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Received: 10 June 2022

Accepted: 7 July 2022

Published: 11 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Review on Autonomous Vehicles: Progress, Methods
and Challenges

Darsh Parekh 1 , Nishi Poddar 1, Aakash Rajpurkar 1, Manisha Chahal 2, Neeraj Kumar 2,3 ,
Gyanendra Prasad Joshi 4 and Woong Cho 5,*

1 Department of Computer Science and Engineering, NMIMS University, Mumbai 400056, India;
darsh.parekh77@nmims.edu.in (D.P.); nishi.poddar46@nmims.edu.in (N.P.);
aakash.rajpurkar47@nmims.edu.in (A.R.)

2 Department of Computer Science and Engineering, Thapar Institute of Engineering & Technology,
Patiala 147004, India; manisha.chahal2@gmail.com (M.C.); neeraj.kumar@thapar.edu (N.K.)

3 School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007, India
4 Department of Computer Science and Engineering, Sejong University, Seoul 05006, Korea; joshi@sejong.ac.kr
5 Department of Software Convergence, Daegu Catholic University, Gyeongsan 38430, Korea
* Correspondence: wcho@cu.ac.kr

Abstract: Vehicular technology has recently gained increasing popularity, and autonomous driving
is a hot topic. To achieve safe and reliable intelligent transportation systems, accurate positioning
technologies need to be built to factor in the different types of uncertainties such as pedestrian
behavior, random objects, and types of roads and their settings. In this work, we look into the
other domains and technologies required to build an autonomous vehicle and conduct a relevant
literature analysis. In this work, we look into the current state of research and development in
environment detection, pedestrian detection, path planning, motion control, and vehicle cybersecurity
for autonomous vehicles. We aim to study the different proposed technologies and compare their
approaches. For a car to become fully autonomous, these technologies need to be accurate enough to
gain public trust and show immense accuracy in their approach to solving these problems. Public
trust and perception of auto vehicles are also explored in this paper. By discussing the opportunities
as well as the obstacles of autonomous driving technology, we aim to shed light on future possibilities.

Keywords: autonomous vehicles; self driving cars; motion control; path planning; vehicle cybersecu-
rity; pedestrian detection

1. Introduction

Like most daily use machines, vehicles were once under the domain of mechanical
engineering. However, the extraordinary advancements in IoT and embedded systems
have made most of them intelligent innovative devices that work with the help of the
internet. These technological advancements have transformed traditional automobiles
into fully functional, intelligent machines from old-fashioned travel sources, which also
provide ease while traveling. The advancements in automation and opportunities offered
by cutting-edge technology serve as the base for intelligent vehicles. These intelligent
vehicles are in high demand as we move forward with a focus on safety and making
daily life more convenient. These vehicles support features like sensing the environment,
connecting to the internet, obeying traffic guidelines, navigating by themselves, making
quick decisions, ensuring pedestrian and passenger safety, parking, etc. Such machines are
called autonomous vehicles. They are currently regarded as the topmost level in developing
intelligent vehicles. The fundamental motivation behind the research and development
of autonomous vehicles are: the need for more driving safety, an increasing population
that also leads to an increase in vehicles on the road, expanding infrastructure, the comfort
of depending on machines for tasks like driving, and the demand for optimization of
resources and time management. With the population growing, a very stressful impact has
been created on our roads, infrastructure, open spaces, fuel stations, and resources.
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In the past few decades, the adoption of electric batteries has been considered a
promising alternative that might relieve the fuel stations and keep our carbon emissions in
check. LSBs are the next promising energy storage system with advantages such as high
energy density and high capacity at a low-cost rate. A study found the effect catalysts have
on LSBs and provides an insight on the design and future perspective of LSBs [1]. MOFs
are compounds that contain molecules held together by metal ions. These materials have
sparked an interest in their catalytic properties because of their size, shape, and crystallinity.
A recent study examines the use of MOFs as sulfur hosts for the preparation of cathodes
for Li-S batteries [2]. Another study claims that the different crystal planes also impact the
absorption abilities and performance [3]. This determines that the particle shape and size
should also be considered for an appropriate sulfur host. The durability is a significant
concern for MOFs as these materials hardly maintain their chemical and physical properties
after continuous exposure to an alkaline solution. A study from [4] presents a design of a
stable MOF that retains its original structure for 15 days. This material can have a lot of
prospects in flexible, lightweight, and portable electric batteries In the past few decades,
governments all over the globe have taken severe measures to ensure road safety, like
introducing dynamic surveillance technologies like CCTV cameras to capture law breakers,
road sensors to ensure speed limits, and more. Thus, unconventional technologies like
autonomous and connected cars are being researched to reduce life-endangering situations
caused by erroneous human behavior like driving under the influence, distractions, and
the inability to drive. The progression and arrival of autonomous cars are the results of
remarkable research progress in IoT and embedded systems, sensors and ad hoc networks,
data acquisition and analysis, wireless communication, and artificial intelligence. A list of
key acronyms used throughout the paper is given in Table 1.

Table 1. Key acronyms.

Abbreviation Meaning

2D 2 Dimensional
3D 3 Dimensional

ABS Anti-lock Braking System
ADS Automated Driving System
AI Artificial Intelligence
AV Autonomous Vehicles

CCTV Closed-Circuit Television
CNN Convoluted Neural Networks
DDT Dynamic Driving Task
DL Deep Learning

FDE Fault Detection Exclusion
GNSS Global Navigation Satellite System
GPS Global Positioning System
INS Inertial Navigation System
IoT Internet of Things
IoV Internet of Vehicles
ITS Intelligent Transportation System

LiDAR Light Detection and Ranging
LSB Lithium–Sulfur Batteries
LTE Long Term Evolution
ML Machine Learning

MOF Metal Organic Framework
ODD Operational Design Domain

OEDR Object and Event Detection and Response
PPLP Pedestrian Planar LiDAR Pose
PVA Position Velocity Acceleration

RADAR Radio Detection and Ranging
RGB Red-Green-Blue
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Table 1. Cont.

Abbreviation Meaning

RCNN Region based Convoluted Neural Networks
RPN Region Proposal Network

SLAM Simultaneous Localization and Mapping
TARA Threat Assessment and Remediation Analysis

VANET Vehicular ad hoc Network
YOLO You Only Look Once

1.1. Motivation

According to the World Health Organization (WHO), 1.3 million people die yearly in
road accidents. It is the leading cause of death among kids aged 5–29. The leading risk
factors in road accidents are: speeding, driving under the influence of alcohol, distracted
driving, unsafe vehicles, and unsafe infrastructure [5]. AV support driving tasks like sensing
the surrounding environment, shortest and safest path planning, speed control, navigating,
and parking without human input, thereby reducing accidents by human error. This has
piqued the interest of a lot of researchers and manufacturers worldwide. Even though AVs
are not imminently widespread, we can foresee their potential social and economic benefits.
They can be vital in reducing road accidents, fuel consumption, and road congestion. In
addition to saving time and space, they also facilitate the mobility of the elderly, and
disabled [6]. Economically backward households and those with disabilities that affect
movement and motor skills can benefit from AVs as they can reduce transportation costs
and improve accessibility. This can significantly enhance many people’s productivity and
quality of life. These potential benefits are a significant motivating factor for this study. We
wish to dig deeper, learn more about the ongoing developments, and understand if we can
genuinely see that it replaces a lot of sectors with autonomous machines.

1.2. Contribution

This study attempts to provide an organized and comprehensive outline of the ad-
vanced automated driving-related software practices. This paper aims to fill the literature
gap by providing a comprehensive overview of the existing literature. In addition, we
discuss the psychology of people regarding AVs and emerging trends. Review papers
covering specific functionalities and challenges are available on the subject. However,
a study that covers: a review of the current research on the topic, emerging and available
technologies, present challenges, and individual functions such as perception, planning,
vehicle control, and detection together does not exist. Finally, we outline future research
challenges and research directions.

1.3. Comparison

This paper aims to provide an overall picture of the recent advances in autonomous
driving and the problems this technology can solve. Therefore, we present an extensive
survey on various topics such as Vehicle Cybersecurity, Psychology, Pedestrian Detection,
Motion Control, Path Planning, and Environment Perception. It has been found through
a literature survey that several reviews have been conducted on AVs and their different
aspects. The comparison of related works concerning our paper is summarized in Table 2.
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Table 2. Comparison of existing review papers.

Related Works Topic Key Contributions Limitations

[6]

Autonomous Driving Cars in
Smart Cities: Recent

Advances, Requirements, and
Challenges

This paper highlighted the research
advances made in autonomous

driving using six requirements as
parameters for the successful

deployment of autonomous cars and
discussed the future research

challenges. The core requirements are
fault tolerance, strict latency,

architecture, resource management,
and security.

The paper does not have separate
sections for literature survey and

research methodology, which makes
it difficult for the reader to

understand whether the author
collected the information from

various sources.

[7]
A Survey of Autonomous

Driving: Common Practices
and Emerging Technologies

This paper presents an overview of
topics like social impact, system
architecture, object and image

detection and are compared in a
real-world setting using tools and

datasets available for
autonomous driving.

The reviewed algorithms lacked
efficiency and accuracy. Academic

collaboration is required for
advancements in new technologies.

[8]
Autonomous vehicles:

scientometric and bibliometric
review

This paper identifies the evolution,
characteristics, and trends regarding
autonomous driving with a keyword

analysis characterized by their
respective burst strength. It identifies

the broader aspects with 96 fields
getting identified using the

software CiteSpace.

The use of WoS is not mentioned as a
source for data collection. The terms
used in the keyword search can also

correspond to other vehicles.

[9]
Autonomous Cars: Research
Results, Issues, and Future

Challenges

This paper classifies the
implementations and design issues
into subcategories such as the cost,
software complexity, digital map

construction, simulation, and
validations. It also reviews the safety

aspects, resource computation,
decision-making, and privacy.

This paper only takes a look at the
social or non-technical issues related

to autonomous driving.

[10]

Understanding autonomous
vehicles: A systematic

literature review on capability,
impact, planning, and policy

This paper includes a review of the
existing base to understand the

impact, policy issues, and planning
reveals trajectories of possible gaps in

the literature. It also concludes by
advocating the necessities of

preparing cities for
autonomous vehicles.

Search keyword selections may omit
the inclusion of some relevant
literature. The approach is a

manually handled literature review
where analytical techniques could

have been used.

1.4. Organization

Section 2 of this paper presents the background of autonomous driving and the
progress in its technologies. Section 3 presents the research methodology used to make
this review paper and classify the papers used. Next, in Section 4, we present a review
on environment perception, pedestrian detection, path planning, vehicle cybersecurity,
and motion control. Section 5 summarizes the psychology of autonomous cars. Section 6
provides an overview of the paper, and Section 7 presents the conclusion and future scope
of self-driving cars and related technologies.

2. Methods and Materials

In this section, we showcase the research questions that we want to address in this
paper. We will also explain the research methodology of how we formed the database of
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papers we referred to while conducting the literature survey for this paper. We will also go
through our screening process and mapping process.

2.1. Research Questions

This study aims to provide an overview of autonomous driving technologies. So, we
have defined the research questions in Table 3.

Table 3. Research Questions

Research Questions Answers

How will the introduction of autonomous systems deal with
connected and non-connected vehicles and the unpredictability

of human driving?

Enforcement of strict traffic laws. Prompt detection and
punishment of malicious driving. Contextual and situational
algorithms for decision-making and control. Social training.

How will cars be trained for the next move when the trajectory
is not constant?

Plan incrementally using finite state machines. Develop
intelligent mechanisms to facilitate cooperation among

components.

How can we make Self-Driving Cars more desirable?
A survey examined the acceptance of self-driving cars and

found that people are much more open to technology that can
outperform human ability.

How should self-driving cars deal with foreseeable crashes? New business models and regulations or legislation can lay a set
of rules and rethink the insurance business model.

How will multiple sensors be used to process real-time data
more quicker?

Sharing the data collected from sensors across multiple nodes.
A trade-off between the number of sensors and the efficiency of

data processing.

2.2. Conducting the Research

A keyword search-based research was conducted systematically from the topic section
of literature databases like IEEE, Science Direct, EBSCO, and Emerald. Specific terms such as
“Autonomous driving,” “Autonomous car,” “Autonomous vehicle,” “Self driving vehicle,”
and “Self driving car” were included in the title, abstract, or keywords of the papers. We
only included papers listed in the academic journals of the mentioned databases. As a result,
we did not seek to find all literature about autonomous driving. That would have resulted
in an overwhelming amount of information due to the extensive applications, testing, and
research in other fields and domains. Instead, we aimed to gain a comprehensive overview
and classification to identify scientific gaps in the literature body. We only considered the
literature publications that pertained to relevant topics such as roads, traffic, crossroads,
commuting, production, algorithms, detection, path planning, and cybersecurity. We
included a few relevant publications where the topic pertained to the automotive industry
or the application mentioned would be relevant for AVs. For the psychology aspect of the
study, we considered papers that did not necessarily have core topics regarding automation
in vehicles but topics that acknowledged AVs and raised questions as to how public
perception and daily tasks would change with the introduction of autonomous technology.
Our initial search resulted in 80 papers. After analyzing the title, we eliminated duplicate
papers. In this process, we found the occurrence of three papers in multiple databases.
One final filtering process eliminated publications that did not meet scientific standards
nor did a peer-review process. This resulted in the exclusion of three further publications,
delivering a final number of 74 papers.

2.3. Screening of Papers

After searching for papers in scientific databases, we compiled our papers database.
Not all of the papers we included in our final database were relevant to our research
questions. As a result, we had to screen through the titles and journals of the papers to
determine their actual relevance. Studies that were irrelevant to the research topic were
excluded. The title of the paper could not always determine its relevancy of the paper.
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In such cases, we sent the papers in the second phase of screening, where we read the
abstracts of the papers to determine their relevancy. Furthermore, we screened each paper
using specific criteria where we excluded the following types of papers:

(1) Papers that were just posters.
(2) Papers that did not have full text available.
(3) Papers where English was not the primary language.
(4) Papers where AVs were taken in a different context.
(5) Papers that were totally out of scope for our research questions.

If all 5 of these exclusion criteria were passed and the paper’s abstract was considered
relevant, we included the paper in our final database for a literature review.

2.4. Grouping Using Keywords

After screening the papers, the next step was to look at the keywords of the papers in
the abstract and then group them according to their different domains and specializations.
This helped us develop a better understanding of the papers. We categorized them into the
following categories:

(1) Review/survey papers on AV.
(2) Papers focusing on AI/ML algorithms in AV.
(3) Papers focusing on environment perception and pedestrian detection.
(4) Papers focusing on motion control.
(5) Papers focusing on path planning.
(6) Papers focusing on vehicle cybersecurity.
(7) Papers focusing on networking and communication.
(8) Papers focusing on psychology towards AV.
(9) General papers that do not have a specific focus.

Figure 1 is a visual representation of classification according to domains.

Figure 1. Classification of papers over different domains.

2.5. Mapping the Process

The Mapping process was based on two parameters:
(1) Year of Publication—we have analyzed the number of publications released yearly

among the papers in our final database. Three papers from this were from 2014, the
year we started collecting papers from 2015 and 2016 had three papers, and 2017 had
four. Most of our database has papers from 2018, 2019, 2020, and 2021—thirteen, fifteen,
nineteen, and fourteen, respectively. This analysis showed us that research on AVs has been
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happening for a long time and increasing each year. Figure 2 demonstrates the increase
in research over the years. (2) Topic of Research—after grouping the papers according to
different keywords, we learned the main focus areas in which research was the spearhead
for AV technologies. We decided to choose five of the nine topics to review the current
research and development in those topics. We chose Environment Perception, Pedestrian
Detection, Path Planning, Vehicle Cybersecurity, Motion Control, and Psychology towards
AV. Environment Perception and Pedestrian Detection are two separate topics because
there was a lot of research focusing on just pedestrians and how the algorithms required
in pedestrian detection are different from object detection. The other survey and review
papers were used as a reference while writing this paper, and a comparison between the
five review papers is also provided in the Introduction.

Figure 2. Publications over time.

3. Background of Autonomous Vehicles

In the past, vehicles were very straightforward; their main goal was just transportation.
Over time, as the world grew and technology advanced, a vehicle’s main goal was not
limited to transportation, but also included comfort, safety, and convenience. This led to
extensive research on improving vehicles and incorporating technological breakthroughs
and advancements. The idea of turning vehicles autonomous was soon conceived. Au-
tonomous Driving is arguably the next significant disruptive innovation. However, like
any other technology, research and development for AVs began with laying a base and
defining a few ground terms. These terms, listed in Section 3.1, would later serve as a
starting point when branching out into different aspects of AVs. As research in the sector of
AV grew, researchers started experimenting with autonomy. Different technologies were
being proposed and added to vehicles to make them autonomous. Section 3.2 discusses
the different levels of autonomy and what technologies are present in each level. Today,
Avs are furnished with various sensors like cameras, RADAR, LiDAR, and Ultrasonic
actuators to achieve security and automation. These provide information to the vehicle
about object detection, lane occupancy, traffic flow, and more. Camera sensors support
the surrounding view, whereas Radar and LIDAR sensors are used for object detection
and collision avoidance, respectively. Some of the popular sensors used for autonomous
vehicles are discussed as follows: We have detailed some standard sensors that are present
in modern vehicles in Section 3.3. The data gathered from all the different sensors are used
as input for multiple algorithms to gather useful information for the vehicle to interpret
and take action. These algorithms discussed in section 3.4 are AI, ML, and DL combined
with image processing and are used to help an AV perform autonomy-related tasks.
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3.1. Common Terms Related to Autonomous Vehicles

DDT: The tactical functions required to operate AVs in on-road traffic, including short
limitations and excluding tactical functions such as trip planning and selecting endpoints,
is DDT. Vehicle control–Lateral (Steering left and right), Longitudinal (Acceleration and
Deceleration); Environment Monitoring; and Maneuver planning; are all a part of DDT.
ADS: Software and hardware capable of continuously performing the DDT regardless of
whether the DDT is restricted to a specific ODD. This term is usually used to describe
levels 3, 4, and 5 of an ADS. ODD: ‘Driving automation systems or features function under
specific operating conditions determined by geographical, environmental, and time-of-day
conditions. They also depend on the presence or absence of traffic or road characteristics.
If a self-driving vehicle can drive on the highway and in an urban environment, then the
ODD of the vehicle could incorporate the accompanying data to characterize the abilities
and restrictions of the ADS based on road category, topographical region, and climate
conditions. OEDR: It is a sub-task of DDT. It includes environment monitoring like detect-
ing, recognizing, and classifying objects and providing appropriate responses to events.
OEDR works inside an ODD and allows the ADS of the vehicle to differentiate between
different vehicles, pedestrians, and objects and respond to any events that would influence
the driving or safety of the vehicle. Active Safety Systems: Active safety systems monitor
and sense the conditions both outside and inside AVs to identify the dangers, potential and
present; to the passengers, pedestrians, vehicles, etc. It intervenes automatically to lessen
the probability of possible collisions by alerting the driver, adjusting the vehicle system,
and controlling the subsystems like throttle, brakes, suspensions, etc. [11].

3.2. Levels of Autonomy

The Society of Automobile Engineers (SAE) defines six levels of automation [11]. Level
Zero Automation indicates no automation. At level zero, the driver performs the entire
DDT with the help of active safety systems. Level One Automation has the ADS perform
either longitudinal or lateral control of the vehicle, but not the complete OEDR. The DDT
fallback is the driver, so the driver must be present in the vehicle at all times and be able to
take control of the vehicle at any time. Systems like Electronic Stability Control, Anti-lock
Braking Systems, and Adaptive Cruise Control come under Level One Automation. In
Level Two Automation, the ADS can perform both longitudinal and lateral control of the
vehicle, but is similar to Level One and cannot perform the complete OEDR. The DDT
fallback again is the driver, so they must always be present in the vehicle and be able to
take control of the vehicle at any instance. In addition to the systems mentioned in Level
One, Automatic Emergency Braking and collision prevention systems come under Level
Two Automation. In Level Three Automation, the ADS performs the entire DDT. The
DDT fallback again is the driver, and the driver gets notified if the ODD’s limits will be
exceeded. The driver also gets notified if any performance-relevant system fails. Level
Four Automation does not require any human intervention. The ADS of a vehicle at Level
Four Automation will perform the entire DDT in restricted ODDs-places with proper maps
and road structures. The driver can intervene if they want to, but the ADS will achieve a
minimal risk on any DDT Fallback. Level Five Automation is the final level of automation.
There is complete automation, and the ADS can perform the entire ODD without any
limitations. DDT fallback is also taken care of by the ADS and the only time a driver takes
control of the vehicle is when they request it. Figure 3 is a representation of all of the
different Levels of Autonomy.
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Figure 3. Levels of Autonomy.

3.3. Sensors Used in Autonomous Vehicles

Cameras: Autonomous vehicles have visible light cameras to provide a 360-degree
view of the surroundings. They are great at object detection and recognition, and this data
is sent to the AI-based algorithms for further use. However, such cameras are inaccurate
in dark conditions and generate a large amount of data to process. Infrared cameras are
also used for better performance in conditions of low visibility. RADAR: It is a sensor that
uses radio waves to calculate factors like distance, velocity, and angle. With the help of
radar transmitters, AVs can emit radio waves and receive the reflected waves with the
help of radar receivers. Radar operates well in most weathers and over long distances,
but it may falsely identify objects [12]. LiDAR: A sensor that uses light as a medium to
measure distances is calculated by measuring the time it takes for the light to get reflected
in the receiver. Such systems emit laser beams that hit the environment and reflect to a
photo-detector. The collected beams are converged together like a point cloud. This creates
a 3D image of the environment. Although LiDAR is a powerful and efficient sensor, it is
expensive. GNSS: It describes the layout and configuration of satellites, providing vital
information such as navigation, positioning, and traffic. GNSS uses triangulation to detect
the position of receivers and calculates the distance between satellites in the geostationary
orbit and the vehicle. These signals, however, are weak and can be manipulated by
interference. Ultrasonic sensors: They are short-range parking sensors and are pretty cheap.
They have a limited range, but are ideal for low-speed situations. These sensors measure the
distance of a target object by using ultrasonic waves, and the reflected signals are converted
into electrical signals. GPS: It is a sensor that provides users with spatial information such
as navigation, positioning, and timing. The service is free for civilians and is a vital aspect
of path planning in autonomous vehicles. Figure 4 represents the positioning of different
sensors on a vehicle.
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Figure 4. Types of sensors in AVs.

3.4. Architectures and Algorithms

CNN: This type of neural network is used for image processing as they have high
accuracy in extracting distinctive features from images using the convolution function. It
takes a 2D input and uses multiple hidden layers to extract high-level features. After taking
the input, it identifies useful patterns within the images based on the spatial organization
of the input pixels. Since there is no pre-processing required, CNN can be deployed
easily. In AVs, they are used for path planning and pedestrian detection [12]. RCNN:
This type of neural network is used for object detection. It is preferred over conventional
CNN as using CNN to detect an object within an image takes up a lot of space since the
number of occurrences of the object does not remain constant. RCNN uses a selective
searching process to identify the boundaries and labels for each object in an image and
create a boundary box around them. The bounding box is finally subjected to a linear
regression model to find accurate coordinates for the box. In AVs, RCNN is used for
pedestrian, object, and traffic sign detection [12]. SLAM: SLAM is mainly used to estimate
the relative position of static objects in an environment based on measurements made by
LiDAR or RADAR sensors. RADAR-SLAM can provide velocity information by acting as
an odometer and even perform localization based on map data. LiDAR-SLAM or Visual
SLAM uses a monocular or stereo camera to track the features of consecutive images
while estimating the relative orientation and translation. SLAM is used in AVs for Motion
Control, Path Planning, and sometimes even pedestrian detection [13]. K-Means: It is an
unsupervised algorithm that groups unlabeled or unclassified datasets into predefined
clusters. It associates every cluster with a centroid and aims to minimize the total sum of
distances between cluster centroids and their data points iteratively [14]. YOLO: It is a
CNN-based algorithm written by Joseph Redmon in the Darknet framework, which works
efficiently for real-time object detection. Following that, there has been a succession of
object detectors in computer vision based on YOLO: YOLOv2, YOLOv3, and YOLOv4. It is
a single-stage detector that handles object identification and classification in one network
pass. YOLO-based models are efficient and easy to deploy [15].

4. Autonomous Driving: Key Technologies

AVs alleviate the human burden by performing many intelligent operations like
obstacle avoidance, traffic sign detection, computing the most efficient path to be taken,
and more [6]. However, to do so, these vehicles require contemporaneous solutions in
terms of perception, control, and planning. This section explores the functions above and
the research progress done in their technologies.

4.1. Environment Perception

Any autonomous vehicle must independently perceive its environment to gain neces-
sary information and make control decisions accordingly. Environmental perception can be
performed using visual navigation, laser navigation, or radar navigation. Laser and radar
sensors are deployed to gain extensive information to perceive the environment. Laser
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sensors are used as bridges between the real world and the data world, and radar sensors
are used to calculate the distance. Visual sensors are to detect the traffic signs [16]. AVs
need to classify all the different objects that are present in their surrounding areas. Object
detection is broadly classified into the following three categories [17]:

1. Region selection;
2. Feature extraction;
3. Classification.

Several constraints and added complexities arise in the image scenario as it approaches
real-world conditions, such as:

Partial, side, or angled view, multiple objects in a certain area, similar looking objects
at different distances—making them appear of different sizes, while in reality, they are of
the same size, occluded objects, variation in illumination due to the time of day, slippery
roads, unclear road markings, hazy weather conditions like rain, fog, snow, and changing
traffic lights. One of the most challenging tasks in environment perception of automated
driving is the simultaneous processing of noisy, unclassified, unstructured, substantial
point clouds obtained from 3D LiDAR [18]. DL solves this as it helps us segment, classify
and measure the distance of LiDAR point clouds in real-time to detect objects in a dynamic
environment. YOLOv3 is mostly used as an object detection technique based on deep
learning. K-means clustering is used to divide a picture into grid cells. Every grid cell
produces bounding boxes. The object center falls into one of these bounding boxes, and the
grid cell corresponding to that bounding box is responsible for detecting this object. The
bounding box describes the coordinates of the box center, the height of the box, the width
of the box, and if an object’s center has fallen into the bounding box or not [19]. Images
are captured using RGB, LiDAR, and RADAR cameras and sensors. DL is used on these
images for environment perception and object detection-mainly for: differentiating be-
tween individual objects, vehicle tracking, self-localization, pedestrian detection, predicting
trajectories for unknown paths by generalization, and understanding traffic patterns.

4.2. Pedestrian Detection

Pedestrian recognition is the use of sensors to detect pedestrians in or around the path
of an AV. It incorporates four components: Segmentation, Feature Extraction, Segment
categorization, and Track Categorization [20]. Blurry weather conditions limit the pre-
existing pedestrian detection methods. These reduce the perceptibility and cause hazy
outlines in the images taken by the cameras [21]. A predominant challenge faced by these
methods is detecting pedestrians in misty weather. The low visibility, color cast, and unclear
outline make it challenging to differentiate pedestrians from the background. Chen et al.
suggest in their paper a pedestrian detection method that is based on 3D LiDAR data. The
pipeline of their algorithm is as follows:

1. Transforming 3D LiDAR data to a 2D image. This ensures that the accuracy during
detection does not get affected by any variation in illumination;

2. Building a new dataset for accurately detecting pedestrians outside the field of view
of the camera. This helps in improving the safety factor;

3. Clustering and filtering the dataset to make the detection of pedestrians more promi-
nent and separate objects from the background;

4. A CNN based on PVANET is proposed for increasing the accuracy of pedestrian detection.

This has been tested to be faster than the original PVANET and RCNN models [21].
A cheaper algorithm is proposed by [22] based on 2D LiDAR and monocular images-PPLP
Net. It consists of three sub-networks: OrientNet, RPN, and PredictorNet. The OrientNet
supports powerful 2D pedestrian detection algorithms based on neural networks. Two-
dimensional LiDAR point clouds are transferred to occupancy grid maps by the RPN to
estimate non-oriented pedestrian bounding boxes. For a final regression, the outputs from
these two algorithms are passed through PredictorNet. The final output of the system
is the collection of 3D bounding boxes and orientations for all the pedestrians present.
Zhang et al. discuss in their paper that by combining the information we receive from
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process tracking with segment categorization, we can resolve the occlusion problem. This
method divides the point cloud into groups that are not dependent on each other. We
need to plan for three kinds of features to get complete cues. An algorithm for univariate
feature selection and feature linking is used to synthesize 18 active features. Then, trunk
categorization for subsequent frames is done based on the segment categorization for a
distinct frame. A filter for probability data linkage is taken by using a particle filter for the
categorization. For pedestrians obstructed from the camera’s view, track categorization
can be used to enhance their recognition [23]. Table 4 presents the summary of different
pedestrian detection algorithms.

Table 4. Summary of pedestrian detection algorithms.

Summary Advantages Limitations

PPLP Net
It consists 3 sub-networks:

Orientation detection network (Orient
Network), RPN and a PredictorNet.

It offers a more affordable
solution to the oriented

pedestrian detection problem

Errors produced when a
pedestrian is heavily occluded

by others.

YOLO
It applies a single CNN to the whole

image, which further divides the
image into grids.

The architecture makes it
really fast.

Cannot detect small and close
objects accurately.

tiny-yolov3
It has less number of convolutional

layers than YOLO, and is a simplified
version of it

It occupies less memory and
works significantly faster. Loses detection accuracy.

4.3. Path Planning

Path planning is a challenging task where an object has to find the optimal path to
drive between two points. Path planning is also known as Trajectory Planning. Avs use it to
provide an optimal path for the vehicle in real-time based on onboard sensors like LIDAR,
Camera, GPS, Millimeter Wave Radar, Inertial sensor, etc. A good self-driving car should
be able to make proper analysis and judgment using all the acquired information regarding
roads, traffic, and weather and accurately predict a path for the vehicle. In this paper, we
will look at some of the different path planning algorithms developed over time and the
different approaches used. In a paper titled “Perception, Planning and Control for Self-
Driving System Based on On-board Sensors,” a real-time lane detection system is proposed,
with vision system functions as the primary base [13]. They use a deep learning algorithm
based on CNN. Their system improves the traditional lane detection method by using
CNN to detect lane markings and lane edges for curved lanes. The advantages of using
CNN are that essential features are automatically detected without human supervision. It
can also run on any device as it is very computationally efficient. A discrete optimization
approach based on the frenet coordinate system is used for path calculation; in their
approach, a finite number of paths are calculated, and a cost for each path is calculated.
The path with the least cost is chosen as the final result. Their approach also includes a
cubic spline interpolation technique that generates a path based on GPS data. Compared to
the traditional method of the cubic polynomial fitting algorithm, the curve fit path by the
cubic spline interpolation technique is much smoother and more satisfied with the vehicle
motion pattern. They use LabVIEW to simulate their path planning and lane detection
models. They use images of curved and straight lanes where the proposed path based on
their method is highlighted in green. They compare the pure pursuit trajectory planning
method and frenet optimized trajectory planning method on the simulator to test results.
They also test out their approach on a small model. In another paper entitled “Navigation
Engine Design for Automated Driving Using INS/GNSS/3D LiDAR-SLAM and Integrity
Assessment,” a multisensor fusion system is proposed [24]. This multisensor fusion system,
along with an INS, a GNSS, and a LiDAR system, would be used to implement a 3D SLAM.
This multisensor fusion system is proposed as an improvement over the conventional INS
GNSS and odometer system as it compensates for drawbacks in the previous system. It
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helps to remove the INS-drift by using a highly integrated INS-aiding LiDAR-SLAM so
that the performance. It also increases robustness by adjusting to different environments
because it uses the INS’s initial values. The proposed FDE also contributes to the SLAM
by eliminating failure solutions like algorithm divergence and any local solutions. High
dynamic movement is dealt with using the SLAM model. A central fusion filter benefits
from integrity assessments to avoid failure measurements in the updating process based
on INS-aiding SLAM, consequently increasing reliability and accuracy. As a result of this
multisensor design, a variety of situations can be dealt with, including long-term GNSS
outages, deep urban areas, and highways. The results of this proposed system have an
accuracy of under 1 m in challenging scenarios. The paper proposes such a design because,
according to the authors, an automated driving system will soon require a multisensor
fusion system to meet the high accuracy requirements. Figure 5 demonstrates overtaking a
moving vehicle using an optimal path.

Figure 5. Overtaking a moving obstacle.

4.4. Vehicle Cyber Security

The automotive sector is going through a significant development trend regarding
autonomous driving. Sensors, communication systems, actuators, etc., are some of the
components becoming more and more common in vehicles due to this. This has led to more
complexity, which has increased the number of ways cyber-attacks can occur [25]. This leads
to attackers having access to the vehicles from outside. Several security-related projects have
been conducted as a result of these concerns. Bold initiatives are being taken by technology
giants, automobile manufacturers, and governments all over the world to build safer and
more affordable AVs and bring them to market quickly. Cooperation is essential for tackling
the issue of cybersecurity. Various publishers published a collection of cyber attacks [26].
Based on the different levels of details, these attacks were classified and presented by
Florian Sommer et al. [25]. By categorizing attacks according to varying levels of fact, we
can use the taxonomy for security testing and TARA to provide a uniform description for
testers and security developers. The classification has a collection of 162 published security
attacks, while another version has 413 multi-stage attacks on AVs. These are made available
online to collect knowledge for further research on these topics. Remote control of an AV is
another area where more research is required. When an autonomous vehicle is under attack,
all the vehicle controlling operations need to be assigned to the driver [27]. This approach
won’t be possible in a level 5 automation. The velocity and position are essential parameters
to control a vehicle remotely. For this, a possible solution could be deploying IoT sensors in
ITS [28,29]. If the data communications through wireless channels are under attack, the
attack signals need to be isolated from all the decision-making processes. Once the attack
signals are detected, the jammer could be set up to block attackers only, without interfering
with communication. Figure 6 demonstrates the potential attack surfaces vulnerable in a
cyber attack.
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Figure 6. Attack surfaces used in a potential cyber attack.

4.5. Motion Control

Algorithms of motion planning decide paths for given scenarios. It is crucial for such
algorithms to also learn the driving styles of surrounding vehicles [30]. It is implemented
by steering control and accelerating suitably to generate safe motions for the AV. Dang et al.
suggest three essential categories for developing motion control algorithms—Artificial
Potential Field, Sampling-based technique, and optimal control techniques [31]. The
Artificial Potential Field constructs possible fields of motion based on target pull and
obstruction repulsion. It then analyses the target’s shortest path along the potential field
gradient so that the computing cost becomes small. The downside is that this algorithm
does not account for future driving actions.

For safety reasons, a fair estimate of the intentions of neighboring vehicles needs to be
computed. For such traffic situations, Liu et al. suggest the Driving Intention Prediction
Method, which uses the Hidden Markov model [32]. Cuenca et al., in their paper, suggest
a Q-learning algorithm to navigate roundabouts correctly, as it is a complicated task in
driving situations. Knowledge of entry/exit lanes, priority rules and intentions of other
vehicles in the traffic is required [33].

Wu et al., in their paper, suggest a Gray Prediction Model estimate gaps and find the
correct instance of time for lane switching. Continuous path planning is safe and efficient
for lane switching [34]. Overtaking is an essential element in motion control because, if
not done correctly, it can lead to accidents. Model-Predictive-Control is a technique used
for such maneuvers. It determines the probability of this vehicle overtaking the vehicle in
front based on their comparative speeds [35].

For sideways motion control, Deep Reinforcement Learning methods can be used.
This includes techniques controlling steering-angle, braking, and acceleration [36].

5. Psychology

Customers’ lack of trust and acceptance is a major roadblock to autonomous driving
and vehicles. We require more government and automobile manufacturers’ involvement to
increase consumer trust. Transparency plays a key role in increasing trust regarding self-
driving cars. To build consumer trust, transparency must be modeled as a Non-functional
Requirement for producing self-driving cars. It would also expose the consumer to what
are the potentially significant risks of such technology, which is unproven, and what are
the potential large-scale consequences. Understanding what makes autonomous cars more
acceptable is key for making changes going forward. A study examined the key predictors
that will lead to acceptance of self-driving cars [37]. Four hundred participants were
surveyed to assess the factors leading to acceptance of self-driving cars, and “Posthuman
ability” was the strongest factor. It suggests that people are more receptive to technology
that can exceed human capabilities. This study also revealed several key factors regarding
the acceptance of AVs. This, in turn, helps vehicle manufacturers make changes so that
consumers widely accept the upcoming models. People often identify casual links making



Electronics 2022, 11, 2162 15 of 18

judgments of an event. In the case of AV, the same applies as AI and human drivers differ
regarding the blame level. A study was conducted to see how the level of blame varies
based on attribution theory between an AI and a human driver [38]. The experiment
used a story about a car driving in the dark and hitting a jaywalker. This is similar to
the self-driving car accident by Uber. Eight different scenarios were modified − 2 (victim
survived vs. victim died) × 2 (human vs. AI driver) × 2 (female vs. male driver) to fit the
experimental design. This story was based on an accident that occurred in Arizona with a
self-driving car (Wakabayashi, 2018). This study concluded that the participants blamed
AI drivers more than human drivers. An important parameter that the automakers and
government must consider is how the consumer’s attitude has changed over the years and
whether that change is positive or negative. The change in perception over the years shows
our progress and helps create a road map on how to keep changing public perspectives in
the coming years. Through text analysis, a study examined attitudes towards self-driving
vehicles and factors that motivated them [39]. This study also adds to a previous analysis
based on 2016 and 2017 data [39]. Associating the topics with the survey year revealed
the changes in people’s mentality toward AVs. A Bayes factor of 6.3 represents “positive”
evidence of an effect obtained for the survey year. The study found a change in perception
in response to the survey questions compared to the previous year’s result. A similar
study examined how individuals attribute responsibility to an AI agent or a human agent
under the Expectancy Violation Theory for a positive or negative event [40]. People who
participated in the study were given a fictitious news article to read as stimuli. The news
articles were of two types-one contained an AI agent, and the other held a human agent.
After reading the article, all participants were asked about their perceptions of the driver.
The study had similar findings where they concluded that if an adverse event occurred, an
AI agent would be deemed more responsible than a human. Still, it was also found that if
an AI agent results in a positive outcome, it receives more praise than a human agent.

6. Challenges

In this section, we discuss the issues prevalent in research on AI in AV. Research on
this topic highlights the numerous advantages AV brings to the table. We studied the
literary works on this topic and reviewed them in this paper. The common trend in the
challenges is the lack of implementation of proposed algorithms due to a scarcity of data
in this domain. In pedestrian detection, no real-world experimentation is done to test the
proposed methods’ ability to classify objects in real-time. As a result of heavy obstructions,
the orientation of a pedestrian may occasionally not match the image mask of another,
resulting in errors in orientation estimation. So no algorithm is completely accurate or fast.
There is a compromise between speed and accuracy while detecting pedestrians in the
dark. Prediction of pedestrians’ behavior is often overlooked. In trajectory planning, most
of the research papers that focused on trajectory detection did not have any real-world
demonstration and solely relied on either simulation to prove their approach for trajectory
detection or proposed problems to solutions using deep learning algorithms. The papers
which did have real-world approaches were now obsolete. In motion control, the Model
Predictive Control algorithm is the main algorithm used for lateral motion control. Still,
it has limited fault detection, and the uncertainties that do not match given conditions
are not eliminated [20]. In psychology research, there is no real-life implementation for
non-functional requirements regarding transparency in self-driving cars, and it’s not much
studied, so the literature search was limited. With dramatically transforming technology,
the availability bias makes it likely that they will be more influenced by the crashes that have
occurred with various types of automated vehicles than the new experiences self-driving
vehicles might afford.

7. Future Scope

Vehicles and other transportation systems are under research and development to
usher in an autonomous future. The future is heading towards a technologically advanced
driverless world. These developments in AVs will lead to further advancements in tech-
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nology. Various applications based on IoV and VANETs have already been proposed.
Advancements in IoV have made it possible to construct powerful next-generation in-
frastructures, acting as an interface to connect multiple objects such as vehicular sensors,
actuators, and entire vehicles to the Internet. Research into technologies such as BCG is
being carried out to distribute content through cloud support in developing smart cities
based on IoT [41]. VANETs is a technology based on IoV. Its primary role is to ensure
uninterrupted access to resources such as the Internet for connectivity [42]. The rapid
advancement of the Internet has increased the number of users, and VANETs can be used
to satisfy their needs by accessing resources and staying connected to the Internet while
on the move. It also had potential uses in other fields such as health and safety, intelligent
transportation systems, and military systems, to name a few. Using VANET, we can cluster
vehicles according to routing, mobility, and behaviors on the road, allowing us to keep
an adaptive approach in monitoring traffic and pollution density. This information will
also help the AVs make adaptive decisions for route selection. The advantages of using
VANET for tracking, navigating, routing, and communication will become more appar-
ent once vehicle-to-vehicle communication becomes approved by governments and all
cars on the road adapt to this technology [43]. The study at [44] suggests using Radio
Frequency Identification to be utilized by moving vehicles and roadside units for Vehicle-
to-Infrastructure communication as efficient cellular or LTE communication channels exist
between Roadside units and the cloud platform. This suggests a secure and safe channel to
get information to and from the vehicular cloud. According to the study, it can also be used
for Vehicle-to-Vehicle communication and will have countless benefits in the healthcare
sector. The study at [45] suggests a new routing algorithm based on collaborative learning
for delivering information to the destination, maximizing throughput, and minimizing
delay. This technology would help vehicular sensor networks (VSNs) in case of an increase
in the density of the vehicles on the road and route jamming in the network. Based on
the closeby access points, the learning automata learn from experience and make routing
decisions quickly.

8. Conclusions

In this survey, we have outlined, highlighted, and investigated the technological
advancements in autonomous driving. We also examined the recent advances and case
studies on autonomous driving. While conducting this review, we discovered and discussed
all the future research challenges for further studies in this domain that were mostly
related to implementing the proposed technologies in the real world. Certain aspects of
safety, path planning algorithms, security, and privacy have also been reviewed in this
paper. Non-technical challenges such as consumer trust, governance, and human behavior
towards autonomous driving play a major role in bringing AVs and related technologies to
widespread use. This review could contribute with necessary insights into the emerging
domains in autonomous driving. We can conclude that autonomous vehicles are the way of
the future, and vehicles with Level 3 Automation are ready for commercialization. Despite
the enormous advances in these past years with autonomous technology, we think it is
still early to speculate about the commercialization of AV above Level 3 Automation. With
efforts toward robustness at all levels of automation, we believe the automated vehicles
running on efficient and safe roads are just around the corner.
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Devices; Jain, V., Patnaik, S., Popent, iu Vlădicescu, F., Sethi, I., Eds; Advances in Intelligent Systems and Computing; Springer:
Singapore, 2020; Volume 1006. [CrossRef]

16. Zhao, J.; Liang, B.; Chen, Q. The key technology toward the self-driving car. Int. J. Intell. Unmanned Syst. 2018, 6, 2–20. [CrossRef]
17. Gupta, A.; Anpalagan, A.; Guan, L.; Khwaja, A.S. Deep learning for object detection and scene perception in self-driving cars:

Survey, challenges, and open issues. Array 2021, 10, 100057. [CrossRef]
18. Jung, Y.; Seo, S.-W.; Kim, S.-W. Curb Detection and Tracking in Low-Resolution 3D Point Clouds Based on Optimization

Framework. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3893–3908. [CrossRef]
19. Li, G.; Yang, Y.; Qu, X. Deep Learning Approaches on Pedestrian Detection in Hazy Weather. IEEE Trans. Ind. Electron. 2019, 67,

8889–8899. [CrossRef]
20. Bachute, M.R.; Subhedar, J.M. Autonomous Driving Architectures: Insights of Machine Learning and Deep Learning Algorithms.

Mach. Learn. Appl. 2021, 6, 100164. [CrossRef]
21. Chen, G.; Mao, Z.; Yi, H.; Li, X.; Bai, B.; Liu, M.; Zhou, H. Pedestrian detection based on panoramic depth map transformed from

3d-lidar data. Period. Polytech. Electr. Eng. Comput. Sci. B 2020, 64, 274–285. [CrossRef]
22. Bu, F.; Le, T.; Du, X.; Vasudevan, R.; Johnson-Roberson, M. Pedestrian Planar LiDAR Pose (PPLP) Network for Oriented Pedestrian

Detection Based on Planar LiDAR and Monocular Images. IEEE Robot. Autom. Lett. 2019, 5, 1626–1633. [CrossRef]
23. Zhang, S.; Yang, J.; Schiele, B. Occluded pedestrian detection through guided attention in cnns. In Proceedings of the IEEE

conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6995–7003.
24. Chiang, K.-W.; Tsai, G.-J.; Li, Y.-H.; Li, Y.; El-Sheimy, N. Navigation Engine Design for Automated Driving Using INS/GNSS/3D

LiDAR-SLAM and Integrity Assessment. Remote Sens. 2020, 12, 1564. [CrossRef]
25. Sommer, F.; Dürrwang, J.; Kriesten, R. Survey and Classification of Automotive Security Attacks. Information 2019, 10, 148.

[CrossRef]
26. Ring, M., Dürrwang, J., Sommer, F. and Kriesten, R. Survey on vehicular attacks-building a vulnerability database. In Proceedings

of the 2015 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Yokohama, Japan, 5–7 November 2015;
pp. 208–212.

27. Chowdhury, A.; Karmakar, G.; Kamruzzaman, J.; Jolfaei, A.; Das, R. Attacks on Self-Driving Cars and Their Countermeasures:
A Survey. IEEE Access 2020, 8, 207308–207342. [CrossRef]

http://doi.org/10.1016/j.enchem.2020.100036
http://dx.doi.org/10.1002/adma.202105163
http://www.ncbi.nlm.nih.gov/pubmed/34554610
http://dx.doi.org/10.1002/adma.202107836
http://www.ncbi.nlm.nih.gov/pubmed/34719819
http://dx.doi.org/10.1093/nsr/nwz137
http://www.ncbi.nlm.nih.gov/pubmed/34692046
http://dx.doi.org/10.1109/MNET.2019.1900120
http://dx.doi.org/10.1109/ACCESS.2020.2983149
http://dx.doi.org/10.1080/01441647.2018.1518937
http://dx.doi.org/10.1109/COMST.2018.2869360
http://dx.doi.org/10.5198/jtlu.2019.1405
http://dx.doi.org/10.4271/J3016.201806
http://dx.doi.org/10.1016/j.vehcom.2019.100184
http://dx.doi.org/10.1177/1687814020956494
http://dx.doi.org/10.3390/electronics9081295
http://dx.doi.org/10.1007/978-981-13-9406-5-34
http://dx.doi.org/10.1108/IJIUS-08-2017-0008
http://dx.doi.org/10.1016/j.array.2021.100057
http://dx.doi.org/10.1109/TITS.2019.2938498
http://dx.doi.org/10.1109/TIE.2019.2945295
http://dx.doi.org/10.1016/j.mlwa.2021.100164
http://dx.doi.org/10.3311/PPee.14960
http://dx.doi.org/10.1109/LRA.2019.2962358
http://dx.doi.org/10.3390/rs12101564
http://dx.doi.org/10.3390/info10040148
http://dx.doi.org/10.1109/ACCESS.2020.3037705


Electronics 2022, 11, 2162 18 of 18

28. Rana, M.M. IoT-based electric vehicle state estimation and control algorithms under cyber attacks. IEEE Internet Things J. 2019, 7,
874–881. [CrossRef]

29. Liu, Q.; Mo, Y.; Mo, X.; Lv, C.; Mihankhah, E.; Wang, D. Secure pose estimation for autonomous vehicles under cyber attacks. In
Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1583–1588.

30. Yin, G.; Li, J.; Jin, X.; Bian, C.; Chen, N. Integration of Motion Planning and Model-Predictive-Control-Based Control System for
Autonomous Electric Vehicles. Transport 2015, 30, 353–360. [CrossRef]

31. Dang, D.; Gao, F.; Hu, Q. Motion Planning for Autonomous Vehicles Considering Longitudinal and Lateral Dynamics Coupling.
Appl. Sci. 2020, 10, 3180. [CrossRef]

32. Liu, S.; Zheng, K.; Zhao, L.; Fan, P. A driving intention prediction method based on hidden Markov model for autonomous
driving. Comput. Commun. 2020, 157, 143–149. [CrossRef]

33. García Cuenca, L.; Puertas, E.; Fernandez Andrés, J.; Aliane, N. Autonomous driving in roundabout maneuvers using reinforce-
ment learning with Q-learning. Electronics 2019, 8, 1536. [CrossRef]

34. Wu, X.; Qiao, B.; Su, C. Trajectory Planning with Time-Variant Safety Margin for Autonomous Vehicle Lane Change. Appl. Sci.
2020, 10, 1626. [CrossRef]

35. Ortega, J.; Lengyel, H.; Szalay, Z. Overtaking maneuver scenario building for autonomous vehicles with PreScan software. Transp.
Eng. 2020, 2, 100029. [CrossRef]

36. Wasala, A.; Byrne, D.; Miesbauer, P.; O’Hanlon, J.; Heraty, P.; Barry, P. Trajectory based lateral control: A Reinforcement Learning
case study. Eng. Appl. Artif. Intell. 2020, 94, 103799. [CrossRef]

37. Gambino, A.; Sundar, S.S. Acceptance of self-driving cars: Does their posthuman ability make them more eerie or more desirable?
In Proceedings of the Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow
Scotland, UK, 4–9 May 2019; pp. 1–6.

38. Hong, J.W.; Wang, Y.; Lanz, P. Why is artificial intelligence blamed more? Analysis of faulting artificial intelligence for self-driving
car accidents in experimental settings. Int. J. Human–Computer Interact. 2020, 36, 1768–1774. [CrossRef]

39. Lee, J.D.; Kolodge, K. Exploring Trust in Self-Driving Vehicles Through Text Analysis. Hum. Factors: J. Hum. Factors Ergon. Soc.
2019, 62, 260–277. [CrossRef] [PubMed]

40. Hong, J.W.; Cruz, I.; Williams, D. AI, you can drive my car: How we evaluate human drivers vs. self-driving cars. Comput. Hum.
Behav. 2021, 125, 106944. [CrossRef]

41. Kumar, N.; Rodrigues, J.J.P.C.; Chilamkurti, N. Bayesian Coalition Game as-a-Service for Content Distribution in Internet of
Vehicles. IEEE Internet Things J. 2014, 1, 544–555. [CrossRef]

42. Kumar, N.; Chilamkurti, N.; Park, J.H. ALCA: agent learning–based clustering algorithm in vehicular ad hoc networks. Pers.
Ubiquitous Comput. 2012, 17, 1683–1692. [CrossRef]

43. Lee, M.; Atkison, T. VANET applications: Past, present, and future. Veh. Commun. 2020, 28, 100310.
doi: 10.1016/j.vehcom.2020.100310. [CrossRef]

44. Kumar, N.; Kaur, K.; Misra, S.C.; Iqbal, R. An intelligent RFID-enabled authentication scheme for healthcare applications in
vehicular mobile cloud. Peer-to-Peer Netw. Appl. 2015, 9, 824–840. [CrossRef]

45. Kumar, N.; Misra, S.; Obaidat, M.S. Collaborative Learning Automata-Based Routing for Rescue Operations in Dense Urban
Regions Using Vehicular Sensor Networks. IEEE Syst. J. 2014, 9, 1081–1090. [CrossRef]

http://dx.doi.org/10.1109/JIOT.2019.2946093
http://dx.doi.org/10.3846/16484142.2015.1089322
http://dx.doi.org/10.3390/app10093180
http://dx.doi.org/10.1016/j.comcom.2020.04.021
http://dx.doi.org/10.3390/electronics8121536
http://dx.doi.org/10.3390/app10051626
http://dx.doi.org/10.1016/j.treng.2020.100029
http://dx.doi.org/10.1016/j.engappai.2020.103799
http://dx.doi.org/10.1080/10447318.2020.1785693
http://dx.doi.org/10.1177/0018720819872672
http://www.ncbi.nlm.nih.gov/pubmed/31502885
http://dx.doi.org/10.1016/j.chb.2021.106944
http://dx.doi.org/10.1109/JIOT.2014.2374606
http://dx.doi.org/10.1007/s00779-012-0600-8
http://dx.doi.org/10.1016/j.vehcom.2020.100310
http://dx.doi.org/10.1007/s12083-015-0332-4
http://dx.doi.org/10.1109/JSYST.2014.2335451

	Introduction
	Motivation
	Contribution
	Comparison
	Organization

	Methods and Materials
	Research Questions
	Conducting the Research
	Screening of Papers
	Grouping Using Keywords
	Mapping the Process

	Background of Autonomous Vehicles
	Common Terms Related to Autonomous Vehicles
	Levels of Autonomy
	Sensors Used in Autonomous Vehicles
	Architectures and Algorithms

	Autonomous Driving: Key Technologies
	Environment Perception
	Pedestrian Detection
	Path Planning
	Vehicle Cyber Security
	Motion Control

	Psychology
	Challenges
	Future Scope
	Conclusions
	References

