitor for clock glitch attack

Hiroaki et al. [29] AD Faulty clock monitor for crypto device

Benevenuti et al. [2] AD For SRAM FPGAs using functional redundancy

Wei et al. [3] AD Semi-supervised detection of voltage glitch attacks using neural network

Richter-Brockmann et al. [34] SVA Using physical fault injection framework

Given-Wilson et al. [8] SVA Formal methods and model checking

Brejon et al. [36] SVA Model checking based vulnerability analysis

Kaliorakis et al. [39] SVA Using micro-architectural fault injection simulation

Potet et al. [31] SVA Using model checking and dynamic symbolic execution against laser attacks

Rivière et al. [9] SVA Combined source code and assembly code analysis

Lacombe et al. [35] SVA Combined toolchain for static and symbolic program analysis

Holler et al. [40] SVA Using QEMU-based microarchitectural simulator

Riviere et al. [41] SVA EFS + Lazart for multi-level simulation

Khosrowjerdi et al. [7] SVA Learning-based fault injection test case prioritization

Dutertre et al. [15] SVA For multiple instruction skips on AES using EMFI simulation

Koylu et al. [33] SVA RNN-based control flow modification detection in RSA

Moro et al. [30] SVA Using instruction skip attacks on cryptography software

Mahmoud et al. [37] SVA Silent data corruption detection using software testing techniques

AD = Attack Detection, SVA = Software Vulnerability Analysis.
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5.2.1. Attack Detection

The faults injected into the hardware components of an IoT system affect various prop-
erties at different levels of the system, such as the environment and hardware properties.
Attack detection techniques proposed in the literature monitor these system properties to
detect any abnormal variations and predict the attack. This section analyzes the existing
attack detection methods in detail to discover their vulnerabilities and limitations.

Physical level attack detection methods monitor the physical properties of the sys-
tems that are expected to be disturbed by the fault injection attack. Two types of physical
properties are monitored to detect the attacks: operational properties and hardware-level
properties. Operational properties include temperature, electromagnetic field, and op-
tical intensity, amongst many others, that indicate the operating conditions of the IoT
system. Hardware properties include system voltage, clock frequency, and I/O device state,
amongst many others. Monitoring these operational and hardware properties enables the
detection of any sudden and unexpected variations in the physical conditions of the IoT
system due to fault injection attacks. Physical level attack detection methods usually utilize
a separate hardware setup alongside the IoT system to monitor the physical properties.
Machine learning techniques are used to analyze the collected physical system data and
identify any abnormal patterns representing attack conditions. Facon et al. [42] presented
a machine-learning-based detection approach to electromagnetic fault injection (EMFI)
attacks. A group of digital sensors on a field-programmable gate array (FPGA) board
monitored the operating conditions of a crypto-accelerator, such as the temperature, clock
frequency, voltage, and reset line stability of the FPGA. The proposed framework also
monitored other hardware properties, such as the I/O ports of the system and the processor
load. The monitored physical features were utilized to predict attack and nominal scenarios
using different supervised machine-learning algorithms, such as support vector machines
(SVM), logistic regression classifier (LRC), naive bayes classifier (NBC), and multi-layered
perceptron (MLP). The results of the machine-learning-based detection were compared
to the baseline approach using sensor value thresholding. The results demonstrated that
machine-learning algorithms are highly capable of detecting intricate deviations in the
physical operating conditions resulting from fault injection attacks and detected the attacks
with an average accuracy improvement of 25–30%.

Jiang Wei [3] utilized a semi-supervised machine-learning technique to detect voltage
glitch fault injection attacks on digital IoT systems. The technique utilized a feedfor-
ward neural network with a single hidden layer to find hidden variables, improving
the detection performance, with the major motive being reducing the learning time com-
plexity of the detection framework. An extreme machine-learning (ELM) classifier was
used to perform the clustering on a voltage glitch experiment dataset at the gate-level.
The proposed approach achieved an average accuracy and f1-score of 87%. Methods
such as [5,29,38] utilized only hardware-level properties to detect fault injection attacks.
Deshpande et al. [38] introduced a configurable ring oscillator-based timing monitor to
detect fault injection attacks which cause timing glitches in the hardware components of the
IoT system, such as changes in clock duration or frequency. The timing monitor was also
able to detect voltage manipulations. The proposed monitoring device was implemented
on an FPGA, which made it reconfigurable and applicable to a wide range of IoT systems
and devices. Benevenuti et al. [5] presented a fault injection attack detection framework for
SRAM-based FPGAs by duplicating certain functional modules of cryptography devices,
such as the substitution box (S-box), which is a part of the advanced encryption standard
(AES). The framework used functional redundancy as a means of comparing the output
of duplicated modules in the device and detecting fault injection attacks. The proposed
approach was evaluated using a bit flip software fault model to replicate the effect of a
laser-based optical fault injection attack on a Xilinx 7 Series SRAM-based FPGA. Unlike
the above-mentioned methods, the proposed approach could detect system-level threats,
such as silent data corruption (SDC) and functional interruption (SEFI), for FPGA-based
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applications. Other hardware-based attack detection methods proposed in the literature
include [2,6,13,14,17,43].

The most recent methods in the literature have combined data from multiple sources
to detect fault injection attacks [4,32]. Shrivastwa et al. [32] proposed a hardware-based
monitoring framework whereby a smart monitor was used to continuously monitor the
system and predict EMFI and CGFI attacks on a target FPGA board. The proposed smart
monitor was implemented on an FPGA board and consisted of several digital sensors, such
as temperature, voltage, and other precision sensors, placed at different locations on the
FPGA board. The data collected by all these sensors was aggregated using data fusion
techniques. Sensor data fusion was utilized to avoid incorrect readings or local anomalies
from saturated digital precision sensors and improved the reliability of the smart monitor.
The aggregated data was processed in two stages to detect and classify the fault injection
attack. The attack detection stage was evaluated using several supervised machine-learning
algorithms, such as the Gaussian naïve Bayes classifier (GNBC), logistic regression classifier
(LRC), support vector machines (SVM), and multi-layer perceptron (MLP). The detection
stage was trained using supervised machine-learning algorithms as they are simple and
low-latency algorithms compared to artificial intelligence (AI) techniques, such as neural
networks (NN). This ensured minimal prediction latency, which helped in activating the
countermeasures as soon as possible. An AI core was further used to classify the type
of detected perturbation as nominal, SMFI, or CGFI. The AI core used to perform the
classification is a complex stage and has a higher latency than the detection stage. The
framework was evaluated using high level synthesis (HLS) and an FPGA board and
demonstrated that the proposed framework performed marginally better than threshold-
based attack detection. The framework distinguished between EMFI and CGFI with a
77.25% accuracy while maintaining a false negative rate of 0. Though approaches using
sensor fusion and multi-source data fusion to detect fault injection attacks are currently
limited, these solutions are becoming more popular due to their end-to-end system security.
Sahu et al. [4] proposed methods utilizing sensor fusion and the combination of various
data sources, such as physical and network properties, to detect a wide variety of attacks
at different levels of an IoT system, including fault injection attacks. Frameworks such
as [4,44,45] can also help in discovering features at other IoT system levels that are indicative
of fault injection attacks. For instance, the effects of fault injection attacks on the network
and software layer of an IoT system can be studied in detail using such frameworks.

5.2.2. Software Vulnerability Analysis

The faults injected into the hardware components of an IoT system ultimately affect
the software functioning. The second approach to counter fault injection attacks is by
implementing the appropriate software countermeasures that make the software resistant to
the effects of fault injection attacks. Fault injection tolerant software necessitates analyzing
the software to identify the potential exploitable vulnerabilities. The methods proposed in
the literature to detect software vulnerabilities to fault injection attacks can be categorized
as physical testing and simulation-based analysis techniques.

Physical testing techniques utilize physical testing equipment to perform fault injec-
tion attacks on various hardware components of the IoT system and subsequently monitor
the software for any abnormal behavior. The methods in [46–49] have injected faults into
various hardware components of an IoT system, including the microprocessor, clock gen-
erator, and voltage supply, to discover new software vulnerabilities. Kazemi et al. [46]
performed clock glitch attacks on a medical IoT device to identify control flow vulnerabili-
ties in the software executing on a microcontroller. The proposed approach was evaluated
on a password-checking procedure running on an ARM-based microcontroller with multi-
ple conditional statements, and it was concluded that the number of authentication steps
has a linear relationship with the software fault tolerance. The authors of [47,48] described
frameworks to perform voltage glitch attacks on IoT devices using Intel software guard
extensions (Intel SGX). Intel SGX is used to isolate the memory region for multiple pro-
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cesses executing on a microprocessor. These studies demonstrate the catastrophic effects of
voltage glitch attacks causing faulty operation of Intel SGX resulting in overlapping mem-
ory regions for low-privilege and high-privilege processes. Bossuet et al. [49] described a
physical testing setup to perform multi-spot laser fault injection attacks on cryptography
devices in order to induce instruction-level faults in the software. Experiments performed
on two characterization codes demonstrated the ability of the testing setup to induce bit
level faults at the program instruction-level of the executing software.

Simulation-based software vulnerability analysis is the second category of solutions
used to test the software fault tolerance against fault injection attacks. Higher-level software
fault models can simulate limited attack effects because they do not correspond to software
modifications caused by hardware-injected faults. For example, software fault models
at the source code level can only modify the variables and programming statements
that do not correspond to the effects of fault injection attacks, such as single-instruction-
skipping and changes in conditional branches. Simulation-based vulnerability analysis
techniques simulate the fault injection attack effects directly on the software at the assembly
instruction or microarchitectural level. Instruction-level software fault injection tools,
such as Chaos Duck [50] and Simplifi [51], simulate the effects of fault injection attacks by
modifying the assembly instructions of the software using several fault models described
in Section 2.3. For instance, the Chaos Duck tool extracts the assembly instructions from the
executable software and injects faults using non-operation (NOP), jump (JMP), flip (FLP),
and zero-byte (ZERO) fault models. The tool runs the faulty executables and records the
execution output, which can be analyzed to predict if the injection created a vulnerability.
Potet et al. [31] described the Lazart tool to simulate fault injection attacks on IoT software.
Lazart simulates fault injection attacks by operating on the low-level virtual machine
intermediate representation (LLVM-IR) [52] of the software, instead of modifying the
software directly at the assembly instruction level. This allows the Lazart tool to combine
various low-level software fault models and simulate the attacks at an intermediate level
for a higher similarity to the effects of actual hardware fault injection attacks. The mutant
executables generated by modifying the LLVM-IR program are executed using symbolic
execution to generate test cases. The results of these symbolic executions can determine
attack paths or sometimes be inconclusive. Riviere et al. [9] improved the Lazart tool
by combining it with an embedded fault simulator (EFS) [41] to simulate multiple fault
injection attacks. Lazart operates statically at compile time on the intermediate instruction
representations, whereas EFS operates dynamically at run time on the assembly level
instructions. Combining the two tools enabled the simulation of a wide range of attacks at
multiple levels of the IoT system. Experiments performed on the PIN verification software
demonstrated its ability to detect a higher number of vulnerabilities compared to Lazart.
For instance, Lazart exhibited a detection rate of 16.6%, while the combined approach
improved the detection rate to 21.4%.

Microarchitectural-level software fault injection tools simulate the effects of fault
injection attacks by modifying the way in which assembly instructions are executed by the
microprocessor. These tools simulate the attacks by injecting faults into components of
the microprocessor, including registers, instruction cache, instruction execution unit and
buffers, amongst many others. Höller et al. [40] described a quick emulator (QEMU)-based
software fault injection tool supporting the majority of the processor architectures used
in IoT systems. This QEMU-based simulator was used to inject faults into the memory,
registers, and execution unit of the processor. Utilizing QEMU makes the simulator appli-
cable to a wide range of processor architectures. The simulated attacks lead to incorrect
execution of assembly instructions by the processor, which can be used to implement
control flow errors, memory faults, and data corruption. For instance, modifying register
bits leads to incorrect loading of data stored in variables, producing an unexpected output.
The QEMU-based fault injection tool was evaluated on a password-checking procedure
against control flow errors, memory access errors, and data corruption. Kaliorakis et al. [39]
presented a fault injection simulation approach for the x86-64 processor architecture using



Electronics 2022, 11, 2023 13 of 24

the MARSSx86 simulator [53]. The proposed approach achieved a speedup of 2.92× com-
pared to the baseline approach which utilized full execution on the processor instead of
the simulator. However, the proposed simulator is only applicable to the x86-64 architec-
ture, which limits its application in IoT systems that primarily use ARM-based processors.
Microarchitectural-level software fault injection tools can also be used to simulate attack
effects at the instruction level, though they are more difficult to implement.

The methods proposed in the literature utilize various analysis techniques on the
software fault injection output to detect instances that create vulnerabilities. The majority of
the software vulnerability analysis methods utilize model checking or machine learning to
analyze the software fault injection output and automatically detect software vulnerabilities
to fault injection attacks. Model-checking techniques use system-modeling techniques to
build an expected model of the IoT software along with expected features and properties.
Formal analysis methods are used on the models created from the software fault injection
output and their properties are verified against the expected properties. A difference in
the model properties obtained from software fault injection indicates that the injected fault
created a software vulnerability. Formal analysis methods are mathematical procedures
used in software verification. The authors of [34,36,54] utilized model-checking methods
to analyze cryptography software for vulnerabilities. Given-Wilson et al. [8] described
a framework for run-time verification of fault-injected software binaries using model
checking to validate the expected software properties defined as variables and constants
at certain positions in the software. The fault-injected software binaries are created using
instruction-level fault models, such as NOP and FLP. Model checking, applied on the fault
injected binary execution, classifies it as vulnerable, correct, incorrect, or crashed. Potet
et al. [31] used model checking on dynamic symbolic execution results to detect control
flow modifications caused by simulated laser fault injection attacks.

Machine-learning methods utilize pattern recognition to identify vulnerability patterns
using static and dynamic software properties. The methods described in [7,33,55] have used
machine-learning techniques to identify software vulnerabilities. Khosrowjerdi et al. [7]
described a method combining model checking and machine learning to detect vulnera-
bilities in safety-critical software including cryptography and access control software. A
finite state modeling (FSM) technique is used to build the system models. The software
fault injection process is carried out using the quick emulator (QEMU) and GNU debugger
(GDB) and system models are generated for each injected fault. The proposed method
utilizes machine learning on reverse-engineered system models to automate test case gener-
ation. This prevents executing each fault-injected binary. The generated test cases identify
software fault injection points that are more likely to result in exploitable vulnerabilities.
Model checking is used on the execution output of the generated test cases to identify if an
injected fault creates a vulnerability. Koylu et al. [33] proposed the use of a recurrent neural
network (RNN) to detect program flow modifications in the RSA cryptography software
due to instruction-level simulation of fault injection attacks. An RNN was trained on the
control flow graphs generated by symbolic execution of fault injected executables to identify
whether or not the injected fault created a vulnerability. Lacombe et al. [35] utilized static
source code analysis to detect fault injection points in the software and subsequently used
dynamic symbolic execution to validate the attack paths. Prioritizing fault injection points
using static analysis saves a significant amount of the time required for the time-consuming
dynamic symbolic execution, which may also be non-terminating. These non-terminating
conditions are identified using the static analysis step and are avoided.

5.3. Addressing RQ2: Analysis and Limitations

This section analyzes the significant primary studies reported in the literature that
are sufficient to determine the advantages and limitations of existing solutions in the two
categories of attack detection and software vulnerability analysis methods.
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5.3.1. Attack Detection

The physical level attack detection methods described in Section 5.2.1 [3,5,19,29,32,38,42]
all require a separate physical hardware monitoring setup alongside the target IoT system or
device to detect fault injection attacks. This makes such attack detection methods expensive,
and the hardware monitoring setup needs to be adjusted for every IoT application. For
instance, Shrivastwa et al. [32] utilized an FPGA-based digital smart monitor, whereas Wei
Jiang [3] utilized hardware equipment to monitor gate-level properties of integrated circuits
(ICs), such as voltage levels at different points, in order to analyze circuit-level properties
and detect fault injection attacks. Shrivastwa et al. [32] strategically placed the digital
precision sensors of the smart monitor at different locations on the FPGA board on which
the IoT system is implemented. These sensor locations need to be manually modified for
each IoT application. The use of physical properties, such as temperature, optical intensity,
and voltage, by attack detection frameworks also makes them vulnerable to false data
injection attacks and adversarial machine learning [56]. The physical data used by the
detection frameworks as an input can be manipulated by adversarial attacks, leading to a
high number of false negatives in the attack predictions. False triggering of system-level
countermeasures on detection of an attack can make it possible for adversarial attackers
to perform side-channel analysis by observing the system behavior. This creates a new
source of side-channel attacks that can be used to steal confidential data from cryptographic
devices used in IoT systems or alter the functionality of safety-critical and access control IoT
software [57,58]. Another important concern with attack detection methods is the machine
learning or AI algorithm to be used. Shrivastwa et al. [32] achieved high prediction and
classification accuracy due to the use of supervised machine-learning algorithms. However,
this poses a significant challenge of creating the necessary training data for the machine-
learning algorithm. The IoT system or device needs to be subjected to fault injection attacks
in different scenarios in order to collect the necessary labeled physical data representing
nominal and attack conditions. Subjecting every IoT system to controlled fault injection
attacks can be a difficult task, and the physical equipment required to perform such
experiments may need modification according to the IoT system. This makes supervised
machine-learning techniques difficult to utilize for attack detection due to the lack of a
labeled dataset. It is not possible to generate such a dataset containing physical properties,
such as temperature and voltage, using attack simulation techniques. A possible solution
to this is to utilize a hardware description language (HDL), such as Verilog and VHDL,
to simulate the IoT system hardware. This still requires simulating fault injection attack
conditions in HDL, which remains an open challenge. The difficulty in creating a labeled
dataset has led to other methods to utilize semi-supervised or unsupervised machine-
learning techniques [3]. However, the use of AI-based frameworks creates problems such
as performance and timing overhead for the detection module, especially in resource-
constrained IoT systems. The above-mentioned limitations of attack detection methods are
evident by the lack of frameworks proposed in the recent literature.

Responses to the major limitations of attack detection methods that need to be pursued
in future research are as follows:

• Standard instruments to replicate fault injection attacks on commonly used devices in
IoT systems, such as ARM-based microprocessors, I/O devices, clock generators, etc.

• Generic attack detection frameworks using supervised machine-learning algorithms
that provide better results but present the challenge of creating a labeled dataset. Such
frameworks must be adaptable to multiple IoT systems with minor modifications.

• A generic labeled dataset generation workflow for attack detection applicable to a
wide range of IoT systems and devices, preferably using emulation-based methods to
avoid replicating fault injection attacks on the actual IoT system or device.

• Countering adversarial machine learning and false data injection attacks on the fault
injection attack detection mechanism. Such attacks are commonly carried out on the
physical properties of IoT systems, such as temperature, voltage level, electromagnetic
field, and optical intensity, amongst many others.
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5.3.2. Software Vulnerability Analysis

The limitations of physical testing techniques used for IoT software vulnerability
analysis are similar to those of attack detection methods. Physical testing techniques
require replicating actual fault injection attacks on IoT systems, similar to attack detection
methods. However, the effects of the attack on the IoT software are observed and inspected
to discover exploitable software vulnerabilities to fault injection attacks and determine
appropriate software countermeasures. Physical testing techniques require a hardware
setup to replicate the attacks, which can be expensive and needs to be modified for every IoT
application. For instance, the clock glitch generator device presented by Kazemi et al. [46]
injects glitches into the microcontroller clock cycles specifically for a medical IoT device and
discovers control flow software vulnerabilities. Similarly, voltage glitch attack generators
proposed in [47,48] are specific to IoT devices using Intel microprocessors enabled with Intel
SGX, whereas the multi-spot laser attack setup proposed in [49] is specific to cryptography
devices. The hardware testing setup currently proposed in the literature is not applicable
to a wide range of IoT systems and devices and is instead application-specific. This
necessitates major modifications in the hardware setup for testing every IoT system for
software vulnerabilities to fault injection attacks. Moreover, it is difficult to carry out
targeted fault injection attacks that result in exploiting the software vulnerabilities. Only
those attacks which cause the software to behave unexpectedly are useful. The methods
proposed in [19,48,49] demonstrate that thousands of fault injections need to be performed
in experiments to detect a small number of software vulnerabilities. This conclusively
demonstrates that physical testing techniques cannot be generic and can only be used to
detect software vulnerabilities in application-specific IoT systems and devices that can
afford the time and cost investment of developing appropriate fault injection equipment.

Simulation-based software vulnerability analysis techniques analyze the IoT software
by simulating the effects of fault injection attacks directly on the software using several fault
models. The software fault models utilized in the domain of hardware-based fault injection
attacks are created by analyzing the software effects at two levels of the IoT software:
the instruction level and the microarchitectural level. Instruction-level simulation tools
modify the assembly program instructions of the IoT software to replicate the effects of fault
injection attacks using fault models such as NOP, FLP, and JMP. For instance, the Chaos
Duck tool uses the NOP fault model to replace an assembly instruction of the software
with the non-operation instruction for x86 and ARM-based instruction sets. Instruction-
level simulation tools described in the literature, such as [41,50,51], are specific to certain
instruction set architecture families, such as x86 and ARM. While these architectures
cover the majority of the IoT systems and devices, other instruction set architectures
and extensions, such as ZipCPU and RISC-V, commonly used in FPGA boards [59–61]
to implement several IoT applications are not supported by these tools. This is a major
limitation of the existing instruction-level fault injection tools. The existing instruction-level
tools modify each assembly instruction at the bit, byte, or word level. This allows the
tools to only simulate fault injection attacks that affect a single assembly instruction of the
IoT software. The effectiveness of instruction-level tools is currently limited due to the
inability to simulate high-level effects of fault injection attacks, which simultaneously
affect multiple assembly program instructions. For instance, control flow alterations
due to skipping of multiple simultaneous instructions cannot be simulated using the
existing instruction-level tools. The combined Lazart and EFS tool [41] tackled this problem
by combining multiple low-level software fault models to precisely simulate high-level
hardware attacks. However, the use of LLVM-IR limits its application to only Linux-based
systems, which is a major limitation. Moreover, Lazart has been developed specifically for
laser fault injection attacks on cryptography devices. Microarchitectural-level simulation
tools simulate the attacks by injecting faults into microprocessor components responsible
for executing the assembly instructions. For instance, the QEMU-based tool proposed
in [40] injects faults into the memory, registers, and execution unit of the processor to
modify the manner in which the assembly instructions are executed. Microarchitectural-
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level fault injection simulation tools [39,40] utilize microprocessor architecture emulators,
such as QEMU and MARSSx86 [53]. The attack effects are simulated by modifying different
sections of the simulator tools responsible for executing the assembly instructions. The
microprocessor architecture simulators allow the fault injection tools to be compatible with
a wide range of processor architectures. For instance, QEMU supports ARM, x86, MIPS64,
PowerPC, and MicroBlaze processor emulations, which are widely used in IoT systems and
devices. Microarchitectural-level fault injection simulators are difficult to implement as they
require complex modifications to the processor modules in order to affect the instruction
execution. Although simulated processor-level modifications allow microarchitectural-
level tools to simulate effects that closely replicate actual hardware effects of fault injection
attacks, instruction-level tools are easier to implement as they directly modify the assembly
instructions and do not require knowledge of the processor architecture and working. Much
of the literature has utilized simulation tools for the vulnerability analysis of safety-critical
IoT software, such as cryptography software, password-checking procedures, and device
firmware [23,30,34,36,62]. However, fault injection attacks can also affect the application
software of an IoT system. There is a lack of studies that utilize software vulnerability
analysis to identify threats to application-level IoT software, such as the control daemon
of home automation software. Detecting vulnerabilities in application software will also
help detect system-level threats due to fault injection attacks as application software is in
the topmost layer of the IoT architecture and is usually directly connected to the physical
environment of the system.

The fault injection attack simulation output is analyzed to predict if the injected fault
creates a software vulnerability to a fault injection attack. The software vulnerability analy-
sis methods proposed in the literature utilize various types of output from the software
fault injection process for the analysis. For instance, the Chaos Duck instruction-level soft-
ware fault injection tool [50] runs the fault-injected executables and records the execution
output. This execution output can contain run-time software properties such as the output
logs, error code, and time out. Potet et al. [31] analyzed the control flow graphs generated
dynamically from the fault-injected executables. The techniques used in the literature to
analyze the software fault injection output include model checking [34,36,54] and machine
learning [7,33,55]. Model-checking methods utilize certain pre-defined model proper-
ties of the IoT software, such as security variables. This static nature of model-checking
methods cannot detect unseen software vulnerabilities without manually updating the
expected model properties. Machine-learning techniques learn patterns from the existing
software vulnerabilities and are capable of detecting unseen vulnerabilities. Machine-
learning techniques have also been used in the literature to prioritize fault injection points,
resulting in a higher probability of a software vulnerability [7]. Most existing methods
utilize unsupervised, semi-supervised, and AI techniques due to the lack of a labeled
dataset. Unsupervised machine-learning methods do not perform as well as supervised
machine-learning techniques, especially for unseen data instances, as such methods usually
rely on clustering-based techniques to differentiate between vulnerable and non-vulnerable
injection instances. On the other hand, AI-based techniques, such as [7,33], have a sig-
nificant overhead in terms of timing and computing resources and are not suitable for
the majority of resource-constrained IoT systems. An alternative is to utilize supervised
machine-learning techniques that perform well, in addition to having less timing and
computing overhead. However, this involves the cumbersome process of creating a labeled
dataset for every IoT application and presents the challenge of creating a standard labeled
dataset generation workflow. There is also a lack of studies that utilize machine learning to
prioritize fault injection points to detect the maximum possible vulnerabilities in the IoT
software.

Software vulnerability analysis techniques are utilized to detect vulnerabilities in the
IoT software to fault injection attacks that modify the system behavior by causing the
software to behave abnormally. The detected vulnerabilities are subsequently filled using
the appropriate software countermeasures, such as software module duplication, use of
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user-defined variables and data types, and multiple redundant checks for conditional state-
ments. However, these implemented countermeasures can themselves be affected by fault
injection attacks, making them ineffective. Papadimitriou et al. [11] targeted the hardened
versions of the AES cryptography software and demonstrated that it remains vulnerable to
fault injection attacks. We conduct a fault injection experiment on the hardened VerifyPIN
software included in the FISSC dataset [63] using the Chaos Duck software fault injection
tool. Figure 3 shows a FLP fault injected at an instruction with address 0xc5f authenticating
an invalid user PIN.
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Moreover, the existing software vulnerability analysis techniques in the literature
cannot be used in real-time to detect any dynamically created vulnerabilities in the live
environment of the IoT system. This creates an opportunity to borrow the concepts from
existing simulation-based software vulnerability analysis techniques and to utilize them to
detect fault injection attacks in real-time at the software level.

The major limitations for software vulnerability analysis methods that need to be
addressed in future research are as follows:

• Physical testing techniques to discover software vulnerabilities are limited by the
lack of a generic hardware setup for different IoT systems and targeted fault injection
attacks that trigger the software vulnerabilities.

• Simulation-based software vulnerability analysis techniques are limited by the mi-
croprocessor and instruction set architecture family supported by the software fault
injection method. They are also limited by the difficulty in replicating high-level
software effects of fault injection attacks by combining low-level fault models.

• There exist limited primary studies in the literature analyzing application software for
vulnerabilities to fault injection attacks.

• The existing methods do not use supervised machine-learning techniques for detect-
ing software vulnerabilities due to the lack of a generic labeled dataset generation
workflow.

• The existing software vulnerability analysis techniques cannot be used in real-time to
detect dynamically created software vulnerabilities.

5.4. Addressing RQ3: Future Research Directions and Solutions

This section proposes possible solutions to the limitations described in the previous
section.

5.4.1. Attack Detection

The major limitation of attack detection methods is the replication of fault injection at-
tacks on the actual IoT system or device. This can be addressed by utilizing software-based
emulation tools such as QEMU and MARSSx86. Software-based emulation tools create
software components that imitate the hardware behavior using the host computer running
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the tool. For instance, QEMU emulates the ARM processor behavior by utilizing software
components that replicate the behavior of hardware components of the ARM processor,
such as the arithmetic logic unit (ALU), registers, instruction decoder, and execution unit.
QEMU supports emulation for a wide range of processors, including x86, ARM, SPARC,
RISC-V, MicroBlaze, and other commonly used processor architectures in IoT systems and
devices. Studies such as [39,40] utilized software-based emulation tools to simulate the
effects of fault injection attacks and used them for software vulnerability analysis. The
methodologies used in these studies can be used to replicate fault injection attacks on
emulated processors for attack detection. The simulation techniques used in these studies
modify and inject faults into the emulated microprocessor components, which is very
similar to fault injection attacks that inject glitches into the hardware components of an
IoT system. This makes it possible to use the described methods to perform fault injection
attacks on emulated hardware, which can be used to create a labeled dataset for attack
detection using supervised machine learning. This would avoid the need for a separate
hardware setup to replicate fault injection attacks on the actual microprocessor used in
the IoT system, reducing the cost and effort required to conduct the fault injection experi-
ments. The use of a software-based processor emulation tool can address the limitations
of replicating fault injection attacks and standard labeled dataset generation workflow.
Another major limitation of attack detection methods is the threat of adversarial machine
learning on the physical system properties, such as temperature, voltage, light intensity,
and electromagnetic field, used to monitor the IoT system operating conditions and detect
fault injection attacks. There is a lack of such studies in the literature that consider the
threat of adversarial machine learning on fault injection attack detection frameworks for
IoT systems and devices. Utilizing supervised machine learning as described above in
conjunction with techniques such as adversarial training with perturbation or noise [64],
gradient masking [65], and input regularization [66] can be useful to counter adversarial
machine learning and false data injection attacks on the detection mechanisms.

5.4.2. Software Vulnerability Analysis

Physical testing techniques to detect software vulnerabilities are not a popular option
as they require replicating fault injection attacks on the actual IoT system. This limitation
has been addressed by studies such as [39,40] which utilized software-based emulation
platforms for microprocessors. However, these methods operate at the microarchitectural
level, which makes it difficult to implement fault injection experiments by modifying the
emulated microprocessor components. The processor architecture knowledge should be
known to implement such fault injections. Instruction-level fault injection simulations
performed in [41,50,51] only require knowledge of the instruction set architecture family,
rather than the functioning of microprocessor components. The fault models currently used
by such tools to simulate the effects of fault injection attacks are limited. Chaos Duck [50]
is a generic software fault injection tool which can be used to test any software against
instruction-level faults. The FLP fault model utilized in Chaos Duck does not flip multiple
bits simultaneously, which limits its application to IoT software. The tool is also unable
to simulate high-level effects of attacks, such as control flow alterations due to skipping
of multiple simultaneous instructions. The application of multiple simultaneous faults
using combinations of existing fault models can be conducted experimentally to simulate
the high-level effects of fault injection attacks on the IoT software. These modifications to
the generic instruction-level software fault injection tools can be useful to detect software
vulnerabilities to fault injection attacks for a wide range of IoT software, unlike the existing
application-specific methods.

The fault injection simulation output is analyzed using machine learning to detect
injection instances that create software vulnerabilities [7,33]. The accuracy obtained in [33]
varied from 35–100% for different fault models. These methods utilize instruction-level
and micro-architectural level features, such as the instruction flow and register contents,
to train AI algorithms to detect abnormal patterns and conditions. The existing methods
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give acceptable performance but use features that are not always easy to monitor. The use
of control flow graphs and code property graphs to detect vulnerabilities in IoT software
is limited in the literature [7,35]. Concepts from general software vulnerability analysis
can be used to detect vulnerabilities in IoT software to fault injection attacks. For instance,
Yamaguchi et al. [67] presented a machine-learning-based framework trained to identify
search patterns for taint style vulnerabilities in the software. The framework identifies
patterns for taint-style vulnerabilities affecting the data using code property graphs to mon-
itor the data flow during symbolic execution of the software. This graph-based approach
is capable of identifying corruption of data inputs to functions resulting in unexpected
function output, which can be useful in detecting data corruption and modification in
IoT software due to fault injection attacks. On the other hand, Kim et al. [68] proposed
utilizing static analysis as a first stage to detect vulnerable sections of the software and then
using dynamic analysis as a second stage to reduce the number of false positives obtained
from the first stage. The static analysis is performed on the abstract syntax trees (AST)
of the source code, containing the syntactical information conveyed by the source code.
Fuzz testing is used for dynamic execution. This approach minimizes the use of dynamic
execution by restricting its application to vulnerabilities identified by static analysis in
order to inject a fault and confirm the vulnerability. A limitation of such methods [67] is
that they are specific to a particular combination of data source and sink, requiring the
machine-learning model to be trained for each unique combination. The methods also
require proper data sanitization rules to be established beforehand for each source–sink
combination. These concerns need to be addressed before such techniques can be used
on IoT software. Currently, there are limited studies that utilize machine learning and AI
techniques to prioritize software fault injection points that result in software vulnerabil-
ities, particularly in the field of fault injection attacks on IoT systems and devices [7,37].
Research into the adaption of generic software testing and analysis concepts at the exe-
cutable level, such as test case prioritization and vulnerability impact analysis, should be
performed to improve the detection performance and timing aspect of existing software
vulnerability analysis methods. Though vulnerability impact analysis may add significant
timing overhead to the testing process, it helps to determine which software vulnerabilities
create larger impacts at the system-level amongst the thousands of vulnerabilities found
in large-scale IoT software. Finally, localization of the detected vulnerabilities remains an
outstanding issue. The vulnerabilities detected by using instruction-level simulation tools
indicate the assembly instruction which is vulnerable to fault injection attacks. However, to
determine the appropriate source code countermeasure, the vulnerability needs to be traced
back, which is currently lacking. The use of dynamic binary instrumentation tools such
as PIN [69] and DynamoRio [70] should be investigated in this regard. PIN is a dynamic
binary instrumentation tool which supports Intel IA-32, x86-64 and MIC instruction-set
architectures, whereas Dynamo Rio is another tool that allows the manipulation and mon-
itoring of software during run-time and supports IA-32, AMD64, ARM, and AArch64
processor architectures. Dynamic binary instrumentation tools can be utilized to generate
debugger symbols, which can help relate the assembly instructions to the approximate
source code location. This presents future research possibilities of integrating dynamic
code instrumentation tools with fault injection simulation tools to create an integrated
environment for IoT software vulnerability analysis against fault injection attacks.

5.4.3. Software-Level Attack Detection

As mentioned in Section 5.3.2, software vulnerability analysis techniques lack the
ability to be used in real-time to detect dynamically created software vulnerabilities. These
dynamically created vulnerabilities can exist because of unexpected input to the application
software due to fault injection attacks or previously unseen vulnerabilities. For instance,
the fault injection attack may manipulate the input data to the IoT software, which can
result in a buffer overflow despite the implemented software countermeasures [62,71].
This necessitates detecting such attack effects at the software-level in real-time. Software
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fault injection tools which have been utilized in simulation-based software vulnerability
analysis can be used for software-level attack detection. Instruction-level software fault
injection tools, such as Chaos Duck [50] and Simplifi [51], can be used to train supervised
machine-learning models for real-time software-level attack detection. For instance, the
Chaos Duck tool injects instruction-level faults into the extracted assembly instructions
from a software executable and creates faulty executables. The recorded execution output
of these faulty executables contains the output logs, error logs, exit code, and time out.
This execution output can be transformed into a labeled dataset which can be used to train
supervised machine-learning models. These models can be used in a live IoT environment
to predict fault injection attacks at the software level. However, additional software run-
time properties need to be recorded in the execution output in order to detect only those
software anomalies resulting from fault injection attacks. The feasibility of software-level
attack detection using a simulation tool should be analyzed in future research. Application-
level input data used to execute the software can be a useful indicator of such attacks
because the software behavior under simulated faults is dependent on the input to the
software. The combination of application-level input data to the software and run-time
software features to detect fault injection attacks at the software level should be investigated.

6. Conclusions

This systematic literature review introduces fault injection attacks on IoT systems with
an emphasis on the various high-level effects of fault injection attacks on IoT software and
fault models used to analyze the attack effects on IoT software. A thorough examination of
the various methods proposed in the literature for dealing with such attacks is conducted
by categorizing them into system-level attack detection and software vulnerability analysis
methods. Unlike other related surveys, the combined analysis of attack detection and
software vulnerability analysis methods provides a complete understanding of different
methods proposed in the literature to counter fault injection attacks on IoT systems at
the system level and the software level. This allows the creation of hybrid solutions that
utilize concepts from both categories, such as the use of hardware emulation platforms and
software fault injection tools to detect attacks at the software level.

Attack detection methods can be used in real-time but are limited due to the replication
of fault injection attacks on the actual IoT system and the use of a separate physical
hardware monitoring setup. Simulation-based software vulnerability analysis methods
do not require a hardware setup but lack real-time usability in a live IoT environment.
The limitations of both categories are addressed in this systematic literature review using
techniques such as machine learning, dynamic code instrumentation tools, and hardware
emulation platforms. The feasibility of utilizing software testing concepts to address the
limitations of software vulnerability analysis methods against fault injection attacks is
also discussed. The use of software testing concepts addresses existing challenges in the
literature, such as identifying data corruption and modification in the software due to
fault injection attacks on IoT systems. A hybrid software-level attack detection method is
proposed using an instruction-level software fault injection tool and supervised machine
learning.

Fault injection attacks are increasingly used to target a wide range of IoT systems and
devices and are also used as a precursor to side-channel analysis attacks in order to disrupt
the system functioning or steal confidential data. Various types of software executing
in IoT systems and devices are affected by such attacks, including device drivers, access
control software, and application software. This systematic literature review provides
a comprehensive overview of various methods used to counter fault injection attacks at
the system level and the software level, along with consideration of their limitations and
potential solutions for future research.
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