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Abstract: Robot trajectory prediction is an essential part of building digital twin systems and ensuring
the high-performance navigation of IoT mobile robots. In the study, a novel two-stage multi-objective
multi-learner model is proposed for robot trajectory prediction. Five machine learning models are
adopted as base learners, including autoregressive moving average, multi-layer perceptron, Elman
neural network, deep echo state network, and long short-term memory. A non-dominated sorting
genetic algorithm III is applied to automatically combine these base learners, generating an accurate
and robust ensemble model. The proposed model is tested on several actual robot trajectory datasets
and evaluated by several metrics. Moreover, different existing optimization algorithms are also
applied to compare with the proposed model. The results demonstrate that the proposed model
can achieve satisfactory accuracy and robustness for different datasets. It is suitable for the accurate
prediction of robot trajectory.

Keywords: robot trajectory prediction; IoT; digital twin; multi-objective optimization; ensemble learning

1. Introduction

Mobile robots are one of the most important parts of the IoT system, which are
capable of being automatic sensing nodes [1,2], flexible transportation carriers [3], or
effective execution tools [4]. With the development of IoT technologies, the requirements
for the stability of the mobile robot system are getting higher and higher [5]. As the core
component of the IoT mobile robots, the positioning system often fails due to sensor failures
or environmental interference [6]. The positioning failure and navigation error will cause a
series of chain reactions, which will seriously affect the IoT environment [7].

The digital twin technology can fuse multi-source sensor data, construct a virtual
model of the mobile robots, and monitor the health status of the robots in real time [8,9].
The focus of the digital twin system is on how to build a highly reliable virtual model [10].
According to the results of the virtual navigation model, the physical mobile robots can
be aware of the difference between actual positions and expected positions [11]. Then,
the mobile robot can reschedule to guarantee navigation performance. As for the digital
twin system of robot navigation, the most important parameter is the navigation trajectory.
The abnormalities in the robot navigation system can be reflected in the navigation trajec-
tory [12]. If the robot deviates or sensors fail, the difference between the actual trajectory
and virtual trajectory will be large [13]. Therefore, to provide virtue trajectory informa-
tion for the digital twin systems for mobile robots, the robot trajectory prediction should
be investigated [14].
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1.1. Literature Review

In recent trajectory prediction studies, the data-driven methods are the mainstream,
which can discover the underlying fluctuation rule of the robot trajectory from historical
data [15]. The data-driven trajectory prediction models can be divided into statistical meth-
ods and intelligent methods. The commonly-used statistical methods contain the Kalman
filter [16], autoregressive moving average (ARMA) [17], Gaussian process method [18], etc.
The statistical methods have fast calculation speed and strong interpretability. However,
the non-linear fitting performance is not sufficient, which limits the usage [19]. Compared
with statistical methods, the intelligent methods, especially the deep learning method,
have a stronger fitting and generalization capacity, and are more frequently used in recent
studies [20]. For example, Seker et al. combined a convolutional neural network (CNN)
and long short-term memory (LSTM) for robot trajectory prediction, which used the CNN
to extract features of the trajectory time series, and applied the CNN to describe temporal
dependency for prediction [21]. Li et al. applied a novel LSTM structure to predict positions
and directions [22]. Zhang et al. used an RNN with Monte-Carlo dropout for trajectory pre-
diction in human–robot interaction [23]. Nikhil et al. proposed a fast trajectory prediction
method based on a compact CNN algorithm [24].

The above studies all proved the effectiveness of the intelligent trajectory prediction
methods. They used diverse prediction methods to predict the robot’s trajectory. However,
due to the diversity of the prediction mechanism, all prediction models have a different
focus on learning features [25]. Considering the diverse characteristics of the robot trajectory,
the learning scope of the single prediction model is limited, leading to limited application
scenarios and prediction accuracy [26]. To overcome this drawback, a multi-learner strategy
should be studied, which applies multiple learners to broaden the learning scope. To ensure
diversity, the structure of the learners should be different [27]. In this study, three types of
learners are applied, including linear regression, shallow neural works, and deep neural
works. These three types of learners can focus on linear components, weak non-linear
components, and strong non-linear components, respectively, to learn multifaceted features
of the trajectory.

Given the multiple learners, how to combine them is one of the core problems to ensure
effectiveness [28]. The combined model is expected to outperform any learner. The boosting,
stacking, and optimization strategies are commonly used to combine multiple weak models
into a strong ensemble model [29,30]. For example, Wang et al. applied adaptive boosting
(AdaBoost) to combine multiple Markov models to improve spatial location prediction
accuracy [31]. Rasouli et al. stacked several recurrent networks for trajectory prediction [32].
Xu et al. applied the particle swarm optimization gravitational search algorithm (PSOGSA)
to calculate the ensemble weights of the spatial prediction models [33]. Although the above
methods have been proved to be valid, they only consider the accuracy; the robustness
of the ensemble model is not involved. The ensemble model with poor robustness is
prone to overfitting, and has a strong dependency on the performance on the dataset [34].
Obviously, the one-sided pursuit of prediction accuracy will make it difficult for the model
to show excellent performance on multiple different datasets. To solve the above-mentioned
research gaps and take into account the accuracy and robustness comprehensively, the
multi-objective optimization method should be investigated.

1.2. The Novelty of the Study

According to the above research gaps, a novel multi-objective multi-learner prediction
(MMP) model is proposed for trajectory prediction. The ARMA, multi-layer perceptron
(MLP), Elman neural network (ENN), deep echo state network (DESN), and LSTM are used
as the weak learner. The ensemble weights can be obtained by non-dominated sorting ge-
netic algorithm III (NSGA-III) to generate accurate and robust ensemble prediction results.

The scientific contributions of the study are presented as follows:

1. A multi-objective multi-learner prediction structure is proposed for trajectory predic-
tion. This model structure can fit the complex linear and non-linear components of the
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trajectory while ensuring accuracy and robustness simultaneously. The effectiveness
of the proposed prediction model is validated with several real robot trajectories over
several benchmark models.

2. Previous studies only utilized a single model for trajectory prediction, which has a
limited learning scope and cannot cope with complex components of trajectory. In
this study, a multi-learner prediction method is proposed which uses ARMA, MLP,
ENN, DESN, and LSTM for prediction. The ARMA can fit the linear components. The
MLP and ENN can describe the weak non-linear components in a non-recursive and
recursive manner, respectively. The DESN and LSTM can grasp strong non-linear
components non-recursively and recursively. These diverse learners can achieve
omnidirectional capture of trajectory features.

3. The existing studies barely consider robustness when constructing an ensemble model,
which makes the ensemble model prone to overfit and limited generalization per-
formance. To mitigate the research gaps, an ensemble strategy based on the multi-
objective optimization method is proposed. The multi-objective ensemble strategy can
generate ensemble weights considering the accuracy and robustness simultaneously,
leading to better comprehensive performance.

2. Methods

The proposed MMP model consists of two stages, namely multi-learner prediction
and multi-objective ensemble. The specific framework of the proposed model is shown in
Figure 1.
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Figure 1. Framework of the proposed MMP model.

1. Stage 1: multi-learner prediction. The trajectory dataset is divided into training
and testing datasets. The trajectory is separated into several series in the orthogonal
coordinate system. Fed with all orthogonal series, the ARMA, MLP, ENN, DESN, and
LSTM are trained with the training dataset and generate forecasting results in the
testing datasets.

2. Stage 2: multi-objective optimization. The forecasting results of the multiple learn-
ers are combined by the NSGA-III to construct the ensemble model. Setting bias
and variance as the objective function, the NSGA-III is applied to optimize the en-
semble weights. Applying the obtained weights to the testing dataset, the ensemble
forecasting results of the orthogonal series can be obtained. Synthesizing series fore-
casting results in the orthogonal coordinate system, the final deterministic trajectory
forecasting results can be obtained.
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2.1. Stage 1: Multi-Learner Prediction

An N-dimensional trajectory Y = [y1, y2, . . . , yN ] can be mapped into an orthogonal
coordinate system and generate several orthogonal series. These orthogonal series are
predicted individually in this study. The multiple learners are required to take series from
each coordinate as input and to generate corresponding prediction results. The historical
horizon and prediction horizon are denoted as H and L, respectively. In this study, the H
and L are set according to Ref. [35]. The historical horizon H is set as 10, which is recognized
to be able to produce better performance [35]. The prediction horizon L is set as 5 to study
the long-term prediction performance [35]. Assuming a series of i-th orthogonal series as
yi, the input of the model is [yi(t− H + 1), yi(t− H + 2), . . . , yi(t)] at time t, and the future
values [ŷi(t + 1), ŷi(t + 2), . . . , ŷi(t + L)] can be obtained with the model. The predicted
trajectory Ŷ(t) =

[
Ŷ(t + 1), Ŷ(t + 2), . . . , Ŷ(t + L)

]
can be obtained by synthesizing all

orthogonal series.
In this study, the ARMA, MLP, ENN, DESN, and LSTM are applied for prediction, and

are briefly introduced as follows:

1. The ARMA is a stochastic model in time series analysis, and can build regression
equations through the correlation between data [36].

2. The MLP is a feedforward artificial neural network, which can map multiple input
datasets to output datasets [37].

3. The ENN is a simple recurrent neural network, which consists of an input layer, a
hidden layer, and an output layer; it has a context layer that feeds back the hidden
layer outputs in the previous time steps [38].

4. The DESN is the extension of the ESN (echo state network) approach to the deep
learning framework, which is composed of multiple reservoir layers stacked on top of
each other [39].

5. The LSTM model is a kind of recurrent neural network; this model can address
gradient exploration and vanishing problems during training [40].

These five models are widely used in time series forecasting problems and have
diverse characteristics. The ARMA can fit the linear components. The MLP and ENN
can describe the weak non-linear components in a non-recursive and recursive manner,
respectively. The DESN and LSTM can grasp strong non-linear components non-recursively
and recursively. The diverse characteristics of the models are understood to be able to
facilize high-performance ensemble models [41].

With the generated input and output, the ARMA, MLP, ENN, DESN, and LSTM can
be applied. These models can be trained with the training dataset and generate prediction
results for testing datasets. Figure 2 shows the structure of each basic prediction model.
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2.2. Stage 2: Multi-Objective Ensemble

NSGA-III [42] is an improved multi-objective optimization algorithm widely used
in many fields. NSGA-III introduces a reference point mechanism based on NSGA-II,
which uses the characteristics of distributed reference points in high-dimensional objects to
maintain the diversity of populations. The main implementation steps of the NSGA-III can
be interpreted as follows [42]:

1. Generate reference points on the hyper-plane of the multi-objective functions.
2. Normalize population members by constructing extreme points.
3. Associate population members to the reference points, and carry out the niching-

preserving operation to balance population member distribution.
4. Execute genetic crossover and mutation operation to generate an offspring population.

This advantage makes NSGA-III have better algorithm convergence, and it is not easy
to fall into the local optimum. The method of constructing weights by boundary crossing is
used to preset a set of search target directions that can cross the Pareto surface to iteratively
obtain the solution set distributed in the Pareto optimal front [43].

With the predicted trajectories of the multiple learners, the ensemble weights should
be calculated with comprehensive consideration of accuracy and robustness. The accuracy
means the prediction results have small deviations from the actual trajectory. The robustness
means the prediction model does not rely on the training data. To measure the accuracy
and robustness, the bias and variance are presented as follows [44]: Bias = Et

[(
ED
[
Ŷ(t; D)

]
− Eε[Y(t; ε)]

)2
]

Variance = Et,D

[(
Ŷ(t; D)− ED

[
Ŷ(t; D)

])2
] (1)

where Ŷ(t; D) is the predicted trajectory at time t where the prediction model is trained
with samples D. The training sample D is selected from the training dataset in the cross-
validation manner. The actual trajectory Y(t; ε) is composed of real trajectory and dis-
turbance ε. Y(t) = Eε[Y(t; ε)] is the real trajectory without disturbance ε. Because the
disturbance ε is unmeasurable, the real trajectory Y(t) without disturbance cannot be mea-
sured. In this study, the Eε[Y(t; ε)] is estimated as Y(t; ε). ED and Et are the expectations of
the trajectory on times and training datasets.

With the bias and variance formula, the objective functions can be obtained as follows:{
Et

[(
ED
[
Ŷ(t, D)

]
− Y(t, ε)

)2
]
, ED,t

[(
Ŷ(t, D)− ED

[
Ŷ(t, D)

])2
]}

s.t. Ŷ(t, D) =
∑i Ŷi(t, D)wi

∑i wi

0 ≤ wi ≤ 1

(2)

where wi is the i-th ensemble weight and Ŷi(t, D) is the predicted trajectory of i-th model.
In this study, the NSGA-III is applied to solve the multi-objective optimization, and a

Pareto front can be generated. The work of many researchers has shown that calculating
the combined weights of models through multi-objective optimization is a very effective
solution to improve the performance of prediction models [45–47]. It is worth mentioning
that the VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) [48], TOPSIS
(technique for order of preference by similarity to ideal solution) [49], and Gray correlation
methods [50] are used to solve Pareto optimal solutions wbest. The prediction results on the
testing dataset can be obtained as follows:

Ŷtest
(t) =

∑i ED

(
Ŷtest

i (t, D)
)

wbest
i

∑i wbest
i

(3)
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where Ŷtest
i (t, D) is the predicted trajectory on the testing dataset at time t where the model

is trained with samples D and Ŷtest
(t) is the final deterministic predicted trajectory at time

t on the testing dataset.

2.3. Data Description

In this study, four trajectories are applied to validate the prediction performance of
the proposed model. The MIT Stata Center Data Set is used for experimental validation of
two-dimensional predictions (https://projects.csail.mit.edu/stata/ (accessed on 24 April
2022)). The dataset includes more than 2.3 TB and 42 km of recorded data. In this paper,
two ground truth trajectories of the dataset are taken as the first and second data for
experiments. The sampling frequency of trajectory datasets #1 and #2 is 20 Hz, that is, the
sampling period is 0.05 s (horizon = 0.05 s).

In addition to the two-dimension trajectory, the performance of the proposed method
on the three-dimension trajectory should be investigated for stereo IoT. The third and
fourth trajectories are collected by a three-dimensional motion capture system of the micro
aerial vehicle (MAV) under different smart home environments (http://wbli.me/lmdata/
(accessed on 1 August 2021)). The sampling frequency of trajectory datasets #3 and #4 is
10 Hz, that is, the sampling period is 0.1 s (horizon = 0.1 s). The details about the MAV
trajectories can be found in Ref. [51].

The trajectories utilized in this study are shown in Figure 3. Each of the trajectories has
1000 data points. The first 700 data points are utilized as the training set and the remaining
300 data points are utilized as the testing set. It can be observed that trajectory datasets #1
and #2 are two-dimensional, while datasets #3 and #4 are three-dimensional, with which
we can verify the performance of the model comprehensively. It is worth mentioning that
the number of advance prediction steps for each constructed model is five steps, and the
prediction timestep windows are the same as the prediction horizons.
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2.4. Evaluation Metrics

The deterministic evaluation metrics of the trajectory prediction contain average
displacement error (ADE) [52], non-linear average displacement error (NLADE) [53], and
final displacement error (FDE) [54]. The equations of these metrics are shown as follows:

ADE = 1
L×n

L
∑
i

n
∑
j
‖Ŷi,j −Yi,j‖2

NLADE = 1
L×n

L
∑
i

n
∑
j

I
(
Yi,j)‖Ŷi,j −Yi,j‖2

FDE = 1
n

n
∑
j
‖ŶL,j −YL,j‖2

(4)

https://projects.csail.mit.edu/stata/
http://wbli.me/lmdata/
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where Ŷi,j and Yi,j are the j-th predicted and real trajectory locations of i-step ahead predic-
tion, respectively. I

(
Yi,j) is the indicator for the second derivative, which can be presented

as follows:

I
(

Yi,j
)
=

1 d2yi,j
1

d2yi,j
2

6= 0

0 else
(5)

where yi,j
1 and yi,j

2 are the 1st and 2nd dimensions of the trajectory, respectively. The
definition of I

(
Yi,j) enables the NLADE to measure the error in the non-linear trajectory.

3. Results and Discussions
3.1. Multi-Learner Prediction

With the ARMA, MLP, ENN, DESN, and LSTM, the prediction results can be obtained.
The five-step ahead prediction results for dataset #1, dataset #2, dataset #3, and dataset #4
are shown in Figures 4–7. Moreover, the corresponding evaluation metrics are shown in
Table 1. According to Figures 4–7 and Table 1, the following can be observed:

1. The different base learners have various performances on robot trajectory prediction.
For instance, the ADE values of the ARMA, MLP, ENN, DESN, and LSTM models are
0.455, 0.580, 0.940, 0.364, and 1.160 for dataset #1, respectively. The essential reason is
the difference between model theories and parameters. Such differences contribute to
the subsequent construction of multi-objective ensemble learning models, because
ensemble learning requires that the base learners should be unique. Only in this way
can more accurate prediction results be obtained through ensemble learning.

2. Among all the base learners, the prediction error of DESN remains the lowest in the
three datasets, and the prediction result of the trajectory is closer to the real trajectory.
Taking the prediction result of dataset #4 as an example, the ADE, NLADE, and FDE
of the DESN model are 0.057, 0.057, and 0.129, respectively. They are much lower than
those of the other base learners. This phenomenon may be because the DESN benefits
from its deep network structure and has a strong ability to learn sequential data such
as robot trajectory.

3. The prediction effects of ENN on the three datasets are significantly different. In
dataset #2, the prediction error is the highest among the five models. However, it is
second only to the DESN model in datasets #3 and 4. The instability of prediction
results may be because ENN is sensitive to data and parameters. It is difficult to
obtain satisfactory results for all data without parameter tuning.
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3.2. Multi-Objective Ensemble

Applying the NSGA-III to generate the optimal ensemble weights, the prediction
results of the proposed MMP model can be obtained. The Pareto optimal solutions obtained
by different optimization methods are different, which leads to differences in the prediction
errors of the models. The related evaluation metrics in Table 2 show the results of several
methods for solving Pareto optimality, including VIKOR [48], TOPSIS [49], and Gray
correlation [50]. In addition, Figure 8 shows the Pareto optimal results solved by the above
methods. The bold numbers in Table 2 indicate the best solving method with the lowest
prediction error among VIKOR, TOPSIS, and Gray correlation for datasets #1, 2, 3, and 4.
The red points in Figure 8 represent the comprehensive optimal solution considering both
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bias and variance. It can be seen that there is no best strategy to select optimal ensemble
weights. In datasets #1 and 2, the VIKOR generates the best performance. In dataset
#3, the TOPSIS and Gray correlation select the same solution and both generate the best
performance. In dataset #4, the Gray correlation generates the best performance.

Table 1. Evaluation metrics of ARMA, MLP, ENN, DESN, and LSTM models.

Dataset Model ADE NLADE FDE

#1

ARMA 0.455 0.455 0.904
MLP 0.580 0.580 1.084
ENN 0.940 0.940 1.262

DESN 0.364 0.364 0.730
LSTM 1.160 1.160 1.954

#2

ARMA 1.485 1.485 2.487
MLP 2.433 2.433 2.652
ENN 4.879 4.879 7.583

DESN 1.301 1.301 1.545
LSTM 1.635 1.635 2.170

#3

ARMA 0.063 0.063 0.142
MLP 0.060 0.060 0.116
ENN 0.034 0.034 0.079

DESN 0.033 0.033 0.076
LSTM 0.064 0.064 0.123

#4

ARMA 0.096 0.097 0.216
MLP 0.114 0.114 0.198
ENN 0.071 0.071 0.165

DESN 0.057 0.057 0.129
LSTM 0.104 0.105 0.202

Electronics 2022, 11, x FOR PEER REVIEW 10 of 18 
 

 

3.2. Multi-Objective Ensemble 
Applying the NSGA-III to generate the optimal ensemble weights, the prediction re-

sults of the proposed MMP model can be obtained. The Pareto optimal solutions obtained 
by different optimization methods are different, which leads to differences in the predic-
tion errors of the models. The related evaluation metrics in Table 2 show the results of 
several methods for solving Pareto optimality, including VIKOR [48], TOPSIS [49], and 
Gray correlation [50]. In addition, Figure 8 shows the Pareto optimal results solved by the 
above methods. The bold numbers in Table 2 indicate the best solving method with the 
lowest prediction error among VIKOR, TOPSIS, and Gray correlation for datasets #1, 2, 3, 
and 4. The red points in Figure 8 represent the comprehensive optimal solution consider-
ing both bias and variance. It can be seen that there is no best strategy to select optimal 
ensemble weights. In datasets #1 and 2, the VIKOR generates the best performance. In 
dataset #3, the TOPSIS and Gray correlation select the same solution and both generate 
the best performance. In dataset #4, the Gray correlation generates the best performance. 

 
Figure 8. Pareto optimal solution of VIKOR, TOPSIS, and Gray correlation. 

Comparing Table 2 with Table 1, it can be observed that the overall accuracy of the 
ensemble model in Table 2 is better than that of the five base models in Table 1 for all 
datasets. Taking dataset #1 as an example, the best forecasting ADE of single models in 
Table 1 is 0.364. The ensemble models in Table 2 have a forecasting ADE of 0.346, 0.347, 
and 0.347, which are all better than that of the best single model in Table 1. This phenom-
enon indicates the proposed multi-objective ensemble can reasonably balance the bias and 
variance of prediction and help to synchronously minimize them to improve perfor-
mance. 

Table 2. Evaluation metrics of the proposed MMP model. 

Dataset Optimization Method ADE NLADE FDE 

#1 
VIKOR 0.346 0.346 0.685 
TOPSIS 0.347 0.347 0.687 

Gray correlation 0.347 0.347 0.688 

#2 
VIKOR 0.783 0.783 1.425 
TOPSIS 0.946 0.946 1.700 

0 1
Variance 10-4

0.34
0.345

0.35
Dataset #1

VIKOR

0 1
Variance 10-4

0.34
0.345

0.35

TOPSIS

0 1
Variance 10-4

0.34
0.345

0.35

Gray correlation

0 0.1
Variance

0.8

0.9
Dataset #2

VIKOR

0 0.1
Variance

0.8

0.9

TOPSIS

0 0.1
Variance

0.8

0.9

Gray correlation

0 0.5 1
Variance 10-4

0.04

0.045
Dataset #3

VIKOR

0 0.5 1
Variance 10-4

0.04

0.045

TOPSIS

0 0.5 1
Variance 10-4

0.04

0.045

Gray correlation

0 0.5 1
Variance 10-4

0.07

0.072

Dataset #4

VIKOR

0 0.5 1
Variance 10-4

0.07

0.072

TOPSIS

0 0.5 1
Variance 10-4

0.07

0.072

Gray correlation

10−4 10−4

10−410−410−4

10−4 10−4 10−4

10−4

Figure 8. Pareto optimal solution of VIKOR, TOPSIS, and Gray correlation.

Comparing Table 2 with Table 1, it can be observed that the overall accuracy of the
ensemble model in Table 2 is better than that of the five base models in Table 1 for all
datasets. Taking dataset #1 as an example, the best forecasting ADE of single models in
Table 1 is 0.364. The ensemble models in Table 2 have a forecasting ADE of 0.346, 0.347, and
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0.347, which are all better than that of the best single model in Table 1. This phenomenon
indicates the proposed multi-objective ensemble can reasonably balance the bias and
variance of prediction and help to synchronously minimize them to improve performance.

Table 2. Evaluation metrics of the proposed MMP model.

Dataset Optimization Method ADE NLADE FDE

#1
VIKOR 0.346 0.346 0.685
TOPSIS 0.347 0.347 0.687

Gray correlation 0.347 0.347 0.688

#2
VIKOR 0.783 0.783 1.425
TOPSIS 0.946 0.946 1.700

Gray correlation 0.916 0.916 1.668

#3
VIKOR 0.032 0.032 0.073
TOPSIS 0.029 0.029 0.068

Gray correlation 0.029 0.029 0.068

#4
VIKOR 0.052 0.052 0.119
TOPSIS 0.052 0.052 0.119

Gray correlation 0.051 0.051 0.118

3.3. Comparison with Other Optimization Algorithms

To further validate the effectiveness of the proposed model, it is compared with three
existing optimization algorithms, namely the multi-objective multi-verse optimization
(MOMVO) [55], multi-objective grey wolf optimizer (MOGWO) [56], and multi-objective
particle swarm optimization (MOPSO) [57]. They use the same models as base learners,
but apply different multi-objective optimization algorithms to achieve ensemble learning.
Thus, the prediction results can be obtained. The five-step ahead prediction results for
dataset #1, dataset #2, dataset #3, and dataset #4 are shown in Figures 9–12. Moreover, the
corresponding evaluation metrics of different multi-objective ensemble models are shown
in Table 3. According to Figures 9–12 and Table 3, the following can be observed:

1. All multi-objective optimization algorithms are effective for ensemble prediction of
robot trajectory. Comparing the prediction error metrics based on the optimization
algorithms with the five base learners, it can be found that the prediction error is
further reduced. Moreover, the trajectory prediction results based on the optimization
algorithms are all close to the actual trajectory of the robot movement, and satisfactory
prediction accuracy has been achieved. This demonstrates that the comparative
experimental settings of the multi-objective ensemble models are effective, and each
algorithm is set reasonably, which helps to fairly evaluate the effectiveness of the
proposed model.

2. Compared with the other three optimization algorithms, the proposed model has
the lowest prediction error. Taking dataset #2 as an example, the ADE, NLADE, and
FDE of the MOMVO algorithm are 1.534, 1.534, and 2.794, respectively; the ADE,
NLADE, and FDE of the MOGWO algorithm are 1.663, 1.663, and 2.953, respectively;
and the ADE, NLADE, and FDE of the MOPSO algorithm are 1.103, 1.103, and 1.828,
respectively. However, the ADE, NLADE, and FDE of the proposed MMP model are
only 0.783, 0.783, and 1.425, respectively. This shows the superiority of the proposed
model, which can achieve satisfactory prediction results on all datasets.

3. By comparing the performance of each optimization algorithm on different datasets,
it can be found that they have slight differences in the prediction results of datasets #1,
#2, and #3. The reason for this phenomenon may be that the optimization goal is set to
minimize the deviation and variance, which leads to relatively limited optimization
space and a simple optimization problem. Different algorithms can approximate the
global optimal solution, resulting in similar prediction results.
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Figure 9. Five-step ahead prediction results of different multi-objective ensemble algorithms for
dataset #1.
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Figure 10. Five-step ahead prediction results of different multi-objective ensemble algorithms for
dataset #2.
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Figure 11. Five-step ahead prediction results of different multi-objective ensemble algorithms for
dataset #3.
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Figure 12. Five-step ahead prediction results of different multi-objective ensemble algorithms for
dataset #4.

Table 3. Evaluation metrics of different multi-objective ensemble models.

Dataset Model ADE NLADE FDE

#1

Base model + MOMVO 0.349 0.349 0.692
Base model + MOGWO 0.349 0.349 0.693
Base model + MOPSO 0.353 0.353 0.701

Base model + NSGA-III (proposed) 0.346 0.346 0.685

#2

Base model + MOMVO 1.534 1.534 2.794
Base model + MOGWO 1.663 1.663 2.953
Base model + MOPSO 1.103 1.103 1.828

Base model + NSGA-III (proposed) 0.783 0.783 1.425

#3

Base model + MOMVO 0.032 0.032 0.075
Base model + MOGWO 0.032 0.032 0.074
Base model + MOPSO 0.032 0.032 0.075

Base model + NSGA-III (proposed) 0.029 0.029 0.068

#4

Base model + MOMVO 0.056 0.056 0.126
Base model + MOGWO 0.056 0.056 0.126
Base model + MOPSO 0.056 0.056 0.126

Base model + NSGA-III (proposed) 0.051 0.051 0.118

4. Additional Case for Inspection Robot

Inspection robots, which obey a prefix running trajectory and are sensitive to trajectory
deviations, are important for periodicity detection under the IoT environment [58,59]. To
verify the predictive performance of the proposed method on inspection tasks, a real robot
trajectory series was used as in Figure 13. The trajectories were measured by odometer
sensors on the Autolabor 2.5 robot platform. The whole time series contains 3848 data
points, covering nearly three inspection routes. The first 2598 data points are utilized as the
training set and the remaining 1250 data points are utilized as the testing set. To justify the
case study, the testing set contains a complete inspection route.
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The forecasting performance of the proposed model and benchmark models are shown
in Table 4 and Figure 14. It can be observed that the proposed model outperforms all the
benchmark models, which indicates the effectiveness of the proposed model. According
to the forecasting results of the proposed model in Figure 15, it can be observed that
the proposed method can generate accurate forecasting results for a complete inspection
trajectory, which indicates its effectiveness.

Table 4. Evaluation metrics of ARMA, MLP, ENN, DESN, and LSTM models.

Model ADE NLADE FDE

ARMA 0.034 0.035 0.055
MLP 0.028 0.028 0.035
ENN 0.023 0.023 0.033
DESN 0.022 0.022 0.031
LSTM 0.038 0.038 0.055

Base model + MOMVO 0.023 0.023 0.031
Base model + MOGWO 0.023 0.023 0.032
Base model + MOPSO 0.022 0.022 0.031

Base model + NSGA-III (proposed) 0.021 0.021 0.030
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5. Generalization Analysis

In this study, the experiments separate the datasets into training and testing sets. The
models are trained with only the training set, and the prediction results are generated with
the testing set. In this manner, the data leak can be avoided. The prediction accuracy of the
above experiments can reflect the generalization performance of the model.

Considering that a multi-learner multi-objective ensemble is very time-consuming,
it is necessary to explore the update timeliness of the model to meet engineering needs.
The experimental simulation used a Windows 10 desktop computer (Intel(R) Core(TM)
i7-9700K CPU @ 3.60 GHz, 16 GB RAM). It can be seen from the modeling process that the
ensemble weights generated by one experiment can effectively predict at least 300 points of
data (10 Hz/20Hz). This shows that a set of ensemble weights can satisfy the prediction
work of 15~30 s.

The computational time analysis of the multi-objective ensemble model with different
optimization algorithms is shown in Table 5; it can be seen that the modeling times of 2D
datasets #1 and #2 are 138.71 s and 143.53 s, respectively, and the modeling times of 3D
datasets #3 and #4 are 189.22 s and 177.99 s, respectively. Compared with other optimization
algorithms, the computational time of NSGA-III is the shortest for datasets #1, 2, and 4, and
it is the second shortest for dataset #3, proving the effectiveness of the proposed model.

Table 5. The computational time analysis of the proposed multi-objective ensemble model with
different optimization algorithms.

Model Dataset #1 Dataset #2 Dataset #3 Dataset #4

NSGA-III 138.71 s 143.53 s 189.22 s 177.99 s
MOMVO 141.11 s 146.78 s 188.15 s 180.31 s
MOGWO 145.62 s 151.25 s 193.43 s 184.94 s
MOPSO 139.77 s 145.83 s 190.66 s 182.81 s

To ensure the continuity of prediction tasks, the model can be embedded in parallel
big data computing platforms such as MapReduce [60] and Apache Spark [61] to greatly
reduce the processing time of data input–output and modeling analysis. Studies have
shown that the collaboration of multiple work groups can reduce computing time by 20
to 45 times [62]. In this way, the modeling can be completed in just a few seconds, which
effectively solves the problem of high-frequency iteration of the model. The continuously
updated ensemble weights can also guarantee the generalization of the model.
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6. Conclusions and Future Works

Robot trajectory prediction is an essential part of providing virtue trajectory infor-
mation for the digital twin system. In the study, a novel MMP model was proposed for
trajectory prediction. Five machine learning models including ARMA, MLP, ENN, DESN,
and LSTM were adopted as base learners. Moreover, a high-level NSGA-III method was
applied to automatically combine these base learners, generating an accurate and robust
ensemble model. The proposed model was analyzed from different aspects. Its perfor-
mance was also compared with three existing optimization algorithms. The results can be
concluded as follows:

1. The proposed multi-objective ensemble method is effective in improving the robot
trajectory prediction accuracy of base learners. Its basic principle is to synchronously
minimize the bias and variance of the model.

2. The NSGA-III shows superiority in robot trajectory prediction. It significantly out-
performs other optimization algorithms in dataset #1, and slightly outperforms other
optimization algorithms in datasets #2 and #3.

The limitation of the proposed method is the generalization of the ensemble model to
different data domains. In future works, we would like to perform research on improving
the feasibility of the model to overcome the limitation. A more generalized model is
expected from our future work, which could learn effective knowledge from uncoupled
datasets and achieve accurate predictions on arbitrary datasets.

Author Contributions: Conceptualization, F.P. and L.Z.; investigation, F.P.; methodology, L.Z., Z.D.
and Y.X.; validation, L.Z.; visualization, F.P.; writing—original draft, F.P. and Z.D.; writing—review
and editing, F.P., L.Z., Z.D. and Y.X. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Beijing Nova Program Z211100002121140, Fengtai Nova
Program kjxx202006.

Data Availability Statement: Open datasets for research use were analyzed in this study. This
data can be found here: https://projects.csail.mit.edu/stata/ (accessed on 24 April 2022), http:
//wbli.me/lmdata/ (accessed on 1 August 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al-Okby, M.F.R.; Neubert, S.; Roddelkopf, T.; Thurow, K. Mobile Detection and alarming systems for hazardous gases and volatile

chemicals in laboratories and industrial locations. Sensors 2021, 21, 8128. [CrossRef] [PubMed]
2. Lee, C.-T.; Sung, W.-T. Controller Design of Tracking WMR system based on deep reinforcement learning. Electronics 2022, 11, 928.

[CrossRef]
3. Thamrongaphichartkul, K.; Worrasittichai, N.; Prayongrak, T.; Vongbunyong, S. A framework of IoT platform for autonomous

mobile robot in hospital logistics applications. In Proceedings of the 2020 15th International Joint Symposium on Artificial
Intelligence and Natural Language Processing (iSAI-NLP), Bangkok, Thailand, 18–20 November 2020; pp. 1–6.

4. Patel, A.R.; Azadi, S.; Babaee, M.H.; Mollaei, N.; Patel, K.L.; Mehta, D.R. Significance of robotics in manufacturing, energy,
goods and transport sector in internet of things (iot) paradigm. In Proceedings of the 2018 Fourth International Conference on
Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–4.

5. Zacharia, P.T.; Xidias, E.K. AGV routing and motion planning in a flexible manufacturing system using a fuzzy-based genetic
algorithm. Int. J. Adv. Manuf. Technol. 2020, 109, 1801–1813. [CrossRef]

6. Diez-Gonzalez, J.; Alvarez, R.; Prieto-Fernandez, N.; Perez, H. Local wireless sensor networks positioning reliability under sensor
failure. Sensors 2020, 20, 1426. [CrossRef] [PubMed]

7. Chang, L.; Shan, L.; Jiang, C.; Dai, Y. Reinforcement based mobile robot path planning with improved dynamic window approach
in unknown environment. Auton. Robot. 2021, 45, 51–76. [CrossRef]

8. Kousi, N.; Gkournelos, C.; Aivaliotis, S.; Lotsaris, K.; Bavelos, A.C.; Baris, P.; Michalos, G.; Makris, S. Digital twin for designing
and reconfiguring human–robot collaborative assembly lines. Appl. Sci. 2021, 11, 4620. [CrossRef]

9. Nabeeh, N.A.; Abdel-Basset, M.; Gamal, A.; Chang, V. Evaluation of production of digital twins based on blockchain technology.
Electronics 2022, 11, 1268. [CrossRef]

10. He, B.; Bai, K.-J. Digital twin-based sustainable intelligent manufacturing: A review. Adv. Manuf. 2021, 9, 1–21. [CrossRef]

https://projects.csail.mit.edu/stata/
http://wbli.me/lmdata/
http://wbli.me/lmdata/
http://doi.org/10.3390/s21238128
http://www.ncbi.nlm.nih.gov/pubmed/34884132
http://doi.org/10.3390/electronics11060928
http://doi.org/10.1007/s00170-020-05755-3
http://doi.org/10.3390/s20051426
http://www.ncbi.nlm.nih.gov/pubmed/32151090
http://doi.org/10.1007/s10514-020-09947-4
http://doi.org/10.3390/app11104620
http://doi.org/10.3390/electronics11081268
http://doi.org/10.1007/s40436-020-00302-5


Electronics 2022, 11, 2094 16 of 17

11. Havard, V.; Jeanne, B.; Lacomblez, M.; Baudry, D. Digital twin and virtual reality: A co-simulation environment for design and
assessment of industrial workstations. Prod. Manuf. Res. 2019, 7, 472–489. [CrossRef]
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