
Citation: Kao, H.-Y.; Huang, S.-H.;

Cheng, W.-K. Design Framework for

ReRAM-Based DNN Accelerators

with Accuracy and Hardware

Evaluation. Electronics 2022, 11, 2107.

https://doi.org/10.3390/

electronics11132107

Academic Editor: Abdelhafid El

Ouardi

Received: 31 May 2022

Accepted: 4 July 2022

Published: 5 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Design Framework for ReRAM-Based DNN Accelerators with
Accuracy and Hardware Evaluation
Hsu-Yu Kao 1 , Shih-Hsu Huang 1,* and Wei-Kai Cheng 2

1 Department of Electronic Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan;
g10502605@cycu.edu.tw

2 Department of Information and Computer Engineering, Chung Yuan Christian University,
Taoyuan 320314, Taiwan; wkcheng@cycu.edu.tw

* Correspondence: shhuang@cycu.edu.tw; Tel.: +886-3-2654611

Abstract: To achieve faster design closure, there is a need to provide a design framework for the
design of ReRAM-based DNN (deep neural network) accelerator at the early design stage. In this
paper, we develop a high-level ReRAM-based DNN accelerator design framework. The proposed
design framework has the following three features. First, we consider ReRAM’s non-linear properties,
including lognormal distribution, leakage current, IR drop, and sneak path. Thus, model accuracy
and circuit performance can be accurately evaluated. Second, we use SystemC with TLM modeling
method to build our virtual platform. To our knowledge, the proposed design framework is the first
behavior-level ReRAM deep learning accelerator simulator that can simulate real hardware behavior.
Third, the proposed design framework can evaluate not only model accuracy but also hardware cost.
As a result, the proposed design framework can be used for behavior-level design space exploration.
In the experiments, we have deployed different DNN models on the virtual platform. Circuit perfor-
mance can be easily evaluated on the proposed design framework. Furthermore, experiment results
also show that the noise effects are different in different ReRAM array architectures. Based on the
proposed design framework, we can easily mitigate noise effects by tuning architecture parameters.

Keywords: processing-in-memories; design closure; DNN accelerators; non-linear effects; simulator

1. Introduction

Artificial intelligent has been recognized as a promising solution in many research
areas, such as computer vision, medical science, etc. Diverse kinds of DNN (deep neural
network) are widely used in classification, object detection, semantic segmentation, and
so on. CNN (convolutional neural network) is the most common DNN (deep neural
network) to apply in many applications. In the history of CNN, from the Hinton-proposed
AlexNet [1], the revolution of neural networks started. VGG [2], ResNet [3], SqueezeNet [4]
and DenseNet [5] have been proposed one after another. A CNN is composed of many
MVM (matrix vector multiplication) with a large amount of input activations and weight
parameters. Additionally, the model size of modern DNN grows dramatically with the
progress due to getting deeper. It means the computing of modern models may cause
longer latency and larger power consumption. As a result, there is a demand for a highly
efficient DNN accelerator to let the model be computed with high performance.

Traditionally, DNN accelerators are based on the von Neumann architecture design
concept. Traditional DNN accelerators can be divided into three main branches, namely
systolic arrays [6–8], reduction trees [9], and network on chip (NoC) [10–12]. Although
each architecture has its own advantages, their design concepts are based on von Neumann
architecture where computations and data storage are separated. They [6–12] are unable
to overcome the bottleneck caused by data movements (owing to the von Neumann
architecture). Some previous works [13–15] have attempted to reduce this bottleneck

Electronics 2022, 11, 2107. https://doi.org/10.3390/electronics11132107 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11132107
https://doi.org/10.3390/electronics11132107
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2644-0007
https://orcid.org/0000-0001-8908-8384
https://orcid.org/0000-0002-2867-6200
https://doi.org/10.3390/electronics11132107
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11132107?type=check_update&version=2

Electronics 2022, 11, 2107 2 of 17

using data streams. However, their improvements cannot completely resolve the data
movement problem.

In recent years, a rising star called memristor-based DNN accelerators has been
proposed [16,17]. Innovations in memristor-based computing systems offer promising
solutions for improving the power efficiency of MVM computation. Memristor-based
DNN accelerators perform MVM computation with high energy efficiency, which is the
most important part of memristor-based neuromorphic computing systems. In these
architectures [16,17], the weights are stored in memory and the input activations are
converted to an analog signal. Then, the dot product is computed directly in memory. As a
result, significant data movements can be saved.

Innovations in memristor-based in-memory computing accelerators provide a promis-
ing solution for reducing the required data movements and improving the energy efficiency
of DNN computing. Recent work [18] has shown that metal oxide ReRAM (resistive
random-access memory) can be used to build crossbar structures to efficiently perform
MVM in the convolution and fully connected layers of DNNs. Comparing to CPUs, GPUs
or conventional accelerators based on the Von Neumann architecture, ReRAM-based DNN
accelerators [16,17] can offer significant power savings since they have the ability to perform
arithmetic operations in the data storage.

ReRAM-based DNN accelerators have been proved to be the best solution [19,20].
Note that ReRAM has small Read and Write latency. In addition, ReRAM cells are small
and can store multiple levels. While the electrical properties and crossover structures of
ReRAM enable energy-efficient DNN computing, the physical properties (non-linear fac-
tors) also make ReRAM-based DNN accelerators prone to errors. When performing a MVM
computation in a ReRAM crossbar array, multiple word lines are activated simultaneously
and the currents flowing through different cells in the same bit line are accumulated to
obtain the sum of the products. Even if none of the cells in the same bitline are in error, the
result of sum-of-products for the sense amplifier readout may still be incorrect [21], mainly
due to the error accumulated from each activate cell in the same bitline and the resolution
limited by ADC. Additionally, some previous works [22,23] studied the memory reliability
problem. Since many factors affect the reliability of ReRAM-based DNN accelerators,
to accurately evaluate DNN model performance at the early design stage, a simulation
platform is required to estimate the impact of non-linear factors and hardware limitations
on the inference accuracy of the target neural network.

For large-scale applications of ReRAM-based DNN accelerators, several different
factors may affect performance. Therefore, an accurate simulation at the early stage is
required to estimate and optimize the performance of the design. However, none of the
existing simulation platforms fully support accurate error rate analysis and hardware
performance evaluation. In previous years, some works have investigated the performance
and energy efficiency of ReRAM-based accelerators and proposed simulation tools to
facilitate design space exploration [24–29]. In [25,26], they only focus on accuracy, but
neglect important hardware information. In [24,25,27,29], they use C/C++ programming
language to build hardware behavior models and simulate the neural network computing
by DNN framework with python wrapper. Since C/C++ are software programming
languages, they just can be used to validate the function, but are insufficient for representing
actual behavior of hardware circuit. On the other hands, MNSIM [24,28] can both simulate
accuracy and report hardware information, but it has a shortage that it does not take
memory properties such as leakage current and sneak path into account. Additionally,
its hardware information is a behavior-level evaluation that has a lot of errors comparing
to the real hardware design. Note that a simulator modeling hardware behavior can just
validate the function of the system. In other words, MNSIM [24,28] lacks practical circuit
performance evaluation. Therefore, an accurate simulation platform with accuracy and
practical hardware evaluation is urgently needed to fully explore the impact of hardware
errors and performance on various DNN accelerator architectures.

Electronics 2022, 11, 2107 3 of 17

To overcome the problem that a behavior simulator lacks of hardware circuit per-
formance evaluation, a practical way is to use a high level programming language with
hardware properties to model the DNN system. Note that high level programming lan-
guage can boost the simulation time, while hardware properties can make the simulation
result more precise. In recent years, SystemC has been recognized an efficient way is to
model a circuit system. SystemC is not only a high-level programming language to allow
designers to simulate and maintain efficiently, but it also includes TLM and cycle accu-
rate modeling method to take practical hardware behaviors into account. Note that some
research efforts [30] have been devoted to virtual platform of CIM system. In [30], they
developed cycle accurate models with non-linear hardware properties considered based on
C++ programming language. Their approach [30] has the following two drawbacks. First,
cycle accurate modeling method is time consuming. The long time process is inefficient if
we only want to get an approximated result such as performance or power consumption for
architecture exploration. Second, C++ is not a hardware-oriented programming language.
Thus, C++ cannot model a circuit with hardware behavior. Besides, in [31,32], they pro-
posed CIM (computing-in-memories) virtual platforms based on SystemC programming
language. However, they [31,32] did not take hardware non-linear effects into account. To
accurately evaluate DNN model performance, there is a need to consider the impact of
non-linear factors on the target DNN.

From the above observations, we know that there is a demand to provide a design
framework that includes a virtual platform with non-linear properties considered based
on SystemC. Note that a virtual platform based on SystemC can obtain practical hardware
behaviors. A model with the non-linear properties considered can present real properties
of memory cells and achieve a precise accuracy on a CIM-based DNN accelerator.

In this paper, we propose a design framework with virtual platform and non-linear
properties considered for the development of ReRAM-based DNN accelerators. The pro-
posed design framework includes two parts: software environment and virtual platform
(for hardware system). We utilize an open-source compiler TVM to establish our software
environment. The compiler optimizes and tiles data dependent on hardware configurations
from DNN accelerator. In virtual platform, we use SystemC to build the whole hardware
system. We also embed non-linear model into ReRAM cell. Thus, in our work, it can
consider not only the accuracy of the software model, but also practical hardware costs,
such as latency, area, power consumption and utilization. The proposed design framework
can help designers to precisely evaluate the DNN model at the early design stage.

Based on the above observations, in this paper, we propose a simulation framework
with virtual platform for the development of ReRAM-based DNN accelerators. The pro-
posed design framework can help designers to precisely evaluate the DNN model at the
early design stage. The main contributions of our work are elaborated below.

• We have integrated RRAM’s non-linear properties, including lognormal distribution,
leakage current, IR drop, and sneak path into the proposed design framework. So far,
there is no behavior simulator consider these non-linear properties at the same time.

• We use SystemC with TLM modeling method to build our virtual platform. Thus, our
behavior simulator can efficiently simulate hardware performance with real hardware
behavior. To our knowledge, the proposed design framework is the first behavior-level
ReRAM-based DNN accelerator simulator that can simulate real hardware behavior.

• The proposed design framework can evaluate not only accuracy, but also hardware
cost. Thus, the proposed design framework can be used for the behavior-level design
space exploration (e.g., to explore the trade-off between accuracy and hardware cost
between with respect to different XBar height/width, bandwidth, etc.)

For the sake of brevity, Table 1 summarizes the comparisons of the proposed design
framework with previous works. As shown in Table 1, most prior works focus on the
system level simulation. Only [31,32], and the proposed design framework support the
virtual platform. Moreover, the proposed design framework is the only one work that
considers lognormal distribution, leakage current, IR drop, and sneak path at the same time.

Electronics 2022, 11, 2107 4 of 17

Table 1. Comparisons of the proposed design framework with previous works.

Framework System Virtual Non-Linear Properties HW
Level Platform Lognormal Distribution Leakage Current Sneak Path IR Drop Cost

[24] X X X
[25] X X X X
[26] X X X
[27] X X X
[28] X X X
[29] X X X X
[30] X X X
[31] X X X
[32] X X X

Ours X X X X X X X

2. Preliminaries
2.1. Convolution Neural Network

Convolution neural network is a widely used technique in computer vision, signal
processing, and image processing (such as edge detection and sharpening processing).
Apparently, convolution is a critical component in convolution neural network that are
used to extract the information of input feature maps. Figure 1 gives an illustration for the
two-dimensional (2D) convolution. As shown in Figure 1, a convolution makes several dot
products with kernels and input activations. An output will be generated after multiple
dot product processing and be transferred as input activations to next layer.

We can simplify dot products to a set of matrix-vector multiplications. Suppose that
input activations size has C channels, M amount of R× S kernels and producing output
feature map of E× F size with M output channels. The convolution result of output pixel
(e,f) in channel m can be expressed as Equation (1):

Outpute, f ,m =
C−1

∑
c=0

R−1

∑
r=0

S−1

∑
s=0

Inpute+r, f+s,c × Kernelr,s,c,m (1)

According to the above, the 2D convolution requires intensive data computations and
high data throughput. Thus, it is a challenge to design an efficient hardware to process
these a lot of MVMs for the 2D convolution. Additionally, it has been recognized that the
2D convolution has a significant impact on the overall performance of a CNN accelerator.

Figure 1. Concept of convolution neural network.

2.2. ReRAM and ReRAM Array

ReRAM has been demonstrated as the best solution for CIMs. It has small read and
write latencies. Additionally, its size is small and it can store multiple bits. Here, we
use Figure 2 to demonstrate the basic concepts of ReRAM and ReRAM arrays for CIMs.
Figure 2a displays one column in a ReRAM array. We store the weight as conductance in

Electronics 2022, 11, 2107 5 of 17

ReRAM cells. Inputs are converted to voltage through DAC (digital to analog converter)
like Figure 2b. According to Ohm’s law, the computation in a ReRAM cell can be expressed
as Equation (2):

Ik = Gk ×Vk (2)

where the notation Gk is the conductance value (i.e., the reciprocal of resistance Rk), which
represents the weight, Vk is the voltage, which represents the input value. Thus, current I
represents the result of input V multiplies with weight G. Then, the accumulated current of
each column in a ReRAM array can be expressed as Equation (3):

Itot = ∑
k

Ik (3)

where the notation Itot denotes the accumulated current. In the final, current Itot will
convert to digital through ADC (Analog Digital Converter) as shown in Figure 2b. Note
that this function of the column in a ReRAM array can be thought as the behavior of a
MAC (multiply- accumulate). In other words, we can treat each column as a MAC. Then,
according to this property, we schedule inputs and weights with a suitable dataflow to get
the result by CIMs.

Figure 2. (a) A ReRAM column. (b) ReRAM array.

2.3. Dataflow of CIM

Because there are lots of computing operations in a convolution, an efficient dataflow is
required. Here, we address how to map data to CIM architecture to complete a convolution
computation efficiently. For an input feature map, as shown in Figure 1, we need to perform
the following convolution computation: input data with dimension H ×W × C, kernel
with dimension R× S× C×M, and output with dimension E× F×M. Due to the limit of
CIM architecture, in general, we store R× S× C to a column and each column store dif-
ferent kernel M, where R represents kernel height, S represents kernel width, C represents
channels and M represents different kernels like Figure 3. In a convolution, when weights
R× S× C multiply with input activations, they need to be added together. This is the same
as the property of CIM architecture in which the current will be accumulated in a column
and produce total accumulated current at the bottom of the column as result. Thus, we can
also treat a column as a convolution computing of each output pixel. These weights will be
stored in the ReRAM memory until all input activations that need to process are completed.
Then, the system will store other new weights and do a convolution process again until the
whole convolution finishes.

Electronics 2022, 11, 2107 6 of 17

Figure 3. Dataflow of CIM.

3. Noise Analysis

In this section, we demonstrate non-linear effects of ReRAM DNN accelerator. In
Figure 4, we categorize non-linear effects into four kinds (in Figure 4, we use four different
colors to represent the four kinds). As shown with red color, there are two non-linear effects
(logarithm distribution and leakage current) that occur in a ReRAM cell. As shown with
purple color, quantization errors are produced owing to DAC/ADC bit-width. As shown
with blue color, wire resistance leads to IR Drop. Finally, as shown with green color, cell
properties and array architecture bring out the sneak path. In the following, we discuss
and formulate these four kinds of non-linear effects.

Figure 4. Noise overview in ReRAM array.

3.1. Lognormal Distribution

As shown in Figure 5a, a ReRAM cell is composed with two metal layers and a metal-
oxide between them. Once a voltage applies to the upper side of metal layer, it will enable
a conducting path in the metal-oxide layer. Since electronics are generated randomly,
even we give the same voltage, conducting filament varies each cycle. According to the
conductance of ReRAM cell, we can program different state in a ReRAM. As displayed
in Figure 5b, the variability of conductance of ReRAM makes the computing result of a
ReRAM to have a probability to get an error. This situation gets worse when the number
of states of ReRAM gets larger or the result from ReRAM array with lots of uncertain
current added together makes ADC hard to convert. Thus, the simulator needs to take this
non-linear effect into account to help designers to decide suitable column size and ReRAM
state of a ReRAM array. To simply this problem, here we use Gaussian distribution to
formulate. The behavior of ReRAM lognormal distribution can be express as Equation (4):

I(v, g) = (I0exp(
−g
g0

)sinh(
V
V0

)) ∼ N (µ, σ2) (4)

where I0, g0 and V0 are fitting parameters from the technology library. Note that the
output current I(v, g) has a small random deviation due to Gaussian normal distribution.
From this formula, we can simulate the practical situation of lognormal distribution in a
ReRAM cell.

Electronics 2022, 11, 2107 7 of 17

Figure 5. (a) Conducting Filament of ReRAM. (b) Lognormal distribution of ReRAM.

3.2. Leakage Current

ReRAM cell use conducting filament to conduct memory. In general, A ReRAM cell
has at least two states, which are HRS (high resistance state) and LRS (low resistance). HRS
represents logic zero and LRS represents logic one. In HRS state, in theory, there is no
current passing the ReRAM cell. However, like Figure 6a, in practice, HRS state still has
little current. Such a current will be accumulated in a ReRAM array. If the amount of the
leakage current (i.e., the current that should not exist) is close to or large than the amount
of current from LRS, the output will produce an error. This problem gets worse in two
situations: small On/Off ratio and large array size. On/Off ratio is defined as RHRSRLRS.
If On/Off ratio is small, the total accumulated leakage current of RHRS in the array can
approach RLRS very soon. On the other hand, if the memory size is large, the total leakage
current of RHRS is also possibly approaching RLRS. Thus, we should not treat the current
in HRS of ReRAM cell as a zero value. The behavior of leakage current can be express as
Equation (5):

Itot = ∑
i

ILRS,i + H × ILeakage (5)

where ILRS represents the current of each ReRAM cell in LRS state in the column, represents
the number of ReRAM cells in the HRS state, and ILeakage represents the leakage current in
HRS state.

Figure 6. (a) Leakage current. (b) Sneak path.

3.3. Sneak Path

Consider a HRS ReRAM cell is in read mode and all other cells around it are in LRS
state. Since HRS has a high resistance, the current from around LRS cells will branch a
little to the HRS cell. Thus, as shown in Figure 6b, the current of the HRS cell is larger than
expected. Sneak Path has a high relationship with IR drop, since IR drop is also caused
by the connected wires between ReRAM cells. The occurrence of sneak path depends on
input data and weights stored in the ReRAM. We can avoid the sneak path by changing the
dataflow of DNN computation. In our simulator, we take the sneak path effect into account.

Electronics 2022, 11, 2107 8 of 17

3.4. IR Drop

IR drop is also an import factor that causes non-linear properties. This effect is caused
by wire resistance, which is another dominant factor among ReRAM cell non-linear effects
since a memory array needs to have a lot of wires to connect ReRAM cells. In the ideal case,
we assume the input voltage to any ReRAM cell on the row is the same. In fact, the input
voltage has deviation for each ReRAM cell. The deviation gets larger when the ReRAM cell
is far away from voltage source. This IR drop (voltage drop) will cause the computing result
from ReRAM cell to produce an error. The behavior of IR drop is expressed as Equation (6):

Vreal =
Vin × ((c− 1)× Rwire)

c× Rwire + ∑#row
i=r Ri,c + (#row− r)× Rwire

(6)

where R(i,c) represents the cell resistance in row i and column c. The notation Rwire is the
wire resistance between two adjacent ReRAM cells in the same row. The notation #row
represents the number of rows. According to this formula, we can derive the real voltage of
each ReRAM cell and then simulate an accurate ReRAM behavior in our tool.

3.5. Peripherals

In a ReRAM array, there are two necessary peripherals: DAC and ADC. Here, we
focus on the quantization loss from both DAC and ADC. A digital input value is translated
to be a corresponding voltage through DAC. The details of the translation are below. In
the memory, we use the two’s complement format to represent the input value. Thus, the
input value must be within the range [−2precisionDAC−1, 2precisionDAC−1 − 1]. The value will
be clipped if the input value is greater (smaller) than the maximum (minimum) value of the
range. This is the first situation that the quantization loss occurs. Additionally, the output
value will become the input value for the next computation. The precision of DAC may be
different from that of ADC. This is the second situation that the quantization loss occurs.
Next, we translate the input value (in two’s complement format) to an unsigned binary
value, which is in the range [0, 2precisionDAC − 1]. Each unsigned binary value corresponds
to a voltage that the DAC outputs. Thus, the behavior of DAC can be expressed as
Equation (7): {

xunsigned = Trans(x)

VDAC = DAC(xunsigned)
(7)

where the notation xunsigned represents the corresponding unsigned binary value of input
value x, and the notation VDAC represents the voltage that the DAC outputs. The voltage
range of the DAC depends on the range [VSS,VDD] in the circuit.

The ADC is used to translate the accumulated current in a column to the corresponding
value. The current range of an ADC is [0, ILSB × (2precisionADC − 1)], which corresponds to
the range [0, 2precisionADC − 1]. Note that, the circuit area of ADC grows exponentially with
respect to the bit-width. If the accumulated current is too large, it may be saturated by the
ADC. It means that the result will also have the quantization loss. Thus, the bit-width of
ADC is a trade-off between the accuracy, circuit area and power consumption. The behavior
of ADC can be expressed as Equations (8) and (9):

Iquan =

{
ILSB × (2precisionADC − 1) i f Itot > IMax(ADC)

ILSB × round(Itot
2precisionADC

) else
(8)

y = ADC(Iquan) (9)

where Iquan represents the quantized current value and IMax(ADC) represents the maximum
current value of the ADC. Because the value in the memory is discrete, the current Itot is
also discrete by ILSB. Then, the quantized current Iquan is translated to the corresponding
value by the ADC.

Electronics 2022, 11, 2107 9 of 17

4. Virtual Platform Architectures

In this section, we demonstrate our virtual platform architecture. We use SystemC
programming language to build our virtual platform architecture with TLM 2.0 modeling
method. To let our virtual platform be more flexible, we modularize each component. In
the following, we address the components in a bottom-up manner.

4.1. ReRAM Array

In Figure 7, a ReRAM array model includes inputs (converted values from DAC) and
ReRAM cell locations in a ReRAM array. A ReRAM cell includes ReRAM memory behavior
model and non-linear effects. Since input voltage and cell behavior vary with cell’s location
in a ReRAM array, the ReRAM cell model utilizes input value and location as input to
determine its behavior and non-linear effect. After that, the result will transfer to ADC to
convert back to a digital value.

Figure 7. XBar architecture and ReRAM array model.

4.2. DAC/ADC

DAC and ADC are two important components in a ReRAM DNN accelerator since its
role is the bridge between digital value and analog voltage or current. Here, we assume
their behavior is ideal except for the quantization loss. Thus, the two modules are simple:
gets input and translates it to a corresponding value. Note that the number of DAC and
ADC may cause different performance and accuracy, but their circuit area also needs to be
taken into account. In particular, the area of ADC grows exponentially with the bit-width.
Since our virtual platform can simulate many architectures with a small effort, we can
explore the best configuration efficiently.

4.3. XBar

We modularize XBar with DAC, ADC and ReRAM array components like Figure 7. A
XBar component is a basic processing unit that performs multiply-accumulate computation
in CIM-based architecture. In a XBar, it includes a controller to control XBar, an input
register and an output register to store input and output, respectively. The controller
controls the value in input register to ReRAM array through DAC. Additionally, the
controller controls the value in ReRAM array to output register through ADC. Note that
we model DAC, ADC, ReRAM array as a combinational circuit. It means data from the
output of input register to the input of output register are completed in a cycle time.

4.4. CIM-Based DNN Accelerator

A CIM-based DNN accelerator is composed of a controller, a global buffer and many
XBar connected with NoC (Network on Chip) bus. Here, we use SRAM as global buffer.
We also use SystemC to build SRAM’s behavior model. A NoC bus is built with TLM 2.0
transaction-based modeling method as displayed in Figure 8, in which each black square
represents a router in NoC. The controller transfers data from global buffer to target XBar
through NoC bus, and the router in NoC bus will control data to right destination of XBar.

Electronics 2022, 11, 2107 10 of 17

Figure 8. Virtual platform and CIM-based DNN accelerator.

4.5. CIM-Based Virtual Platform

In Figure 8, our demonstrated CIM-based virtual platform, which includes a simulator
(in CPU), DRAM and CIM-based DNN accelerator based on SystemC. In brevity, the
simulator controls whole data scheduling. More detailed information of simulator and
the whole design framework will be discussed in Section 5. Data will be partitioned into
several computing tiles due to resource limitation, such as global buffer storage size on
DNN accelerator. Each tile of data will be transferred to an accelerator one after another
until whole computation is completed. As a result, we can obtain both model accuracy and
practical hardware performance from virtual platform.

In addition, if necessary, we can also extend this platform to cycle accuracy for both
computation and communication. This extension can make the simulation result closer to
the real hardware circuit behavior, but requires a longer simulation time. Because SystemC
is a flexible programming language based on C++, we can inherit original hardware class
and overwrite original function to rebuild cycle accurate function in the computation
module and communication bus. In the cycle accurate function, the hardware behavior
is defined with each cycle. Moreover, we can also add latency and power consumption
of each action in the program to model real hardware overhead. Additionally, in the
communication bus, TLM only concerns the time data starting to transfer and to receive.
We can add more detailed behavior such as handshake protocol of bus in each cycle to
achieve cycle accurate modeling.

5. Design Framework

The overview of the proposed design framework is displayed in Figure 9. Since the
CIM-based virtual platform is embedded into the design flow, for explanation, we use colors
and dotted lines to connect both the virtual platform and the whole design framework. The
proposed design framework includes a compiler TVM, which is a modern open-source
compiler for DNN accelerator, and a CIM-based virtual platform. Our framework takes
a model as the input and outputs a report that includes accuracy, hardware cost, and
performance evaluation.

Initially, our virtual platform builds the CIM-based DNN accelerator based on hard-
ware configuration. The hardware configuration, such as XBar array height/width, on-chip
memory size, etc., are defined by designers. Note that we modularize each component in
our accelerator and establish the whole system by TLM-based bus. Thus, the throughput
is not only limited by basic components like XBar array size or on-chip storage, but also
the bus bandwidth. In this way, we can accurately estimate the performance (closer to the
performance of the real system).

After that, our framework starts to take the DNN model as the input. The compiler
parses the DNN model and performs optimization according to hardware information
from CIM-based virtual platform. Since the on-chip resources such as storage are limited,
we need to analyze model and data dimensions to tile data with the best tile way, which
is stored in tile info as shown in Figure 9. This result is generated by the optimizer and is
stored in memory like green square shown in Figure 9. We can also treat these as the data
stored in the memory in the virtual platform.

Electronics 2022, 11, 2107 11 of 17

Figure 9. XBar architecture and ReRAM array model.

When the optimizer finishes the optimization process, the simulator is used to simulate
and run DNN model on CIM-based DNN accelerator. In Figure 9, the simulator is in the
blue square. Note that the simulator is also a part of CIM-based virtual platform. The
simulator utilizes the tile info stored in memory and moves tile data to DNN accelerator
cycle by cycle. As shown in Figure 10, our simulator has two steps: mapping and evaluation.
The mapping step is to use a memory dataflow to map data from on-chip storage to XBar
array. Note that, since the XBar array size is fixed, the data dimension R× S× C, which
is mapped to each column, may not be fulfilled in one cycle. Thus, this may downgrade
the utilization of XBar array. This situation may also happens to the width of XBar array,
which maps data dimension M to represent different output channels.

The evaluation step in our simulator has two parts: the inference accuracy and the
hardware costs. The inference accuracy evaluation is based on the non-linear functions
we embed in ReRAM behavior model. In XBar level, we consider both sneak path and
leakage current according to cell’s location in the array. In cell level, we consider lognormal
distribution. Quantization errors are applied to both DAC and ADC. Thus, the virtual
platform can represent the inference accuracy with non-linear effects considered. On the
other hand, we use systemc and TLM modeling method to model the whole behavior of
CIM-based DNN accelerator. The evaluator can obtain cycle time, area, power consumption,
latency, and the utilization in each layer with respect to the given technology library.

Figure 10. XBar architecture and ReRAM array model.

6. Experiment Results

In this section, we demonstrate the experiment results. Note that our ReRAM model
is based on the equations in [33]. Table 2 tabulates the values of parameters (for ReRAM
model) used in the experiments. In Table 2, I0, g0 and V0 represent ReRAM fitting param-
eters, Gmax/Gmin represent ReRAM Max/Min conductance, and T0 represents ambient
temperature of device (for taking thermostatic behavior into account). In Section 6.1, we
use Hspice simulation to validate the ReRAM behavior of our design framework. In
Section 6.2, we report the inference accuracies of DNN models. In Section 6.3, we report
the inference accuracy with respect to different On/Off ratios. In Section 6.4, we report
the utilization in each layer with respect to different array sizes. In Section 6.5, we ob-
serve the trade-offs between power dissipation and circuit area with respect to different
hardware configurations.

Electronics 2022, 11, 2107 12 of 17

Table 2. Fitting parameters.

Parameters Value Description

I0 6.14× 10−5 I-V fitting parameter
g0 2.75× 10−10 I-V fitting parameter
V0 0.43 I-V fitting parameter
T0 293 K Ambient temperature

Gmax/Gmin 100/0.33 µS ReRAM Max/Min conductance

6.1. Validation of ReRAM Model

First, we use Spice model to validate the consistency of ReRAM behavior with our
program. Based on the values of parameters listed in Table 2, we use the Spice model
in [33] and simulate with Hspice tool. In the experiment, we build a ReRAM array and
randomly generate different input patterns to observe the accumulate current. In Figure 11,
we display the results of the ideal case, the spice model and our program with respect to
8× 8, 16× 16, 32× 32 array sizes. In the ideal case, we assume a ReRAM cell in HRS state
has no current throw through it. In our program, we calculate the leakage current with
the noise model. As shown in Figure 11, we find our program has a very similar trend
versus the spice model. It proves that our program can get a practical result. Note that the
deviation between the ideal case and the spice model is small because the on/off ratio of
ReRAM is big. Thus, in overall, the effect of leakage current is not obvious.

Figure 11. Accumulated result of ReRAM array.

6.2. Accuracy Evaluation

In the experiments, we use four DNN models, including LeNet, AlexNet, VGG-8 and
VGG-16, to evaluate the proposed design framework. Note that the number of convolution
layers increases as the progress of DNN models. For example, the difference between
VGG-8 and VGG-16 is the number of convolution layers. The detailed information of
these DNN models is tabulated in Table 3. Although the number of convolution layers in
AlexNet is the same as that in VGG-8, on average, the number of channels of each layer
in VGG-8 is deeper than that in AlexNet. More convolutions and deeper layers cause
error accumulation fast. This also highlights the demand of a design framework that can
simulate a DNN accelerator with ReRAM noise considered.

Table 3. Information of DNN models.

Models Input Shape Number of Convolution Layers

LeNet 32× 32 3
AlexNet 224× 224 5
VGG-8 224× 224 5

VGG-16 224× 224 13

Electronics 2022, 11, 2107 13 of 17

We use these DNN models to evaluate the proposed design framework. We compare
their inference accuracies with respect to 32× 32, 64× 64, 128× 128 and 256× 256 array
sizes, respectively. Figure 12 provides the top-5 accuracy of each DNN model with respect
to different array sizes. As shown in Figure 12, VGG-16 and VGG-8 achieve higher accuracy,
while AlexNet and LeNet have lower accuracy. As the array size grows, the accuracy of
each model downgrades because of the accumulation of errors. The accuracy from array
size 32× 32 to array size 256× 256 at least loses 10% accuracy. It means that the array size
of CIM-based DNN accelerator needs to be limited. Another observation shows that the
downgrade speed is faster for modern DNN models with deeper structures. In Figure 12,
VGG-16 has higher accuracy than VGG-8 when array size is 32× 32, but VGG-8 has higher
accuracy than VGG-16 when array size is 256× 256 (since the accumulation of errors limit
the accuracy of VGG-16 model). Thus, we need to be more careful on modern DNN models.

Figure 12. Accuracy of DNN models with different array sizes.

6.3. On/Off Ratio of ReRAM

In Figure 13, we use LeNet with MNSIT dataset as an example to report the inference
accuracy with respect to different combinations of On/Off ratio and array size. Note
that On/Off ratio is determined as the resistance ratio of HRS/LRS of ReRAM. High
On/Off ratio causes large power consumption but little misunderstanding overlap state.
Additionally, high On/Off ratio needs more long latency to write resistance. In contrast,
small On/Off ratio has little power consumption and short write resistance state. Thus,
this is a trade-off between latency, power consumption and accuracy.

Figure 13. Accuracy with respect to different On/Off ratios and different array sizes.

In Figure 13, we consider four kinds of On/Off ratio, including 300, 100, 25 and 10,
respectively. Additionally, we consider 32× 32, 64× 64, 128× 128 and 256× 256 array
sizes, respectively. We observe that high On/Off ratio can holdout error accumulation. As
shown in Figure 13, the accuracy is almost the same when On/Off ratio is between 300
and 100. It means that On/Off ratio 100 is enough to distinguish the states. The accuracy
starts to downgrade when On/Off ratio is 25. The accuracy drops worse when On/Off
ratio decreases to 10. We can find that the average accuracy loses about 20% in the average
line chart. Besides, we also find that a small array size accumulates little error. Thus, a

Electronics 2022, 11, 2107 14 of 17

small array size has a small impact on the accuracy loss. We can conclude that: if we want
to use large array size, high On/Off ratio is necessary. If we have small XBar array size, we
can try to use little XBar array to improve latency and power consumption. Large array
size can improve throughput, but needs large On/Off ratio which introduces high latency
and high power consumption. Small array size can use small On/Off ratio, but needs to
compute more clock cycles. The designer cannot know which is the best architecture of
DNN accelerator. It proves that a design framework is necessary to simulate and explore
the best result.

6.4. Utilization Evaluation

We use VGG-16 to study the utilization in different layers with respect to different
array sizes. Note that VGG-16 has thirteen convolution layers and three fully connected
layers. Because the bottleneck of performance occurs in convolution layers, here we focus
on the utilization in convolution layers. In Figure 14, we evaluate the VGG16 model with
an array size from 16× 16 to 1024× 1024. Note that we assume there is only one XBar in
the CIM-based DNN accelerator.

Figure 14. Utilization with respect to different array sizes and layers on VGG-16.

From Figure 14, we have two observations. First, each layer cannot be computed
on full XBar with 100% utilization due to CIM dataflow with architecture properties. For
example, a layer with kernel size 3× 3 only can put a channel on a column each cycle. Thus,
the utilization can just achieve 9

16 = 56.3% in array size 16× 16. Note that the utilization
is the same in each layer for array size 16x16 because it is small enough and hence the
data in each layer can be put on XBar equally. The second observation is the utilization
of CIM-based DNN accelerator is not proportional to array size. The utilization depends
on data dimension of layer and array size. In general, utilization will be promoted when
array size gets larger. However, there are some cases where the array size is too large (i.e.,
larger than processing data). For instance, conv1_1’s input channel is 3; thus, the utilization
downgrades when array size is larger than 64. The same situation may happen in each
layer and also may happen in different array sizes. It means that we need to give up the
concept that a larger array size is better when designing XBar array size. In this dataflow,
k2 × c must be divisible by the number of columns in XBar, where k is kernel size and c
is the number of input channels. Output channels of the layer must be divisible by the
number of rows in XBar. In this way, the model can be computed efficiently.

6.5. Energy Delay Area Product

We use VGG-8 as an example to evaluate EDAP (energy delay area product) with
respect to different array sizes. EDAP is the product of energy, delay and area. This is
an indicator of hardware performance and cost. In Figure 15, we demonstrate the result
of EDAP from XBar array size 8 × 8 to XBar array size 128 × 128. In this experiment,
we assume there is one XBar array in our CIM-based DNN accelerator. In addition, we

Electronics 2022, 11, 2107 15 of 17

normalize the results because the numbers after EDAP are difficult to read. Note that the
lower number of energy, delay and area are better. Thus, we want to find an XBar array
size with low EDAP.

In Figure 15, the lowest EDAP in the chart is 32× 32. We can observe that there is a
smile curve. The highest and second high EDAP happen on array size 128× 128 and array
size 8× 8, respectively, which are the largest array size and the smallest array size. In array
size 8× 8, although its latency and area are small, it needs more clock cycles to complete the
whole computations, which cause large energy consumption. In contrast, although array
size 128× 128 can have large throughput, dataflow and CIM array properties limit the
utilization (as discussed in Section 6.4). Thus, the benefit brought by large array size cannot
offset other costs. This result also proves that large or small scale of array size are not the
best choice. Designers need a design framework to help to determine the best hardware
architecture for DNN model.

Figure 15. EDAP of different array sizes.

7. Conclusions

In this paper, we propose a design framework with SystemC virtual platform to
support ReRAM-based deep learning accelerators. In the experiments, we have validated
our design framework with Spice model. We also have used our design framework to
observe accuracy, On/Off ratio, utilization and EDAP. For example, we find that the
accuracy from array size 32 × 32 to array size 256 × 256 at least loses 10% accuracy. The
experiment proves that our design framework can help designers to determine hardware
architecture with accuracy and hardware costs considered.

Author Contributions: Conceptualization, methodology, and formal analysis, H.-Y.K., S.-H.H. and
W.-K.C.; investigation and writing—original draft preparation, H.-Y.K.; supervision and writing—
review and editing, S.-H.H. and W.-K.C. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported in part by the Ministry of Science and Technology, Taiwan, under
grant number MOST 110-2218-E-033-003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are included in
this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2022, 11, 2107 16 of 17

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
2. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
3. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
4. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50× fewer

parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.
5. Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
[CrossRef]

6. Lu, W.; Yan, G.; Li, J.; Gong, S.; Han, Y.; Li, X. FlexFlow: A Flexible Dataflow Accelerator Architecture for Convolutional Neural
Networks. In Proceedings of the 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA),
Austin, TX, USA, 4–8 February 2017; pp. 553–564. [CrossRef]

7. Wang, Y.; Wang, Y.; Li, H.; Shi, C.; Li, X. Systolic Cube: A Spatial 3D CNN Accelerator Architecture for Low Power Video Analysis.
In Proceedings of the 56th Annual Design Automation Conference 2019, Las Vegas, NV, USA, 2–6 June 2019; pp. 1–6. [CrossRef]

8. Du, Z.; Fasthuber, R.; Chen, T.; Ienne, P.; Li, L.; Luo, T.; Feng, X.; Chen, Y.; Temam, O. Shidiannao: Shifting Vision Processing
Closer to the Sensor. In Proceedings of the 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA), Portland, OR, USA, 13–17 June 2015; Volume 43, pp. 92–104. [CrossRef]

9. Kwon, H.; Samajdar, A.; Krishna, T. MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable
Interconnects. ACM SIGPLAN Not. 2018, 53, 461–475. [CrossRef]

10. Chen, Y.H.; Emer, J.; Sze, V. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks. In
Proceedings of the 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea,
18–22 June 2016; Volume 44, pp. 367–379. [CrossRef]

11. Chen, Y.H.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE J. Solid-State Circuits 2017, 52, 127–138. [CrossRef]

12. Chen, Y.H.; Yang, T.J.; Emer, J.; Sze, V. Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 292–308. [CrossRef]

13. Zhao, Y.; Chen, X.; Wang, Y.; Li, C.; You, H.; Fu, Y.; Xie, Y.; Wang, Z.; Lin, Y. SmartExchange: Trading Higher-cost Memory
Storage/Access for Lower-cost Computation. In Proceedings of the 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), Valencia, Spain, 30 May–3 June 2020; pp. 954–967. [CrossRef]

14. Chatarasi, P.; Kwon, H.; Raina, N.; Malik, S.; Haridas, V.; Parashar, A.; Pellauer, M.; Krishna, T.; Sarkar, V. Marvel: A Data-centric
Compiler for DNN Operators on Spatial Accelerators. arXiv 2020, arXiv:2002.07752.

15. Kwon, H.; Chatarasi, P.; Pellauer, M.; Parashar, A.; Sarkar, V.; Krishna, T. Understanding Reuse, Performance, and Hardware Cost
of DNN Dataflows: A Data-Centric Approach Using MAESTRO. arXiv 2020, arXiv:1805.02566.

16. Shafiee, A.; Nag, A.; Muralimanohar, N.; Balasubramonian, R.; Strachan, J.P.; Hu, M.; Williams, R.S.; Srikumar, V. ISAAC: A
Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars. In Proceedings of the 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22 June 2016; Volume 44, pp. 14–26.
[CrossRef]

17. Chi, P.; Li, S.; Xu, C.; Zhang, T.; Zhao, J.; Liu, Y.; Wang, Y.; Xie, Y. PRIME: A Novel Processing-in-Memory Architecture for Neural
Network Computation in ReRAM-Based Main Memory. In Proceedings of the 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22 June 2016; Volume 44, pp. 27–39. [CrossRef]

18. Wong, H.S.P.; Lee, H.Y.; Yu, S.; Chen, Y.S.; Wu, Y.; Chen, P.S.; Lee, B.; Chen, F.T.; Tsai, M.J. Metal–Oxide RRAM. Proc. IEEE 2012,
100, 1951–1970. [CrossRef]

19. Park, J. Neuromorphic Computing Using Emerging Synaptic Devices: A Retrospective Summary and an Outlook. Electronics
2020, 9, 1414. [CrossRef]

20. Mittal, S. A Survey of ReRAM-Based Architectures for Processing-In-Memory and Neural Networks. Mach. Learn. Knowl. Extr.
2018, 1, 5. [CrossRef]

21. Feinberg, B.; Wang, S.; Ipek, E. Making Memristive Neural Network Accelerators Reliable. In Proceedings of the 2018 IEEE
International Symposium on High Performance Computer Architecture (HPCA), Vienna, Austria, 24–28 February 2018; pp. 52–65.
[CrossRef]

22. Wang, S.; Jin, S.; Bai, D.; Fan, Y.; Shi, H.; Fernandez, C. A critical review of improved deep learning methods for the remaining
useful life prediction of lithium-ion batteries. Energy Rep. 2021, 7, 5562–5574. [CrossRef]

23. Wang, S.; Takyi-Aninakwa, P.; Jin, S.; Yu, C.; Fernandez, C.; Stroe, D.I. An improved feedforward-long short-term memory model-
ing method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature
variation. Energy 2022, 254, 124224. [CrossRef]

24. Xia, L.; Li, B.; Tang, T.; Gu, P.; Chen, P.Y.; Yu, S.; Cao, Y.; Wang, Y.; Xie, Y.; Yang, H. MNSIM: Simulation Platform for
Memristor-Based Neuromorphic Computing System. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 1009–1022.
[CrossRef]

http://doi.org/10.1145/3065386
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/cvpr.2017.243
http://dx.doi.org/10.1109/hpca.2017.29
http://dx.doi.org/10.1145/3316781.3317919
http://dx.doi.org/10.1145/2749469.2750389
http://dx.doi.org/10.1145/3296957.3173176
http://dx.doi.org/10.1109/isca.2016.40
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1109/JETCAS.2019.2910232
http://dx.doi.org/10.1109/ISCA45697.2020.00082
http://dx.doi.org/10.1109/isca.2016.12
http://dx.doi.org/10.1109/isca.2016.13
http://dx.doi.org/10.1109/JPROC.2012.2190369
http://dx.doi.org/10.3390/electronics9091414
http://dx.doi.org/10.3390/make1010005
http://dx.doi.org/10.1109/HPCA.2018.00015
http://dx.doi.org/10.1016/j.egyr.2021.08.182
http://dx.doi.org/10.1016/j.energy.2022.124224
http://dx.doi.org/10.1109/tcad.2017.2729466

Electronics 2022, 11, 2107 17 of 17

25. Rasch, M.J.; Moreda, D.; Gokmen, T.; Gallo, M.L.; Carta, F.; Goldberg, C.; Maghraoui, K.E.; Sebastian, A.; Narayanan, V. A flexible
and fast PyTorch toolkit for simulating training and inference on analog crossbar arrays. arXiv 2021, arXiv:2104.02184.

26. Bahar, I.; Lin, M.Y.; Cheng, H.Y.; Lin, W.T.; Yang, T.H.; Tseng, I.C.; Yang, C.L.; Hu, H.W.; Chang, H.S.; Li, H.P.; et al. DL-RSIM: A
simulation framework to enable reliable ReRAM-based accelerators for deep learning. In Proceedings of the 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), San Diego, CA, USA, 5–8 November 2018; pp. 1–8. [CrossRef]

27. Chen, P.Y.; Peng, X.; Yu, S. NeuroSim+: An Integrated Device-to-Algorithm Framework for Benchmarking Synaptic Devices and
Array Architectures. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA,
2–6 December 2017; pp. 6.1.1–6.1.4. [CrossRef]

28. Mohsenin, T.; Zhao, W.; Chen, Y.; Mutlu, O.; Zhu, Z.; Sun, H.; Qiu, K.; Xia, L.; Krishnan, G.; Dai, G.; et al. MNSIM 2.0: A
Behavior-Level Modeling Tool for Memristor-based Neuromorphic Computing Systems. In Proceedings of the 2020 on Great
Lakes Symposium on VLSI, Online, 7–9 September 2020; pp. 83–88. [CrossRef]

29. Chen, P.Y.; Peng, X.; Yu, S. NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online
Learning. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 3067–3080. [CrossRef]

30. Xia, L.; Li, B.; Tang, T.; Gu, P.; Yin, X.; Huangfu, W.; Chen, P.Y.; Yu, S.; Cao, Y.; Wang, Y.; et al. System Simulation of Memristor
Based Computation In Memory Platforms. In Proceedings of the 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Dresden, Germany, 14–18 March 2016; pp. 469–474. [CrossRef]

31. BanaGozar, A.; Vadivel, K.; Stuijk, S.; Corporaal, H.; Wong, S.; Lebdeh, M.A.; Yu, J.; Hamdioui, S. CIM-SIM: Computation In
Memory SIMuIator. In Proceedings of the 22nd International Workshop on Software and Compilers for Embedded Systems,
Sankt Goar, Germany, 27–28 May 2019; pp. 1–4. [CrossRef]

32. Galicia, M.; Merchant, F.; Leupers, R. A Parallel SystemC Virtual Platform for Neuromorphic Architectures. arXiv 2021,
arXiv:2112.13157.

33. Guan, X.; Yu, S.; Wong, H.S.P. A SPICE Compact Model of Metal Oxide Resistive Switching Memory with Variations. IEEE
Electron Device Lett. 2012, 33, 1405–1407. [CrossRef]

http://dx.doi.org/10.1145/3240765.3240800
http://dx.doi.org/10.1109/iedm.2017.8268337
http://dx.doi.org/10.1145/3386263.3407647
http://dx.doi.org/10.1109/TCAD.2018.2789723
http://dx.doi.org/10.3850/9783981537079_0549
http://dx.doi.org/10.1145/3323439.3323989
http://dx.doi.org/10.1109/LED.2012.2210856

	Introduction
	Preliminaries
	Convolution Neural Network
	ReRAM and ReRAM Array
	Dataflow of CIM

	Noise Analysis
	Lognormal Distribution
	Leakage Current
	Sneak Path
	IR Drop
	Peripherals

	Virtual Platform Architectures
	ReRAM Array
	DAC/ADC
	XBar
	CIM-Based DNN Accelerator
	CIM-Based Virtual Platform

	Design Framework
	Experiment Results
	Validation of ReRAM Model
	Accuracy Evaluation
	On/Off Ratio of ReRAM
	Utilization Evaluation
	Energy Delay Area Product

	Conclusions
	References

