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Abstract: Trajectory prediction of surrounding vehicles is a critical task for connected and autonomous
vehicles (CAVs), helping them to realize potential dangers in the traffic environment and make the
most appropriate decisions. In a practical traffic environment, vehicles may affect each other, and the
trajectories may have multi-modality and uncertainty, which makes accurate trajectory prediction
a challenge. In this paper, we propose an interactive network model based on long short-term
memory (LSTM) and a convolutional neural network (CNN) with a trajectory correction mechanism,
using our newly proposed probability forcing method. The model learns the interactions between
vehicles and corrects their trajectories during the prediction process. The output is a multimodal
distribution of predicted trajectories. In the experimental evaluation of the US-101 and I-80 Next-
Generation Simulation (NGSIM) real highway datasets, our proposed method outperforms other
contrast methods.

Keywords: trajectory prediction; connected and autonomous vehicles; interactive network; correction
mechanism; probability forcing; multimodal distribution

1. Introduction

Connected and autonomous vehicles (CAVs) have emerged as a promising technology,
attracting much attention from academia and industry. CAVs have the ability of perception
and communication. On the one hand, CAVs employ a variety of sensors, such as radars,
lidars, and cameras, to perceive environmental information [1]. On the other hand, they
can exchange information with other entities, such as other CAVs, roadside infrastructure,
cloud and edge servers [2,3]. Based on the information they perceive or receive, CAVs can
drive themselves autonomously. Hence, they are considered to be important components
of future intelligent transportation systems.

When CAVs drive autonomously, safety is a key concern [4]. For CAVs, trajectory
prediction of surrounding pedestrians [5] and vehicles [6–8] is a critical task that can help
them to avoid potential dangers [9,10] and make appropriate path planning [11,12], which
enhances traffic safety and efficiency. However, to predict the future trajectories of vehicles
on the road is a challenge. In the vehicle–infrastructure collaboration scenario shown in
Figure 1, the traffic environment is highly dynamic and uncertain, and the trajectories
of surrounding vehicles may change at any time. Owing to the limited sensing range of
its own sensors, a CAV cannot fully understand the changes in the surrounding driving
environment, and vehicle-to-vehicle and vehicle-to-environment interactions may cause
hazards to occur at any time. Therefore, the CAV must obtain information such as its
surrounding environment and vehicle position from roadside units (RSUs) to predict the
trajectories of surrounding vehicles and make more accurate decisions.
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It is difficult to accurately predict the future trajectory of a vehicle only based on its
past states, such as its direction and speed. The reason for this is that road environment
and surrounding vehicles also have a great influence on the behavior of the vehicle. Re-
searchers have proposed different methods to address the problems of trajectory prediction.
Traditional physics-based models [13,14] do not consider the interactions of other vehicles
and the surrounding environment, and they are only able to make short-term predictions
in simple scenarios. With the popularity of CAVs, the road environment has become more
complex. The road environment and vehicle interactions have an increasing influence
on the vehicle trajectory, and a single short-term prediction is no longer sufficient for a
CAV decision system to make accurate decisions. Inspired by deep learning, researchers
have used deep learning networks to perform multi-feature extraction and relationship
modeling of vehicle behavior. Some existing methods learn from various factors affecting
vehicle trajectories to make long-term predictions [15,16].

Figure 1. Owing to the limited sensing range of the black vehicle, it requires sensing information
from the roadside unit (RSU) to predict the trajectories of surrounding vehicles.

In order to further improve the prediction accuracy, in this paper, we consider not only
the interactions between vehicles and environment, but also the correction of the predicted
trajectory of a vehicle during the prediction process. An interaction network model that
utilizes long short-term memory (LSTM) [17] and convolutional neural network (CNN) [18]
with a correction mechanism is proposed to extract and encode the spatiotemporal depen-
dencies between vehicles. In this model, factors including locations of surrounding vehicles,
historical trajectories, time, and maneuvers of vehicle are treated as dynamic backgrounds.
The proposed model enables a CAV to predict the trajectories of surrounding vehicles, and
the trajectories can be corrected during the prediction process to improve the prediction
accuracy. The experiments based on the publicly vehicle-infrastructure Next Generation
Simulation (NGSIM) datasets [19,20] prove the effect of the our proposed model.

The contributions of this paper are summarized as follows:

• A trajectory correction module is introduced into the interactive network model. Prob-
ability forcing is applied in the trajectory correction module to predict the trajectories
of surrounding vehicles. In each step, the prediction result of the previous step or the
ground truth is fed into the model with a certain probability for trajectory prediction.

• Extensive experiments are conducted based on real datasets. The prediction accuracy
produced by our proposed model outperforms other recent authoritative methods in
both short-term and long-term predictions, which demonstrates the effectiveness of
the probability forcing scheme.

The rest of this paper is organized as follows. In Section 2, the related work on trajec-
tory prediction, teacher forcing and scheduled sampling are summarized. The research
problem is defined in Section 3, and the system model of the proposed method is estab-
lished in Section 4. In Section 5, the experimental settings and the comparison models are
presented. In Section 6, the experimental results are analyzed, and the potential problems
are discussed. Finally, conclusions are drawn in Section 7.
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2. Related Work
2.1. Trajectory Prediction

As trajectory prediction is an important task of autonomous vehicles, many meth-
ods have been proposed to solve this issue in recent years. These methods can be cat-
egorized [21,22] into three types, which are physics-based prediction, maneuver-based
prediction, and interaction-aware prediction, respectively.

Physics-based prediction models [13,14] assume that the behaviors of vehicles only
depend on the physical factors of their movement, including vehicle shape, acceleration,
steering, and other external conditions. As only low-level motion characteristics are con-
sidered, such models are only suitable for the short-term predictions [23] (e.g., within
1 s), and cannot make long-term predictions (e.g., within 5 s) due to certain maneuvers
(e.g., sudden deceleration) or interactions with surrounding vehicles (e.g., braking for the
leading vehicle).

The core idea of maneuver-based prediction methods [24,25] is to classify vehicle move-
ments into semantically interpretable maneuver classes. More specifically, Tomar et al. [24]
adopt multi-layer perceptrons to predict vehicle trajectories during lane changing.
Schreier et al. [25] describe an integrated Bayesian approach to make maneuver-based
trajectory prediction and criticality assessment. They infer the distribution of advanced
driving maneuvers for each vehicle in a traffic scenario by Bayesian inference. Subsequently,
maneuver-based probabilistic trajectory prediction models are employed to predict each
vehicle’s configuration forward in time. Long-term prediction [26,27] is a current hot issue.
Most physics-based and maneuver-based methods do not account for interactions between
vehicles, which leaves a large gap between model predictions and actual trajectories. The
reality that these solutions are not suitable for long-term prediction has led to the emergence
of interaction-aware methods, which consider vehicle intention and contextual information
(e.g., map information and interactions between vehicles) to obtain more accurate results.

In interaction-aware methods [15,16,28], vehicles are viewed as interaction-aware
mobile entities. These methods always contain a vehicle interaction module that con-
siders the traffic environment and interactions between vehicles. Most existing studies
have used interaction-aware intention and mobility prediction frameworks for complex
traffic scenarios. Several studies have analyzed the effectiveness of LSTM at predicting
the movement of surrounding vehicles. Inspired by the social LSTM architecture [28],
many approaches have successfully migrated the method to the task of predicting vehicles.
Deo and Trivedi [15] propose a convolutional social pooling method with a maneuver-class
LSTM decoder, encoding and decoding multimodal predicted trajectories based on the
behavior and historical trajectories between vehicles. Mersch and Hollen [29] propose a
new data-driven approach to predict the motion of vehicles in a road environment, which
uses a spatiotemporal convolutional network model to jointly exploit correlations in both
spatial and temporal domains to capture interactions between vehicles, and predict trajec-
tories over the next 5 seconds by considering vehicle maneuver intentions and motions.
Zhao et al. [16] propose a multi-agent tensor fusion network to simulate the social interac-
tion behaviors among vehicles on a highway, which can encode scene background images
together with the trajectories of past vehicles, and use adversarial loss to improve the
prediction capability for multiple vehicles. Additional methods simulate the interaction
between vehicles and extract other relevant features to predict trajectory based on new
tools, such as multi-headed attention [30], graph neural networks [31], etc.

2.2. Teacher Forcing and Scheduled Sampling

The predictive power of recurrent neural network (RNN) is very weak in the early
stages of training iterations. The incorrect result of one step inevitably affects subsequent
learning, resulting in slower learning of the model and difficulty in convergence. Teacher
forcing [32,33] is proposed to solve this problem. It plays a crucial role in machine transla-
tion, contextual analysis and image captioning. Instead of using the output of the previous
state as the input of the current state each time, it directly uses the corresponding term
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of the ground truth of the training data. However, teacher forcing has the disadvantage
that children who always rely on the teacher will not progress far. Because of the reliance
on labeled data, the model will work better during training, but during testing, because it
cannot be supported by the ground truth, the model becomes fragile if the currently gen-
erated sequence differs significantly during training. To solve the exposure bias problem
of teacher forcing in natural language processing (NLP), scheduled sampling [32,34], as
shown in Figure 2. It mainly consists of three processing methods, namely linear decay,
exponential decay, and inverse sigmoid decay [34]:

• Linear decay: pi = max(p, k − ci) where 0 ≤ p < 1 is the minimum amount of
truth to be given to the model, and k and c provide the offset and slope of the decay,
which depend on the expected speed of convergence, i represents the number of the
i-th mini-batch.

• Exponential decay: pi = ki where k < 1 is a constant that depends on the expected
speed of convergence.

• Inverse sigmoid decay: pi = k/(k + exp(i/k)) where k ≥ 1 depends on the expected
speed of convergence.

It improves performance by feeding the model a mixture of embeddings from teacher
forcing and model predictions from the previous training step. Good results were achieved
in the language generation model used for a transformer [35].

Figure 2. (Left) a general sequential prediction model directly uses predicted values of the previous
step as input for the next step; (Right) a prediction model based on scheduled sampling uses the
corresponding term of the ground truth of the training data instead of the output of the previous state
as the input for the next state. The notation t is the current time step, ft−1 is the predicted value of the
previous step, ht is the hidden layer state of t time step, gt is the probability distribution obtained by
decoding t time step, Gt−1 is the ground truth at t− 1 moment, p is the probability of feeding ground
truth when mixing inputs.

3. Problem Description

The present work uses the CAV to predict and correct the trajectories of surrounding
vehicles. Following the same setting proposed by Deo and Trivedi [15], we discretize
the space centered around the target vehicle into a 3 × 13 grid. The rows represent the
current and adjacent lanes of target vehicle, and the columns represent discrete grid cells.
Each surrounding vehicle is assigned a grid cell. As depicted in Figure 3, when a CAV
predicts the trajectories of surrounding vehicles, in addition to their historical trajectories,
we consider the interaction between vehicles and the lane changing behaviors of individual
vehicles (e.g., change lane to right or left, or keep lanes). At the same time, the longitudinal
behaviors of vehicles, including normal driving and braking, are also considered. Lane
change behavior can be understood by the lane number where a vehicle is located. A
3 × 13 tensor is used to represent the lane changing behavior of the vehicle. When a value
in the tensor is 1, the vehicle changes lanes to the corresponding lane. A vehicle is defined
as performing a braking maneuver when its average speed within the predicted range is
less than 0.75 times the speed at the time of prediction.
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Figure 3. If the red CAV wishes to predict the behavior and trajectory of the blue vehicle, it must
consider the interrelationships of all vehicles with the blue vehicles, and the lane-changing behaviors
of individual vehicles. A coordinate system for trajectory prediction, where the y-axis points to the
direction of movement of the highway, and the x-axis is the direction perpendicular to it.

3.1. Inputs and Outputs

In this paper, we use the historical trajectories in the past tobs seconds to predict the
trajectories in tpred seconds, taking as input the past trajectories of the target vehicle and its
surrounding vehicles X, which is denoted as:

X = [xt−tobs , . . . , xt−1, xt] (1)

where
xt = [xt

0, yt
0, . . . , xt

n−1, yt
n−1, xt

n, yt
n] (2)

represents the longitudinal and lateral positions of the predicted vehicle and all surrounding
vehicles at time t. The x-axis and y-axis, respectively, represent the direction of movement
on the road and perpendicular to the road.

The output parameters of our model characterize a conditional probability distribution
P(Y|X), of the predicted positions of the target vehicle

Y = [yt+1, yt+2, . . . , yt+tpred ] (3)

where
yt = [xt, yt] (4)

denotes the predicted coordinates of the vehicle, the conditional probability distribution
P(Y|X) that can behave as a bivariate Gaussian distribution with parameters θt = (µt, Σt) at
each future time step t ∈ {t + 1, . . . , t + tpred}, where

yt ∼ N(µt, Σt), (5)

where µt =
(

µt
x

µt
y

)
is the mean vector and Σt =

(
(σt

x)
2 σt

xσt
yρt

σt
xσt

yρt (σt
y)

2

)
is the covariance matrix.

3.2. Probability Forcing

Although teacher forcing and scheduled sampling [32–34] have achieved good results
in natural language processing, no application has emerged for frequency-sampled predic-
tion. Aiming to solve the problem presented in this paper without ignoring the drawbacks
of teacher forcing and scheduled sampling, a probability forcing method is proposed to
solve this problem based on the ideas of these two methods, using a fixed probability to
feed the prediction result of the previous step mixed with ground truth into the decoder.
In order to ensure that the number of corrections is an integer, the probability is set as a
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product of an integer and the sampling period. It determines how many times the ground
truth has been fed into the decoder. The formula is described as follows:

p = n× 1
f

(6)

where n is an integer that can be viewed as the number of corrections, and f represents the
frequency of data sampling. The probability p is a fixed correction rate, where 0 < p < 1.
The ground truth is fed into the decoder as the input with a probability of p, and the output
of the previous step is used as input with a probability of 1− p, as demonstrated in Figure 2.

4. System Model

It is crucial to understand the relationships and interactions that occur on the road to
accurately predict vehicle trajectories. As shown in Figure 4, our model architecture has
four main components.

Figure 4. Model Architecture: The LSTM encoders with shared weights generate a vector encoding of
each vehicle motion. Convolutional interaction layer models interactions between vehicles. Trajectory
correction module corrects predicted vehicle trajectories with probability p during prediction process.
Decoding layer receives interaction vector, vehicle coding, and correction information fed into module,
and generates distribution of predicted trajectories.

4.1. Encoding Layer

The embedding module obtains the historical trajectory features of the vehicle and
its neighbors, which are passed into the LSTM encoder. When trajectory correction is
performed, a real vehicle trajectory at a certain moment is fed into the LSTM decoder to
correct the predicted trajectories. The LSTM encoder is used to encode the evolution in
vehicle trajectories and motion characteristics over time. It receives the recent tobs s of the
CAV and the historical trajectories of all surrounding vehicles from the embedding module,
whose hidden states at each time step are updated according to the hidden state of the
previous time step and the input of the current time step, and whose final state can be used
to encode the trajectory history and relative position information of these vehicles. Each
vehicle shares LSTM weights, allowing direct correspondence between the LSTM states of
all vehicles.

4.2. Convolutional Interaction Layer

As the behavior of vehicles on a road can be highly correlated, their interactions must
be considered when predicting their trajectories [36], as indicated by the blue dashed line in
Figure 3. When drivers decide to perform a specific motion, they shift attention to a set of
surrounding vehicles in the region, as when they pay attention to the vehicles in the target
lane when making a lane change. The LSTM encoder captures the motion states of vehicles,
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but not their interdependence in the scene. Lee et al. [37] utilized social pooling to solve
this problem, pooling the LSTM states of all vehicles in the vicinity of the predicted vehicle
in a social tensor by defining a spatial grid around the predicted vehicle and populating it
with LSTM states based on the spatial configuration of the vehicles in the driving scenario.
In the convolutional interaction layer, a modified social pooling method [15] is used to
combine convolution and social pooling. The equivariance of the convolution layer helps
to learn locally useful features in the social tensor space grid, while the max-pooling layer
adds local translational invariance. The social tensor is created by a lane based grid, with
a 13 × 3 grid region around the predicted vehicle, where each column corresponds to a
lane, each row is spaced about the length of a vehicle, and the social tensor is formed by
populating this grid with the surrounding vehicle locations. Two convolutional layers and
a pooling layer are then applied to the social tensor to obtain a social environment code. In
addition, the LSTM state of the predicted vehicle is passed through a fully connected layer
to obtain the vehicle dynamics encoding, and the two encodings are connected to form a
complete trajectory encoding that is passed to the decoding layer.

4.3. Trajectory Correction Module

Previous works [15,16,29] consider various factors in vehicle interactions, but they do
not consider correcting the trajectories of the prediction process in a vehicle–infrastructure
collaboration scenario to achieve a more accurate result. In the trajectory-correction module,
we correct the predicted trajectory using probability forcing, obtaining the ground truth at
a certain moment from the embedding module and feeding it to the LSTM decoder with
probability p (an integer multiple of the sampling period). Instead of using the prediction
result of the previous step as the input of the next step, we performed this according to
the mixture between the ground truth and the model prediction. The correction module is
connected to the embedding module and the decoding layer. When correction is needed,
it obtains information such as the true position of the current step from the embedding
module to pass to the decoder. Through the final process, the predicted decoder performs
back-propagation. The performance of this module is discussed further in Section 6.2.

4.4. Decoding Layer

Owing to the complexity of traffic scenes and differences in driving styles, vehicles
have uncertain driving trajectories. We use the LSTM-based decoder, combined with
the classification of future lane change intentions of vehicles in Figure 3, to generate a
binary Gaussian distribution of future tpred s, to obtain the predicted distribution of vehicle
trajectories. The decoder feeds back the decoding result to the correction module, which
controls the feeding of the real value to realize the correction of the trajectories.

5. Experimental Evaluation
5.1. Experimental Settings

Our model is fully differentiable and can be trained end-to-end by minimizing the
mean square error (MSE) [38] loss,

LossMSE =
1

tpred

t+tpred

∑
pred=t+1

(xpred − x)2 + (ypred − y)2 (7)

We train the model using the Adam [39] optimizer with the hyper-parameters set in
Table 1. The LSTM encoder has a 64-dimensional state, and the decoder has a 128-dimensional
state. The convolutional interaction module learns spatial dependencies between vehicles,
with convolutional layers of 64 and 16 dimensions, and a maximum pooling layer. The size
of fully connected layer for obtaining vehicle dynamics encoding is 32. Leaky-ReLU is as
activation with α = 0.1 for all layers. The model is implemented on PyTorch, and it runs on
a computer with Intel Core i9 9900 CPU, 64G memory and RTX 2080 GPU.
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Table 1. The hyper-parameters setting of the Adam optimizer and model network.

Hyper-Parameter Value

learning rate 0.001
β1 0.9
β2 0.98
ε 10−9

batch_size 128
encoder_size 64
conv1_depth 64
conv2_depth 16
decoder_size 128

activation function leaky-ReLU (α = 0.1)

5.2. Datasets

Our experiments used the NGSIM public dataset, which is suitable for vehicle–
infrastructure collaboration studies, and consists of two subsets, US-101 [19] and I-80 [20],
of trajectories of real highway traffic captured at 10 Hz, and the scenario layout of its acqui-
sition dataset is shown in Figure 5. Each subset consists of three 15 min segments recorded
over a span of 45 min. The road section consists of five lanes, whose traffic conditions
were recorded. The datasets provided the longitudinal and lateral coordinates of vehicles
projected to a local coordinate system, in addition to data such as vehicle number, vehicle
class, lane number, velocity, and acceleration. We divided these two subsets into training
(70%), validation (10%) and testing (20%) sets, and extract the necessary data as input to
the model. The vehicle trajectories are segmented into 8 s segments. We use the historical
trajectories with tobs = 3 s to predict the trajectories with tpred = 5 s, downsampling at 5 Hz
to reduce model complexity [15].

(a) US-101 (b) I-80

Figure 5. Scenarios of NGSIM datasets collection.
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5.3. Evaluation Metric

The root mean square error (RMSE) [38], which is calculated as

RMSE =

√√√√ 1
tpred

t+tpred

∑
i=t+1

(xi − x)2 + (yi − y)2 (8)

is employed as the evaluation metric in trajectory prediction, reflecting the average distance
deviation between the predicted and true trajectory, i.e., (xi, yi) and (x, y), respectively, de-
noting the predicted and actual horizontal and vertical coordinates at the current moment.

5.4. Comparison Models

In order to make a fair comparison, we evaluated all models on the same test set. We
report the RMSE for each prediction step, which is a common evaluation metric in trajectory-
prediction tasks. Using the proposed model and the following comparison models:

• CS-LSTM(M) [15]: This convolutional social pooling approach with a maneuver class
LSTM decoder generates multimodal trajectory predictions based on two longitudinal
and three lateral behaviors;

• MATF [16]: This model encodes the scene context and past vehicle trajectories, and
deploys convolutional layers to capture interactions. The decoder generates predicted
trajectories using adversarial loss;

• NLS-LSTM [40]: Local and non-local operations are combined to generate an adapted
context vector for social pooling. The non-local multi-head attention mechanism
captures the relative importance of each vehicle and the local blocks represent nearby
interactions between vehicles;

• JSTM [41]: This joint time-series model is based on the shared LSTM layer and further
FC regression networks for different driving styles. A common LSTM temporal pattern
network is trained, and concatenate networks are fine-tuned for each driving style;

• PiP [42]: a planning-coupled module extracts interaction features with a special
channel for injecting future planning, and a target fusion module encodes and decodes
tightly coupled future interactions among agents;

• MTP [29]: a spatiotemporal convolutional network model captures interactions be-
tween vehicles to predict trajectories considering multiple possible maneuvering
intentions and movements of vehicles.

6. Results and Discussion
6.1. Results

The above comparison models all consider the interaction between vehicles, but the
processing of vehicle interactions and the inputs of the background are different. They are
given the historical trajectories and other dynamic background information (e.g., vehicle
interaction vectors and scene context vectors) of the target and surrounding vehicles, and
output probability distributions on the future trajectory of the target vehicle. Table 2 shows
RMSE values for the models being compared on the NGSIM datasets. The evaluation results
show that the longer the prediction time the larger the model error. At the same time,
from the perspective of the RMSE performance of each model, there are certain differences
in performance due to different modeling of vehicle interactions and background factors
considered. Our method significantly outperformed the other methods in the range of
1 s to 4 s. Compared to the best-performing method (i.e., MTP), our method reduced the
prediction error by 15.1% within 1 s, by 10.9% within 3 s, and by 3.5% within 4 s. However,
at 5 s, our method only outperforms CS-LSTM(M) [15] and NLS-LSTM [40], and is inferior
to the other comparison methods. The possible reason for this is that our method is based
on the improvement of CS-LSTM(M) [15], and the factors affecting vehicle trajectory are
not sufficiently considered, thus its performance is lower than other methods in longer-
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term predictions. However, the experimental results prove that our trajectory correction
is effective.

Table 2. Comparison of RMSE at each prediction horizon evaluated on NGSIM datasets. Bolded
numbers indicate best results.

Datasets Prediction
Horizon(s)

CS-
LSTM(M) MATF NLS-

LSTM JSTM PiP MTP Ours

1 0.62 0.66 0.56 0.57 0.55 0.53 0.45
2 1.29 1.34 1.22 1.38 1.18 1.17 0.98

NGSIM 3 2.13 2.08 2.02 2.21 1.94 1.93 1.72
4 3.20 2.97 3.03 3.03 2.88 2.88 2.78
5 4.52 4.13 4.31 3.77 4.04 4.05 4.26

To further validate the advantages of our proposed model, we selected several other
methods applied in short-term forecasting. The first one is a simple physics-based model
that predicts the trajectory of the target vehicle from longitudinal and lateral velocities and
historical trajectories. The second one is SA-LSTM [43], an LSTM model with only spatial
attention mechanism, which selects the last hidden state containing the latest trajectory
information to form a spatial attention layer, and fuses the information of the target vehicle
and nearby vehicles to predict the trajectory. The third one is CS-LSTM [15], which is
compared to above-mentioned CL-LSTM(M); CS-LSTM does not consider the influence
of the vehicle’s maneuver on the trajectory. The last one is the state-of-the-art short-term
prediction method STA-LSTM [44], which predicts vehicle trajectories within 1 s using an
interpretable spatiotemporal attention mechanism. The results in Figure 6 show that the
physics-based model performs the worst of all the models compared within five time steps
(each time step is 0.2 s), also indicating that the traditional physics-based model is no longer
advantageous in today’s vehicle trajectory prediction. Our method that utilizes trajectory
correction shows a tremendous improvement in performance over the physics-based model
within five time steps (each time step is 0.2 s). There is also a significant advantage over the
state-of-the-art equivalent model. These results are sufficient to illustrate the short-term
forecasting performance of our method.

Figure 6. Compare the RMSE of our method with the physics-based method, SA-LSTM [43], CS-
LSTM [15], and STA-LSTM [44] within five time steps.

6.2. Analyzing the Correction Module in Trajectory Prediction

This module can learn how to correct the predicted trajectory during training. We
conducted experiments to evaluate whether to add the correction module and the effect of
different correction rates on the prediction accuracy.
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When applying the correction module, we correct the predicted trajectories with dif-
ferent correction rates p (0 < p < 1). In Section 3.2, we proposed probability forcing with an
integer multiple of the sampling period as the correction rate when selecting it. We pro-
cessed the NGSIM datasets with a sampling period of 0.2 s at each step. Therefore, we used
a correction rate p that was an integer multiple of 0.2. Starting from p = 0.2, we conducted
experiments separately and compared the average displacement error (ADE) [45], which is
calculated as:

ADE =
∑N

i ∑
it+tpred
it+1

√
(xit − xi)2 + (yit − yi)2

N×tpred
(9)

where N represents the number of vehicles; (xit , yit ) are the predicted and actual positions,
respectively, of vehicle i at time t; and tpred represents the prediction range.

Figure 7 shows the ADE performance for different correction rates without applying
and after applying correction module. The results show that the correction module is
effective. When the correction rate p = 0.2, it can also be understood that it is corrected once
within 1 s, and the performance is much better than the other experiments in the prediction
range. Especially at 1 s and 3 s, the ADE is reduced by 24.7% and 21.2%, respectively,
compared with no correction method. When p = 0.4, the ADE performance at 2 s is the
best, which is 2.7% less than no correction method. When p = 0.6, the performance is
also better than when the correction module is not used, and the best performance in the
predicted range is also obtained at 2 s, with a 2.2% improvement. However, at p = 0.8, it is
weaker, and only when 0.2 is better than without correction. We speculate that this is due
to an overcorrection. It can be seen from Figure 7 that the performance does not always
improve with the improvement of the correction rate, and it also shows that it is not true
that the more times the trajectory is corrected, the better the ADE performance will be. By
analyzing the experimental results, it can be concluded that the correction is necessary
when predicting the vehicle trajectory, but an appropriate number of corrections is needed
in the prediction range.

Figure 7. ADE performance under different correction rates p.

6.3. Discussion

In Sections 6.1 and 6.2, we analyze the experimental results and the effectiveness of
the correction module in trajectory prediction, respectively. Although our method achieves
competitive results, there are still limitations and potential problems. In longer-term
predictions, our method performs weaker than other comparison methods, and we believe
that there is insufficient consideration in handling the interactions between vehicles and
the dynamic context factors where vehicles are located. Pedestrians are also present on
urban roads, but our model only considers the interactions between vehicles, which may
lead to inaccurate trajectory prediction in other traffic scenarios involving pedestrians.
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Our trajectory correction is a random correction with a fixed probability. Although the
correction achieves certain effect, but when the correction rate is too large, that is, when
the number of corrections is too many, the effect of overcorrection tends to occur, thus our
correction mechanism can be further optimized. These issues will be focused on in our
future work.

7. Conclusions and Future Work

We proposed a vehicle trajectory prediction model based on LSTM and CNN networks
with a correction mechanism. The model encodes the temporal and spatial interdepen-
dencies between vehicles, combines their lane change intentions, and finally obtains the
multimodal trajectory distribution of future movements of surrounding vehicles by an
LSTM decoder. One of the correction mechanisms applies our newly proposed probability
forcing method. It can be used to simulate CAV to obtain perceptual information from
RSUs in the form of fixed probability to correct predicted trajectories. Experimental results
demonstrate the effectiveness of the probability forcing approach in the trajectory correction
module. It is also shown that our proposed model outperforms similar existing methods
on the NGSIM dataset.

In future work, due to the potential problems of this study, we will consider the effects
of factors such as pedestrians and traffic rules on vehicles trajectories, and use these factors
as inputs to the model for prediction. When the trajectory is corrected, a dynamic correc-
tion mechanism will be established within the prediction range, which can dynamically
determine the number of corrections and reduce the occurrence of overcorrection.
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