
����������
�������

Citation: Althunayyan, M.; Saxena,

N.; Li, S.; Gope, P. Evaluation of

Black-Box Web Application Security

Scanners in Detecting Injection

Vulnerabilities. Electronics 2022, 11,

2049. https://doi.org/10.3390/

electronics11132049

Academic Editors: Constantinos

Kolias, Georgios Kambourakis and

Weizhi Meng

Received: 24 May 2022

Accepted: 26 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Evaluation of Black-Box Web Application Security Scanners in
Detecting Injection Vulnerabilities

Muzun Althunayyan 1,2,*, Neetesh Saxena 1,*, Shancang Li 1 and Prosanta Gope 3

1 School of Computer Science and Informatics, Cardiff University, Cardiff CF24 4AX, UK; lis117@cardiff.ac.uk
2 School of Computer Science and Informatics, Majmaah University, Al Majma’ah 15362, Saudi Arabia
3 Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK; p.gope@sheffield.ac.uk
* Correspondence: mzon_th@hotmail.com (M.A.); nsaxena@ieee.org (N.S.)

Abstract: With the Internet’s meteoric rise in popularity and usage over the years, there has been a
significant increase in the number of web applications. Nearly all organisations use them for various
purposes, such as e-commerce, e-banking, e-learning, and social networking. More importantly, web
applications have become increasingly vulnerable to malicious attack. To find web vulnerabilities
before an attacker, security experts use black-box web application vulnerability scanners to check for
security vulnerabilities in web applications. Most studies have evaluated these black-box scanners
against various vulnerable web applications. However, most tested applications are traditional
(non-dynamic) and do not reflect current web. This study evaluates the detection accuracy of five
black-box web application vulnerability scanners against one of the most modern and sophisticated
insecure web applications, representing a real-life e-commerce. The tested vulnerabilities are injection
vulnerabilities, in particular, structured query language (SQLi) injection, not only SQL (NoSQL), and
server-side template injection (SSTI). We also tested the black-box scanners in four modes to identify
their limitations. The findings show that the black-box scanners overlook most vulnerabilities in
almost all modes and some scanners missed all the vulnerabilities.

Keywords: injection vulnerability; web application; cyber security

1. Introduction

According to Internet Live Stats [1], there has been a significant increase in Internet
users over the past decade, with approximately 4.7 billion users worldwide. Therefore, it is
no surprise that there has also been a significant increase in the number of web applications,
with an approximate total over 1.8 billion [2]. Web applications are used by almost all
organisations in all sectors for numerous purposes, including e-commerce, e-banking,
e-learning, and social networking. Organisations that fail to protect their web applications
are at risk of being targeted by attackers. This can result in information disclosure, revenue
loss, damaged client relationships and more. According to the latest report by Verizon [3],
web applications are a popular target for data breaches.In some organisations, up to 43% of
data breaches are related to web applications, more than double the results of the previous
year. An insecure web application not only threatens the organisation but it also affects its
users. For example, more than 80% of the reported data breaches have resulted in the theft
of user credentials [3].

The Open Web Application Security Project (OWASP) [4] report listed the top 10 most
common web application vulnerabilities and the injection type is currently ranked first.
Moreover, according to a State of the Internet report [5], injection attacks are the top threat,
accounting for nearly two-thirds of all attacks in 2019. A famous example is the Equifax
breach, in which a vulnerability was exploited, resulting in the personal information of an
estimated 143 million American users and approximately 100,000 Canadian users [6].

A variety of techniques can be used to secure web applications. These include firewalls,
secure coding practices, and black-box web application vulnerability scanners [7]. In or-
der to automate web application security in large and complex organisations, black-box

Electronics 2022, 11, 2049. https://doi.org/10.3390/electronics11132049 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11132049
https://doi.org/10.3390/electronics11132049
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11132049
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11132049?type=check_update&version=1

Electronics 2022, 11, 2049 2 of 22

scanners are ideal. Moreover, Makino and Klyuev [8] argued that testing web application
vulnerabilities manually is challenging, time-consuming, error-prone, and expensive. Al-
though many studies have evaluated black-box scanners, more research is needed with
modern web applications with the latest technologies to improve the vulnerability detec-
tion capabilities of these automated scanners. Identifying the problem is often half the
solution. Many studies have sought to identify the limitations of black-box scanners to
improve the efficacy and timeliness of detection. Although various studies have evaluated
black-box scanners’ ability to detect vulnerabilities using different vulnerable web applica-
tions, there is still a need to test black-box scanners against modern web applications as
technologies advance.

2. State-of-the-Art Review

Many academic and private-sector studies on web application security have been con-
ducted. In 2010, Suto [9] tested the effectiveness of seven black-box scanners by performing
point-and-shoot (PaS) and trained scans.Suto observed that the Cenzic Hailstorm scanner
demonstrated very high detection accuracy which significantly improved after training.
Other scanners only showed moderate improvements. In the same year, Bau et al. [10] eval-
uated eight commercial web application scanners. The scanners were first tested against
well-known vulnerable applications (i.e. Drupal, phpBB, and WordPress), released in
2006. The study showed that the scanners did exceptionally well in detecting information
disclosures and session management vulnerabilities. In addition, the scanner’s detection
rate was about 50% successful in detecting cross site scripting (XSS) and structured query
language injection (SQLi) vulnerabilities and very low for Cross-Site Request Forgery
(CSRF) and cross channel scripting (XCS) vulnerabilities. Second, the selected scanners’ vul-
nerability accuracy and crawling ability were tested against a custom test-bed application.
The authors concluded that crawling web technologies, such as Java applets, SilverLight,
and Flash, were challenging, and most of the scanners had poor crawling capabilities.
Moreover, 11 black-box scanners were evaluated by Doupé et al. [11] on their ability to
discover associated vulnerabilities and crawl complex web pages. The authors developed
a practical web application called WackoPicko with many contemporary features. They
found that these scanners missed many types of vulnerabilities. Therefore, additional
research is required to improve the automated vulnerability detection.

In 2011, Khoury et al. [12] tested and assessed three web scanners in their ability to
detect persistent SQLi injection vulnerability. The study showed that the three black-box
scanners were poor at detecting persistent SQLi injections even when they were explicitly
taught to execute the attack code. Khoury et al. [13] also showed that the scanners were
poor at detecting stored SQLi vulnerabilities. They concluded that the significant challenges
for scanners in detecting stored SQLi injection was selecting proper input values and not
using proper attack codes to exploit these vulnerabilities.

In 2015, Parvez et al. [14] analysed the performance of three black-box web scanners
in their ability to detect stored XSS and stored SQLi vulnerabilities using a custom web
application and WackoPicko, which was used in most previous studies [11–13]. The
research showed that the black-box scanners’ XSS detection had improved. The authors
confirmed that it was a significant challenge for automated scanners to select suitable attack
vectors for both stored XSS and stored SQLi.

Makino and Klyuev [8] evaluated two open-source vulnerability scanners, OWASP
Zed Attack Proxy (ZAP) and Skipfish, for the detection of common vulnerabilities. After
comparing the results, OWASP ZAP was found to be superior to Skipfish. However,
both scanners had limitations, especially with detecting the remote file inclusion (RFI)
vulnerability. In 2017, Berbiche et al. [15] assessed the effectiveness of 11 commercial and
free web application security scanners against Web Application Vulnerability Scanner
Evaluation Project (WAVSEP) assessment application. Precision, recall and F-measure
metrics were applied to evaluate performance. Although the study showed different

Electronics 2022, 11, 2049 3 of 22

results for each scanner, all performed better on SQLi and XSS than on local and remote
file inclusion.

The aim of this study is to evaluate the detection capability of black-box scanners
against injection vulnerabilities, particularly SQLi injection, not only SQL(NoSQL), and server-
side template injection (SSTI). Previous studies were limited to testing black-box scanners
against traditional (non-dynamic) applications that do not reflect current web architectures.
Therefore, this study evaluates them against one of the most modern and sophisticated
insecure web applications that use the latest web technology. Moreover, to the best of our
knowledge, no study has evaluated the black-box scanner’s ability to detect NoSQL and
SSTI vulnerabilities.

We summarize our three-fold contribution as follows.

1. We analysed and evaluated the detection accuracy of black-box scanners against SQLi,
NoSQL, and SSTI injection vulnerabilities using one of the most modern and sophisti-
cated insecure web applications, representing a real-life e-commerce web application.

2. We tested black-box scanners in four different modes to identify their limitations and
gaps in practice.

3. We identified the limitations of the evaluated black-box scanners’ ability to detect
SQLi, NoSQL, and SSTI vulnerabilities.

3. Web Application Security Testing and Vulnerability

The security of web applications can be tested in two ways: white-box testing [8] and
black-box testing [16,17]. Several useful tools are used for both [18]. Several vulnerabilities
threaten web applications. OWASP [19] has outlined security concerns for web applications
and provides regular reports on the top 10 critical vulnerabilities.

In this work, we are mainly interested in injection attacks. In the latest report by
OWASP [4], the injection attack was first on the list. These vulnerabilities arise when an
attacker sends hostile data to an interpreter as part of a command or query. Successful
injection can lead to data loss, corruption, information disclosure, loss of accountability,
denial of access and loss of control of the system [4]. The business impact of injection attacks
depends on the application and data. Other common injections include SQLi, NoSQL,
operating system command, lightweight directory access protocol injection, expression
language, SSTi and object graph navigation library injection. In greater detail, the following
section describes three injection vulnerabilities, namely SQLi, NoSQL, and SSTI.

3.1. Structured Query Language (SQLi) Injection

According to OWASP [20], the SQLi web security vulnerability involves injecting an
SQL query into an application through a client’s input data. A successful SQLi can exploit
confidential information, such as passwords, credit card information and personal data. It
also enables attackers to modify database data (e.g.insert, update or delete), execute admin-
istration operations in the database (e.g. shutting down the database management system
and issuing commands to the operating system) [20]. Various SQL injection vulnerabilities,
attacks, and techniques occur in different situations. Examples of SQLi include union-based
and blind SQLi injections.

3.2. Union-Based SQLi

According to PortSwigger [21], a union-based SQLi attack occurs when a web applica-
tion is vulnerable to SQLi injection, and the query outputs are returned to the user within
the responses of the application. Therefore, the attackers can use the UNION keyword
to retrieve data that they are not permitted to access from other tables in the database.
The UNION keyword enables the attacker to execute one or more SELECT queries and
append the results to the original query. One example, as presented by Al-Khurafi and
Al-Ahmad [22], is an online shop web application connected to a database server that
contains an Accounts table to authenticate users and a Customers table with records of all
customer information, including names, phone numbers, addresses, orders, and payment

Electronics 2022, 11, 2049 4 of 22

information. If the username field parameter is vulnerable to SQLi injection, the attacker
can inject the following malicious command in the username field: ", UNION SELECT *
FROM Customers - - " and anything for the password, which will result in the following
query [21]:
SELECT * FROM Accounts WHERE USERNAME= ’ ’ UNION SELECT * FROM Customers - -
’ AND password = ’ anything ’ ;

The first query will return null because the Accounts table does not contain matching
records with an empty username. However, the second query will return all customer
records from the Customers table. Because the UNION operator returns the output of both
queries, this will allow an attacker to access all data in the Customers table.

3.3. Blind SQLi

According to Banach [23], a blind SQLi indirectly discovers information by analysing
server reactions to various injected statements. Blind SQL injection occurs when the
database server is setup to display SQL errors. As a result, the web server will show
the error in the web application. Then, the attacker will know that there is an SQLi
vulnerability. The attack is blind because the results are not directly visible and rely on the
analysis of server responses to the injected SQL queries [23]. According to Acunetix [24],
when attackers discover an SQLi vulnerability, they may try different requests to extract
information about the database in the error responses. Blind SQLi attacks can also be used
to build database schema, retrieve data from any table and escalate the attack. Because of
this trend, web server administrators tend to remove detailed error messages. However,
doing so does not solve the main problem, as the SQLi interpreter can still read users’ inputs
as part of an SQLi statement. Attackers overcame the lack of error messages by developing
new methods of determining whether transactions are interpreted as SQL queries [24]. The
two types of blind SQLi techniques are content and time-based [24].

3.4. Content-Based Blind SQLi

According to Acunetix [24], in a content-based blind SQLi, attackers send SQL queries
that ask the database TRUE or FALSE questions. They then analyse the responses. Consider
the following scenario (Acunetix [24]): an online shop’s web page shows items for sale.
Their link provides a description of item 26, retrieved from a database. The attacker can
manipulate the request as follows:
http://www.shop.com/item.php?id=26and1=2 (accessed on 8 May 2021)

The SQL query changes as follows:
SELECT column_name_2 FROM table_name WHERE ID = 26 and 1=2 SELECT name,
description, price FROM Store_table WHERE ID = 26 and 1=2
This causes the query to return FALSE, and no items are displayed in the list. Then,
the attacker proceeds to modify the request to:
http://www.shop.com/item.php?id=26and1=1 (accessed on 8 May 2021)

The SQL query changes as follows:
SELECT column_name, column_name_2 FROM table_name WHERE
ID = 26 and 1=1 SELECT name, description, price FROM Store_table
WHERE ID=26and 1=1

This query returns TRUE and display details about item 26. This is a clear indication
that the page is vulnerable.

3.5. Time-Based Blind SQLi

According to Acunetix [24], in time-based blind SQLi attacks, attackers cause the
database to perform a time-intensive operation. If the web application does not immedi-
ately return a response, then it is deemed vulnerable to blind SQLi. ’sleep’ command is a
typical time-intensive operation. As shown in the previous example, an attacker will first
test the response time of the web server for a standard query. The following command can
then be injected [24]:

http://www.shop.com/item.php?id=26and 1=2
http://www.shop.com/item.php?id=26 and1=1

Electronics 2022, 11, 2049 5 of 22

http://www.shop.com/item.php?id=26 (accessed on8 May 2021) and if(1=1, sleep(10),
false)

If the returned response is delayed by 10s, the web application is deemed vulnerable.

3.6. NoSQLi Injection

NoSQL (not only SQL) refers to non-relational databases that are growing in popularity
as back-ends for distributed cloud platforms and web applications [25]. Unlike relational
databases, NoSQL does not store data in tables. Instead, it uses other data models, such as
graphs, documents and objects better suited for their particular purposes [25]. According
to Sachdeva and Gupta [26], many companies have migrated to NoSQL because NoSQL
databases provide looser consistency restrictions than traditional SQL databases [27]. In-
deed, over the past few years, the popularity of NoSQL databases has grown consistently.
For example, MongoDB database was ranked fifth among the 10 most popular databases in
September 2020 (see Table 1) according to DB-Engine 2020 [28].

Table 1. Most popular databases.

Sep 2021 Database Management System

1 Oracle

2 MySQL

3 Microsoft SQLServer

4 PostgreSQL

5 MongoDB

6 IBM DB2

7 Redis

8 Elasticsearch

9 SQLite

10 Cassandra

Although NoSQL uses JavaScript Object Notation (JSON) query instead of SQL, that
does not mean it is resistant to the threat of injection attacks [27]. Instead of using a stan-
dard query language, as with relational databases, NoSQL query syntax is product-specific,
and commands are written in the application’s programming language (e.g. Python, PHP,
JavaScript, or Java). Consequently, a successful NoSQL injection attack will enable the at-
tacker to execute a malicious command in the database and the application, which escalates
the danger [25]. Hou et al. [27] reported that the NoSQL database system allows users to
change data attributes at any time, and data can be added anywhere. In general, NoSQL
attacks are like those of SQLi; only the grammar form changes. Because the attacker’s
command is inserted and executed on the server side and in the language of the web
application, the impact of a successful NoSQL injection attack can be hazardous and allows
for arbitrary code execution [25]. SQL and NoSQL query statements are shown below. We
query the customer number as an example.
SQL Query:
"SELECT * FROM Customers WHERE (CustomerNo = ’ " + Customer_Number + " ’); ’
"
NoSQL Query:
db.collection.find (CustomerNo: Customer_Number)

As shown above, an attacker may input malicious codes into the input boxes in a web
application, which can cause an injection attack.

http://www.shop.com/item.php?id=26

Electronics 2022, 11, 2049 6 of 22

3.7. Server-Side Template Injection

Template systems, such as Twig and FreeMarker, are widely used to embed dynamic
content in web pages and emails [29]. Unsafely embedding user input in templates instead
of passing it in as data can cause SSTIs [30]. PortSwigger [29] stated that the impact of
SSTIs are more dangerous than a typical client-side template injection because the attacker
payload is executed on the server side and explicitly targets the web servers inner processes.
For example, an attacker may access and read sensitive data and arbitrary files on the
server. According to PortSwigger [29], the template injection vulnerability can be caused by
developer error or exposure to intentional templates designed to deliver rich functionality.
To illustrate this risk, consider a marketing application that sends email messages to a
group of subscribers to welcome them by name using a Twig template. As seen in the illus-
tration below [29], when the name is passed directly to the template, everything works well:

$output = $twig->render("Dear first_name,",
array("first_name" =>$user.first_name));
However, problems occur when users are allowed to customize emails like this:
$output=$twig->render($_GET[’custom_email’],
array("first_name" =>$user.first_name));

In the above example, the user can control the content of the template via the cus-
tom_email GET parameter, rather than a value passed into it.

4. Our Approach towards Vulnerability Scanners

This section presents our approach in terms of selecting the black-box scanners.

4.1. Application Vulnerability Scanners

Doupé et al. [11] defined web application vulnerability scanners (WAVS) as “au-
tomated tools that are used to scan web applications and detect web vulnerabilities,
also known as black-box vulnerability scanners”. In addition, they are often known as
point-and-shoot (PaS) penetration testing tools that test web applications automatically.
Black et al. [31] provided a list of functional requirements that all web vulnerability scanners
should meet:

• Can identify a specific set of security vulnerabilities in a web application;
• Can generate a text report describing the attack for each vulnerability identified;
• Has a low rate of false-positive results.

4.2. Architecture of Web Application Vulnerabilities Scanners

At a high-level, a WAVS consists of three modules: crawling ,attacking and analysis.
Below is a brief explanation of each.

• The crawling module uses a crawler to navigate a web application to identify and
recover web pages, input vectors (e.g. input fields of hypertext markup language
forms), GET/POST request parameters and cookies. Next, the crawler generates an
indexed list of all accessed uniform resource locators (URLs). The detection of a web
vulnerability ultimately depends on the quality of the crawler. If it is ineffective,
the scanners will not be able to detect the vulnerability [11,32].

• The attacking (fuzzing) module uses a fuzzer to analyse the URLs and input vectors
identified by the crawler then sends potential attack patterns to the entry points.
The fuzzer creates a list of potentially vulnerable values to trigger a vulnerability for
each entry and type. For example, the fuzzer component tries to inject JavaScript
malicious code to test the presence of an XSS vulnerability [11,32].

• The analysis module analyses the results obtained in the previous step to detect
existing vulnerabilities and provide other modules with comments. For example, if
the returned page contains a database error message in response to the input tests

Electronics 2022, 11, 2049 7 of 22

for an SQLi injection. In that case, the analysis module will predict a potential SQLi
vulnerability in that page [11,32].

4.3. Web Application Security Scanner Evaluation Criteria (WASSEC)

The Web Application Security Consortium developed WASSEC, a vendor-neutral
document to help security professionals evaluate web application scanners and choose the
most suitable tool [33]. The following list describes the features that should be considered
when evaluating web application security scanners:

• Protocol Support: The scanner must support all communication protocols that are fre-
quently used by web applications. Moreover, proxy capabilities, such as the hypertext
transfer protocol(HTTP) and Socks proxies, should be supported.

• Authentication: The scanner should be able to maintain all authentication methods
commonly used in a web application.

• Session Management: During a security scan, a scanner should maintain a valid
session with the application.

• Crawling: The scanner should have a feature that can crawl a web application thor-
oughly based on the user-defined configuration.

• Parsing: To obtain information about the functionality and layout of the scanned web
application, the scanner should be able to parse the most widely used web technolo-
gies.

• Testing: The scanner should be able to detect the security vulnerabilities and architec-
tural flaws in a web application. It should also provide the user with configuration
options to customize a scan.

• Command and control: The scanner should have command and control functions that
enhance the user experience. For example, it schedules scans, pause and restart them,
and schedule several scans simultaneously.

• Reporting: After each scan, a scanner should be able to produce a custom report.

4.4. Evaluation Metrics

Several evaluation metrics are used to measure the detection accuracy of black-
box scanners.

• True positives (TPs) are the vulnerabilities detected by a scanner that truly exist in the
code [34].

• False positives (FPs) are vulnerabilities detected by a scanner that do not exist [34].
FPs pose a significant problem to users. If the FPs high, the user inspects each reported
vulnerability manually to assess its validity. [17].

• False negatives (FNs) are the vulnerabilities that actually exist in the code but are not
detected by the scanner [34].

• Precision is the ratio of correctly detected vulnerabilities to the total number of detected
vulnerabilities, which is represented as follows [34,35]:

Precision =
TP

TP + FP
(1)

• Recall is the ratio of correctly detected vulnerabilities to the number of total existing
vulnerabilities, which is represented as follows [34,35]:

Recall =
TP

TP + FN
(2)

• F-measure is the harmonic mean of precision and recall [36], which is represented
as follows:

F-Measure = 2 ∗ Precision ∗ Recall
Precision + Recall

(3)

Electronics 2022, 11, 2049 8 of 22

5. Research Design

As depicted in Figure 1, our methodology consists of five steps. First, we review the
available vulnerable applications and select the web application that meets our require-
ments. Second, we choose the black-box scanners to be evaluated. Third, we choose the
metrics used to measure the selected scanners’ accuracy in detecting injection vulnerabili-
ties. Fourth, we setup the environment to run the experiment. Fifth, we analyse the final
results. Table 2 lists the general characteristics of the tested scanners.

Figure 1. Our five-step approach.

Table 2. General characteristics of the tested scanners.

Scanner Vendor Version License

Burp Suite Pro PortSwiger 2020.7 Commercial

ZAP OWASP 2.9.0 Apache v 2.0

Vega Subgraph 1.0 Open-source

Skipfish Google 2.10b Free

Wapiti Informática Gesfor 3.0.3 Open-source

5.1. Web Application Selection

The first step of our study chooses a web application with a list of known vulnera-
bilities to test the scanners. Two requirements were used to choose the vulnerable web
application: (1) clearly defined vulnerabilities and (2) representative of modern web ap-
plication technologies. After viewing the OWASP Vulnerable Web Applications Directory
(VWAD) project, which maintains a list of all existing insecure web applications avail-
able [37], we found that the OWASP Juice Shop application [38] meets our requirements.

5.2. Black-Box Scanners Selection

There is a wide range of commercial and open-source scanners available each with its
strengths and limitations. To select the scanners to be tested, we reviewed the currently
available WAVS on the market. In this study, we aimed to evaluate both commercial and
open-source scanners. We selected five black-box scanners, one commercial and four open-
source: Burp Suite Professional, OWASP ZAP, Vega, Skipfish, and Wapiti. The scanners
were selected based on their availability and ability to detect injection vulnerabilities. The
following list provides a more detailed description of the selected scanners.

• ZAP is a free and open-source penetration testing tool for detecting vulnerabilities in
web applications. It has a proxy feature for intercepting and inspecting messages sent
between the client and the web application [39].

• Burp Suite Professional is a commercial web security tool that can be used to test
all OWASP Top 10 vulnerabilities. It is capable of both passive and active analysis.
In addition, its powerful proxy/history enables penetration testers to modify all secure
HTTPS communications passing using the browser [40].

Electronics 2022, 11, 2049 9 of 22

• Vega is a free and open-source tool for testing the security of web applications and
detecting vulnerabilities. Moreover, it provides an automated scan for quick tests and
has an intercepting proxy component [41].

• Skipfish is a free and open-source vulnerability scanner that prepares an interactive
sitemap for the scanned web application. It runs repetitive crawls and dictionary-
based scans. The obtained map is annotated with the output from several active
scans [42].

• Wapiti is a free, open-source, and command-line application that scans the security of
web applications. It conducts black-box scans by crawling the web pages of the target
web application and looks for forms into which it may inject data. When the list of
URLs, forms and their inputs has been collected, Wapiti acts like a fuzzer and injects
payloads to see whether there is a potential vulnerability [43].

5.3. Metrics Selection

To determine the vulnerability detection accuracy of the evaluated scanners, we
calculated the number of TPs, FPs and FNs produced by each scanner. Furthermore, three
metrics were calculated: precision, recall, and F-measure. These metrics were selected
based on Antunes and Vieira’s [44] recommendation to use recall to assess which tool
detects the highest number of vulnerabilities or, to put it another way, which leaves the
feweest vulnerabilities undetected. Precision is the recommended tiebreaker. Antunes and
Vieira [44] suggested using the F-measure to select a tool that detects a high number of
vulnerabilities while reporting a low number of FPs; recall is the recommended tiebreaker.

6. Experimental Setup and Execution

This section presents key details about the experiments and their execution.

6.1. Experimental Design

The following briefly describes the experimental workflow, which is illustrated in
Figure 2.

1. We started every scan by choosing from the four scanning modes.
2. We ran the target web application (OWASP Juice Shop).
3. We connected the target web application to the evaluated scanner.
4. The crawler component of the scanner then explored the web application pages and

identified forms and entry points.
5. The scanner sent potential payload attacks to the entry points.
6. The analysis module of the scanner generated analytical reports.
7. We analysed these reports manually.

Because we had four modes, these steps were repeated four times for each scanner if
the scanner had a proxy component. Otherwise, the scanner ran on two modes only.

Electronics 2022, 11, 2049 10 of 22

Figure 2. Experimental workflow.

6.2. Owasp Juice Shop Application

OWASP Juice Shop is an open-source project created by Björn Kimminich and hosted
by the OWASP. It was written in Node.js, Angular and Express [45] and was the first
application written entirely in JavaScript in the OWASP VWAD. Although Juice Shop is an
intentionally vulnerable web application that was created for awareness and training, it
gives the impression of a functionally complete e-commerce web application that could exist
in the real world. Juice Shop emulates a small online shop that offers fruit and vegetable
juice and related products. Users can create an account, log in, place an order, write
and read product reviews, track the order and more. Figure 3 presents the architecture.
In addition to the heavy use of JavaScript, which distinguishes Juice Shop from other
vulnerable applications, it also uses the latest web technology. For example, the common
Angular framework is used in the front end to create a single-page application. In terms of
authentication, Juice Shop uses OAuth 2.0, which enables users to sign in with their Google
accounts. Moreover, when users successfully logs in using their credentials, a JSON web
token (JWT) is returned and is included in subsequent requests, allowing the user to access
services that are only authorised with that token. In terms of data storage, a file-based
SQLite engine is used as the primary database. MarsDB, a JavaScript derivative of the
widely used MongoDB NoSQL database, is also used for additional data storage. JavaScript
is the primary programming language in the back end. Additionally, the necessary back-end
functionality of the application is delivered to the client via a RESTful API.

Electronics 2022, 11, 2049 11 of 22

Figure 3. OWASP Juice Shop application architecture [45].

6.3. Owasp Juice Shop Tested Vulnerabilities

Most vulnerabilities in the OWASP Juice Shop application were derived from well-
known lists or documents, including the OWASP Top 10, OWASP API Security Top 10,
and MITRE’s Common Weakness Enumeration [45].

The OWASP Juice Shop application contains a variety of vulnerabilities that are
categorised into 14 types (see Figure 4) [45]. However, in this study, we only tested the
injection vulnerability because it was ranked first by the OWASP (2017) [4] report for
the top 10 web application vulnerabilities. Furthermore, injection attacks can severely
impact the data of the hosted web application, including data loss or corruption, financial
loss and even the complete loss of control of the system [22]. The OWASP Juice Shop
application contains seven injection vulnerabilities, particularly SQLi, NoSQL and SSTI.
Table 3 provides details on the tested vulnerabilities.

Figure 4. OWASP Juice Shop vulnerability categories [45].

Electronics 2022, 11, 2049 12 of 22

Table 3. Injection vulnerabilities in OWASP Juice Shop.

Vulnerability Number Login Required

Blind SQLi 1 0

Union-based SQLi Injection 1 0

SQLi Injection 1 0

NoSQL Injection 3 2

SSTi 1 1

Total Number of Vulnerabilities 7

6.4. Web Application Vulnerability Scanner Modes

Each scanner ran in four modes to ensure that the entire web application was mapped
included pages requiring authentication as some vulnerabilities could only be accessed by
an authenticated user and to determine whether a scanner failed to detect a vulnerability
because it could not access the vulnerable page due to its poor crawling ability or because
it was unable to detect this type of vulnerability.

In In mode 1, we only gave the scanner the OWASP Juice Shop URL. However in
mode 2, we gave the scanner the URL and valid login credentials. In mode 3, we provided
the scanner with the URL of the application. Moreover, if the scanner had a proxy compo-
nent, it was used in the third mode to manually view all the web application pages that do
not require authentication. In mode 4, we provided the scanner with the application’s URL
and valid login credentials. In this mode, if the scanner had an intercepting proxy, it was
used to access all pages manually, including those requiring authentication. More details
about the applied algorithms in the four modes are listed below (Algorithms 1–4).

Algorithm 1 Mode 1: Point-and-shoot (PaS)

Description: The scanner is only provided with the
OWASP Juice Shop application’s entry URL
for scanning.
Input
OWASP Juice Shop URL: http://localhost:3000 (accessed on 8 May 2021)
Output
Scan report
Start
Set the scanner to work with a browser
Launch the browser
Open the OWASP Juice Shop application
Add the application URL to the target scope
Run the crawler
Run the active scan
End

http://localhost:3000

Electronics 2022, 11, 2049 13 of 22

Algorithm 2 Mode 2: Unauthenticated scan with proxy

Description: As in mode 1, the scanner is provided
with the application’s entry URL, with the exception of
using a proxy component (if available) to visit all the
application pages that do not need authentication
manually and to fill in any forms.
Input
OWASP Juice Shop URL: http://localhost:3000 (accessed on 8 May 2021)
Output
Scan report
Start
Set the scanner to work with a browser
Launch the browser
Open the OWASP Juice Shop application
Add the application URL to the target scope
Run the crawler
Use proxy to visit each unauthenticated page
Fill in any forms
Run the active scan
End

Algorithm 3 Mode 3: Point-and-shoot with user credentials

Description: The scanner is given the OWASP Juice
Shop application entry URL and provided with valid login credentials (such as username
and password
or authentication token) to help the scanner access
the authenticated pages.
Input
OWASP Juice Shop URL: http://localhost:3000 (accessed on 8 May 2021)
User credentials
Output
Scan report
Start
Set the scanner to work with a browser Launch the browser
Open the OWASP Juice Shop application
Add the application URL to the target scope
Log in the application with legitimate credentials
Configure the scanner using user credentials in scanning
Run the crawler
Run the active scan
End

http://localhost:3000
http://localhost:3000

Electronics 2022, 11, 2049 14 of 22

Algorithm 4 Mode 4: Authenticated scan with proxy

Description: As in mode 2, the scanner is provided
with the application’s URL and valid login credentials
to help the scanner access the authenticated pages.
Moreover, if the scanner has a proxy component, it is
used to visit every page manually, including pages that
need authentication, and to fill in any forms.
Input
OWASP Juice Shop URL: http://localhost:3000 (accessed on 8 May 2021)
User credentials
Output
Scan report
Start
Set the scanner to work with a browser
Launch the browser
Open the OWASP Juice Shop application
Add the application URL to the target scope
Log in the application with legitimate credentials
Configure the scanner using user credentials
Run the crawler
Use a proxy to visit every page in the application
Fill in any forms Run the active scan
End

7. Results Analysis

This section presents the results obtained and analysed from experimental testing.

7.1. Experimental Results

This section presents the results of running the five scanners in four different modes.
We analysed the alerts and reports generated by each scanner and converted them manually
into FN, TP and FP values. Thus, any vulnerability missed by a scanner was considered an
FN. Each vulnerability that was indeed detected and reported by a scanner was considered
a TP. If the scanner detected an injection vulnerability that did not exist in the application,it
was considered an FP. Next, we present the FN, TP and FP values for all scanners in
each mode.

7.2. Mode 1 Results

The results of running the scanners in this mode are listed in Table 4.

• FNs: It is clear from Table 4 that the number of undetected vulnerabilities (FN) was
significantly higher than the detected (TP) and wrongly detected (FP) values in this
mode.

• TPs: As we can see from Table 4, most scanners failed to detect any known vulnerabil-
ity, apart from the ZAP scanner, which found one SQLi injection vulnerability in the
home page.

• FPs: Because we only scanned injection vulnerabilities, no scanner detected any
injection vulnerability that did not really exist.

http://localhost:3000

Electronics 2022, 11, 2049 15 of 22

Table 4. FN, TP, and FP results in mode 1.

Scanner FN TP FP

ZAP 6 1 0

Burp Suite 7 0 0

Vega 7 0 0

Skipfish 7 0 0

Wapiti 7 0 0

7.3. Mode 2 Results

The results of running the scanners in this mode are shown in Table 5.

• FNs: The number of undetected vulnerabilities (FNs) in this mode was the same as in
Mode 1, with the exception of the Burp Suite Professional scanner, which detected one
vulnerability.Thus, the number of FNs decreased by one.

• TPs: In Mode 2, both the ZAP and Burp Suite scanners detected only one vulnerability.
The one detected by ZAP was already found during Mode 1 scanning. The Burp Suite
was likely able to detect the vulnerability because we filled in the login form manually
to provide the scanner with privileged credentials; then, the scanner was able to access
the vulnerable login page.

• FPs: None of the scanners detected any injection vulnerabilities that did not really
exist in the application.

Table 5. FN, TP, and FP results in mode 2.

Scanner FN TP FP

ZAP 6 1 0

Burp Suite 6 1 0

Vega 7 0 0

Skipfish 7 0 0

Wapiti 7 0 0

7.4. Mode 3 Results

The results of running the scanners in this mode are shown in Table 6

• FNs: ZAP scanner achieved the fewest number of FNs (five).
• TPs: Table 6 shows that using the scanner in a proxy mode to access the unauthenti-

cated pages in the application manually increased the number of detected vulnera-
bilities by one for the ZAP scanner only. However, other scanners that had a proxy
(i.e.Burp Suite Professional and Vega) did not detect any, even when we manually
accessed the vulnerable pages.

• FPs: None of the scanners detected any injection vulnerabilities that did not really
exist in the application.

Electronics 2022, 11, 2049 16 of 22

Table 6. FN, TP, and FP results in mode 3.

Scanner FN TP FP

ZAP 5 2 0

Burp Suite 7 0 0

Vega 7 0 0

Skipfish - - -

Wapiti - - -

7.5. Mode 4 Results

The results of running the scanners in this mode are displayed in Table 7.

• FNs: Vega had the highest number of undetected vulnerabilities. In contrast, ZAP and
Burp Suite had the fewest FN values (five each).

• TPs: Both ZAP and Burp Suite detected two injection vulnerabilities.
• FPs: None of the scanners detected any injection vulnerabilities that did not really

exist in the application.

Table 7. FN, TP, and FP results in mode 4.

Scanner FN TP FP

ZAP 5 2 0

Burp Suite 5 2 0

Vega 7 0 0

Skipfish - - -

Wapiti - - -

7.6. Results Summary

In Mode 1, where only the application URL was given to the scanner, ZAP scanner
was the only scanner that detected a vulnerability (i.e.SQLi) which was located on the
application home page. In contrast, all other scanners could not detect any vulnerabilities.

In Mode 2, ZAP reported the same vulnerability that was detected in Mode 1, even
when we provided the scanner with valid user session tokens. This indicates that the
scanner could not use the session tokens properly for authentication. Moreover, the Burp
Suite detected the SQLi on the login page. In Modes 1 and 2, Vega, Skipfish, and Wapiti
scanners could not detect any vulnerabilities, including the one on the home page.

In Mode 3, when we accessed the web pages manually through a proxy, ZAP was able
to find two injection vulnerabilities on the login page. Although Burp suite and Vega had a
proxy, they could not detect any vulnerabilities.

In Mode 4, the Burp Suite found SQLi vulnerability in the email field, which was
already discovered in Mode 2. Additionally, the Burp Suite detected a NoSQL vulnerability
in the http://localhost:3000/#/track-order (accessed on 8 May 2021). Page that was defined
as a server-side JavaScript code injection. Like ZAP, the Burp Suite could not use the login
credentials to access the authenticated pages. Even when a proxy accessed all application
pages, other vulnerabilities were missed by ZAP and Burp Suite Professional. ZAP detected
the same vulnerabilities that were already found in previous modes. In contrast, Vega
overlooked all injection vulnerabilities. Skipfish and Wapiti hsd no proxy component to test.
Table 8 lists the types of vulnerabilities detected and not detected by the various scanners.

http://localhost:3000/#/track-order

Electronics 2022, 11, 2049 17 of 22

Table 8. Types of detected and undetected vulnerabilities.

Burp Suite ZAP Vega Skipfish Wapiti

Blind SQLi m l m m m

Union-based SQLi m m m m m

SQLi l l m m m

NoSQL w m m m m

SSTi m m m m m

l: All vulnerabilities are detected, m: none of the vulnerabilities are detected, w: some
vulnerabilities are detected and some are not.

8. Evaluation

This section assesses the vulnerability detection accuracy of the tested scanners by
calculating the precision, recall, and F-measure metrics.Moreover, this section discusses the
limitations and the key gaps of the scanners considered in this work.

8.1. Precision, Recall, and F-Measure

Based on the obtained FN, TP and FP results, precision, recall and F-measures of
each scanner were calculated (see Table 9). The best result obtained from each scanner
is highlighted.

Table 9. Precision, recall and F-measure values for all scanners.

Mode Scanner Precision% Recall% F-Measure%

Mode 1

ZAP 100% 14% 25%
Burp Suite Pro 0% 0% 0%

Vega 0% 0% 0%
Skipfish 0% 0% 0%
Wapiti 0% 0% 0%

Mode 2

ZAP 100% 14% 25%
Burp Suite Pro 100% 14% 25%

Vega 0% 0% 0%
Skipfish 0% 0% 0%
Wapiti 0% 0% 0%

Mode 3

ZAP 100% 29% 44%
Burp Suite Pro 0% 0% 0%

Vega - - -
Skipfish - - -
Wapiti - - -

Mode 4

ZAP 100% 29% 44%
Burp Suite Pro 100% 29% 44%

Vega - - -
Skipfish - - -
Wapiti - - -

According to Antunes and Vieira [34], the lower the number of FPs, the higher the
precision. Consequently, the scanner can detect vulnerabilities more accurately. In contrast,
the higher the recall, the lower the number of FNs. Consequently, the scanner can detect
vulnerabilities more accurately [34]. Precision refers to the percentage of correct relevant
vulnerabilities compared to the total number of detected vulnerabilities [15]. As can be
seen in Table 9, the Burp Suite Professional and ZAP scanners had the highest precision
(100%), whereas the others had the lowest precision (0%). The recall is the percentage of
the correctly identified vulnerabilities compared to the total number of actual vulnerabili-

Electronics 2022, 11, 2049 18 of 22

ties [15]. From Table 9, we can see that the recall of the Burp Suite Professional in Mode 4
and ZAP in Modes 3 and 4 occupies a higher percentage (29%) than other scanners (0%) in
all modes. The last column of Table 9 shows the F-measure of each scanner in detecting
injection vulnerabilities. According to Idrissi et al. [15], the F-measure metric indicates each
scanner’s effectiveness as it incorporates precision and recall into a single measure. As can
be seen in Table 9, the Burp Suite Professional in Mode 3 and ZAP in Modes 3 and 4 had the
same F-measure and the highest efficiency (44%) compared with the others. Vega, Skipfish
and Wapiti had F-measures of 0% in all modes. Figure 5 demonstrates the different modes’
precision, recall and F-measure results.

Figure 5. Obtained results of precision, recall, and F-measure in different modes.

8.2. Discussion: Finding Key Gaps

This section discusses the potential reasons for the scanners’ limitations. The first
thing worth noting is that black-box scanners aim to solve a challenging problem within
a challenging task [7]. Thus, they are likely to miss many vulnerabilities. Our results
demonstrated that two scanners, namely ZAP and Burp Suite Professional, detected no
more than two injection vulnerabilities out of seven known ones. Approximately 72% of the
existing vulnerabilities went undetected. In contrast, Vega, Skipfish and Wapiti scanners
overlooked all vulnerabilities.

No scanner detected the vulnerabilities, even when the vulnerable pages were manu-
ally visited through a proxy. As stated by Kimminich [45], OWASP Juice Shop uses a Mon-
goDB derivate as its NoSQL database, which is vulnerable to injection attacks. The OWASP
Juice Shop has three NoSQL vulnerabilities, two of which were not detected by any scanner.
The identification of these vulnerabilities by an attacker can lead to manipulations, the
updating of multiple product reviews at the same time, and denial-of-service attacks via
the injection of malicious commands into the URL. Moreover, the SSTI vulnerability was
missed by all scanners.

From these results, it is clear that the scanners failed to detect most vulnerabilities.
This appears to be mainly caused by two reasons. First, the scanners had a limited ability to
crawl the application because OWASP Juice Shop, like many modern web applications, was
created dynamically using JavaScript, which is a big challenge for crawlers. Doupé et al. [11]
also stated that modern web applications present crawling challenges to black-box scanners.
As a result, many vulnerable forms are overlooked during poor crawling. The evaluated
scanners had varying crawling capabilities. For instance, ZAP and Burp Suite Professional

Electronics 2022, 11, 2049 19 of 22

had the best ability to crawl dynamic JavaScript. Consequently, they had higher accuracies
of vulnerability detection. Thus, providing scanners with a proxy component could help
them detect more vulnerabilities. There is no doubt that the effectiveness of black-box
scanners in crawling modern web applications is improving; however, progress is slow [7].
Second, another reason for missing vulnerabilities was that although the black-box scanners
supported the detection of injection vulnerabilities, they could not detect all injection issues.
For instance, the ZAP scanner did not support SSTI detection, and Burp Suite Professional
did not support NoSQL.

Although we did not evaluate the authentication feature of the scanners, we found
that all failed to maintain an authenticated state. When we conducted authenticated
scans in Modes 2 and 4, nearly all scanners could not use the given privileged credentials
properly to indicate the user’s identity. As a result, none could access the authenticated
pages. The ability of scanners to maintain JWT authentication is interesting and should be
evaluated thoroughly in future studies. Although our web vulnerability scanner evaluation
included five scanners, our results may not be generalisable to all other black-box scanners.

9. Comparison with Previous Work

Several researchers have tested black-box scanners against vulnerable web applica-
tions.

Doupé et al. [11] evaluated 11 black-box scanners against the WackoPicko application.
The authors ran the scanners in three modes: initial, configured, and manual. In the initial
mode, the scanners were operated in a PaS mode and were given valid login credentials.
In the last mode, the scanners were set to a proxy mode, whereas the application pages were
browsed manually. Doupé et al. [11] reported that it is a significant challenge for scanners to
crawl modern web applications. Various vulnerabilities were detected only in the manual
mode. Doupé et al. [11] also reported that the low crawling coverage was likely due to
the web technologies used in the application. Although we tested different scanners and
web applications, our findings are similar to those of Doupé et al. [11], where the scanners
overlooked at least 50% of the vulnerabilities. However, in our study, the percentage of
undetected vulnerabilities was considerably higher.

Idrissi et al. [15] assessed 11 black-box scanners using the same evaluation metrics
applied in our study. However, they used a different application, WAVSEP, to measure the
scanners’ ability to detect SQLi, reflected XSS, remote file inclusion and path traversal/local
file inclusion vulnerabilities. Therefore, we only compared our results to their SQLi results.
In Idrissi et al.’s study [15], the F-measure for all scanners was between 70 and 100%; in ours,
it was between 0 and 44%, which is considerably lower. Concerning recall, in Idrissi et al.’s
study [15], it was between 60 and 100%; in ours, it was between 0 and 29%. The significant
difference between our findings and those of Idrissi et al. [15] is not surprising, as OWASP
Juice Shop is a much more challenging application for scanners than WAVSEP. Furthermore,
we only considered Idrissi et al.’s [15] SQLi results against all injection vulnerabilities in
our study.

Makino and Klyuev [8] evaluated two open-source vulnerability scanners: OWASP
ZAP and Skipfish using the Damn Vulnerable Web Application (DVWA) and WAVSEP as
test applications. The authors tested the scanners against a list of vulnerabilities, including
SQLi, blind SQLi, reflected XSS, persistent XSS, local file injection, remote file injection,
command execution and cross-site request forgery. Our results are consistent with those of
Makino and Klyuev [8] in some aspects. First, OWASP ZAP was found to be superior to
Skipfish in detecting vulnerabilities. Second, although the scanners detected some injection
vulnerabilities, such as SQLi, they missed others.

Khoury et al. [12] reached a similar conclusion after evaluating three black-box scan-
ners that supported persistent SQLi vulnerability detection. For this purpose, the authors
built a custom application, called MatchIt, finding that the scanners could not identify
existing vulnerabilities. Khoury et al. [12] emphasized that configuring a scanner with
a username and password could enhance the overall results because pages that require

Electronics 2022, 11, 2049 20 of 22

authentication are more likely to be accessed. In comparison, our study tested black-box
scanners against one of the most modern and sophisticated insecure web applications,
representing a real-life e-commerce web application. Furthermore, we explored four modes
to identify the reasons for the scanner limitations. We hope that this study will provide
valuable insights into how black-box scanners’ ability to detect injection vulnerabilities
might be improved.

10. Conclusions and Future Work

This study evaluated the detection accuracy of black-box scanners against SQLi,
NoSQL and SSTI injection vulnerabilities. To achieve this, we evaluated the detection
capability of five black-box web scanners against one of the most modern and vulnerable
web applications. We measured the vulnerability detection accuracy feature of each scanner
using three evaluation metrics: precision, recall and F-measure. We found that ZAP and
Burp Suite Professional were superior. In addition, the evaluated black-box scanners
overlooked most existing vulnerabilities in most modes, and some scanners could not
detect any. This appeared to be caused by two reasons. First, scanners have a limited
ability to crawl dynamic modern web applications. Thus, providing scanners with a proxy
component helps them detect more existing vulnerabilities. Second, although the black-box
scanners support detecting injection vulnerabilities, they cannot detect all types of injection
flaws. In future work, improvements should be made from the following perspectives:

1. Evaluate more black-box scanners. In this paper, we evaluated only five. However,
there are a growing number on the market. Therefore, future studies can scan the
same application, OWASP Juice Shop, with a different selection of the most widely
used scanners.

2. Test other vulnerabilities. The OWASP Juice Shop application contains 14 categories
of vulnerabilities and includes some that no research has ever tested. In this paper,
we focused only on injection vulnerabilities. However, future research should include
other types.

3. Analyse the identified vulnerability detection limitations. Because our work evaluated
open-source scanners, other researchers now have the opportunity to access and
review the source code. Therefore, future studies should examine the design issues
and limitations in greater detail.

Author Contributions: Conceptualization, M.A. and N.S.; methodology, M.A., N.S. and S.L.; val-
idation, M.A., N.S. and P.G.; writing—original draft preparation, M.A and N.S.; writing—review
and editing, M.A., N.S., S. L. and P.G.; supervision, N.S.; All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Internet Users. Available online: https://www.internetlivestats.com/watch/internet-users (accessed on 8 May 2021).
2. Total Number of Websites. Available online: https://www.internetlivestats.com/watch/websites (accessed on 8 May 2021).
3. Verizon. 2020 Data Breach Investigations Report. Technical Report, Verizon, 2020. Available online: https://www.cisecurity.org/

wp-content/uploads/2020/07/The-2020-Verizon-Data-Breach-Investigations-Report-DBIR.pdf (accessed on 8 May 2021).
4. OWASP. OWASP Top 10 -2017 the Ten Most Critical Web Application Security Risks; Technical Report; OWASP: Wakefield, MA,

USA, 2017.
5. State of the Internet Security. Available online: https://www.akamai.com/uk/en/multimedia/documents/state-of-the-internet/

soti-security-a-year-in-review-report-2019.pdf (accessed on 8 May 2021).
6. Braga, M. What We Know about the Equifax Breach—And What We Don’t. 2017. Available online: https://www.cbc.ca/news/

science/equifax-canada-breach-sin-cybersecurity-what-we-know-1.4297532 (accessed on 8 May 2021).

https://www.internetlivestats.com/watch/internet-users
https://www.internetlivestats.com/watch/websites
https://www.cisecurity.org/wp-content/uploads/2020/07/The-2020-Verizon-Data-Breach-Investigations-Report-DBIR.pdf
https://www.cisecurity.org/wp-content/uploads/2020/07/The-2020-Verizon-Data-Breach-Investigations-Report-DBIR.pdf
https://www.akamai.com/uk/en/multimedia/documents/state-of-the-internet/soti-security-a-year-in-review-report-2019.pdf
https://www.akamai.com/uk/en/multimedia/documents/state-of-the-internet/soti-security-a-year-in-review-report-2019.pdf
https://www.cbc.ca/news/science/equifax-canada-breach-sin-cybersecurity-what-we-know-1.4297532
https://www.cbc.ca/news/science/equifax-canada-breach-sin-cybersecurity-what-we-know-1.4297532

Electronics 2022, 11, 2049 21 of 22

7. Khalil, R.F. Why Johnny Still Can’t Pentest: A Comparative Analysis of Open-Source Black-box Web Vulnerability Scanners.
Ph.D. Thesis, Université d’Ottawa/University of Ottawa, Ottawa, ON, Canada, 2018.

8. Makino, Y.; Klyuev, V. Evaluation of web vulnerability scanners. In Proceedings of the 2015 IEEE 8th International Conference
on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Warsaw, Poland,
24–26 September 2015; Volume 1, pp. 399–402.

9. Suto, L. Analyzing the Accuracy and Time Costs of Web Application Security Scanners. 2010. Available online: http:
//www.think-secure.nl/uk/Accuracy_and_Time_Costs_of_Web_App_Scanners.pdf (accessed on 8 May 2021).

10. Bau, J.; Bursztein, E.; Gupta, D.; Mitchell, J. State of the art: Automated black-box web application vulnerability testing. In
Proceedings of the 2010 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 16–19 May 2010; pp. 332–345.

11. Doupé, A.; Cova, M.; Vigna, G. Why Johnny can’t pentest: An analysis of black-box web vulnerability scanners. In Proceedings
of the International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Cagliari, Italy, 14–16 July
2021; Springer: Berlin, Heidelberg, Germany, 2010; Volume 6201, pp. 111–131.

12. Khoury, N.; Zavarsky, P.; Lindskog, D.; Ruhl, R. Testing and Assessing Web Vulnerability Scanners for Persistent
SQL Injection Attacks. In Proceedings of the First International Workshop on Security and Privacy Preserving in E-
Societies, New York, NY, USA, 9 June 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 12–18.
https://doi.org/10.1145/2107581.2107584.

13. Khoury, N.; Zavarsky, P.; Lindskog, D.; Ruhl, R. An analysis of black-box web application security scanners against stored SQLi
injection. In Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE
Third International Conference on Social Computing, Boston, MA, USA, 9–11 October 2011; pp. 1095–1101.

14. Parvez, M.; Zavarsky, P.; Khoury, N. Analysis of effectiveness of black-box web application scanners in detection of stored SQLi
injection and stored XSS vulnerabilities. In Proceedings of the 2015 10th International Conference for Internet Technology and
Secured Transactions (ICITST), London, UK, 14–16 December 2015; pp. 186–191.

15. Idrissi, S.; Berbiche, N.; Guerouate, F.; Shibi, M. Performance evaluation of web application security scanners for prevention and
protection against vulnerabilities. Int. J. Appl. Eng. Res. 2017, 12, 11068–11076.

16. Sutton, M.; Greene, A.; Amini, P. Fuzzing: Brute Force Vulnerability Discovery, 3st ed.; Pearson Education: London, UK, 2007.
17. Doupé, A.; Cavedon, L.; Kruegel, C.; Vigna, G. Enemy of the state: A state-aware black-box web vulnerability scanner. In

Presented as part of the 21st USENIX Security Symposium (USENIX Security 12), Bellevue, WA, USA, 11–13 August 2021; USENIX
Association: Bellevue,WA, USA, 2012; pp. 523–538.

18. Muñoz, F.R.; Cortes, I.I.S.; Villalba, L.J.G. Enlargement of vulnerable web applications for testing. J. Supercomput. 2017,
74, 6598–6617.

19. OWASP Foundation. Available online: https://owasp.org (accessed on 8 May 2021).
20. SQL Injection. Available online: https://owasp.org/www-community/attacks/SQL_Injection (accessed on 8 May 2021).
21. SQL Injection UNION Attacks. Available online: https://portswigger.net/web-security/sql-injection/union-attacks (accessed

on 8 May 2021).
22. Al-Khurafi, O.B.; Al-Ahmad, M.A. Survey of web application vulnerability attacks. In Proceedings of the 2015 4th International

Conference on Advanced Computer Science Applications and Technologies (ACSAT), Kuala Lumpur, Malaysia, 8–10 December
2015; pp. 154–158.

23. Banach, Z. How Blind SQL Injection Works. 2020. Available online: https://www.invicti.com/blog/web-security/how-blind-
sql-injection-works/ (accessed on 8 May 2021).

24. Acunetix. What Are Blind SQL Injections. Available online: https://www.acunetix.com/websitesecurity/blind-sql-injection/
(accessed on 8 May 2021).

25. Banach, Z. What Is NoSQL Injection and How Can You Prevent It? 2020. Available online: https://www.invicti.com/blog/web-
security/what-is-nosql-injection/ (accessed on 8 May 2021).

26. Sachdeva, V.; Gupta, S. Basic NOSQL Injection Analysis And Detection On MongoDB. In Proceedings of the 2018 International
Conference on Advanced Computation and Telecommunication (ICACAT), Bhopal, India, 28–29 December 2018; pp. 1–5.

27. Hou, B.; Qian, K.; Li, L.; Shi, Y.; Tao, L.; Liu, J. MongoDB NoSQL injection analysis and detection. In Proceedings of the 2016 IEEE
3rd International Conference on Cyber Security and Cloud Computing (CSCloud), Beijing, China, 25–27 June 2016; pp. 75–78.

28. Knowledge Base of Relational and NoSQL Database Management Systems. Available online: https://db-engines.com/en
(accessed on 8 May 2021).

29. Server-Side Template Injection. Available online: https://portswigger.net/web-security/server-side-template-injection (accessed
on 8 May 2021).

30. Kettle, J. Server-Side Template Injection. 2015. Available online: https://portswigger.net/research/server-side-template-injection
(accessed on 8 May 2021).

31. Black, P.E.; Fong, E.; Okun, V.; Gaucher, R. Software assurance tools: Web application security scanner functional specification
version 1.0. Nist Spec. Publ. 2008, 2008, 500–269.

32. Kagorora, F.; Li, J.; Hanyurwimfura, D.; Camara, L. Effectiveness of web application security scanners at detecting vulnerabilities
behind ajax/json. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 4, 4179–4188.

33. Web ApplicationSecurity Consortium and others; Web application security scanner evaluation criteria. Web Appl. Secur. Consort.
2009, 1, 1–26.

http://www.think-secure.nl/uk/Accuracy_and_Time_Costs_of_Web_App_Scanners.pdf
http://www.think-secure.nl/uk/Accuracy_and_Time_Costs_of_Web_App_Scanners.pdf
https://owasp.org
https://owasp.org/www-community/attacks/SQL_Injection
https://portswigger.net/web-security/sql-injection/union-attacks
https://www.invicti.com/blog/web-security/how-blind-sql-injection-works/
https://www.invicti.com/blog/web-security/how-blind-sql-injection-works/
https://www.acunetix.com/websitesecurity/blind-sql-injection/
https://www.invicti.com/blog/web-security/what-is-nosql-injection/
https://www.invicti.com/blog/web-security/what-is-nosql-injection/
https://db-engines.com/en
https://portswigger.net/web-security/server-side-template-injection
 https://portswigger.net/research/server-side-template-injection

Electronics 2022, 11, 2049 22 of 22

34. Antunes, N.; Vieira, M. Benchmarking vulnerability detection tools for web services. In Proceedings of the 2010 IEEE International
Conference on Web Services, Miami, FL, USA, 5–10 July 2010; pp. 203–210.

35. Antunes, N.; Vieira, M. Assessing and comparing vulnerability detection tools for web services: Benchmarking approach and
examples. IEEE Trans. Serv. Comput. 2014, 8, 269–283.

36. Powers, D.M. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2011,
arXiv:2010.16061v1.

37. Siles, R.; Bennetts, S. OWASP Vulnerable Web Application Directory Project. 2019. Available online: https://owasp.org/www-
project-vulnerable-web-applications-directory/ (accessed on 8 May 2021).

38. Kimminich, B. OWASP Juice Shop Project; Technical report, Technical report; OWASP: 2020.
39. OWASP Zed Attack Proxy (ZAP). Available online: https://www.zaproxy.org (accessed on 8 May 2021).
40. Burp Suite Scanner. Available online: https://portswigger.net/burp/vulnerability-scanner (accessed on 8 May 2021).
41. Vega Vulnerability Scanner. Available online: https://subgraph.com/vega/ (accessed on 8 May 2021).
42. skipfish(1)—Linux Man Page. Available online: ps://linux.die.net/man/1/skipfish (accessed on 8 May 2021).
43. The Web-Application Vulnerability Scanner. Available online: https://wapiti.sourceforge.io (accessed on 8 May 2021).
44. Antunes, N.; Vieira, M. On the metrics for benchmarking vulnerability detection tools. In Proceedings of the 2015 45th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks, Rio de Janeiro, Brazil, 22–25 June 2015; pp. 505–516.
45. Kimminich, B. Pwning OWASP Juice Shop. 2017. Available online: https://pwning.owasp-juice.shop/ (accessed on 8 May 2021).

https://owasp.org/www-project-vulnerable-web-applications-directory/
https://owasp.org/www-project-vulnerable-web-applications-directory/
https://www.zaproxy.org
https://portswigger.net/burp/vulnerability-scanner
https://subgraph.com/vega/
ps://linux.die.net/man/1/skipfish
https://wapiti.sourceforge.io
https://pwning.owasp-juice.shop/

	Introduction
	State-of-the-Art Review
	Web Application Security Testing and Vulnerability
	Structured Query Language (SQLi) Injection
	Union-Based SQLi
	Blind SQLi
	Content-Based Blind SQLi
	Time-Based Blind SQLi
	NoSQLi Injection
	Server-Side Template Injection

	Our Approach towards Vulnerability Scanners
	Application Vulnerability Scanners
	Architecture of Web Application Vulnerabilities Scanners
	Web Application Security Scanner Evaluation Criteria (WASSEC)
	Evaluation Metrics

	Research Design
	Web Application Selection
	Black-Box Scanners Selection
	Metrics Selection

	Experimental Setup and Execution
	Experimental Design
	Owasp Juice Shop Application
	Owasp Juice Shop Tested Vulnerabilities
	Web Application Vulnerability Scanner Modes

	Results Analysis
	Experimental Results
	Mode 1 Results
	Mode 2 Results
	 Mode 3 Results
	Mode 4 Results
	Results Summary

	Evaluation
	Precision, Recall, and F-Measure
	Discussion: Finding Key Gaps

	Comparison with Previous Work
	Conclusions and Future Work
	References

