
Citation: Jha, P.; Sahu, M.; Bisoy, S.K.;

Sain, M. Application of Model-Based

Software Testing in the Health Care

Domain. Electronics 2022, 11, 2062.

https://doi.org/10.3390/

electronics11132062

Academic Editor: Rashid Mehmood

Received: 27 May 2022

Accepted: 28 June 2022

Published: 30 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Application of Model-Based Software Testing in the Health
Care Domain
Pragya Jha 1, Madhusmita Sahu 1, Sukant Kishoro Bisoy 1 and Mangal Sain 2,*

1 Department of Computer Science and Engineering, C. V. Raman Global University,
Bhubaneswar 752054, India; pragya.2k6@gmail.com (P.J.); msahu@cgu-odisha.ac.in (M.S.);
sukantabisoyi@cgu-odisha.ac.in (S.K.B.)

2 Division of Computer and Information Engineering, Dongseo University, Busan 47011, Korea
* Correspondence: mangalsain1@gmail.com

Abstract: The human body’s reaction to various therapeutic medications is critical to comprehend
since it aids in the appropriate construction of automated decision support systems for healthcare.
Healthcare Internet of Things (IoT) solutions are becoming more accessible and trusted, necessitating
more testing before they are standardized for commercial usage. We have developed an activity
diagram based on the Unified Modeling Language (UML) to represent acceptability testing in IoT
systems. The activity flow graph is used to extract all of the necessary information by traversing the
activity flow diagram from start to finish, displaying all its properties. In this paper, a test case is
generated to compute the type of diabetes using blood sugar test results, estimate the kind of diabetes,
and the probability that a person would get diabetes in the future. We have demonstrated how these
test cases can function using a telehealth care case study. First, we offer a high-level overview of the
topic as well as a design model working diagram. The test case creation method is then outlined
using the activity diagram as a guide.

Keywords: unified modeling language; acceptance testing; activity diagram; test case generation

1. Introduction

The Internet of Things (IoT) is a network of physical objects and devices that are
interconnected and exchange data to a cloud-based central control server. This enables
businesses to remotely monitor and manage their equipment and resources. As IoT technol-
ogy continues to develop, we will see a variety of new applications and systems using IoT
technology in many different contexts. To ensure the safety of IoT systems, it is important
that they are reliable, secure, and compliant. Testing IoT systems can be difficult because
there are a large number of different technologies used to develop them [1]. There is little
known about the use of IoT software testing in industry, mainly due to the lack of research
into the topic. There is little evidence to suggest that approaches or proposals in this area
are effective. This is clear from a review of the relevant scientific literature, which shows
that proposals and approaches in this area are uncommon [2].

When it comes to developing and testing software, the healthcare industry is one of
the most demanding and distinctive. With wearable technology, hospital indexing systems,
and myriad other advancements, product businesses in this field are helping doctors,
patients, and other medical professionals redefine what is possible [3–6]. Because of the
intricacy of these new goods, rigorous and strict testing is required, as the quality can
have a direct impact on a patient’s life. The cost and value of the product to the consumer,
the preservation of private and confidential patient data, and the safety of all patients or
caregivers who interact with the product are all high-stakes aspects to consider.

In [7], a remote health monitoring and data analysis was proposed by combining IoT
and deep learning techniques. A unique IoT-based FoG-assisted cloud network architecture
has been suggested, which collects real-time health care data from patients via numerous

Electronics 2022, 11, 2062. https://doi.org/10.3390/electronics11132062 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11132062
https://doi.org/10.3390/electronics11132062
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2657-5799
https://orcid.org/0000-0001-7298-7930
https://doi.org/10.3390/electronics11132062
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11132062?type=check_update&version=2


Electronics 2022, 11, 2062 2 of 15

medical IoT sensor networks and analyzes the data using a deep learning algorithm. The
suggested framework not only analyzes healthcare data, but also offers rapid assistance
to patients who are in urgent conditions and require immediate medical attention. Such
immense improvements in the field of healthcare domain also require an improvement in
the software testing techniques.

In truth, the healthcare and insurance sectors have seen significant transformations
in a short period of time. As a result, healthcare goods must be precise and accurate,
necessitating thorough testing of healthcare applications. Software testing is a term that
encompasses all factors that can affect the product’s quality. Patients’ sensitive data,
particularly their health information, need a high level of security. If a healthcare application
is not properly secured, it might result in serious data breaches [8]. Security testing is
required to make the application secure and fail-safe. It aids in making the application
long-lasting and error-free in a variety of demanding scenarios. Expertise and efficiency are
critical in healthcare systems in order to provide better and more effective care to patients.
Given the complexity of healthcare apps, it is critical to guarantee that they run properly
and without glitches. Software testing guarantees that the application runs smoothly and
gives users a complete experience.

The healthcare business generates a large amount of data, which includes detailed
patient information and their health problems. This information is critical to healthcare
organizations because it aids in the development of appropriate strategies and the produc-
tion of appropriate products. Big data solutions aid in making informed judgments on
disease cures, research and development, and a variety of other topics. It is critical that
this data be thoroughly tested to ensure that it is implemented correctly and produces the
desired results.

However, there has been very little research carried out on the applicability of testing
the software used in healthcare domain, and all the more interesting is the lack of acceptance
testing in this domain. In [9], the advantages and drawbacks of utilizing model-based
testing (MBT) to evaluate healthcare software systems were discussed without any proposal
of how the testing could be done. In [10], numerous unique mobile usability evaluation
approaches, ranging from the least to the most invasive, as well as their effects on the
quality of the usability data obtained, were discussed. The advantages and disadvantages of
various methods are also highlighted. In both [10,11], a usability testing procedure was used.
In [12,13], model-based and online healthcare testing were studied and their challenges and
methods were described in detail. In usability testing, the same scenarios are simulated
and tested in both real-time and virtual environments. Automation has made this role
easier for testers in recent years by simplifying the entire process. Usability testing also aids
in the improvement of the user interface and overall experience of healthcare apps. New
monitoring technologies and methodologies, on the other hand, are bringing unforeseen
problems and making it increasingly difficult to evaluate healthcare applications.

However, we found that acceptance testing for software tools that used the healthcare
domain have not been utilized before. In this regard, we present a scheme for Internet
of Healthcare Technology (IoHT) systems’ acceptance testing that makes use of the user
interface (UI) as that of the primary medium of contact between the system and the user.
Using empirical data, our analysis verifies this strategy. Acceptance testing is a black
box test that is built on the test cases premise and verified with a UML activity diagram,
an algorithm, and the results. The test scenario for the IoT system described in this article
was created from an activity diagram. We used a diabetic test scenario with telehealth
care to see how a doctor interacts with a patient over the internet. We have put together
a comprehensive overview of our approach based on what we learned from our case study,
which may be of use to practitioners who are having similar testing challenges. In fact,
gathering the system and testing it as a whole is the most reasonable and realistic way
to ensure quality. At the same time, for complicated IoT applications, this task might be
quite difficult.



Electronics 2022, 11, 2062 3 of 15

1.1. Basic Definitions and Concepts

This section introduces a few definitions and notations that will be used in this paper.
UML activity diagrams are briefly described in this section. An activity diagram can be
employed to model the interactive characteristics of a group of objects and emphasize on
the group of objects’ activities and making them suitable for expressing the execution of
an operation during the design stage. The series of activities between all participating
objects in the control flow throughout operation execution. In the message flow, it also
reflects the interaction between activity and object, and also the state change of object in
the object flow during activity execution. Activity diagrams are typically incorporated
when the use case’s control structure includes loops or branching. Using activity diagrams,
you may define a coverage criterion to ensure that the test scenarios are as complete as
possible. As demonstrated in Figure 1, this diagram can represent all possible scenarios for
a single-use case.

Figure 1. Use case diagram for diabetes telehealth care.

1.1.1. UML Activity Diagram Modeling

An activity diagram like traditional flowcharts enables us to represent a process as
an activity composed of nodes connected by edges. It can be linked to any modeling
element, such as Use cases, Classes, Interfaces, and Collaborations, to simulate its behavior.
It is a directed graph of some sort. The movement of tokens, which represent controlling or
information values along the edges from the source node to the sink nodes, is driven by
actions and conditions. In an activity diagram, there are two types of modeling elements:
activity nodes and activity edges.

1. Activity nodes: There are three different types of nodes in the activity diagrams.

a. Action nodes (AN): take all input data and control tokens, make new tokens,
and transmits them to output activity edges once they are ready.

b. Control nodes (CN): tokens are routed through the graph by control nodes.
The control nodes have components for deciding between different flows (deci-



Electronics 2022, 11, 2062 4 of 15

sion/merge), splitting or merging the flow for parallel processing (fork/join),
and so on.

c. Object nodes (ON): these nodes give and take the data tokens. They can also
operate as buffers, collecting tokens while waiting to go downstream

2. Activity edges: In activity diagrams, there are two different types of edges.

a. Control flow edge: this edge depicts the flow of control throughout the activity
b. Object flow edge: this edge depicts the movement of items during the activity.

In this article, we concentrate on the data and control flow of activity diagrams,
both of which are critical for test generation.

Definition 1 (Activity Diagram). An activity diagram AD =
(

As, Tc, Cg, Fr, aS , aE
)
, is

a 6-tuple where:

1. As = {as1, as2, ··· , asm} is a set of activity states with a finite number of possibilities;
2. Tc = {tc1, tc2, ··· , tcn} is a set of completion transitions with a finite number of possibilities;
3. Cg =

{
cg1, cg2, ··· , cgn

}
denotes a set of guard conditions, and Ci corresponds to the

transition ti ;
4. F ⊂

(
As × Tc × Cg

)
∪

(
Tc × Cg × As

)
denotes the flow relationship between the transi-

tions ti and activity states ai;
5. aS ∈ A denotes the starting activity state; the end activity state is denoted by aE

In addition, there can be only one transition t such that the following is satisfied

{(aS , t) and (t , aS) and (aE , t )} ∈ F f or any t.

Definition 2 (Test Sequence). A test sequence, tc ∈ Ts, in an activity diagram, AD, can be
defined as an execution path from the starting activity state to the end activity state consisting
of activities and transitions, i.e., ∀ tc ∈ Tc, tc = as1 → tc1 → as2 → tc2 → · · · → tcm → asm ,
where ai ∈ As, ti ∈ Tc, as1 is the initial state and asm is the final state. Ts is the set of
test sequences.
Definition 3 (Basic Paths (BP)). We ensure that all action states and transitions are covered and
that the loops are only run once while utilizing the DFS (depth first search method) to traverse
an activity diagram from the initial activity state to the final activity state. As a result, we can
obtain all basic paths.
Definition 4 (Activity Flow Diagram (AFG)). An activity flow graph is a directed network in
which each node represents a construct, such as a starting node, a flow final node, a decision mode,
a guard condition, a fork node, a join node, a merging node, and so on, and each edge represents the
flow in the activity diagram.
Definition 5 (Control Flow Activity Mapping Diagram (CFAMT)). CFAMT is a table that
stores information about each activity corresponding to a node in an activity graph.

We summarize these definitions in a tabular form for easy understanding of the readers
in Table 1.

1.1.2. Testing Scenario: A Diabetes Telehealth Care

We chose a diabetes telehealth care IoT system because these systems are extremely
difficult to evaluate, and there are no reliable methods available for evaluating these
systems. Many software apps for smartphones and IoT systems for patients are already
available, with the goal of assisting them in making health-related decisions quickly and
easily [14]. The large number of healthcare systems that rely on active human interaction
could benefit from a testing technique in which the UI is exercised as a final user would [15].
A diabetes telehealth care IoT system is a system that:

1. Determine whether the patient has diabetes.
2. Determine whether the patient’s blood glucose level is larger than or less than 120.
3. Determine whether the glucose level is greater than or less than 120.
4. Determine the kind of diabetes the cloud-based healthcare system can process large

amounts of data and convert it into useful information



Electronics 2022, 11, 2062 5 of 15

Table 1. Basic concepts and definitions.

Activity Diagram

An activity diagram AD =
(

As, Tc, Cg, Fr, aS , aE
)
,

is a 6-tuple where:

1. As = {as1, as2, ··· , asm} is a set of activity
states with a finite number of possibilities;

2. Tc = {tc1, tc2, ··· , tcn} is a set of completion
transitions with a finite number of possibilities;

3. Cg =
{

cg1, cg2, ··· , cgn
}

denotes a set of guard
conditions, and Ci corresponds to the transition ti;

4. F ⊂
(

As × Tc × Cg
)
∪

(
Tc × Cg × As

)
denotes

the flow relationship between the transi-tions
ti and activity states ai;

5. aS ∈ A denotes the starting activity state,
the end activity state is denoted by aE

Also, there can be only one transition t
such that the following is satisfied
{(aS , t) and (t , aS) and (aE , t )} ∈ F f or any t.

Test Sequence

A test sequence, tc ∈ Ts, in an activity diagram, AD,
can be defined as an execution path from the starting
activity state to the end activity state consisting
of activi-ties and transitions, i.e.,
∀ tc ∈ Tc, tc = as1 → tc1 → as2 → tc2 → · · · → tcm → asm ,
where ai ∈ As, ti ∈ Tc, as1, is the initial state and asm is the
final state. Ts is the set of test sequences.

Basic Paths (BP)

We ensure that all action states and transitions are covered
and that the loops are only run once while utilizing the DFS
(Depth First Search method) to traverse an activity diagram
from the initial activity state to the final activity state.
As a result, we can obtain all basic paths.

Activity Flow Diagram (AFG)

An activity flow graph is a directed network in which each
node represents a construct, such as a starting node, a flow
final node, a decision mode, a guard condition, a fork node,
a join node, a merging node, and so on, and each edge
represents the flow in the activity diagram

Control Flow Activity Mapping
Diagram (CFAMT)

CFAMT is a table that stores information about each activity
corresponds to a node in an activity graph

1.2. Research Gap and Contributions

There is very little research done in the study of the applicability of the testing the
software used in of healthcare domain, especially the acceptance testing. This motivated us
to develop an activity diagram for this research area and generate the test cases to predict
the diabetes type and their symptoms. The main contributions of our paper are:

1. We have proposed an algorithm based on the depth first search technique to generate
test cases to detect diabetes.

2. We present how to draw an activity flow graph (AFG) from an activity diagram.
3. We show how acceptance testing can be used to ensure that the software correctly

predicts diabetes type from the blood sugar level.

In Section 2, we review the existing literature on the software testing in IoT. Section 3
forms our main contributory section. We first explain our use-case test scenario and then
describe how this use case can be converted to an activity diagram. Then an algorithm
required to generate test cases using the depth-first search has been proposed. Considering
a general working of a mobile telehealth application as a case study, we have described
how the activity diagram, test case sequence, and test case can be generated. In Section 4,
we discuss our results and conclude our paper.



Electronics 2022, 11, 2062 6 of 15

2. Related Works

Leotta et al., proposed an experimentally proven unique approach for acceptability
assessment of IoT systems employing a user interface (UI), which is the way the user
interacts with the device [1]. Because many organizations consider acceptance testing,
which is a type of black-box testing built on the notion of the test scenario, i.e., a series of
actions done on the user interface, to be among the most efficient way to ensure the quality
of a fully implemented system, the author focused primarily on acceptance testing in this
paper. They present a method for IoT system acceptance testing that involves interacting
with graphical user interfaces. The authors used a mobile health IoT system for diabetes
monitoring, which includes sensors, mobile phones, and a distant cloud-based system, as
a case study. Because the author is concentrating on the acceptability level, a thorough
explanation of the expected system behavior is necessary. Similar studies can also be found
in [2,16].

Understanding how the human body reacts to medical treatments is challenging,
according to Silva et al., which makes automation of decision support systems in the
domain of healthcare rather complicated [17]. The authors of this paper describe a frame-
work for medical cybersecurity that will guide researchers to create test cases for their
applications by simulating the functioning of medical equipment and patient data using
validated models and component models. As per Leotta et al., IoT software and services are
becoming more ubiquitous in our lives, and guaranteeing their quality is crucial [18]. Be-
cause there are few suggestions in the literature for testing these complex—and frequently
safety-critical—systems, testers are left to build their own test cases. The study done by
Leotta et al., is one of the first steps toward IoT-based acceptance testing that uses a smart-
phone as the primary means of user contact with a complicated system that comprises local
sensors and actuators as well as a remote cloud-based system. The simple mobile health
(m-health) IoT platform for people with diabetes is used as an example to demonstrate the
suggested technique.

Chen et al., proposed employing metamorphic testing (MT), a new software testing
technique, to evaluate a variety of bioinformatics systems [19]. MT checks whether a pair
of test outputs conform to a set of domain-specific properties known as metamorphic
relations (MRs), instead of requiring a mechanism to evaluate if an individual test output is
valid. Because incorrectly computed findings can lead to incorrect biological conclusions,
program accuracy is crucial. MT is easy to set up and use, and it works well in discovering
defects in both real-world and intentionally flawed systems. The authors explain how MT
may be used to test algorithms from a wide range of bioinformatics areas. The integrated
clinical environment (ICE) conceptual functional model can be found in the literature [20].
This is a series of recommendations for safely integrating medical equipment and other
devices into a healthcare system; its purpose is to assist medical systems in becoming more
error-resistant, hence improving patient safety and treatment efficacy.

According to the author in [21], traditional clinical environments are considered as
closed-loop systems in which caregivers act as controllers, medical devices act as sen-
sors and actuators, and patients act as physical plants. MCPS (Medical cyber-physical
system) is a sort of CPS that alters this picture by introducing additional computational
entities that aid the caregiver in directing the plant, i.e., decision support. Some related
works that deal with these issues in tandem have been listed in the paper. A clinical
scenario for patient-controlled analgesia has been proposed in [22,23] that can benefit
from the closed-loop approach to drug delivery. Both employ the ICE conceptual model.
Jiang et al., describe a closed-loop testing environment in which a deployable cardiac
pacemaker system is controlled by a patient model, specifically a formal model of the
human heart [24]. Similar work has also been done in [25–27]. The goal is to determine
how safe and effective the gadget is in relation to the patient’s condition.

Some studies show that they primarily concentrate on a few medical situations with
models constrained to the components involved (e.g., device models) and variables in those
circumstances (e.g., physiological parameters and vital signs) [28,29]. Neither of them pays



Electronics 2022, 11, 2062 7 of 15

attention to the simulation that depicts changes in the human body, such as heart rate,
diabetes readings, blood pressure, and body temperature. They don’t present the evidence
for their indicators; instead, they show a patient model with some of them.

The software industry has grown significantly over the last few decades, owing to
recent advances in artificial intelligence. Deep learning (DL) is changing the landscape of
software engineering generally, in both research and industry. DL has been discovered
to have had a significant impact on the way we approach software testing over the last
two decades. Since most organizations have turned to automation testing to bridge the gap
that exists between the increasing complexity of deliverable software and the contraction
of the delivery cycle, the gap has been widening at an alarming rate, bringing us closer to
a tipping point where test automation will fail to deliver quality software on time. DL can
help us close this gap and streamline our software delivery process, saving us a significant
amount of time and effort. So far, the use of DL in software testing automation has been
very successful in some areas [30–33].

The Unified Modeling Language (UML) is a collection of tools for documenting system
analysis. Although UML is widely used to describe and evaluate the operation of complex
systems, its application to the health care domain has received little attention. Despite the
fact that UML models are designed to help reduce problem complexity, as product sizes
and complexities grow, UML models themselves become large and complex, involving
thousands of interactions across hundreds of objects. In UML, interaction, activity and state
machine diagrams can be used to represent the behavior of a use case. Sequence diagrams
depict the exchange of messages between objects while a use case is being executed. It is
concerned with the order in which the messages are sent. Activity diagrams, on the other
hand, concentrate on control flow and object-based relationships. These are very useful for
visualizing how several objects work together to complete a task. In the area of healthcare
domain, very little work has been done in this aspect, and readers may refer to [34–36].

3. Proposed Work

The goal of this article is to focus on the acceptability level; a detailed explanation of
the system’s expected behavior is required. Our approach is based on an activity diagram
model that describes the system’s behaviors and is used to generate code and test cases [37].
Essentially, our concept demonstrated expected system behavior, such as diabetes telehealth
care as a tool for remote consultation and an electronic record for self-management. Based
on these findings, Figure 1 formalizes the expected behavior of diabetes telehealth care, i.e.,
recognizes the actual status of the patient and doctor by allowing patients to track diabetes,
which type of diabetes, how much sugar they consume in daily meals, insulin dose, glucose
sensor, and insulin pump.

The function two users can conduct with the application includes calculating how
much food to eat, viewing sugar consumption levels, obtaining meal suggestions, and
learning about different types of diabetes. A simplified form of diabetes telehealth care is
presented below:

i. The healthcare cloud system is a deterministic system with accurate and predictable
behavior, and

ii. We overlook the part of telehealth care dealing with the doctor application because
it is the same as the patient application

3.1. Use Case Test Scenario

First, we take a test case as a use case scenario; Figure 1. All possible interactions
between the patient and the doctor with the application behavior are displayed.

3.2. Case Study for an Activity Definition of a Scenario and a Test Case

In the unified modeling language (UML), an activity diagram represents each step
of the patient’s condition. A test case is a set of activities that are done on the IoT system
that is being evaluated. In test cases, all possible scenarios indicated by the UML activity



Electronics 2022, 11, 2062 8 of 15

diagram must be tested. A flow chart and its modeling elements, nodes, and edges are used
to extract the fundamental notion of a UML activity diagram. The action states, activity
states, decisions, objects, and signal senders and receivers are all represented as nodes in
the process. Black boxes indicate activity action phases, arrows indicate transitions, and
branches are represented by a diamond with an approaching arrow and several departure
arrows [38].

The workflow of a complex procedure can be represented using an activity diagram.
This research focuses on UML activity diagrams, which represent the operations that are
used to construct test cases.

Figure 2 shows a UML activity model for diabetes telehealth care [14], which can be
automatically analyzed to extract relevant information and generate test cases.

1. The patient enters his or her login credentials.
2. The existing database of registered users is used to validate these credentials.
3. The user gets forwarded to the dashboard page if the login is successful.
4. The server sends the SMS to the doctor for verification when the patient selects the

appointment schedule.
5. The patient then waits for the doctor to send a confirmation text message.
6. Once the confirmation is received, the doctor will review all of the patient’s issues as

well as the type of diabetes they have. They will then recommend how much food to
eat, how to monitor sugar consumption, how to receive meal suggestions, and how to
update their app for future use.

Figure 2. Activity diagram diabetes telehealth care.



Electronics 2022, 11, 2062 9 of 15

3.3. Generation of Test Cases from the Activity Diagram

In this section, we will go over how to make test cases from an activity diagram in
this part. Figure 3 shows a schematic representation of our technique for creating test
cases using the activity diagram. The phases of recommended approach for creating a test
scenario are explained below.

1. Create an activity diagram for the specific use case, complete with the relevant
test data.

2. Create an activity flow graph from the activity diagram.
3. Extract the relevant information by traversing the activity flow graph.
4. Create test cases using the activity diagram as a guide.

Figure 3. Flow chart diagram diabetes telehealth care.

The rules for modeling the information required for testing in an activity diagram are
described below, followed by an example.

A. Construction of the activity diagram with the required test information: In order to develop
test scenarios, we employ UML models to define a system’s need. One or more
activity diagrams can be used to depict each use case. A telehealth care scenario is
depicted in Figure 1.



Electronics 2022, 11, 2062 10 of 15

B. The scenario related to a use case (Figure 2) is represented in activity diagrams: A scenario
is a completed “path” across the activity diagram where users of the system have
several alternatives for carrying out the functionality indicated in the use case.
The main scenario begins at the start node and goes without mistake through all
intermediate nodes until it reaches the end node. The guidelines for modeling
relevant test data into an activity diagram are outlined in the next paragraph.

C. Converting activity diagram into activity flow graph: An activity diagram to activity
graph conversion approach is provided. The following steps are used to convert the
activity diagram into an activity flow graph:

a. The activity flow graph is constructed from start to finish node displaying
options, conditions, concurrent executions, and loop expressions.

b. Create a control flow activity entry for each conditional expression. Create
nodes in the activity flow graph by traversing the control flow graph.

c. Conditional statements are created from loop statements.
d. In each concurrent execution statement, an entry is made in the control flow

graph for each execution path and then represented in the activity flow graph
by different execution paths.

D. Extraction of all required information by traversing the activity flow graph: All neces-
sary data, such as nodes, edges, conditional statements, and so on, are extracted.
An activity transition graph can be thought of as a node for each action in an activity
flow graph. Multiple control flow sequences are found using the depth-first traversal
strategy to traverse the activity flow graph. We seek conditional predicates at each
transition during traversal. In this phase, double-check the process to confirm that
all required fields have been filled in, such as activity information, input, output,
and conditions. Enumerate all feasible paths from the start node to the final node in
the activity flow graph and each path visited to generate test cases, to generate test
cases that satisfy the activity path criteria. To produce all activity paths, we suggest
a pseudo-code of test cases.

E. Generating the test cases from the activity flow graph: Using the DFS approach, different
flow sequences are detected by traversing the activity flow graph (AFG). The activity
path coverage requirement is used to generate the test scripts. To do this, we gather
all activity paths from the start node to the end node. To generate test cases that
match the activity path criteria, we first enumerate all conceivable paths from the
start node to the final node in the activity diagram, Figure 2.

We propose an algorithm, GenTestCase, described in Algorithm 1, to generate all the
activity paths using the DFS approach described above. The GenTestCase algorithm (shown
in Algorithm 1) generates all of the test cases. In our method, we explore the activity graph
using a depth first search. This algorithm meets the activity path coverage criterion. All of
the AFG’s basic paths are enumerated by the algorithm. To produce test cases, each path is
visited. Let us consider I(a1, a2, . . . , an) to be the set of input values for the visited path in
the activity flow diagram and O(d1, d2, . . . , dm) to be the resultant values of the execution
of the input values in the visited path.

3.4. Case Study

With the use of a case study, we describe how our approach works in this part. First,
we present an overview of the problem as well as the design model’s activity diagram.
Then, using the activity diagram as a guide, we describe the process of creating test cases.

In this section, we present the telehealth care case study, which illustrates the test
generation process. A general step involved in the telehealth care app is described below:

Step 1: Start
Step 2: Determine if the patient has diabetes
Step 3: Does the patient have a blood glucose test?
Step 4: If No—Ask the patient to get tested and go to Step 6



Electronics 2022, 11, 2062 11 of 15

Step 5: If yes—Go to Step 6
Step 6: Check the glucose level
Step 7: If glucose level > 120—declare patient has diabetes and go to Step 9
Step 8: If glucose level ≤ 120—declare patient does not have diabetes
Step 9: Determine the patient diabetes types.
Step 10: Is RPG (RPG is random plasma glucose) ≥ 11.1?
Step 11: Is respondent insulin-resistant?
Step 12: If yes, Diabetes symptoms progress slowly?
Step 13: Print “Type 2 diabetes”
Step 14: If no, diabetes symptoms progress fast?
Step 15: Print “Type 1 diabetes”
Step 16: Advice proper treatment to respondent
Step 17: End

Algorithm 1. GenTestCase

Input: Activity flow diagram
Output: Activity paths
1: Enumerate and store all paths from the start node to the end node in

P = P[1], P[2], . . . , P[n]
2: X = f
3: for each (P[i]), 1 ≤ i ≤ n do
4: N(Node) = StartNode
5: EN = EndNode
6: preCA = Pre-Condition of the activity
7: postCA = Post-Condition of the activity
8: pi = f
9: while N 6= EN do
10: if Condition = NULL then
11: pi = preCA, I(a1, a2, . . . , am), O(d1, d2, . . . , dl), postCA
12: else if Condition 6= NULL
13: Cvalue = C1, C2, . . . , Ck
14: p = preCA, I(a1, a2, . . . , am), O(d1, d2, . . . , dl), Cvalue, postCA
15: end if
16: pi = pi ∪ p
17: end while
18: p = {preCEN , IEN , OEN , postCEN} (the pre-condition, input values, resultant values and the
post condition of the End Node)
19: pi = pi ∪ p
20: X = X ∪ pi
21: end for
22: Return X

3.5. Activity Diagram and CFAMT Table

We can construct the activity diagram for the sample case study described above
using Figure 2, and based on this, we construct the Control Flow Activity Mapping Table
(CFAMT), as shown in Table 2. The CFAMT (Control Flow Activity Table) is created by
analyzing the activity diagram.

The corresponding activity flow graph (AFG) is created by analyzing the CFAMT, as
shown in Figure 4. For each label in the CFAMT a node is created in AFG. The sequence of
control flow in the CFAMT is maintained in the AFG. During the AFG construction, each
activity in the activity diagram is represented by a node in the AFG. The timing ordering
of the diagram is maintained in the system. The conditional message in the diagram is
represented by a node followed by two outward edges. Whether the condition is true or
false, one of the edges is covered.



Electronics 2022, 11, 2062 12 of 15

Table 2. Control flow activity mapping table.

Name of the Node Name of the Activities Predicate Conditions

A Upload the blood report NULL

B Check the blood report NULL

C Valid report B1: Valid report

D Invalid report B2: Invalid report

E Check glucose Level NULL

F Glucose level ≤ 120 E1: No diabetes

G Glucose level >120 E2: Patient has diabetes

H Check RPG level NULL

I RPG < 11.1 H1: Advice
precautionary treatment

J RPG ≥ 11.1 H2: Check diabetes type

K Check insulin dependency NULL

L Insulin independent K1: Type 1 diabetes

M Insulin dependent K2: Type 2 diabetes

N Advice respondent to
proper treatment NULL

Figure 4. The activity flow graph of the test case.

3.6. Test Sequence Generation

From the AFG described in Figure 4, we can easily identify five control flow se-
quences by traversing the AFG using our DFS-based GenTestCase algorithm as described in
Algorithm 1. During this traversal. we look for conditional predicates (Column 3 of Table 2)
on each of the transitions, which are based on the conditions described as follows:

1. Pre-condition:

a. The patient should have a valid blood report.

2. Post-condition:



Electronics 2022, 11, 2062 13 of 15

a. Determines if the patient has diabetes.
b. Determines the type of diabetes.
c. Advise proper treatment.

3. Main scenario

a. The patient uploads a valid blood test report.
b. The patient enters the glucose level and RPG value
c. The user receives information about the type of diabetes and proper treatment.

Applying the algorithm GenTestCase on the CFAMT described in Table 1, we obtain
the following five activity paths:

1. P1 := A− > B− > D− > A
2. P2 := A− > B− > C− > E− > F
3. P3 := A− > B− > C− > E− > G− > H− > I
4. P4 := A− > B− > C− > E− > G− > H− > J− > K− > L− > N
5. P5 := A− > B− > C− > E− > G− > H− > J− > K− > M− > N

3.7. Test Case Generation

Because there is no subordinate activity network in this example, a combination of
activity pathways is not necessary. As a result, we have a total of five activity routes that
we process in order to generate test cases. In our technique, a test case has four parts:
a branch condition sequence, an activity sequence, object state changes, and an object
created. The expected system behavior is made up of activity sequences, object state
changes, and object creation. The sequence of branch conditions, on the other hand, is
regarded as a source of test input. Each of the branch criteria in the sequence corresponds to
some input data supplied in the textual description of the use case whose activity diagram
is being examined. We obtain the necessary values of all variables as part of the test case
generating process. For this, we use CFAMT constructed in Table 1.

4. Discussion and Conclusions

We provide a technique for IoT system acceptance testing in this research, and we use
a realistic diabetic telehealth care test case scenario to determine diabetes type and therapy.
We start by creating a test case directly from a UML activity diagram and then using the
activity diagram to create an activity flow graph. All relevant data is extracted using the
graph. The UML model, which is widely used in the medical field, is the foundation of our
work. We created an activity transition graph (AFG) from an activity diagram in this work.
The graph provided all of the necessary information. The predicates were then chosen by
traversing the graph. Then, using activity path coverage criteria, test cases were created. In
the AFG of the activity diagram, we first listed all feasible paths from the start node to the
final node. After that, each path was explored in order to generate test cases. We looked for
conditional predicates on each of the transitions during our visit in order to execute the
corresponding flow and activity. We created test cases for each conditional predicate based
on the activity path coverage criteria and the guard condition.

This paper proposed a method for building test cases that is both time and
cost-effective.

Author Contributions: P.J. and M.S. (Madhusmita Sahu) contributed to the main idea of the research
and wrote the original manuscript. P.J., M.S. (Mangal Sain) and S.K.B., reviewed the manuscript
and provided valuable suggestions to further refine the manuscript. S.K.B. and M.S. (Mangal Sain)
contributed significantly by supervising and managing to fund for research as well improving the
technical and grammatical contents of the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Dongseo University, “Dongseo Cluster Project” Research
Fund of 2022 (DSU-20220006).



Electronics 2022, 11, 2062 14 of 15

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication
of this paper.

References
1. Leotta, M.; Ricca, F.; Clerissi, D.; Ancona, D.; Delzanno, G.; Ribaudo, M.; Franceschini, L. Towards an acceptance testing approach

for Internet of Things systems. In Proceedings of the International Conference on Web Engineering, Rome, Italy, 5–8 June 2017;
Springer: Cham, Switzerland, 2017; pp. 125–138.

2. Rosenkranz, P.; Wählisch, M.; Baccelli, E.; Ortmann, L. A distributed test system architecture for open-source IoT soft-ware. In
Proceedings of the 1st Workshop on IoT Challenges in Mobile and Industrial Systems (IoT-Sys 2015), Florence, Italy, 18 May 2015;
ACM: New York, NY, USA, 2015; pp. 43–48.

3. Sharma, S.; Chen, K.; Sheth, A. Toward practical privacy-preserving analytics for IoT and cloud-based healthcare systems.
IEEE Internet Comput. 2018, 22, 42–51. [CrossRef]

4. Huang, H.; Gong, T.; Ye, N.; Wang, R.; Dou, Y. Private and secured medical data transmission and analysis for wireless sensing
healthcare system. IEEE Trans. Ind. Inform. 2017, 13, 1227–1237. [CrossRef]

5. Lin, C.C.; Lin, P.Y.; Lu, P.K.; Hsieh, G.Y.; Lee, W.L.; Lee, R.G. A healthcare integration system for disease assessment and safety
monitoring of dementia patients. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 579–586. [PubMed]

6. Das, P.S.; Park, J.Y. A flexible touch sensor based on conductive elastomer for biopotential monitoring applications. Biomed. Signal
Process. Control 2017, 33, 72–82. [CrossRef]

7. Nagarajan, S.M.; Deverajan, G.G.; Chatterjee, P.; Alnumay, W.; Ghosh, U. Effective task scheduling algorithm with deep learning
for Internet of Health Things (IoHT) in sustainable smart cities. Sustain. Cities Soc. 2021, 71, 102945. [CrossRef]

8. Nagarajan, S.M.; Deverajan, G.G.; Kumaran, U.; Thirunavukkarasan, M.; Alshehri, M.D.; Alkhalaf, S. Secure data transmission in
internet of medical things using res-256 algorithm. IEEE Trans. Ind. Inform. 2021. [CrossRef]

9. Vieira, M.; Song, X.; Matos, G.; Storck, S.; Tanikella, R.; Hasling, B. Applying model-based testing to healthcare products:
Preliminary experiences. In Proceedings of the 30th International Conference on Software Engineering, Leipzig, Germany,
10–18 May 2008; pp. 669–672.

10. Borycki, E.M.; Monkman, H.; Griffith, J.; Kushniruk, A.W. Mobile usability testing in healthcare: Methodological approaches. In
MEDINFO 2015: eHealth-Enabled Health; IOS Press: Amsterdam, The Netherlands, 2015; pp. 338–342.

11. Holmes, S.; Moorhead, A.; Bond, R.; Zheng, H.; Coates, V.; McTear, M. Usability testing of a healthcare chatbot: Can we use
conventional methods to assess conversational user interfaces? In Proceedings of the 31st European Conference on Cognitive
Ergonomics, Belfast, UK, 10–13 September 2019; pp. 207–214.

12. Dey, J. A “new normal” Approach in Post-COVID19 Era: Online Healthcare Testing Strategy. J. Math. Sci. Comput. Math. 2020,
2, 145–157. [CrossRef]

13. Jabbar, R.; Krichen, M.; Fetais, N.; Barkaoui, K. Adopting formal verification and model-based testing tech-niques for val-
idating a blockchain-based healthcare records sharing system. In Proceedings of the 22nd International Conference on En-
terprise In-formation Systems, Prague, Czech Republic, 5–7 May 2020; SCITEPRESS-Science and Technology Publications:
Setúbal, Portugal, 2020; pp. 261–268.

14. Klonoff, D.C. The current status of mHealth for diabetes: Will it be the next big thing? J. Diabet. Sci. Technol. 2013, 7, 749–758.
[CrossRef] [PubMed]

15. Islam, S.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K.S. The internet of things for health care: A comprehensive survey.
IEEE Access 2015, 3, 678–708. [CrossRef]

16. Kim, H.; Ahmad, A.; Hwang, J.; Baqa, H.; Le Gall, F.; Ortega, M.A.R.; Song, J. IoT-TaaS: Towards a prospective IoT testing
framework. IEEE Access 2018, 6, 15480–15493. [CrossRef]

17. Silva, L.C.; Perkusich, M.; Bublitz, F.M.; Almeida, H.O.; Perkusich, A. A model-based architecture for test-ing medical
cyber-physical systems. In Proceedings of the 29th Annual ACM Symposium on Applied Computing, Gyeongju, Korea,
24–28 March 2014; pp. 25–30.

18. Leotta, M.; Clerissi, D.; Olianas, D.; Ricca, F.; Ancona, D.; Delzanno, G.; Franceschini, L.; Ribaudo, M. An acceptance testing
approach for Internet of Things systems. IET Softw. 2018, 12, 430–436. [CrossRef]

19. Chen, T.Y.; Ho, J.W.; Liu, H.; Xie, X. An innovative approach for testing bioinformatics programs using metamorphic testing.
BMC Bioinf. 2009, 10, 24. [CrossRef] [PubMed]

20. STAM F2761-2009; Medical Devices and Medical Systems—Essential Safety Requirements for Equip-ment Comprising the
Patient-Centric Integrated Clinical Environment (ICE), Part 1: General Requirements and Conceptual Model. ASTM International:
West Conshohocken, PA, USA, 2009.

21. Lee, I.; Sokolsky, O.; Chen, S.; Hatcliff, J.; Jee, E.; Kim, B.; King, A.; Mullen-Fortino, M.; Park, S.; Roederer, A.; et al. Challenges
and research directions in medical cyber-physical systems. Proc. IEEE 2012, 100, 75–90.

22. Lee, I.; Sokolsky, O. Medical cyber physical systems. In Proceedings of the 2010 47th Design Automation Conference (DAC),
Anaheim, CA, USA, 13–18 June 2010; ACM/IEEE: New York, NY, USA, 2010; pp. 743–748.

23. Pajic, M.; Mangharam, R.; Sokolsky, O.; Arney, D.; Goldman, J.; Lee, I. Model-driven safety analysis of closed-loop medical
systems. IEEE Trans. Ind. Inform. 2012, 10, 3–16. [CrossRef] [PubMed]

http://doi.org/10.1109/MIC.2018.112102519
http://doi.org/10.1109/TII.2017.2687618
http://www.ncbi.nlm.nih.gov/pubmed/18779072
http://doi.org/10.1016/j.bspc.2016.11.008
http://doi.org/10.1016/j.scs.2021.102945
http://doi.org/10.1109/TII.2021.3126119
http://doi.org/10.15864/jmscm.2109
http://doi.org/10.1177/193229681300700321
http://www.ncbi.nlm.nih.gov/pubmed/23759409
http://doi.org/10.1109/ACCESS.2015.2437951
http://doi.org/10.1109/ACCESS.2018.2802489
http://doi.org/10.1049/iet-sen.2017.0344
http://doi.org/10.1186/1471-2105-10-24
http://www.ncbi.nlm.nih.gov/pubmed/19152705
http://doi.org/10.1109/TII.2012.2226594
http://www.ncbi.nlm.nih.gov/pubmed/24177176


Electronics 2022, 11, 2062 15 of 15

24. Jiang, Z.; Pajic, M.; Mangharam, R. Model-based closed-loop testing of implantable pacemakers. In Proceedings of the
2011 IEEE/ACM Second International Conference on Cyber-Physical Systems, Chicago, IL, USA, 12–14 April 2011; IEEE:
New York, NY, USA; pp. 131–140.

25. Arrieta, A.; Sagardui, G.; Etxeberria, L.; Zander, J. Automatic generation of test system instances for configurable cyber-physical
systems. Softw. Qual. J. 2017, 25, 1041–1083. [CrossRef]

26. Hatcliff, J.; King, A.; Lee, I.; Macdonald, A.; Fernando, A.; Robkin, M.; Vasserman, E.; Weininger, S.; Goldman, J.M. Rationale and
architecture principles for medical application platforms. In Proceedings of the 2012 IEEE/ACM Third International Conference
on Cyber-Physical Systems (ICCPS’12), Beijing, China, 17–19 April 2012; IEEE Computer Society: Washington, DC, USA,
2012; pp. 3–12.

27. Miller, B.; Vahid, F.; Givargis, T. Digital mockups for the testing of a medical ventilator. In Proceedings of the 2nd ACM
SIGHIT International Health Informatics Symposium (IHI’12), Miami, FL, USA, 28–30 January 2012; ACM: New York, NY, USA,
2012; pp. 859–862.

28. Lee, E.A. Cyber physical systems: Design challenges. In Proceedings of the 2008 11th IEEE Symposium on Object Oriented
Real-Time Distributed Computing (ISORC’08), Orlando, FL, USA, 5–7 May 2008; IEEE Computer Society: Washington, DC, USA,
2008; pp. 363–369.

29. Lee, E.A.; Seshia, S.A. Introduction to Embedded Systems, A Cyber-Physical Systems Approach; MIT Press: Cambridg, MA, USA, 2011;
ISBN 978-0-557-70857-4.

30. Dimitri, G.M.; Spasov, S.; Duggento, A.; Passamonti, L.; Toschi, N. Unsupervised stratification in neuroimaging through deep
latent embeddings. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine &
Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; IEEE: New York, NY, USA, 2020; pp. 1568–1571.

31. Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to
deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [CrossRef] [PubMed]

32. Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep learning for healthcare: Review, opportunities and challenges.
Brief. Bioinform. 2018, 19, 1236–1246. [CrossRef] [PubMed]

33. Vaid, A.; Somani, S.; Russak, A.J.; De Freitas, J.K.; Chaudhry, F.F.; Paranjpe, I.; Johnson, K.W.; Lee, S.J.; Miotto, R.;
Richter, F.; et al. Machine learning to predict mortality and critical events in a cohort of patients with COVID-19 in New York
City: Model development and validation. J. Med. Internet Res. 2020, 22, e24018. [CrossRef] [PubMed]

34. Abomhara, M.; Lazrag, M.B. UML/OCL-based modeling of work-based access control policies for collaborative healthcare
systems. In Proceedings of the 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services
(Healthcom), Munich, Germany, 14–16 September 2016; IEEE: New York, NY, USA, 2016; pp. 1–6.

35. Pişirgen, A.; Peker, S. A UML-Based Conceptual Model for Appointment Booking Systems. In Proceedings of the 2021
6th International Conference on Computer Science and Engineering (UBMK), Ankara, Turkey, 15–17 September 2021; IEEE:
New York, NY, USA, 2021; pp. 812–817.

36. Veitaite, I.; Lopata, A. Knowledge-based UML dynamic models generation from enterprise model in hospital information
management process example. Intell. Syst. Sustain. Pers. -Cent. Healthc. 2022, 205, 225–250. [CrossRef]

37. Utting, M.; Legeard, B. Practical Model-Based Testing: A Tools Approach; Elsevier: Amsterdam, The Netherlands, 2010.
38. Wang, L.; Yuan, J.; Yu, X.; Hu, J.; Li, X.; Zheng, G. Generating test cases from UML activity diagrambased on gray-box method.

In Proceedings of the 11th Asia-Pacific Software Engineering Conference, Busan, Korea, 30 November–3 December 2004; IEEE:
New York, NY, USA, 2004; pp. 284–291.

http://doi.org/10.1007/s11219-016-9341-7
http://doi.org/10.1038/s41591-018-0316-z
http://www.ncbi.nlm.nih.gov/pubmed/30617335
http://doi.org/10.1093/bib/bbx044
http://www.ncbi.nlm.nih.gov/pubmed/28481991
http://doi.org/10.2196/24018
http://www.ncbi.nlm.nih.gov/pubmed/33027032
http://doi.org/10.1007/978-3-030-79353-1_12

	Introduction 
	Basic Definitions and Concepts 
	UML Activity Diagram Modeling 
	Testing Scenario: A Diabetes Telehealth Care 

	Research Gap and Contributions 

	Related Works 
	Proposed Work 
	Use Case Test Scenario 
	Case Study for an Activity Definition of a Scenario and a Test Case 
	Generation of Test Cases from the Activity Diagram 
	Case Study 
	Activity Diagram and CFAMT Table 
	Test Sequence Generation 
	Test Case Generation 

	Discussion and Conclusions 
	References

