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Abstract: Extracting entities and relations, as a crucial part of many tasks in natural language
processing, transforms the unstructured text information into structured information and provides
corresponding data support for knowledge graph (KG) and knowledge vault (KV) construction.
Nevertheless, the mainstream relation-extraction methods, the pipeline method and the joint method,
ignore the dependency between the subject entity and the object entity. This work introduces a
pre-trained BERT model and a dilated gated convolutional neural network (DGCNN) as an encoder
to distinguish the long-range semantics representation from the input sequence. In addition, we
propose a cross-attention neural network as a decoder to learn the importance of each subject word
for each word of the input sequence. Experiments were undertaken with two extensive datasets,
the New York Times Corpus (NYT) and WebNLG Corpus, and showed that our model performs
significantly better than the CasRel model, outperforming the baseline by 1.9% and 0.7% absolute
gain in terms of F1-score.

Keywords: cross-attention neural network; dilated gated convolutional neural network; joint method;
relation extraction

1. Introduction

Relation extraction aims at converting unstructured text information into structured
information and it is a fundamental task for large-scale knowledge graph and knowledge
vault construction [1]. It provides essential data services for natural language processing,
including information extraction, question answering, and semantic analysis.

The objective of relation extraction is the extraction of relation triplets consisting of
a subject, object, and the relations between them. Relation triplets are shown as (subject,
relation, object) or (s, r, o). Early work on relation extraction generally applied a pipeline
method [2,3] dividing relation extraction into two subtasks named entity recognition
(NER) and relation classification (RC). This approach consists of recognizing all entities
from sentences and extracting relations from each entity pair, which means that the error
propagation problem may be encountered. A joint method for relation extraction [4,5] was
proposed to solve this problem. This method directly detects the complete relational triplets,
and it includes feature-based models. Nevertheless, most relation extraction approaches
based on joint models require complex semantic representation, which means traditional
manual feature construction is not applicable. Recently, neural network-based models [6,7]
have been applied to extract sentence representation and complete relation extraction,
achieving outstanding performance.

Though the joint method for relation extraction has achieved considerable success,
most existing studies have ignored the overlapping problem, where a sentence contains
multiple relational triplets. Figure 1 shows the overlapping problem in relation extraction
as proposed by Zeng [8]. An EntityPairOverlap (EPO) problem means multiple relations
between an entity pair. A SingleEntityOverlap (SEO) problem means an entity has relations
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with different entities in a sentence. It is hard to identify all triplets from a sentence with
the traditional joint method when the overlapping problem occurs. To tackle these issues,
related studies have proposed a sequence-to-sequence (Seq2Seq) model to generate all the
relational triplets in a sentence [8,9]. Later, a graph convolutional neural network [10] was
applied to construct graphs of entity pairs and detect all relations between each entity in a
sentence.
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Figure 1. Examples of normal, EPO, and SEO overlapping problems.

Although great success has been achieved in previous work on extracting entities
and relations, most relation extraction models ignore the fact that subjects contain rich
semantic information on objects and relations that has immediate relevance to the relation
extraction. Moreover, Wei et al. [11] and Sun et al. [12] have proven that fusing the relevant
representations into context representation enables the enhancement of model performance
in relation extraction, and the attention model has proven its effectiveness in representation
fusion [13]. Furthermore, Lai et al. [14] have utilized an attention model to extract relational
triplets, further proving its effectiveness in relation extraction.

In this paper, we propose a joint method for relation extraction based on a cross-
attention neural network (RECA) to exploit the relevance of each subject word for each
word of the input sequence. A pre-trained BERT model and a dilated gated convolutional
neural network (DGCNN) are employed to encode the input sequence into a semantic
representation. Next, the relation extraction task is divided into two subtasks: (1) the subject
taggers are modeled through encoder representation and (2) a cross-attention mechanism is
used to fuse the subject and sentence representations. Then, the relation-object taggers are
modeled through the fusion representation to recognize possible relations and objects. Our
model considers the sentence representation and uses the subject’s semantic information to
identify objects and relations.

The contributions of this paper can be summarized as follows:

1. We introduce a dilated gated convolutional neural network model, which has the
advantage of being able to learn long-range information, instead of traditional convo-
lution. In addition, we propose residual gated linear units as an activation function to
improve model performance.

2. We propose a cross-attention neural network for the decoder to learn the depen-
dence between subject information and relation-object taggers. This combines subject
representation with sentence representation to detect relevant objects and relations.

3. We describe a series of experiments in which we compared the proposed model with
the CasRel [11] model and show that our model achieved 1.9% and 0.7% absolute
gain in terms of F1-score for two datasets. The ablation experiment demonstrates that
each part we propose improves network performance.

2. Related Works

Extraction of relational triplets from unstructured sentences has always been a funda-
mental task for information extraction. Early work divided relation extraction into entity
recognition and relation classification, which were realized by the pipeline method [3,4].
This method is prone to propagation errors and neglects the relevance connecting the two
tasks. To address these problems, the joint method was proposed. Zheng et al. [15] pro-
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posed a unified tagging scheme that tags each word’s position and relation information in a
sentence. This tagging method converts the relation extraction problem into an end-to-end
tagging problem and enables the model to jointly extract complete relational triplets.

Early work on joint methods was based on complex feature extraction. Recently,
language models such as Embeddings from Language Models (ELMo) [16] and Bidirectional
Encoder Representation from Transformers (BERT) [17] have been proposed, which have
further improved the capabilities of semantic representation extraction. Several models
based on pre-trained language models [18,19] have also been proposed to extract relational
triplets and significantly improve model performance.

Though joint methods have achieved great success, most neglect the overlapping
problem. Zeng et al. [8] proposed two patterns for overlapping problems and utilized a
sequence-to-sequence (Seq2Seq) model with a copy mechanism to generate all relational
triplets. Ye et al. [9] proposed a generative transformer to identify relational triplets and uti-
lized triplet contrastive learning to enhance model performance. In addition, Fu et al. [10]
addressed the overlapping problem by treating words in sentences as nodes of a graph
and relations between the entities as edges of a graph and then introducing a graph convo-
lutional neural network to extract relational triplets. Wei et al. [11] proposed the CasRel
framework, an end-to-end cascade binary tagging framework. They designed a subject
tagger to detect all subjects directly and then modeled relations as a function that maps
subjects to objects. The CasRel framework extracts the subject’s first and end token rep-
resentations to influence object and relation identification. Sun et al. [12] proposed the
PMEI framework, which enhances model performance by providing a novel framework
to control information flow. The PMEI framework utilizes the representation of relation
extraction to enhance the performance of entity recognition and applies the entity recog-
nition representation to improve relation extraction. CasRel and PMEI demonstrate the
effectiveness of representation fusion in relation extraction. Lai et al. [13] proposed the
RMAN framework, introducing a multi-head attention model to control the representation
flow and obtain the final sentence representation. The RMAN framework demonstrates the
effectiveness of the attention model in relation extraction.

In this work, we propose RECA for relation extraction. Our model consists of a
pre-trained BERT model and DGCNN encoder module, a subject tagging module, a cross-
attention neural network module, and a relation-object tagging module. We describe the
details of our model below.

3. Model

In this section, we describe each module of the RECA model in detail. Figure 2
illustrates the overview of our model. The goal of relation extraction is to extract all
triplets {s, r, o} from sentences. Considering the overlapping problem, we divide relation
extraction into two subtasks: a subject tagger task and a relation-object tagger task. We
encode an input sentence as a semantic representation vector HE =

{
h1, . . . , hL}. Then, we

use a subject tagger to identify the start positions s_start and the end positions s_end of all
subjects given HE. In addition, we extract subject representation S =

{
hs_start, . . . , hs_end

}
based on s_start and s_end. We use a cross-attention neural network to achieve fusion
representation HCR based on subject representation and sentence representation. We deploy
a relation-object tagger to identify the start positions o_start and end positions o_end of all
objects for a predefined relation r based on HCR.
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Figure 2. An overview of the RECA model. In this example, “Chaka Fattah” is the subject of this
sentence. We tag “1” for “Chaka” in the start position vector and tag “0” for the other words. Similarly,
we tag “1” for the word “Fattah” in the end position vector. The RECA model uses an encoder module
to convert words into sentence representations and detects the position information of subjects. There
are two relational triplets for the subject “Chaka Fattah” in this sentence. Therefore, we tag “1”
for the words “Philadelphia” and “pa” in the “place_lived” and “person” relation-object start- and
end-position vector. Note that we tag “0” for other relation-object position vectors. The RECA model
decodes sentence representation and subject representation and detects the position information of
the object for each relation in the relation-object tagger.

3.1. Encoder
3.1.1. BERT

We utilize a pre-trained BERT model and a dilated gated convolution neural network
as the encoder module. The BERT model consists of a multi-layer bidirectional trans-
former [20]. It relies on a self-attention mechanism to determine global dependencies
instead of a recurrent model. The BERT model has exhibited excellent performance in many
natural language process tasks [21].

The BERT model makes it possible to convert sentences into a vector by embedding sub-
words into a matrix, and it then feeds the embedding vector into multi-layer transformer
blocks and returns context representation HBERT =

{
h1

BERT , . . . , hL
BERT

}
.

3.1.2. Dilated Gated Convolutional Neural Network

As shown in Figure 3, considering that convolutional networks can represent large
context sizes and extract hierarchical features over larger contexts with more abstract
features, we use a dilated gated convolutional neural network model to exploit contextual
representation efficiently. Inspired by Jonas et al. [22], we utilize dilated convolution [23]
for further learning of long-range information instead of traditional convolution. This
is undertaken by inserting “holes” that do not participate in the convolution operation
between each pixel in a kernel, which supports an exponentially expanding receptive
field. In addition, there is a degradation problem in deep learning models with increasing
trainable parameters. Therefore, we use a residual mechanism with gated linear units [24]
that can simultaneously address the above two problems. We utilize the sigmoid as
the activation function since it can map the input representation to (0, 1) ∈ R, enabling
control of the information flow [24]. In contrast to previous work, we propose a residual
mechanism unit focused on the generation of the gated unit through a dilated convolutional
network. This controls the degree of retention for the output representation and the degree
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of forgetting for the input representation. Additionally, we add two parts of representations
to address the degradation problem.
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In this work, each dilated convolution kernel is parameterized as W ∈ R2d×kd and
bw ∈ R2d, where d is the size of the input sequence and k is the kernel size of the dilated
convolution. The output of the dilated convolution is hDCNN ∈ R2d. We use a residual gated
linear unit as an activation function, and the detailed operations can be formulated as:

hDCNN = [Conv1D1, Conv1D2] (1)

σ = Sigmoid(Conv1D2) (2)

hDGCNN = hBERT × (1− σ) + Conv1D1 × σ (3)

We divide the dilated convolutional network outputs hDCNN into two parts: Conv1D1,
Conv1D2 ∈ Rdmodel . We use the gate unit σ to control the path through which informa-
tion flows in the network [24]. In our work, the gate unit σ can decide which DCNN
representation should be propagated through the hierarchy of layers and which BERT
representation should be forgotten by multiplying with these representations. We add two
parts of relevant representations as the DGCNN output hDGCNN ∈ Rd.

3.2. Decoder
3.2.1. Subject Tagger

In this work, we refer to the tagging scheme for the CasRel framework [11]. The tag
“1” represents a subject’s start and end position, and the tag “0” represents other positions.
We use two binary classifiers to identify the probability of each word as the start and end
positions of a subject given the contextual representation HE, which consists of the DGCNN
output hDGCNN . The detailed operations are as follows:

pi
s_start = Sigmoid(Wstarthi

E + bstart) (4)

pi
s_end = Sigmoid(Wendhi

E + bend) (5)
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where pi
s_start and pi

s_end represent the probability of the ith token in the sequence as the
start and end positions of the subject. The subject tagger optimizes the following likelihood
function to identify the span of the subject s given encoder representation HE:

pθ( s|HE) = ∏
t∈{s_start,s_end}

L

∏
i=1

(pt
i)

I{yt
i=1}

(1− pt
i)

I{yt
i=0} (6)

where L represents the length of the sequence and ys_start
i and ys_end

i are the tags for the
start and end positions for ith token in the sequence. I{z} = 1 if z is true and 0 otherwise.

3.2.2. Cross-Attention Neural Network

Considering the relevance connecting the subject and object, we tend to use the subject
tagger representation to enhance relation-object tagger performance with the attention
model. The attention model aims to learn attention weights through an additional deep
neural network and normalizes them using the SoftMax activation function. This model
is applied to influence encoder representation and thus improve model performance.
Previous work on the attention model utilized the dot product function [20], biased general
function [25], and other functions to generate attention weights. Such work applied
addition, multiplication, and concatenation to influence target representation and only
consider the correlation within a single sequence rather than between multiple input
sequences. Related work on attention mechanisms focus on self-attention, considering only
the internal correlation within the input sequence, which does not apply in our model.
Therefore, we use a cross-attention neural network that calculates the correlation between
the two input sequences and generates the attention representation that represents the
importance of each sequence token for each token of another sequence.

Moreover, we utilize a cross-attention mechanism to fuse the subject representation s
and sentence representation HE and enhance the relation-object tagger performance. This
mechanism takes two parts of representations into account and generates a new attention
representation. We generate the subject representation S =

{
hs_start

E , . . . , hs_end
E

}
based

on the encoder output HE and subject position information s_start and s_end. The cross-
attention neural network performs the following operations on two parts of representations:

K = relu(WkeyS + bkey) (7)

V = relu(WvalueS + bvalue) (8)

Q = relu(WqueryS + bquery) (9)

Attention(Q, K, V) = so f tmax(
QKT
√

dCR
)V (10)

where W is a trainable matrix that does not share parameters and dCR represents the
dimension of the matrix V, K, Q. Inspired by the self-attention mechanism [20], we generate
a cross-attention matrix to represent the importance of each subject token for each token of
the input sentence. The cross-attention neural network generates the query matrix Q from
the sentence representation HE. The key matrix K and the value matrix V are generated
from the subject representation S. We compute the cross-attention representation matrix
Attention =

{
A1, . . . , AL}, where Ai ∈ RdCR , based on the scaled dot-product attention

mechanism. Our model employs a residual mechanism [26] and layer normalization [27] in
a cross-attention neural network to alleviate the over-fitting phenomenon. The detailed
operations are as follows:

hi
f = gelu(W f Ai + b f ) (11)

hi
CR = LayerNorm(hi

E + hi
f ) (12)
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where hi
f ∈ Rdmodel is the feedforward neural network output and hi

CR ∈ Rdmodel is the
cross-attention neural network output. Notably, we utilize the approximate Gaussian Error
Linear Unit (GELU) function instead of the Rectified Linear Unit (ReLU) as an activation
function to improve the model generalization.

3.2.3. Relation-Object Tagger

In our model, the relation-object tagger detects objects and relations according to
the cross-attention neural network output Hi

CR. The relation-object tagger consists of
multiple object taggers, which are the same as subject taggers. Each object tagger identifies
corresponding objects for a predefined relation. The detailed operations are as follows:

pi
o_start = Sigmoid(Wr

starth
i
CR + br

start) (13)

pi
o_end = Sigmoid(Wr

endhi
CR + br

end) (14)

where r represents the detection of the rth predefined relation and pi
o_start and pi

o_end
represent the probability of identifying the ith token in the sequence as the start and end
positions of objects. Similarly to the subject tagger, the following likelihood function is
optimized by the relation-object tagger for relation r to detect the span of an object o given
the cross-attention representation HCR:

pθ(s|HCR ) = ∏
t∈{o_start,o_end}

L

∏
i=1

(pt
i)

I{yt
i=1}

(1− pt
i)

I{yt
i=0} (15)

where yo_start
i and yo_end

i are the tags of the start and end positions for ith token in the
sequence. We use the log-likelihood objective function L based on Equations (6) and (15).
The detailed operation is as follows:

L =
|D|

∑
j=1

 ∑
s∈Tj

log pθ(s|HE) + ∑
r∈Tj |s

log pθ(o|HCR)+

∑
r/∈Tj |s

log pθ(o∅|HCR)

 (16)

where D represents datasets, Tj represents the jth sentence in datasets, and r ∈ Tj|s
represents that the subject s in sentence Tj contains relation r. We optimize our model by
maximizing function L through an Adam stochastic gradient descent [28].

4. Experiment
4.1. Experiment Datasets and Evalution Metrics

This section describes the evaluation of the RECA model using two public datasets:
NYT [29] and WebNLG [30]. A distance supervision method was used to generate the
original NYT dataset, which contains more than one million sentences covering 24 prede-
fined relations. The original WebNLG dataset covered 246 predefined relations and was
adapted for relation extraction by Zeng et al. [8]. The sentences in both datasets can be
used to support the evaluation of our model’s performance in tackling the overlapping
problem and multiple-triplet problem. For a series of additional experiments, we split
the sentences in the two datasets into three categories based on the types of overlapping
problems. We further split the sentences into five categories based on the numbers of
triplets in the sentences. Additionally, we split the sentences into two categories, long and
short, based on the lengths of the sentences, where the sentences with more than 50 words
were considered long sentences and the others short sentences. The statistics for the two
datasets are shown in Table 1.
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Table 1. Statistics for datasets. Note that a sentence can belong to both the EPO class and the SEO class.

Category
NYT WebNLG

Training Testing Training Testing

Overlap
Normal 37,013 3266 1596 246

EPO 9782 978 227 26
SEO 14,735 1297 3406 457

Number

n = 1 36,868 3244 1716 266
n = 2 12,058 1045 1264 171
n = 2 3663 312 1043 131
n = 4 2618 291 648 90
n ≥ 5 988 108 348 45

Length Short 45,821 4054 4882 667
Long 10,374 946 137 36

ALL 56,195 5000 5019 703

Following previous work, we stipulated that the extracted relation triplets would only
be considered correct when both entities (subject and object) and their relation were correct.
For a fair comparison, we used standard micro-precision (Prec.), micro-recall (Rec.), and
micro-F1-score (F1) as the metrics to evaluate model performance.

4.2. Setting Training Parameters

We used a pre-trained BERT model (BERT-Base, Cased) with default hyperparameters
for fine-tuning, and the dimension of the hidden state dBERT was 768. The dimension of the
dilated convolution output dmodel was 768. Note that the dimension in the cross-attention
neural network dCR was 512. We set the dimension of the feedforward neural network as
768 and used an Adam stochastic gradient descent to optimize our model. The learning
rate in the pre-trained BERT model was 1× 10−5 and the learning rate in the DGCNN
and cross-attention neural network was 5× 10−5. We optimized our model with the batch
size as 5 and introduced an early stopping mechanism when the F1-score in the validation
set did not improve for 10 consecutive epochs. The threshold of both the start and end
positions was 0.5.

4.3. Experimental Result

We compared the RECA model with state-of-the-art models from recent years to assess
its performance, including NovelTagging [15], CopyR [8], GraphRel [10], CopyRRL [31],
CasRel [11], PMEI [12], RMAN [14], and CGT [9]. Note that we used a pre-trained BERT
model as part of the encoder in the RECA model for better performance. To further ver-
ify the cross-attention neural network performance and evaluate the pre-trained BERT
model’s impact, we used RECABiLSTM, which utilizes bi-directional long short-term mem-
ory (BiLSTM), instead of the pre-trained BERT model as part of the encoder. For a fair
comparison, we re-implemented CasRelBiLSTM by replacing the pre-trained BERT model
with BiLSTM. Note that RECABiLSTM and CasRelBiLSTM utilize a trainable embedding layer
with random initialization. The performance comparison for the RECA, RECABiLSTM, and
previous state-of-the-art models is shown in Table 2. Additionally, we conducted a series of
ablation experiments to evaluate the effectiveness of each module we proposed. We used
RECADGCNN, which only utilizes DGCNN, as part of the encoder and RECACA, which only
utilizes a cross-attention neural network, as part of the decoder. The performances of the
RECADGCNN and RECACA models with the two datasets are shown in Table 3.
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Table 2. Experimental results for different models and the NYT and WebNLG datasets. Our re-
implementation is marked by *. The best scores are in bold font.

Method
NYT WebNLG

Prec. Rec. F1 Prec. Rec. F1

NovelTagging [15] 62.4 31.7 42.0 52.5 19.3 28.3
CopyROneDecoder [8] 59.4 53.1 56.0 32.2 28.9 30.5

CopyRMultiDecoder [8] 61.0 56.6 58.7 37.7 36.4 37.1
GraphRel1p [10] 62.9 57.3 60.0 42.3 39.2 42.9
GraphRel2p [10] 63.9 60.0 61.9 44.7 41.1 42.9

CopyRRL [31] 77.9 67.2 72.1 63.3 59.9 61.6
CasRel * BiLSTM 79.4 68.8 73.6 89.6 78.4 83.6

CasRel [11] 89.7 89.5 89.6 93.4 90.1 91.8
PMEI [12] 90.5 89.8 90.1 91.0 92.9 92

RMAN [14] 87.1 83.8 85.4 83.6 85.3 84.5
CGT [9] 94.7 84.2 89.1 92.9 75.6 83.4

RECABiLSTM 78.9 76.5 77.6 91.3 84.5 87.8
RECA 91.2 91.9 91.5 90.9 94.1 92.5

Table 3. Results for ablations experiments with the NYT and WebNLG datasets. The best scores are
in bold font.

Method
NYT WebNLG

Prec. Rec. F1 Prec. Rec. F1

CasRel [11] 89.7 89.5 89.6 93.4 90.1 91.8
RECA 91.2 91.9 91.5 90.9 94.1 92.5

RECADGCNN 89.8 90.7 90.3 91.7 92.1 91.9
RECACA 90.3 92.4 91.3 92.5 92.0 92.3

We split the sentences in the NYT and WebNLG datasets into three categories based
on different overlapping problems. We experimented on extracting triplets from these
three types of sentences to evaluate the model performance in tackling the overlapping
problem. The performance comparison of the RECA model and the previous models for the
overlapping problem is shown in Figure 4a,b. Note that most sentences contained multiple
relational triplets. To verify the performance of the RECA model in tackling multiple triplets,
we classified the sentences according to the number of triplets in a sentence and conducted
an extended experiment with the sentences containing multiple triplets. The comparison
between our model and the previous models in tackling the overlapping problem is shown
in Table 4. To further evaluate the contribution of the DGCNN in particular, we classified
the sentences based on the lengths of sentences and assessed the performances of the
CasRel, RECADGCNN, and RECA models in tackling long sentences. The detailed results
are shown in Figure 5.

Table 4. F1-scores for the extraction of relational triplets from sentences with different numbers of
triplets. The best scores are in bold font.

Method
NYT WebNLG

n = 1 n = 2 n = 3 n = 4 n ≥ 5 n = 1 n = 2 n = 3 n = 4 n ≥ 5

CopyROneDecoder [8] 66.6 52.6 49.7 48.7 20.3 65.2 33.0 22.2 14.2 13.2
CopyRMultiDecoder [8] 67.1 58.6 52.0 53.6 30.0 59.2 42.5 31.7 24.2 30.0

GraphRel1p [10] 69.1 59.5 54.4 53.9 37.5 63.8 46.3 34.7 30.8 29.4
GraphRel2p [10] 71.0 61.5 57.4 55.1 41.1 66.0 48.3 37.0 32.1 32.1

CasRel [11] 88.2 90.3 91.9 94.2 83.7 89.3 90.8 94.2 92.4 90.9

RECA 89.5 92.1 93.3 95.8 90.4 89.1 92.1 94.8 93.3 91.3
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Figure 5. Result for long-sentence experiments with the NYT and WebNLG datasets.

5. Discussion

The RECA model outperformed all baseline models in terms of F1-score and achieved
encouraging 1.9% and 0.7% improvements over CasRel for the NYT and WebNLG datasets,
respectively. Moreover, the performance of RECABiLSTM was also more competitive than
most previous models except for CasRel. Compared with CasRelBiLSTM, RECABiLSTM
achieved encouraging 4% and 4.2% improvements in the F1-score for the NYT and WebNLG
datasets, respectively. The above experiments show that the RECA model performs far
better than previous models. In the ablation experiment, we observed that RECADGCNN
and RECACA outperformed CasRel. The RECACA model, which only used a cross-attention
neural network, achieved encouraging 1.7% and 0.5% improvements in the F1-score for
NYT and WebNLG datasets compared to CasRel, proving the effectiveness of the cross-
attention neural network in relation extraction. Notably, as shown in Table 2, the F1-score
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for our model showed the most significant improvement when we utilized two networks
simultaneously.

Moreover, we conducted supplementary experiments on the extraction of relational
triplets from different types of sentences to further evaluate the capability of the RECA
model in tackling the overlapping problem. As shown in Figure 4a,b, the RECA model out-
performed all previous models in tackling sentences with overlapping problems. Compared
to CasRel, the F1-scores for the RECA model increased by 1.9% and 0.8% when extracting
triplets from sentences with the SEO problem from the NYT and WebNLG datasets. The
RECA model achieved encouraging 1.5% and 0.1% improvements in the F1-score compared
to CasRel when extracting triplets from sentences with the EPO problem from the two
datasets. The above results prove that the performance of the RECA model in tackling
the overlapping problem was improved compared to previous models. Additionally, to
validate the contribution of the DGCNN, we conducted supplementary experiments on
tackling long sentences. As shown in Figure 5, the RECADGCNN and RECA models achieved
1.4% and 2.6% absolute F1-score improvements over CasRel for the NYT dataset, which
proves the effectiveness of the DGCNN in tacking long sentences. However, it was difficult
for us to evaluate the contribution of the DGCNN in tackling long sentences from the
WebNLG dataset since it contains few long sentences. As shown in Table 4, compared with
previous models, the RECA model was able to tackle sentences with multiple relational
triplets well, especially sentences with more than five triplets, achieving encouraging 6.7%
and 0.4% improvements in the F1-score.

6. Conclusions

This paper proposed a relation extraction model based on a cross-attention neural
network (RECA) and evaluated the model performance with NYT and WebNLG datasets.
We divided the relation extraction into subject tagger and relation-object tagger tasks. We
used a pre-trained BERT model and a DGCNN as the encoder and a cross-attention neu-
ral network as the decoder. In the cross-attention neural network, we fused the subject
representation and sentence representation and computed the attention representation,
enhancing the relation-object tagger’s performance. In addition, we validated the capabili-
ties of our model in identifying all triplets from sentences with the overlapping problem,
the multiple-triplets problem, and the long-sentence problem. The experimental results
showed that our model outperformed previous models. We surmise that the attention repre-
sentation generated by the cross-attention neural network enables significant enhancement
of model performance in relation extraction and other natural language processing tasks.
We will apply the cross-attention neural network to other natural language processing tasks
involving representation fusion to validate its capabilities.
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