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Abstract: The recent advances in unmanned aerial vehicles (UAVs) enormously improve their utility
and expand their application scope. The UAV and swarm implementation further prevail in Smart
City practices with the aid of edge computing and urban Internet of Things. The lead–follow
formation in UAV swarm is an important organization means and has been adopted in diverse
exercises, for its efficiency and ease of control. However, the reliability of centralization makes the
entire swarm system in risk of collapse and instability, if a fatal fault incident happens in the leader.
The motivation is to build a mechanism helping the distributed swarm recover from possible failures.
Existing ways include assigning definite backups, temporary clustering and traversing to select a new
leader are traditional ways that lack flexibility and adaptability. In this article, we propose a voting-
based leader election scheme inspired by the Raft method in distributed computation consensus
to solve the problem. We further discuss the impact of communication conditions imposed on the
decentralized voting process by implementing a network resource pool. To dynamically evaluate
UAV individuals, we outline measurement design principles and provide a realizable calculation
example. Lastly but not least, empirical simulation results manifest better performance than the
Raft-based method. Our voting-based approach exhibits advantages and is a promising way for
quick regrouping and fault recovery in lead–follow swarms.

Keywords: smart city; UAV swarm; lead–follow; leader election; distributed consensus

1. Introduction

The trend of global urbanization is seemingly increasing as the world population is
expected to double in the next few decades [1,2]. It is undoubted that citizens and governors
are now concentrating on multiple fields of cities, i.e., indispensable management [3],
sustainable development [4], trustable security [2], reliable environment protection [5],
etc. The smart city concept [6,7] is raised for the above issues and has been evolving [8]
for decades. The recent development of Internet of Things (IoT) [9,10], fifth-generation
(5G) communication [11] and multi-access edge computing (MEC) techniques [12,13]
further stimulate implementations and applications for efficient city operation, for instance
information framework [4], anomaly identification [14] and cyber-threat detection [15].

Although advancing technologies empower modern smart city schemes, drawbacks
and challenges exist in several components of smart city operations [1,3]. For example, the
transportation system in cities [16] is one of special interest. To relieve traffic congestions
in various periods, massive amounts of sensors, cameras and other equipments should
be widely deployed to gather abundant data and gain a global view for subsequent deep
analysis [3]. This inevitably induces massive cost and numerous static deployments fail to
collect real-time data [1]. Another case would be efficient communication and network-
ing. One may argue that the 5G technique enriches mobile applications and accelerates
the emergence of diverse scenarios, promoting the potential of current and future solu-
tions [17,18]. Despite some efforts having been made to improve the availability and quality
of experience (QoE) [19,20], the placement and cost issues would still affect adaptation to
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dramatically dynamic implementations [11,21], i.e., natural catastrophes [22] and military
events [23].

Now the unmanned aerial vehicles (UAVs) or drones-enabled scheme is drawing
increasing attention and is generally accepted to be a promising way to alleviate some
difficulties, such as relayed long-range communication [1,24], air-quality sensing [5], traffic
improving [3,16] and information sharing in battlegrounds [23]. In effect, unmanned aerial
vehicles (UAVs) have high potential, nevertheless one single UAV may have limitations
in energy, sensor loads, computing and communication capacities [25,26]. Multiple UAVs,
which can be called UAV swarm in a large-scale number, are put forward to cooperatively
accomplish tasks that a single drone fails to tackle [27,28]. One high-performance way
to organize UAVs is the lead–follow formation. It appoints a UAV to acting as leader,
who takes charge of spreading unambiguous instructions and coordinating behaviors of
subordinates [22,29,30], known as a lead–follow manner. The rest of swarm members are
thus called followers. The focus of this article is on the lead–follow UAV swarm manner.

The limitation of lead–follow is straightforward. As a leader is centralized node, it
is also a fragile node, which make the whole swarm fragile [23,31]. Notice that we use
“fragile” with a global perspective to describe one that can impose influence on all other
entities. In other words, if a leader cannot continue its functionality because of crashing,
malfunctioning or being faulty, the swarm probably falls apart and causes a holistic swarm
fault. In the lead–follow manner, a failure of the leader is likely to cause collapse and
chaos of the swarm system. The lead-election is to guarantee the fault tolerance and adapt
to complex, unexpected and even potentially hostile circumstances. An intuitive and
viable approach to guarantee swarm working is to rapidly determine a back-up UAV to
tolerate exceptions. It is nonetheless static and cannot find the optimal one based on real
situations. The conventional way could be presetting a series of successors, which seems
to be helpful in changeless environment. However, there might be some problems. The
predetermined method is probably not able to foresee the highly uncertain situations and
may not result in a suitable leader for a given task. For instance, one individual is more
likely to be elected if it happens to be within the task region, or occupy the full information
of targets, especially in complex and harsh battlegrounds [23]. Another case could be that a
new leader should be close enough to the ground stations for forwarding of appropriate
instructions, communication relay and orchestration [22,24]. Therefore, there needs to be
an elastic and adjustable way to encourage the rest to make a decision [31]. The goal of this
research is to make the rest of the collective UAVs recover from the systematic faults. We
manage to construct an effective voting-based algorithm to discover an optimal drone to be
the leader in condition that the original leader is disabled and all UAVs are decentralized.
The entire process is called leader election.

It is also notable that the voting mechanism will benefit the applications in an aquatic
environment. Nowadays, two major types of vehicles have drawn immense attention in
unmanned research community, Unmanned Underwater Vehicles (UUV) and Unmanned
Surface Vehicles (USV), respectively [32]. Various unmanned vehicles occasionally can
be jointly called Unmanned Aerial and Aquatic Vehicles (UAAV) [33]. Since the UAAV
network shares vital common features, some efforts are made to investigate the feasibility
of method transferring [33]. In general, the acoustic communication is employed in the
UUV, such as a sonar system, due to the absorption of radio signal under water [34]. For
the USV, two signal transportation media are available, acoustic modem underwater and
wireless access through air [35]. Apparently, the underlying network performance could
be strictly limited, i.e., bandwidth, data rate, throughput, range, etc. To enable swarming
of UUV and USV, distributed approaches are essential and indispensable for coordination
and cooperation, where the voting-based method will play an active role. At the same time,
the UAV may suffer a similar communication burden as in urban or rural situations [36].
The communication capability is always affected by the energy consumption and swarm
dynamic mobility. In addition, the excessively overlapped wireless coverage may cause
potential resource usage conflicts, for instance frequency spectrum and bandwidth. The
proposed voting algorithm can thus be useful and applicable in a UAV lead–follow swarm.
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As for the election process, there are several important concerns. Firstly, since the
original leader is down, all followers shall make the decision together to approve a leader
in a fully decentralized mode. A negotiation rule should be made, such that a group of
independent and autonomous drones could seek out the most suitable member acting as
the leader role. Secondly, all followers are assumed to have a limited communication range
and be able to reach local peers. Due to the locality of swarm, the only one who has a global
connection to broadcast task instructions is the leader. This configuration is essential in
practice, because the networking resource and energy of UAVs are constrained [37,38]. It is
also worth noting that the global connection describes the wide-area communication mode
in which an alive leader is working. A practical implementation for a UAV is to program
two working configurations, the leader and the follower, respectively. Only the leader will
take charge of coordination and possess the key elements to relieve the interference and
resource competing as aforementioned. For followers, each one would activate its limited
abilities. Lastly, there ought to be an elastic metric to calculate to what extent a UAV can fit
in the leader duty. That is how a UAV can recognize its local condition and quantify it to be
comparable. It should also work in a UAV local computing component in an acceptable
time period. A metric needs to be intentionally planned to strike a balance between the
availability and computation pressure.

In this article, we propose a voting-based approach to generate a new leader inspired
by a classic idea called Raft [39] in consensus computation algorithms [40] to cover the
above points. In particular, the proposed process is based on the election stage in Raft.
Moreover, The consensus problem stems from distributed computing [41], similar to the
one in human decision making [42], depicted as a multi-agent consensus model. In the
following part, we will refer to “agent”, meaning a practical UAVand drone entity. When
a leader encounters failures, the follower UAV agents with local communication would
automatically launch the voting process. Once a UAV agent become the new leader, it
then converts to the leader operation according to the leader role setting. To validate our
method, we present a series of experiments in order to analyze the expected performance
improvements and gain insights of potential advantages.

The leader election is illustrated in Figure 1. In the normal operation stage, each
follower agent receives a periodical daemon (also named heartbeat) signal to remain in
lead–follow behavior. If the leader fails to keep its functionality, an election process will
be triggered among the rest of the followers. After a voting program in the swarm agents,
an appropriate agent should be elected based on a unified measurement. Once the dae-
mon/heartbeat signal has been rebroadcasted from the new leader, the lead–follow swarm
behavior is then reformed automatically. It is noteworthy that daemon signal and granted
votes ought to be transmitted through a communication channel. The communication
condition, namely communication range/radius, is considered and implemented by a
communication resource pool. Note that we mainly consider the communication range
as a key factor in the research to investigate the impact on performance. Details will be
explained in Section 4.

Figure 1. A visualization of leader-election process.

The main contributions are in the following:
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• A voting-based mechanism is proposed to encourage swarm members to produce a
robust and optimal leader. The proposal aims at working in a fully distributed and
decentralized environment under restricted communication conditions.

• A dynamic criterion for instantly qualifying individuals is proposed, which attempts
to reflect how a UAV is suitable for a simple lead–follow swarm behavior. We provide
four vital design principles to make the measurement interpretable.

• To deeply analyze the impact of communication range, we devise a networking
resource pool to simulate the available data exchange channels and key information
sharing process.

• Experiments are conducted in four facets to broadly demonstrate empirical results.
The corresponding data analysis and explanations are given to emphasize the im-
provements induced by the proposal.

The rest of contents are organized as belows: Section 2 outlines the related ideas and
research works; Section 3 gives formulation of leader-election process; the details of the
proposed approach is portrayed in Section 4, followed by the experiments in Section 5.
Finally, Section 6 draws a conclusion about the work presented.

2. Related Works

During recent decades, unmanned aerial vehicles (UAVs) or the drones-enabled
scheme have been drawing increasing attention. The common wisdom is that the drone-
based scheme should be promising for solving various challenges, owing to characteristics
such as flexibility, low-cost, adaptability, mobility and et al. [43]. UAVs are indeed deployed
for military purposes at the beginning [23,44], while the civilians are also benefactors
from their potential [45]. Drones and UAVs are helpful in smart cities with urban IoT and
edges [8], such as enhancing communication [1,24], reducing air pollution [5], monitoring
and managing traffic [3,16] and building robust military forces [23]. However, an single
UAV unit is facing problems, for example, energy shortage, payloads restrictions, computa-
tion capacities and etc., [25,26]. Multi-UAVs and UAV swarm techniques are developed to
leverage the advantages of cooperation [46].

Admittedly, swarming has advantages, and there should be interaction protocols
for UAVs collaboration in swarm, owing to distribution and dispersion [47]. Efforts have
been made to settle the challenges, for example decentralization [48] and hierarchical
structure [49]. However, decentralization may consume plenty of communication resources
and require a specific control protocol [25,50], which incurs implementation difficulty. A
lead–follow formation has become a conventional and useful solution to a plenty of urban
problems [22,29,30].

The consensus idea initially comes from distributed computation [40] in computer sci-
ence, which principally targets fault tolerance in distributed networking environments [51],
a classic problem called the “Byzantine Generals” problem. One may trace consensus in
distribution back to a harmony among data consistency, system availability and partition
tolerance [52]. The most recent explosion of Bitcoin leads to a research surge of consensus
in blockchain [53], which is expected to verify and ensure the data integrity. There has been
well-known research motivating distributed machines to reach a consensus targeting the
“Byzantine Generals” problem [39,54]. Since the Paxos algorithm [54] is braodly believed to
be difficult to understand, the Raft algorithm [39] is deliberately built to simplify the consen-
sus procedure and strives to achieve a balance between performance and understandability.
The Raft algorithm decompose the consensus into three subproblems: leader election, log
replication and safety. Our proposal is accordingly inspired by the leader-election stage and
modified to fit in a UAV swarm scenario.

As for the consensus in a UAV swarm, it can be viewed as all UAV agents attempting
to cooperatively reach agreement on issues in terms of task decision [41]. Originally, the
Boids/Reynolds model is proposed in [55], followed by a series of works in dynamic multi-
agent flocking controling and collectives consensus analysis [41]. Similarly, the lead–follow
swarm behavior is also considered with consensus [47]. A distributed swarm system thus
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must effectively deal with orchestration, organization, interaction and so on [27,28]. On
the contrary, a lead–follow enabled swarm is a centralized swarm system and is unified
by nature, because only one center is responsible for commanding discrete elements. This
intrinsic feature thus gives the leader an indispensable role in several tasks [56,57].

To find a proper agent to serve as the leader, some existing works focus on clustering
collective units and determine a cluster head [31]. Mou Zhiyu et al. [56] investigate the
hierarchical UAV swarm structure and employ a graph attention-based algorithm to detect
clusters and the leaders. In [58], an energy-aware node clustering algorithm is proposed in
order to extend the lifetime in a wireless sensor network, which is based on particle swarm
optimization with combined objects to optimize the utility. The method merely considers
two energy-related factors and has difficulty fitting in highly dynamic applications. Ma
Ting et al. [57] introduce a modified k-means algorithm to select a super cluster head UAV
agent with low latency, gaining an efficient swarm management. The authors in [31] are
dedicated to optimal drone communication and put forward a bio-inspired cluster head
selection algorithm. They endeavour to divide the whole swarm into small groups and
enable the algorithm locally based on residual energy and distance. These methods are
specifically designed to meet trajectory and groundstation matching demands regardless
of fault and disaster recovery for the swarm. Frequent changing cluster heads probably
brings about the instability of swarm and extra communication overheads. Additionally,
the mutual communication capacity has not been explicitly examined. In this work, we
unfold several useful measurement designing principles and propose Raft-inspired low-
cost voting scheme to make the collectives obtain a deterministic leader. Ultimately, the
experiments illustrate advantages of the proposal over the original Raft algorithm.

The Raft algorithm is proposed for the consensus achievement in distributed com-
puting. There are some relevant works dedicated to swarm clustering and head selection.
These works prefer a well-designed measurement calculation to determine which one
is capable of handling the cluster-head role, for instance, distance- and residual energy-
related fitness values are designed in [31]. In our work, the accomplishment of consensus
principally attracts the attention, realized by the voting mechanism. A swarm system of
unmanned vehicles can also be deemed to be a distributed computing system. Each vehicle
individual resembles a computing node, as unmanned vehicles have limited computation
capability and they are interconnected by an underlying network. On the other hand, the
election process is one stage of the Raft algorithm and can be transplanted and deployed
in other distributed systems. Therefore, the election process has potentials to adapt to an
unmanned vehicle swarm. In the following experiment, we will present the effectiveness
and availability of the voting approach.

3. Problem Setting

In lead–follow swarm behavior [30,59], the collective agents endeavor to regroup by
determining which individual is able to lead the rest to finish certain tasks, if the former
leader encounters a fatal crash or failure. As agents are independent, self-controlled and
inter-connected, we define the regrouping activity as a voting-based leader-election process
through interaction between each other. Thus the election process can be modelled and
converted to consensus achievement in a distributed system [59].

Due to decentralization, follower agents can only acknowledge key information from
the surroundings and spread the states to limited peers. Analogue to elections in the real
world, we also assume that a leader in a swarm should possess some advantages in terms of
particular transactions over others based on its characteristics. Transactions can be targets
of tasks [30], pre-defined order and etc. Then the goal is to find the optimal agent with the
highest quantified characteristics.

To further digest the routine, we shall formulize the above as an maximization issue.
Firstly, let #«xi be the characteristics of agent i in swarm As representing the current status:

#«xi
t = (i,

#    «

Post,
#   «

Velt, Et
res, Type, Taskt), (1)
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where time information t is attached.
#    «

Post and
#   «

Velt denote the position and velocity of i-th
agent at time t, respectively. Et

res is the residual energy and Type corresponds to the agent
type. Taskt would be any key elements relevant to the task payloads.

A crucial part of election is how to quantify and measure the status of an agent. The
metric could consider different factors to make sure the leader is suitable for a given
mission. In general, a UAV swarm is assigned with tasks/missions that directly guide
the collectives towards a goal accordingly. The metric setting is supposed to be comply
with the task and the corresponding goal, which could be viewed as task-oriented. In this
article, we would like to introduce the design paradigm of qualification measure that
is helpful to identify the most appropriate follower to be elected. It is of special note
that the eligibility/qualification measure is task-oriented rather than intuitive. The term
task-oriented indicates the distinct targets of a UAV swarm to expect diverse calculating
configurations. For instance, the leader is inclined to be close to the ground station for
communication relaying; the leader could be one that is equipped with high-performance
sensors and large batteries for environmental perception, and so on. To be more detailed,
we exemplify the claim by formularizing a real-value function in the following:

Quali f Value = F (Φ1(
#    «

Pos), Φ2(
#   «

Vel), Φ3(Eres), Φ3(Task); θ1, θ2, θ3, θ4), (2)

where F (·) ∈ < is a real value mapping of factors in status, such as position, velocity,
residual energy, task, etc., parameterized by θi, i = 1, 2, 3, 4. The purposed of Φi(·), i =
1, 2, 3, 4 is to standardize and normalize categorical information as computational data. The
parameters, thetai, control the weights and influence on the combined qualification measure.
We thus encourage readers to adapt the Equation (2) to a specific swarm assignment. For
the sake of simplicity. A measurement function is defined as for the experiments:

Qt
i = f ( #«xi

t), (3)

where Qt
i ∈ R can be called eligibility or qualification measurement at time t and f (·) is a

customized mapping. Let Cr be the communication range. In this article, we assume all
UAV agents have the same communication ability. The neighbourhood Neit

i of agent i is
then written as:

Neit
i = {j|Deu(j, i) ≤ Cr, j ∈ As}, (4)

where, Deu(·) is the Euclidean distance. Note that i ∈ Neii for all time. Apparantly,
we have:

i, j ∈ Neit
i
⋂

Neit
j , i 6= j

if Deu(i, j) ≤ Cr.
(5)

Similarly, if agent i cannot connect agent j,

i, j /∈ Neit
i
⋂

Neit
j ,

if Deu(i, j) > Cr.
(6)

For locality, there exists an agent with highest qualification Qt
i in the neighours of

agent i. That is

LocalMaxAgentt
i = arg max

j
(Qt

i(Neit
i )). (7)

Accordingly, our goal is to find:

GlobalMaxAgentt
|t=T = arg max

i
(LocalMaxAgentt

i)|t=T , i ∈ As, (8)
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where t = T implies that we concentrate on the leader election at one moment. For
simplicity, we can omit the time symbol, namely:

GlobalMaxAgent = arg max
i

(LocalMaxAgenti), i ∈ As, (9)

The process of finding the agent with the global maximal qualification is the routine of
agreement in the UAV swarm. As a swarm can be considered as a distributed computing
system, we then turn the maximization of qualification into consensus on a leader by
voting. The following analysis clearly elucidates that the voting-based election approach
is able to assist the independent UAV agents in a swarm system to reach agreement and
collaboratively generate an acceptable leader.

4. Proposed Method

In this section, the detail of our proposed algorithm is illustrated. As aforementioned,
the proposed algorithm is inspired by the leader-election stage of the Raft algorithm [39]
that has been implemented as the foundation of distbuted coordination mechanism.

4.1. The Leader Election Process

The leader election scheme in UAV swarm generally employs a similar process to that
of the Raft algorithm in order to reach an agreement. At the beginning, a leader UAV (called
a leader agent in simulation) can be appointed in a swarm based on the incoming tasks,
preference of an operator, specific demands or randomly. After the startup, it is assumed
that the UAV swarm turns to conduct predefined tasks in a lead–follow manner.

From the view of a leader, it is not only responsible for working coordination through
communication, but also keeps daemon module alive and periodically broadcasts heartbeat
signals to manage the whole swarm system. Whenever there exists an event making the
swarm lose its leader, i.e., crashing or fatal malfunctioning, the leader-election process
would take place subsequently.

From the perspective of followers, one may expect to receive the heartbeat signal to
maintain the leader-follower relationship. A short-term waiting process with a countdown
clock is setup in each follower to determine whether they are losing contact with the
leader. When a heartbeat message is detected, the clock is reset for a new waiting time
slot. Once the heartbeat signal is terminated and the waiting process finally ends with the
clock timeout, a leader-election process will be instantly triggered to reform the lead–follow
swarming manner. The scheme described above can be regarded as a state-transition
process, commonly including the follower state, the candidate state and the terminal leader
state if elected.

A comprehensive process diagram can be seen in Figure 2. UAV agents start from
the Normal Running Loop and emerge as lead–follow swarming. After the leader crashes,
the election process in each agent is then activated. Followers convert themseleves into
candidates which conduct a voting operation. In the voting operation, each individual
calculates a qualification measure for itself and accordingly votes for the highest one becoming
the new leader. Lastly, the lead–follow swarming has been reformed.

Figure 2. A comprehensive leader election process diagram.
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4.2. Qualification Measurement

The qualification measurement is an important element for the proposed leader elec-
tion method. It is clear that in the Raft algorithm, a leader of a computing cluster is the one
with the latest (up-to-date) log index. A vote can be granted if and only if the candidate log
in a request message is ahead of the receiver. The fixed mechanism and criterion makes the
results deterministic. Although there is chance that no majority is produced for spilt votes,
a re-election method is employed with randomly-timed requesting.

However, the fixed criterion is a method that a UAV swarm attempts to avoid. Since
independent and equal agents expect to find the most appropriate individual for the leader
position in a task, a deterministic appointment would merely generate sub-optimal one. As
such, there should be one value that is able to evaluate the current status of each individual.
The value indicates to what extent an agent is suitable against one certain task or target for
the leader role.

The value mentioned above is defined as qualification measure or eligibility value.
The qualification measure should be able to dynamically and accurately capture the inher-
ent property of an object. The qualification measure must be designed accordingly and
specifically to the object of interest.

In this article, we mainly focus on the design paradigm and the proposed voting
method. The qualification equations are simplified in order to make the simulated agents
comparable. For the sake of simplicity, we devise the qualification mainly based on a
distance from a virtual center position:

F (·) = θ1 ·Φ1(
#    «

Pos), (10)

where, θ1 = 1, θ2, θ3, θ4 = 0 for Equation (2),

Φ1(
#    «

Pos) =
1

||Pi − Pvm||2
, (11)

F (·) = Qi =
1

||Pi − Pvm||2
, (12)

in which Qi is the qualification measure value of i-th UAV agent. || · ||2 refers to Euclidean
distance, and Pi and Pvm indicate the position of i-th UAV agent and the virtual center of
all agents, respectively. A simplified example is illustrated in Figure 3. The red agent is
the closest one and would been elected as a new leader. Since the agent is active in the
Euclidean space and || · ||2 is utilized to calculate the distance, the position vector

#    «

Pos can
comprise of latitude, longitude, and altitude. For the sake of simplicity, we manually fix
all running agents the same altitude in the experiments, where three-dimensional position
information is also helpful and applicable.

Provided that each agent has a limited communication range (denoted by communica-
tion radius), an assumption is that the center can connect as many neighbours as possible.
The distance-based qualification set as above tend to make the one closest to the center
to be the leader. Here, the virtual center information could be delivered by the previous
leader before failures occur. In this article, we simply make the virtual center information
to be transmitted from the previous leader along with heartbeat signal to exemplify the
whole process. Other plausible implementations are also encouraged and should comply
with some certain tasks. The intuitive way to calculate the eligibility of agents can vary
with dynamical circumstances and mark the most qualified (only in terms of our setting)
agent instantly.
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Figure 3. An example of the utilized qualification calculation.

It is of particular note that there might not exist a universal measurement standard,
and one devised setting of a swarm must adapt itself to specific situations, tasks and goals.
Here, we summarize four seemingly useful principles for assisting criterion design. The
qualification could:

• Not remain constant;
• Evaluate how close each agent is to the target of interest;
• Distinguish agents only based their local status and properties;
• Be as simple as possible to calculate instantly or in as short a time as a swarm can

tolerate.

It is obvious that the four principles are intuitive and not compulsory. We hereby
encourage readers to adjust the design procedure according to their own scenarios for
availabilty and reliability. A potential and feasible way is to turn qualification into an
optimization problem instead of elaborately and manually planned if the target is vague
and uncertain.

4.3. The Proposed Election Protocol

The proposed election protocol employs the state-transition similar to Raft as agents
role-transition mode in a UAV swarm. An illustration can be viewed in Figure 4.

Figure 4. The role transition of swarm agents.

The role-transition explicitly shows clear and effective operation logic, which guar-
antees stability and availability of the UAV swarm. Differing from the Raft algorithm,
there is no term limit for the leader. In the Raft algorithm, a term servers as logic clock to
discover whether logs in leader is obsolete, and the leader position shall be given back to
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the up-to-date computing node. The discovery task will inevitably consume networking
resources and bring about extra communication overhead. In a UAV swarm, the leader role
is inclined to be permanent, as the swarm operation hierarchy should stay fixed and stable
during task execution, and maintain a low level of networking traffic load.

Figure 5 shows a complete program flow diagram. Each individual agent will execute
following the program flow independently. In initialization, all agents enter into the
follower role except one pre-defined leader. The periodic heartbeat signal of the leader
proclaims its authority and other agents will keep their role. Once the heartbeat is lost,
agents will wait for reconnection until timeout. After changing to a candidate role, agents
instantly synthesize their own qualification value based on pre-defined equations, following
the method described in Section 4.2.

Figure 5. The program flow diagram.

The next step is to check whether vote requests have been received and all requests
are collected in a list. One may compare their own qualification with those incoming
information from others. Being aware if there exists a higher qualification value, agents
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automatically cast votes to the individual with the highest value and restart the candidate
operation. If the above two statements are false, agents shall broadcast vote requests to
neighbours inside their communication range (denoted by communication radius). A
short-time duration is set to aggregate all replied votes, followed by the step where the
support votes count is compared with a threshold. The threshold can be pre-loaded as the
half of total number or a specified value. A leader is thus identified once the aggregated
votes exceed the threshold. Otherwise, one agent would return the beginning of candidate
operation loop and calculate the qualification value to keep it up-to-date.

Here, the consensus-based leader election algorithm is separated as three parts: Leader
operation, Candidate operation, and Follower operation. Algorithm 1 presents the global
loop running in agents and the role has been initialized as leader or follower for each indi-
vidual. The Communication Module processes essential exchanged messages, i.e., heartbeat
signal, requests, votes and etc., followed by three main parts.

Algorithm 1: Global loop

Initialization (Leader, Follower);
while True do

Communication Module;
if Leader role then

Leader loop;

if Follower role then
Follower loop;

if Candidate role then
Candidate loop;

The leader and follower loop in Algorithms 2 and 3 is clear. The leader could retain
its authority or actively quit due to fatal failure. The follower either continuously handles
instructions from a leader or the timeout process occurs and it converts to the candidate role.

Algorithm 2: Leader Loop
Input: Tasks to be executed
Output: UAV actions
Any specified UAV agent can be initialized as leader role;
if fatal failure existence then

Quit leader role;
Dispatch from swarm;
Break;

if quit leader order from higher priority then
Quit leader role;
Break;

Broadcast heartbeat signal;
Task execution process;

In the candidate loop, see Algorithm 4, it would firstly check if another agent claims
winning the election. If not, the algorithm then keeps track of the running flow along
with the diagram in Figure 5. Note that one significant difference between our method
and Raft is that distributed nodes cast only once during one given term. Consequently,
there is the possibility that votes are split and a re-election is then enabled. A randomized
latent is employed for a next-round vote request and the corresponding term is increased.
The re-election with a random latency is of importance for the Raft algorithm to avoid an
impasse of no majority winning. The re-election could generate a similar leader if and only
if the most suitable candidate claims its authority in an early stage. On the other hand, the
re-election might produce a distinct leader because the environment is uncertain, making
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the qualification value inconstant. The proposal in this work has cancelled the re-election
procedure in contrast to the Raft. In our work, we consider that the environment is ever-
evolving and dynamic and the swarm can quickly react to those unexpected changing. That
is, one member inside the swarm should adaptively decide to vote for a new candidate
immediately. In our method, only one vote is permitted at a time but there can be more
than one casting during election, since the flexible qualification value could always reflect
the most proper individual. We regard this as being of a regret fashion beneficial from the
dynamic qualification measurement. It implicitly allows agents could persist in their choice
by multiple response, and in the other way that one could “change its mind” if a better
candidate shows up. The empirical comparison can be seen in Section 5.

Algorithm 3: Follower Loop
Input: Heatbeat signal, tasks assigned in swarm
Output: UAV action
Initialized as a follower;
if no heatbeat signal then

Timeout process;
if timeout then

Enter candidate loop;

else
Follow leader instruction;

Algorithm 4: Candidate Loop
Input: Vote related information
Output: Election Claim
if Leader been elected then

Break candidate loop and become a follower;
else

Calculating qualification measure;
if vote requests received then

Compare qualification;
if self qualification is less than requests then

Cast vote;
else

Broadcast vote request;
if Received votes exceed a threshold then

Broadcast elected claim;
End candidate loop and turn to leader role;

else
Continue candidiate loop;

else
Broadcast vote request;
if Received votes exceed a threshold then

Broadcast elected claim;
End candidate loop and turn to leader role;

else
Continue candidiate loop;

Since the original paper of Raft [39] has not presented the complexity analysis, we
hence endeavour to compare the Raft algorithm with our proposal. The Raft method
consists of several phrases to complete distributed consensus, while only the leader-election



Electronics 2022, 11, 2143 13 of 25

phrase is situated in our scope of interest. As a matter of fact, the FLP impossibility [51]
elucidates the difficulty in obtaining consensus with limited termination time under some
circumstances. Thus, we mainly focus on the voting computation instead of the ultimate
consensus achievement. According to [39], one computing node either votes for the largest
term count or accumulate incoming supports. Suppose there are 1

CR
v
· n incoming votes, the

computation complexity would be O( 1
CR

v
· n) ⇐⇒ O(n). In convention, the complexity

of the additive operation is O(1). CR
v is a non-zero constant and n is the number of all

individuals. If CR
v = 1, one could receive all votes including itself. If CR

v > 1, one may
have partial votes. Note that the proposed approach in this article enables one individual
to alter its choice following the basic voting accumulation. Let Cppl

cm and Cppl
v · n be the

counts of “changing mind” and incoming votes, respectively. The complexity then becomes
O(Cppl

cm · 1
Cppl

v
· n) ⇐⇒ O(n), where Cppl

v has the similar meaning to CR
v .

4.4. Communication Issue

One vital issue in swarm leader election is the communication network. In common
and traditional distributed computing systems, spatial distance imposes a partial limit
on the inter-connection of node members. Nevertheless, spatial communication range is
one of the most crucial factors of wireless swarm network, which makes the operation
environment in a UAV swarm distinctive from the traditional one. In this article, we
chiefly consider the communication range influence on a high application level, denoted
by communication radius. To simplify the issue, an assumption is that any agents within
the communication range of another would be able to exchange key information, also
called neighbours.

Figure 6 explains how agents hold the connectivity. In the physical level, each agent
denoted as local center has its own connectable area, called a neighborhood. In this area,
all other agents are called neighbors. The whole swarm can be logically mapped into
network level as functional nodes, organized by node-to-node relations, namely data
links. A communication module ought to abstract the relationship inside a swarm and
handle necessary information transferring by data links. Detailed settings are presented in
Section 5. Note that in this article we mainly focus on the impact of communication range
(radius) imposed on performance of leader election.

Figure 6. Comminucation mapping from physical world to networking level.

5. Experiments

In this section, we will demonstrate empirical resutls of simulation experiments.
Experiment settings are firtly presented, followed by communication module, and lastly
comprehensive results are showcased.
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5.1. Basic Settings

Our simulation experiments are conducted and implemented based on a lightweight
agent-based environment, which exemplifies a boid model and open-sourced in Github
(https://github.com/florimondmanca/pyboids, 7 July 2022), called pyboids. The agent-
based environment is built on Pygame framework (https://www.pygame.org, 7 July 2022),
which provides a toolkit for developing games with Python. Figure 7 overviews some
fundamental elements of this siumlation environment.

(a)

(b)

Figure 7. An overview of simulation environment setup. (a) Initialization of experiments. (b) Lead-
Follow behavior of swarm.

The original simulation framework aims at implementation of classic Boid-flocking
model, including random wandering, alignment, separating, coherency, border, threat
evasion and lead–follow behaviors. We tailor and modify the environment to adapt to
leader election scenarios with basic follower and border behaviors. As for the graphic
interface, some simulation information are displayed at the center and right corner of the
screen. In Figure 7a, 30 normal follower agents and 1 leader agent (total 31 agents) are
initialized, colored with green and yellow, respectively. All the agents are evenly distributed
in experiment space, at the beginning of a simulation round. In Figure 7b, a lead–follow
running example is highlighted, where the leader is elected after the initialized one is
crashed (set as disabled in simulation). Noting that in Figure 7b, it illustrates a possible
swarming manner snapshot that a lead–follow formation could be after the new leader has

https://github.com/florimondmanca/pyboids
https://www.pygame.org
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already been elected. The lead–follow manner is mainly controlled by the swarm policy
instead of a task-oriented election measure.

Some experiment settings follows the description in Table 1. For each experiment
sample, 100 simulation rounds shall be conducted to validate the results. In one simulation
case, a given number (from 30 units to 100 units, increased by 10) of agents are randomly
initialized and uniformly placed across the main simulation area. The communication is
varied from 200 units to 700 units by stepping 25, to investigate the influence on perfor-
mance. Here, one unit is an abstract term corresponding to a length unit in real world.
Leader Crashed Time in Table 1 indicates that the initialized leader is intentionally disabled
at the 50th simulation step. Heartbeat Waiting Time allows agents to wait for reconnecting
the original leader within 10 steps. The Max. Election Elapsed Time term means there are
at most 50 simulation steps for the swarm electing a new leader. If the election cannot be
finished within the maximum election elapsed time, a failure trial is recorded.

Table 1. Experiment Settings.

Attributes Values

Number of Leader Agents 1
Number of Follower Agents from 30 to 100, increased by 10

Communication Range from 200 to 700, increased by 25
Initialization mode uniformly spatially distributed

Leader Crashed Time 50
Heartbeat Waiting Time 10

Max. Election Elapsed Time 50
Simulation Round 100

5.2. Communication Simulation

We construct a specific communication module in order to ensure the simulated
inter-communication process can clearly handle data transferring issue. The communica-
tion consists of two main components, one for basic link attributes and message records,
the other for all message indexing, aggregation, coordination and synchronization in a
networking pool.

For a link component, a UAV agent node can merely reach neighbours falling in a
closure bounded by its communication radius. Each time a node endeavours to keep
contact with another node, a virtual link is thus built with essential attributes, for instance
source/destination identity pair and message to be sent. The identity pair must include
a unique and unchangeable token, i.e., a virtual IP address, virtual port number, virtual
protocol, etc. Messages are recorded in a list-like buffer to store multiple pieces of messages.

As for the networking pool, agents may decide to distribute information to any
other individuals, whereas the networking pool is responsible for determining whether a
requested link can be established. At the beginning of each running loop, agents submit the
link establishment requests based on their local requirements. The communication module
tends to iterate over the requests collection, use low-level simulation data to detect link
existence and filter out unestablished ones.

We describe the communication module in the following. We attempt to depict the
implementation of the networking pool, even though the fine-grained network simulation
is out of the scope of this article. Based on the two major components, each running agent
will be assigned with a fixed virtual IP, denoted as unique numbers. We assume all agents
share the same virtual protocol, denoted as a string. When a transmission to a given node
is requested, an agent would launch a link creation with a tuple including mutual IPs
and data. The new link content will be pushed into a public network stack. Secondly, the
networking component takes over the subsequent process. It is responsible for emitting
non-existing links and collect the message data in terms of destination. By emitting non-
existing links, the networking component will maintain a neighbourhood table for each
agent, recording the nodes that are within the communication range. Destination IPs will
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be checked in the corresponding table. If matched, the link will be added into a temporal
public link list. In the following, a hash-like table, e.g., a dictionary in Python language,
will be built based on the public link list. The keys are destinations and the corresponding
values contain the source IP and the message data. When an agent is activated in the next
simulation step, it will acquire messages based on its IP identity from key-value pairs for
the behavior update.

In each simulation update step, the communication pool is fully checked to ensure
agent information exchange and emptied just before next update step to refresh the simula-
tion inner state.

5.3. Empirical Results

We run the simulation to focus on the influence of communication range imposed
on leader-election process in terms of four typical facets of performance: completion rate,
success rate, average rank and simulation time. The completion rate refers to how many
times out of the total simulation rounds a leader can be elected regardless of concrete
ranking. The success rate represents how many times out of total simulations a leader can
be elected with a ranking higher than a preset value, i.e., top 10%. Obviously, the completion
rate checks the availability, whereas the success rate reflects the effectiveness and robustness.
The average rank metric unfolds the quality of algorithm outcomes, and the simulation time
gives insight to the efficiency of potential solutions.

We split our experiment into two scenarios based on the vote threshold settings, a
fixed value (15 votes) and a percentage (50%, half of swarm size). That, is one agent
should receive sufficient amount of votes surpassing the threhold to obtain leadership. The
purpose of setting two thresholds is to verify the adaptability and robustness of the election
mechanism under diverse circumstances.

5.3.1. Completion Rate

An election process is considered to be finished if and only if an agent claims leadership
before the Max. Election Elapsed Time, described in Table 1. Therefore, the completion rate is
computed as:

CompRate =
Celected

Csim
, (13)

where, Celected is how many times a leader in swarm has been elected, and Csim is the count
of all simulations, namely 100 as in Table 1.

Figure 8 presents the comparison between the proposed method, in Figure 8a, and
the original raft-based method, in Figure 8b, with the threshold of 15 votes. The election
completion rate of different swarm sizes clearly matches each line graph, see the legends.
For example, the blue lines in two subfigures indicate that in a 30-follower swarm, the
election completion rate varies with the communication range. As the lowest followers
number is 30, we adopt 15 as the vote threshold, exactly equal to half of the swarm. As can
be seen, both methods make the completion rate increase with the communication range.
Obviously, the proposed method enables a swarm to maintain the lead–follow behavior
structure with a relatively smaller size than that of the original Raft-based method. In
other words, a swarm using the proposed election mechanism requires about 25% shorter
communication range (implying reduced communication condition in real world) to finish
a leader election, given the agents number. Moreover, all completion rate lines mostly keep
the identical incremental proportion to communication range as each other, which implies
that the leader election mechanism is able to scale with the swarm size.

As for the threshold of half swarm size, Figure 9 illustrates the results with a threshold
of 50% of the whole follower agents. Overall, the rate for the most part follows the trend
as the 15-vote threshold situation, the proposed method showing about 25% better perfor-
mance than that of Raft-based. Differing from the previous, an interesting phenomenon is
that all completion rate lines have nearly the same rising point to communication range.
That is because the absolute value of voting threshold increases along with the total number
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of agents. The incremental threshold hence demands wider communication area covering
more in-swarm individuals to collect adequate votes.
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Figure 8. Compeletion rate comparison of two methods with election threshold of 15. (a) Our
proposed method with respect to different swarm size. (b) The Raft-based method with respect to
different swarm size.
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Figure 9. Compeletion rate comparison of two methods with election threshold of half of swarm.
(a) Our proposed method with respect to different swarm size. (b) The Raft-based method with
respect to different swarm size.
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Furthermore, the comparison of completion rate is illustrated in Figure 10, given
400-unit communication range. It provides deeper insights into performance comparison
between the proposed algorithm and the Raft-based method. From Figure 10a, both
methods can achieve a high rate under large number circumstances if the threshold is 15.
The Raft-based method plunges to a low level in small-sized swarm while our proposed
method only faces slight performance reduction. In Figure 10b, it is evident that our
proposed method scales smoothly (around 0.7) across different sized swarms; nevertheless,
the Raft-based method suffers low completion rates less than 0.1.
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Figure 10. The election completion rate over the number of follower agents (the higher the better).
(a) The comparison between two methods with threshold of 15-vote in 400 units communication
range. (b) The comparison between two methods with threshold of half swarm size in 400 units
communication range.

5.3.2. Success Rate

As aforementioned, an agent that has received more votes than a threshold is able
to broadcast its winning election. There is a chance that this is any of the top-n agents
rather than the most eligible one. Top-n indicates there are N agents with high qualification
measures probably receiving enough votes to end the election process. We take the half-vote
threshold of 30 candidates as an example. In theory, an extreme case might take place when
the 15th-ranking agent could accept 16 votes and immediately claim lead authority ahead
of other top 14 agents. The final eligibility rank of the elected leader would deteriorate,
especially when one can cast multiple votes based on the proposed method. The intention
of experiments conducted below is to deeply investigate the unexpected effect of vote
mechanism imposed on leader election.

Therefore, we define the success of an election as being when the instant eligibility of
the elected agent should rank top-n. Similar to the completion rate, an election process is
considered to be successful if the instant qualification of the elected leader ranks within
the top-n. In the experiment, Top-n is set as top-10% and top-1, respectively. As a result, the
success rate is computed as:

SuccRate =
Ctop−n

Csim
, (14)

where Ctop−n is the count of leader agents whose instant qualification measure ranks within
top-n among the swarm.

From Figures 11 and 12, the dominant trend of line graphs is consistent with the
completion rate. Take the rate value about 0.7–0.8 at y-axis as a case in 12. The swarm
is able to reach the point with 400 range thanks to our algorithm, in Figure 12a. On the
other hand, the Raft-based method has to shift to 500 range to obtain the same result. Our
proposal performs nearly 10–20% better than the original Raft-based method. An significant
finding is that although our proposal theoretically suffers higher risks, the success rate still
remains proportional to the completion rate in practices.
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Figure 11. The election success rate within top 10 with 15-vote threshold. (a) Our proposed method
with respect to different swarm size. (b) The Raft-based method with respect to different swarm size.
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Figure 12. The election success rate within top 10 with half swarm size threshold. (a) Our proposed
method with respect to different swarm size. (b) The Raft-based method with respect to different
swarm size.

We further test the election mechansim utilizing a more strict criterion, namely only
accounting for the ranking first situation, shown in Figures 13 and 14. The success rate
can hold at a high level even under strict constraints (ranking the first), provided the
communication requirement is met. The samples that the elected agent ranks at the top
occupy the majority of the completion cases. From all the simulated experiments, it is
notable that the performance of both election mechanisms can converge to a high level
along with increasing communication range. The proposed algorithm in this article obtains
about 20% improvement over the Raft-based algorithm.
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Figure 13. The election success rate at top-1 with 15-vote threshold. (a) Our proposed method with
respect to different swarm size. (b) The Raft-based method with respect to different swarm size.
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Figure 14. The election success rate at top-1 with half swarm size threshold. (a) Our proposed method
with respect to different swarm size. (b) The Raft-based method with respect to different swarm size.

5.3.3. Average Rank

Additionally, we would like to reveal the quality of election in experiments, repre-
sented by average rank. This follows all basic settings and parameters of the above. The
average rank can be regarded as another metric of interest. Here, we mainly focus on the
completed simulation samples and omit those failures in order to calculate the average rank.

Same as the above sections, the results of 15-vote and half swarm size threshold are
exhibited in Figures 15 and 16, respectively. As can be seen, the rankings fluctuate when the
communication range is small while all lines become stable at a slightly higher position than
the top with wide ranges. It is understandable because there only exists a small quantity of
completion samples, even none below the 300 range in Figure 16a. The completion samples
could be less and their ranks are inclined to be low and potentially unpredictable. All four
graphs mostly share the identical convergence with the increasing communication range,
which inherently coheres with the previous illustration.
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Figure 15. The average rank with 15-vote threshold. (a) Our proposed method with respect to
different swarm size. (b) The Raft-based method with respect to different swarm size.
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Figure 16. The average rank with half swarm size threshold. (a) Our proposed method with respect
to different swarm size. (b) The Raft-based method with respect to different swarm size.

5.3.4. Simulation Time

This section aims at unfolding the efficiency of leader election algorithms. That is
how long it should take to end the election loop. In the simulation experiments, the
election elapsed step is of special interest. We record the election duration from the ending
of daemon reconnection loop to the moment that one claims leadership. Since the Max.
Election Elapsed Time is set as 50 in Table 1, we define a failure as a 50-step sample for the
sake of simplicity. That is, if there exists a failure, the time is fixed as 50 steps to unify final
results. As such, the less steps that are spent, the better performance is accomplished.

Figures 17 and 18 exhibit simulation time spent in completing election under 15-
vote and half swarm size conditions, respectively. Based on the preceding analysis, the
election duration time drops to low levels as expected. The simulation steps of large-sized
swarms decrease sharply as the communication range widens. From the examinations, our
proposed approach achieves less simulated steps than the Raft-based given communication
range. It is apparent that the proposal is always able to gain improvements in contrast to
the Raft-based way.
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Figure 17. The simulation duration with 15-vote threshold. (a) Our proposed method with respect to
different swarm size. (b) The Raft-based method with respect to different swarm size.
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Figure 18. The simulation duration with half swarm size threshold. (a) Our proposed method with
respect to different swarm size. (b) The Raft-based method with respect to different swarm size.

5.3.5. Discussion

Another important issue is the energy consumption of UAVs. There are numerous
efforts being made to gain energy efficiency and analyze their impact [36]. It is widely
believed that there would be two major sources for energy consumption, maneuver [60]
and communication [61]. The maneuver of a UAV would consume the majority of its
battery compared to onboard computing [60], which implies an approach stimulating task-
execution would considerably save energy. On one hand, the experiments illustrate that
the proposed method reduces the election duration by around 20% over the original Raft
algorithm. It shows a promising potential to expand UAV operation time by decreasing
“no task” wandering time and saving battery. On the other hand, the communication
conditions, i.e., transmit power, also impose an effect on energy expenditure [36,60]. The
simulation examines the performance over communication, reflecting that the UAV energy
cost would benefit from our approach owing to the lower communication requirements.
In this article, our main concentration is on the voting mode in simulation by distributed
and independent interactions. Our future plan is to modify the simulation-based approach
to implement in real machines from ground to aerial vehicles, where the actual energy
consumption can be accurately measured.

6. Conclusions

In this paper, a voting-based leader election scheme is proposed for the fault and
disaster recovery of lead–follow formation in UAV and drone swarms. The proposed
method is inspired by the Raft algorithm originating from the distributed computation
consensus idea. A UAV agent would have three states covering three possible roles: leader,
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follower and candidate. Once the original leader encounters a operation failure, the rest
would immediately turn to the candidate role and enter into the election process. In
the election, the proposal makes each candidate calculate its own metric based on local
conditions and only compare itself with the surrounding individuals. The candidate may
decide whom it should vote for based on the above comparison. Our proposal allows UAV
candidates to regret their preceding choice and vote for others including itself based on a
dynamic evaluation metric. The metric is utilized as a qualification/eligibility measurement
to evaluate to what extent one drone can act as the leader. Four significant principles are
additionally listed to help design an elastic measurement for dynamic applications. In
this work, the communication condition (denoted as range/radius) is of particular interest.
We thereby devise a communication resource pool to constrain communication range.
In the end, comprehensive experiments in four aspects illustrate that our proposal is
advantageous over the Raft-based scheme and obtains superior performance.

Our future work aims at theoretical combination between formulated consensus and
the voting process. Especially, impact of the networking delay on leader election should
be deeply discussed in order to discover the potential convergence and limitations. The
bandwidth and throughput are also crucial parts of communication conditions, which
requires the careful modification for the proposal mechanism in the future work. Moreover,
further experiments in terms of communication conditions should be conducted and the
proposal requires tests in real flying UAVs to validate the availability and applicability.
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