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Abstract: In natural language processing (NLP), document classification is an important task that
relies on the proper thematic representation of the documents. Gaussian mixture-based clustering
is widespread for capturing rich thematic semantics but ignores emphasizing potential terms in
the corpus. Moreover, the soft clustering approach causes long-tail noise by putting every word
into every cluster, which affects the natural thematic representation of documents and their proper
classification. It is more challenging to capture semantic insights when dealing with short-length
documents where word co-occurrence information is limited. In this context, for long texts, we
proposed Weighted Sparse Document Vector (WSDV), which performs clustering on the weighted
data that emphasizes vital terms and moderates the soft clustering by removing outliers from the
converged clusters. Besides the removal of outliers, WSDV utilizes corpus statistics in different steps
for the vectorial representation of the document. For short texts, we proposed Weighted Compact
Document Vector (WCDV), which captures better semantic insights in building document vectors by
emphasizing potential terms and capturing uncertainty information while measuring the affinity
between distributions of words. Using available corpus statistics, WCDV sufficiently handles the data
sparsity of short texts without depending on external knowledge sources. To evaluate the proposed
models, we performed a multiclass document classification using standard performance measures
(precision, recall, f1-score, and accuracy) on three long- and two short-text benchmark datasets that
outperform some state-of-the-art models. The experimental results demonstrate that in the long-text
classification, WSDV reached 97.83% accuracy on the AgNews dataset, 86.05% accuracy on the
20Newsgroup dataset, and 98.67% accuracy on the R8 dataset. In the short-text classification, WCDV
reached 72.7% accuracy on the SearchSnippets dataset and 89.4% accuracy on the Twitter dataset.

Keywords: classification; text mining; natural language processing; machine learning; corpus statistics

1. Introduction

Language modeling with binary one-hot word encoding is higher dimensional and
sparse with no semantic information. As a result, the word analogy is missing; e.g.,
the distance between word vectors represents only the difference in alphabetic ordering.
However, point vector representation of words in the embedding space like word2vec [1]
and GloVe [2,3] contain semantic information. Representing a dense low-dimensional
fixed-length document vector is much more expensive and complicated. Moreover, it
is challenging to infer unseen documents during the test process. The simplest method
to get document embedding is the weighted averaging of word embeddings in the doc-
ument [4]. Document Vector through Corruption (Doc2VecC) [5] is a significant study
that shows how a simple weighted averaging technique combined with a simple noise-
eliminating procedure can be effective. However, Doc2VecC did not cover the underly-
ing themes of the document. Sparse Composite Document Vector (SCDV) [6] addresses
this limitation by using word embeddings and the Gaussian mixture clustering to gener-
ate the document vector, which also overcomes the shortcomings of the hard-clustering
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approach [7]. SCDV shows significant improvement in the downstream natural language
processing (NLP) tasks, including document classification. However, SCDV inherits noisy
tails from the Gaussian mixture clustering that is not appropriate for the document contain-
ing multiple sentences [8]. Another vital issue ignored by most document representation
methods is ignoring potential terms in the corpus, which is essential for understanding
deep semantic insight of the documents.

It is hard to encode the richness of semantic insights for short-length documents where
word co-occurrence information is limited [9]. Therefore, many works suggest importing
semantic information from external sources [10–12]. However, accessing information from
external sources (e.g., Wikipedia) may cause irrelevant noise corresponding to the current
short text corpus.

In this context, we aim to develop corpus statistics-based semantically enriched vecto-
rial representation of the noisy long and sparse short texts for the multi-class document
classification performance with the objectives of solving the following research questions:

• How to efficiently model noisy long and sparse short texts for the classification
performance?

• How to efficiently encode the semantically enriched vectorial representation of docu-
ments using available corpus statistics to enhance classification performance?

• Is it possible to model efficient sparse short-length documents utilizing available
corpus statistics instead of depending on external knowledge sources?

• How can we utilize potential words in the document for deep thematic insights?

Sparse Composite Document Vector with Multi-Sense Embeddings (SCDV-MS) [13]
forces discarding the outliers from the clustering output to eliminate long-tail noises in
the SCDV, which applies a hard threshold that may hinder the thematic representation of
documents. Moreover, representing proper expressive documents depends upon modeling
the underlying semantic topics in the correct form [14], which requires capturing deep
semantics insights buried in words, expressions, and string patterns [15]. Hence, for the
noisy long texts, we proposed Weighted Sparse Document Vector (WSDV) that embodies
important words emphasizing capability using Pomegranate General Mixture model [16],
and a soft threshold-based noise reduction technique.

It is challenging to capture semantics insights in document modeling with sparse
short texts. The probability distribution of words captures better semantics than the point
embedding approach (e.g., word2vec) [17] as it generalizes deterministic point embeddings
of the terms using the mean vector, and the covariance matrix holds uncertainty of the
estimations. Hence, instead of depending on external knowledge sources, we proposed
corpus statistics empowered Weighted Compact Document Vector (WCDV), which emphasizes
potential terms while performing probability word distribution using the weighted energy
function. In WCDV, we employ the Multimodal word Distributions [18] that learns distri-
butions of words using the Expected Likelihood Kernel [19], which computes the inner
product between distributions of words to get the affinity of word pairs. However, every
word in a document does not hold the same importance; some are used more frequently
than others, indicating their importance in the corpus. It is required to emphasize the
frequently used words, especially when word co-occurrence information is limited (e.g.,
microblogging, product review, etc.). Therefore, to preserve the word frequency importance,
we proposed Weight attained Expected Likelihood Kernel which considers term frequency-
based point weights while measuring the partial log energy between distributions in the
Multimodal word Distributions [18].

The organization of the remaining parts of the paper is as follows. Section 2 contains
discussions about related works. Section 3 explains the methodologies used in the proposed
approaches. Section 4 represents the functionality of the proposed approaches. Section 5
carries out the analysis of the experiments and obtained results. Finally, Section 6 concludes
the article.
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2. Literature Review

Word embeddings models ignore side information (e.g., document labels) while learn-
ing embeddings from enormous document corpora. To improve word representation
and text classification accuracy, Linear, Y. et al. [20] proposed to use document labels
as the global context both in the local neural network model and the global matrix fac-
torization framework. Obayes, H.K. et al. [21] combined GloVe and bidirectional long
short-term memory (BiLSTM) recurrent neural network for better sentiment classifica-
tion, which causes expensive computation and no guidance for documents containing
multiple sentences. Yang, Z. et al. [22] proposed Hierarchical attention networks (HAN)
for document classification, which maintain a hierarchical structure of word to sentence
(building sentence from words) and sentence to document (aggregating sentences to a
document representation). Zhang, Z. et al. [23] proved that the TFIDF algorithm with the
combination of Naive Bayes has significance in the text classification task compared to
many complex models.

Recently, transformers-based models [24,25] became more prevalent in downstream
Natural Language Processing (NLP) tasks (e.g., document classification). Wang, B. and-
linebreak Kuo, C-C.J. [26] proposed SBERTWK for sentence embedding, which trains on
both word and sentence level objectives but no guidance for representing a document
that contains multiple sentences. However, the transformer-based model requires enor-
mous computational resources. Sanh, V. et al. [27] introduced a distilled version of BERT
called DistilBERT, which is smaller, faster, cheaper, and lighter than other transformers-
based models.

Mapping sentences to a fixed-length embedding vector using Universal Sentence
Encoder (USE) based method [28] also got success in the downstream Natural Language
Processing (NLP) task. The sentence analysis method made by combining Universal
Language Model Fine-tuning (ULMFiT) with the Support Vector Machine (SVM) [29] is
capable of performing document classification using a small amount of data but has higher
computational complexity.

Yet, K.S. et al. [30] proposed document embedding along with their uncertainty called
the Bayesian subspace multinomial model (Bayesian SMM) to capture better semantics. It is
a generative log-linear model that learns to represent documents in the form of the Gaussian
distributions and encodes uncertainty in the covariance matrix but holds only a single
mode of words. Therefore, encoded uncertainty might diffuse spontaneously; the mean
vector can be pulled in one direction and represents one particular meaning by leaving
others not representing [31]. Different senses of a word lie in the linear superposition of
standard word embeddings [32] and the Gaussian mixture model holds multiple modes to
represent distinct meanings of words.

For the long texts classification, we proposed WCDV, which represents documents with
uncertainty estimations in the distribution of words using Gaussian Mixtures distributions
for short-length document classification. We proposed WSDV using the Pomegranate
General Mixture model for the long texts classification. Both WSDV and WCDV ac-
commodate polysemous terms and train on the labeled documents corpus for better
classification performance.

Noisy topics are outliers prone, thus less coherent and less expressive. Newman, D. [33]
regularized the LDA-based topic model where only the higher frequency terms allow
into the word dependencies sparse covariance matrix. This model executes two prime
steps. Firstly, measuring the point weight of each word in the vocabulary, and secondly,
putting a threshold point to eliminate lower weighted words from the covariance matrix.
Mittal, M. et al. [34] introduced automated K-means clustering, where they applied a
threshold point to decide whether or not to create a new cluster for the objects. This
approach prohibits outlier tendency by accommodating lower probability objects into a
new cluster. Gupta, V. et al. [13] introduced SCDV-MS, which removes noise by applying a
hard threshold on the fuzzy word cluster assignments, which proved better classification
performance and lower space and time complexity than SCDV [6].
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In contrast, the proposed WSDV contains more natural noise removal techniques
using a soft threshold and more efficient sparse vectorial representation for the long text
(e.g., removing first principle components).

To capture better corpus semantics, Sia, S. et al. [35] introduced weighted data cluster-
ing on pre-trained word embeddings, where they also proved the effectiveness of re-ranking
the top words in a cluster for better representative topics. Similarly, Gebru, I.D. et al. [36]
proposed a Gaussian mixture-based weighted data clustering method called WD-GMM
that demonstrates how the point weight of datum affects the covariance matrix and leads
to better clustering. Inspired by them, we proposed WSDV, which extends the clustering
process on the weighted data for the multi-class document classification performance.

Short texts are sparse due to limited word co-occurrence, which requires special
treatment to capture hidden semantic information [37,38]. Pretrained word embedding
over large external corpora is a common remedy for dealing short length documents.
Zuo, Y. et al. [39] proposed a word embedding-enhanced Pseudo-document-based Topic
Model (WE-PTM) to leverage pre-trained word embeddings that is essential for allevi-
ating data sparsity. Instead of incorporating external knowledge sources, Zhang, P. and
He, Z. [40] proposed an ensemble approach by exploiting both word embeddings and
latent topics in sentence-level sentiment analysis for sentence polarity detection.

Therefore, for semantically enriched short-length document representation, instead
of importing information from external knowledge sources, we employ Multimodal word
Distributions [18] to capture uncertainty in the distribution of word embeddings for the
vectorial representation of documents.

The contextual analysis-based model emphasizes potential terms that capture better
semantics insights and boost classification performance [41]. Xu, J. et al. [42] proposed a
convolutional neural network-based model, which incorporates context-relevant concepts
into text representation for uplifting short text classification performance, but it requires
expensive computational capacity.

In WCDV, we use the weighted energy function to emphasize potential terms in the
short texts corpus.

Weighted Kernel Density Estimation (WKDE) [43,44] based on point weights has proved
effective. For the semantic similarity measuring task, constant weighting assumption-based
semantic similarity [45] measure between two concepts/words holds better performance
for the semantic representation of the concept/words but holds the same weighting rel-
evance. Later, it found that the weight propagation mechanism [46,47] for augmenting
input with semantic information achieves desired performance and removes the same
weighting curse for concepts/words. Recently, Liu J. et el. [48] introduced a weighted
kernel mechanism for the weighted k-means multi-view clustering, where they redefined
the objective by assigning weights to the cluster level instead of global weighting for each
view and outperforming the existing objective.

Inspired by their work, we proposed a novel word frequency concerned energy
function called Weight attained Expected Likelihood Kernel for computing affinity between
word pairs. To capture better segments in the WCDV, we modify the objective of the
Multimodal word Distributions [18] by applying the newly proposed energy function and
employ the modified Multimodal word Distributions for the topic distribution of words
in WCDV.

3. Methodology

Using available corpus statistics leads to success in many downstream Natural Lan-
guage Processing (NLP) tasks. Semantic information of documents plays a potential role
in their classification [49]. Topic modeling is the standard approach for unveiling the
underlying semantics of documents [50]. Word embeddings and clustering are the best
partners as clustering methods can utilize available corpus statistics for exploratory doc-
ument analysis [51]. We use weighted data clustering to obtain the underlying topis and
represent document vectors utilizing corpus statistics in different stages.
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3.1. Clustering on Weighted Data

One of the most optimized computational complexity topic modelings is the Latent
Dirichlet Allocation (LDA) [52], which computes the probability of a word being in a
particular topic based on the statistics of how many times this word appears in this topic.
Inspired by LDA, Sia, S. et al. [35] studied various techniques to define weight for each data
point and found that the term frequency (tf) performs better. Inspired by their work, we use
the term frequency (tf) to form the point weight for each data point in the training corpus.

term f requency, t f =
nt

∑t′ nt′
, (1)

point weights, ω = t f + 0.01. (2)

Here, nt is the count of word type t, and ∑t′ nt′ is the total count of all word types in
the corpus. The numerical constant 0.01 manipulates tf, such that ∑ ω 6= 1.

Let x ∈ Rd be the random vector following a multivariate Gaussian distribution with
the mean µ ∈ Rd and the covariance Σ ∈ Rd×d, namely p(x|θ) = N (x; µ, Σ) with the
notation θ = (µ, Σ). Let ω > 0 be a weight indicating the relevance of the observation x
such that the higher the weight, the stronger the impact of x, that is observing x ω times
when incorporating ω as the weight relevance of the data point x. The likelihood function
is thus N (x; µ, Σ)ω. The power ω is not a probability distribution as it does ont sum to 1
(one); it plays the role of the precision [36] and is different for each datum x. So,

p(x, θ, ω) = N (x; µ, Σ)ω = N (x; µ,
1
ω

Σ) . (3)

From Equation (3), a Gaussian mixture based density function to represent the proba-
bility distribution of a word (data point) x with k components then derives as bellow:

f (~x) =
k

∑
i=1

px,i N (x; µ,
1
ω

Σx,i)

=
k

∑
i=1

px,i√
2π| 1

ω Σx,i|
e−

1
2 (~x−µx,i)

T ∑−1
i=1(~x−µx,i)

(4)

where, px,i’s are mixture coefficients satisfy px,i > 0 and ∑k
i=1 px,i = 1. ~x is the vector

representations of word x, and ω > 0 contains weights associate with each data point x.
Gaussian Mixtures Distributions and its automatic variant [53] do not allow weights

as a parameter for data clustering. As a result, SCDV and SCDV-MS do not support
clustering on the weighted data. An alternative implementation to the Gaussian Mixtures
Distributions called Pomegranate General Mixture model [16] allows the mixtures of arbitrary
distributions with the same dimensionality components. The Pomegranate General Mixture
model allows weights parameter along with the input data for the soft clustering that
estimates a covariance matrix for each component. The weights parameter contains the
initial weight for each data point; if the weights parameter does not utilize, then it initializes
the same weight for all data points.

3.2. Moderate Clustering

The Gaussian mixture clustering is outlier-prone as it poses the soft clustering concept.
Some alternative models to handle outliers are the mixture of t-distributions [54], and its
variants [55–60]. The soft clustering causes data outliers in SCDV by allowing the lower
probability words in the clusters. An outlier-prone data point is far from the cluster center
with a low probability score. SCDV-MS shows removing a particular portion of the data
points with low probability scores alleviate noise, which puts a hard threshold. To reduce
outliers in WSDV, we introduce a dynamic soft threshold constraint to moderate the soft
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clustering approach called moderate clustering. This constraint makes sure only words w
out of W (where w < W) with a higher probability score can be part of a cluster [32,61].
In WSDV, after the convergence of the clustering process, we calculate a threshold point
using Equation (5). We put 0 (zero) to the values below the threshold point in the word
probability matrix, which removes the words from the clusters by not allowing every word
but those above the threshold point.

Let ρ be the threshold point, γ be the percentage probability threshold, and φk be the
probability of a word being in the kth cluster. So,

φk =

{
φk if |φk| ≥ ρ
0 otherwise

(5)

where, ρ = γ
100 ∗ t; t =

|φkmin
|+|φkmax |

2 .
The value of the percentage probability threshold γ needs to be adjusted, we found

that for k = 20 in 20Newsgroup, k = 8 in R8 and k = 7 in AgNews, γ = 7 works better. The
moderate clustering strategy divides the embedding space into the number of clusters
semantic subspaces [8]. As a result, WSDV is more expressive for document representation
than SCDV.

3.3. Re-Ranking the Top Words

In distribution-based clustering algorithms like the Gaussian Mixture model, the top
words are those that have the highest probability in the cluster as a result closest to the
cluster center c(k) (center of the kth cluster) that is for the top J words

argminJ:|J|=10 ∑j∈J f (xj)|c(k), Σk .

The top J words of a cluster may represent a sensitive topic without the guarantee of
having important words closest to the cluster center [35]. A simple re-ranking of the terms
using corpus statistics gives a better topical representation of the clusters. The re-ranking
has an extra O(n log(nk)) cost factor for the n unique terms in the vocabulary, where nk is
the average number of elements in the kthcluster. Differ from SCDV, after the convergence
of the weighted data clustering, we re-rank the top words using simple word frequency of
the corpus that leads to relevant top J words closest to the cluster center as below:

argminJ:|J|=10 ∑j∈J f (xj)|c(k), 1
ω Σk

where weight vector ω contains different point weight for each term x in the corpus.

3.4. Kernel Based Similarity

Like any other input objects, word vectors can be implicitly mapped into the Hilbert
space with a base kernel and fit a Gaussian distribution on them [62]. This process combines
the advantage of discriminative learning algorithms and kernel machines with generative
modeling. The kernel evaluates by integrating the product of the fitted generative models
on the corresponding data points [63].

Let K is the kernel, and two input objects x and x
′

are mapped over the Hilbert space
〈〉L2 using a mapping function Φ

K(x, x
′
) = 〈Φ(x), Φ(x

′
)〉L2 (6)

Instead of direct operation on the training and the testing objects, kernel-based algo-
rithms focus on evaluating the value of the kernel function for each pair of objects [64].
Objects xiεRn generally represented as vectors, kernel K is a closed-form positive definite
function on Rn such as Gaussian RBF

K(x, x
′
) = e

−‖ x − x
′
‖2

(2σ2) (7)
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The input space literally can be anything as long as the applied function on it is
positive definite and holds reliable similarity measure between examples, which satisfies
the condition below:

∑m
i,j=1 CiCj K(xi, xj) ≥ 0

It ensures that the Kernel K is a positive (semi-) definite symmetric similarity measure
for any mεN and set of examples x1, x2, x3, . . . , xm εX for representing input space with
coefficients C1, C2, C3, . . . , Cm. This conditioning results in a massive expansion of novel
kernels in different fields, such as kernels on the statistical manifold [65], Gapped String
Kernels [66] and so on. There are several kernel-based similarity or distance measures for
distributions, e.g., Semantic kernel-based Neural embeddings [67], Fisher kernel-based
Bayesian network [68], Heat kernel-based Manifold learning [69], Kullback-Leibler (KL) di-
vergence for Die cracks detection [70] and so on. The KL-divergence is not straightforward
as kernels and is not positive definite. The disadvantage of this kind of asymmetric local
approximation model is that the exponential family only generates a linear Fisher kernel.
The Heat kernel is an alternative nonlinear kernel capable of dealing with the statistical
manifold. However, it is still not fully capable of handling the exponential family or the
mixture model in the closed-form.

From Equation (6) kernel between probability distributions, p and p
′

on space x can
draw as

K(x, x
′
) = K(p, p

′
) = 〈p(x), p

′
(x)〉L2 (8)

The probability product kernel between distrains p and p
′

is

K(x, x
′
) =

∫
x

p(x)ρ, p
′
(x)ρ dx = 〈p, p

′〉L2 (9)

where ρ is a positive constant, such that pρ, p
′ρ ε L2(x); L2(x) represents the Hilbert space.

Different values of ρ has significance in kernel’s evaluation, e.g., ρ = 1/2 involve statistical
affinity between distributions

K(p, p
′
) =

√
p(x)

√
p′(x) dx (10)

Equation (10) is known as the Bhattacharyya kernel [19]. It is commonly known as
Bhattacharyya affinity between distributions in the statistical literature, which is related
to the symmetric approximation of the Kullback-Leibler (KL) divergence known as the
Hellinger’s distance

H(p, p
′
) =

1
2

∫
(
√

p(x)
√

p′(x))2 dx (11)

by H =
√

2− 2k. The Bhattacharyya kernel has a special property k(p, p
′
) = 1. For ρ = 1,

the kernel has another special form that behaves as the expectation of one distribution
under the other:

K(p, p
′
) =

∫
x

p(x)ρ, p
′
(x)ρ dx

= Ep[p
′
(x)] = Ep′ [p(x)]

(12)

Equation (12) is known as the Expected Likelihood Kernel, which is easy to evaluate
through the sampling methods when the closed-form does not exist.

4. Proposed Approaches

As stated earlier, we proposed two document representation methods derived from
corpus statistics for classification tasks. Clustering regular documents (long texts) cause
irrelevant noise. To capture semantically enriched topics and redeem noisy long tail, we
proposed Weighted Sparse Document Vector (WSDV).
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It is always challenging to capture hidden semantics when word co-occurrence is lim-
ited. To overcome the data sparsity challenge in capturing hidden semantics for short texts,
we proposed Weighted Compact Document Vector (WCDV), which captures the uncertainty
of the topic distribution of words using a novel energy function.

4.1. Weighted Sparse Document Vector (WSDV)

Proposed Weighted Sparse Document Vector (WSDV) is closely related to two recent
sparse documents representing methods, namely SCDV: Sparse Composite Document Vectors
using soft clustering over distributional representations [6] and Improving Document Classification
with Multi-Sense (SCDV-MS) [13]. However, WSDV poses some functionality differences
that made WSDV robust under a small number of topical settings over the other two.

In contrast to SCDV and SCDV-MS, WSDV performs clustering on the weighted data
to capture the potential terms using Pomegranate General Mixture model, which plays a vital
role in topics generation and document embeddings. WSDV and SCDV-MS perform a data
sparsity mechanism on the converged clusters to remove the noisy tail, whereas SCDV does
not remove noise at the cluster level. Instead of applying the hard threshold as in SCDV-MS,
WSDV calculates the sparsity threshold based on the word-cluster probability described in
Section 3.2. All three methods (SCDV, SCDV-MS, and WSDV) use inverse document frequency
(idf) weighting in the topic distribution of words while capturing the topic proportion of
the document. However, unlike SCDV and SCDV-MS, WSDV uses smooth inverse frequency
(sif) [71] to capture better semantics while creating document vectors.

SCDV uses a sparsity threshold on the document embeddings to reduce noise for
getting final document vectors. In contrast, SCDV-MS does not remove noise at the docu-
ment embeddings level but removes outliers from the clusters. However, WSDV removes
clustering outliers and the first principle components from the document embeddings
and finally makes document vectors sparse by applying a sparsity threshold to ensure
high-quality document vectors.

For the weighted data clustering using Algorithm 1 on the multisense text corpus,
WSDV follows similar steps as SCDV-MS to get a multisense text corpus.

Figure 1 represents the functionality of getting the underlying themes of the documents
by moderating the soft clustering. Figure 2 represents the overall functionality of the
proposed Weighted Sparse Document Vector (WSDV).

Figure 1. Topics formation using moderate clustering and corpus statistics.
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Figure 2. Weighted Sparse Document Vector formation in to d× k dimensional embedding space.

WSDV learns a d dimensional embeddings for every word in the vocabulary V using
SkipGram negative sampling (SGNS) [1].

In this process, WSDV calculates the weight of each unique term using
Equations (1) and (2). Unlike SCDV, besides the input text, WSDV takes this point weights
associated with each data point as the input. After the convergence of the Pomegranate
General mixture model, it applies the probability threshold (soft threshold) constraint to
alleviate outliers by moderating the soft clustering outcomes using Equation (5). In the
document representation process, for each word, WSDV creates k different word-cluster
vectors ~cxik of d (Figure 1) dimensions by weighting the word vector with its probability
score in the particular clusters ~cxik = ~xi × (πxik ≥ ρ), where the term (πxik ≥ ρ) makes
sure only the words with a probability equal or above the threshold point ρ belong to a
particular cluster. Next, it weights words xi with the inverse document frequency (idf) and
concatenate all words in each k word-cluster vectors ~cxik to construct word-topic vectors
~txi = id f (xi)×⊕K

k=1~cxik similar to SCDV.
Applying the moderate clustering approach, embedding space is now partitioned

into k different semantic sub spaces for each document in Dn. Unlike SCDV, instead of
direct sum of word–topic vectors ~txi we take weighted average of each word for each
word-topic vector in a document, weighted by the smooth inverse frequency (sif) [71] to
form the document vector ~xdn = 1

|dn | ∑x∈dn
a

a+p(xi)
~txi. Document vector ~xdn is represented

now into d× k dimensional embedding space. As discriminative document representation
ensures better classification results [72], we remove the first principle component (common
context) to eliminate noise and redundancy from the document vector [8]. Finally, make
the document vector sparse by following the same procedure as SCDV. Figures 1 and 2
depict the process described for WSDV.

From the discussion above, we derive Algorithm 1 for the proposed Weighted Sparse
Document Vector (WSDV). In Algorithm 1, lines 1 and 2 are the initial procedure to represent
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a document. Lines 3 to 9 are responsible for the topic construction, where line 6 moderates
the soft clustering to construct word-cluster vectors ~cxik, and line 8 constructs word-topic
vectors ~txi. Lines 10 to 17 are responsible for the sparse document representation, where line
13 constructs the document vector ~xdn by computing the smooth inverse frequency (sif) [71]
weighted average of topic-specific words. Line 15 removes the first principle component
from each document vector ~xdn, and line 16 makes the document vector sparse.

Algorithm 1: WSDV
Input: Documents Dn; n = 1. . . N
Output: Document Vectors ~WSDVDn , in to d× k embedding space; n = 1. . . N

1 Getting word embedding ~xi of d dimensions for each word x using word2vec
skip-gram with negative sampling(SGNS)

2 Calculate idf, tf and the point-weights ω for the corpus
3 Cluster word vectors ~xi in to K clusters considering the initial point weights ω using

Pomegranate General Mixture model
4 for each word xi in the vocabulary do
5 for each cluster ck do
6 ~cxik = ~xi × (πxik ≥ ρ)

7 end
8 ~txi = id f (xi)×⊕K

k=1~cxik
9 end

10 for n ∈ (1...N) do
11 Initialize document vector ~xdn =~0
12 for word xi in Dn do
13 ~xdn = 1

|Dn | ∑x∈Dn
a

a+p(xi)
~txi

14 end
15 ~xdn_pca−1 = ~xdn − PCA(First component)
16 ~WSDVDn = make_sparse (~xdn_pca−1)

17 end

4.2. Weighted Compact Document Vector (WCDV)

The Multimodal Word Distributions [18] learns distributions of words using an energy-
based max-margin objective. The energy function behind it is the Expected Likelihood Kernel,
which computes the inner product between distributions to get the affinity of words. It
utilizes highly expressive distributions using the Gaussian mixture model to learn multiple
senses of words. However, it is unaware of maintaining the potential words in a sentence
or a document. In this context, we proposed a novel energy function called Weight attained
Expected Likelihood Kernel that considers point weights while computing the partial log
energy between distributions of words. To accommodate the improvement persuing by
the Weight attained Expected Likelihood Kernel, we redefine the objective for the Multimodal
Word Distributions [18] and employ it to capture semantically enhanced topics for the short
length document representation.

Figure 3 represents the functionality of the Weight attained Expected Likelihood Kernel
(weighted energy function), where the kernel gets input as the Gaussian Mixture distribu-
tion of words and their corresponding point weights and produces clusters of words as
the output. Figure 4 represents the overall functionality of the proposed Weighted Compact
Document Vector (WCDV), where kernel output ~cxk use to get underlying topics ~txi and
finally the vectorial representation of the documents ~WCDVDn build using latent topics ~txi.
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Figure 3. Block diagram of the semantic similarity measures between distributions of words using
The Weight attained Expected Likelihood Kernel (weighted energy function).

Figure 4. Weighted Compact Document Vector formation in to d× k dimensional embedding space.

4.2.1. Weight Attained Expected Likelihood Kernel

The probability product kernel k(p, p
′
) = 〈p, p

′〉L2 for ρ > 0 between two Gaussian
distributions p and p

′
(using diagonal covariance):

ξ
ρ
i,j ≡ log kρ(pi, p

′
j)

= (1− 2ρ)
D
2

log(2π)− D
2

log(ρ)

+ log det[Σρ−1
p,i Σρ

p′ ,j
+ Σρ

p,i Σρ−1
p′ ,j

]

− ρ

2
(µp,i − µp′ ,j)(Σp,i + Σp′ ,j)

−1(µp,i − µp′ ,j)

(13)

where ξ
ρ
i,j is partial (log) energy.

For mixture of Gaussians, the log energy is then

log Eρ
θ (pi, p

′
j) =

k

∑
i=1

k

∑
j=1

(πiπj)
ρeξi,j (14)

when ρ = 1, Equation (14) is called the Expected Likelihood Kernel. The objective defined
in the Multimodal word Distributions [18] based on Equation (14) as

Lθ(w, c, c
′
) = max(0, m− log Eθ(w, c) + log Eθ(w, c

′
)) (15)

where w is the current word, c is the context of word w, c
′

is the negative context (did not
appear with the word w), and m is an affinity margin scale.
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For the Gaussian mixture distributions, two words wp and wp′ are represented by

pwp(~x) = Σk
i=1πwp , i N (~x, ~µwp , i, Σwp , i) and p

′
w

p′
(~y) = ∑k

j=1 πw
p′

, j N (~y, ~µw
p′

, j, Σw
p′

, j),

where, ~x and ~y are the vector representation of words wp and wp′ respectively; mixing

probabilities ∑k
i=1 πwp , i = 1 and ∑k

j=1 πw
p′

, j = 1. The weights parameter ω contains

relevant point weights (Equation (2)) of words wp and wp′ , which acts like the precision
and has direct effects on the covariance matrix (Equation (3)). The Weight attained Expected
Likelihood Kernel is then given by Equation (16) below:

Eθ(p, p
′
)ω =

k

∑
i=1

k

∑
j=1

πwp , i πw
p′

, j

∫
N (~x, ~µwp , i,

1
ω

Σwp , i) .N (~y, ~µw
p′

, j,
1
ω

Σw
p′

, j) dx

=
k

∑
i=1

k

∑
j=1

πwp , i πw
p′

, j N (0 ; ~µwp , i − ~µw
p′

, j ,
1
ω

Σwp , i +
1
ω

Σw
p′

, j)

=
k

∑
i=1

k

∑
j=1

πwp , i πw
p′

, je
ξω

i,j

(16)

where ξω
i,j is the weighted partial (log) energy.

Following Equation (13), we can derive the weighted log energy for the Gaussian
mixture distributions p and p

′
for words wp and wp′ as below:

ξω
i,j ≡ logN (0 ; ~µwp , i − ~µw

p′
, j ,

1
ω

Σwp , i +
1
ω

Σw
p′

, j)

= − 1
2

log det(
1
ω

Σwp , i +
1
ω

Σw
p′

, j)−
D
2

log(2π)

− 1
2
( ~µwp , i − ~µw

p′
, j)

T (
1
ω

Σwp , i +
1
ω

Σw
p′

, j)
−1 ( ~µwp , i − ~µw

p′
, j)

(17)

The weighted log energy is then

log Eθ(p, p
′
)ω =

k

∑
i=1

k

∑
j=1

πwp , i πw
p′

, j eξω
i,j (18)

Equation (18) recovers Equation (16).

Based on the Weight attained Expected Likelihood Kernel in Equation (16), we redefine the
objective (Equation (15)) for the Multimodal word Distributions [18] as below:

Lθω(w, c, c
′
, ω) = max(0, m− log Eθ(w, c)ωw,c + log Eθ(w, c

′
)

ω
w,c′ ) (19)

where w is the current word, c is the context word, c
′

is the negative context word (which
did not appear together as the context word). The weights parameter ω contains the point
weight of the relevant individual words (Equation (2)).

Equation (19) defines the pair of semantically most related words with the progression
of the training by pushing the similarity between the current and the context words higher
than the negative context words by a margin of m using the weighted log energy.

4.2.2. Algorithm WCDV

For the Weighted Compact Document Vector (WCDV), we employ the Multimodal
Word Distributions [18] with the word frequency concerned energy function to compute
the affinity of word pairs to capture semantically enhanced topics for the short-length
documents. All the model parameters—the location (mean vector ~µwp ,i) of ith component
of word w, covariance matrix (Σwp ,i), and the mixture weight (πwp ,i) learn from the data
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(corpus) using the newly defined maximum margin energy-based ranking objective using
the Weight attained Expected Likelihood Kernel.

In Algorithm 2, line 1 is the process of computing weight (point weight) corresponding
to words in the vocabulary using Equation (2). Line 4 gets clusters of wors by computing
word pairs affinity using Equation (16). Line 8 gets topic embeddings ~txi by inverse docu-
ment frequency (idf) weighting and cluster-wise concatenating of words. Line 13 creates
Weighted Compact Document Vector (WCDV) by averaging topic-specific word embeddings
weighted by the smooth inverse frequency ( a

a+p(xi)
) [71].

Algorithm 2: WCDV
Input: Documents Dn; n = 1. . . N
Output: Document Vectors ~WCDVDn , in to d× k embedding space; n = 1. . . N

1 Calculate point weights ω using Equation (2) for the corpus
2 for each word paris (wp, wp′ ) in the vocabulary do
3 for each component k do
4 ~ck = ∑k

i=1 ∑k
j=1 πwp , i πw

p′
, je

ξω
i,j using Equation (16)

5 end
6 end
7 for each word ~xick in~ck do
8 ~txi = id f (~xick )×⊕

K
k=1~xick

9 end
10 for n ∈ (1...N) do
11 Initialize document vector ~WCDVDn =~0
12 for word xi in Dn do
13 ~WCDVDn = 1

|Dn | ∑x∈Dn
a

a+p(xi)
~txi

14 end
15 end

5. Experimental Results and Discussion

To evaluate the proposed approaches on several publicly available datasets, we per-
form the experiments using Intel® Core™ i5-7500 CPU@3.40 GHz., 8GiB RAM machine
with Ubuntu 16.04.7 LTS operating system.

To evaluate WSDV, we perform document classification on three publicly available
datasets (long text): 20Newsgroup (almost balanced), R8 (imbalanced), and AgNews
(balanced).

To evaluate WCDV, we perform document classification on two publicly available
short-text datasets: SearchSnippets (balanced) and Twitter (imbalanced).

Table 1 represents the statistics of the datasets mentioned above. All datasets come
with train and test subsets (by default). We use the Python NLTK (Natural language toolkit)
library to remove punctuations, digits, and stopwords. We also remove extra spaces from
the datasets as part of data preprocessing.

Table 1. Statistics of short text dataset.

Dataset Docs Train Test Avg.
Length Vocabulary Class

20Newsgroup 18,846 11,314 7532 315 179,209 20
AgNews 127,600 120,000 7600 39 72,046 4

R8. 7674 5485 2189 64 16,698 8
SearchSnippets 12,265 10,050 2215 10.7 5581 8

Twitter 5113 3513 1600 5.0 1390 4
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For the classification task, We use a 5-fold cross-validation on the Accuracy and F1
score to tune parameter “C” of the Support Vector Classifier. Using preprocessed datasets,
we use the train portion to fit the classifier and the test portion to evaluate the results.
We employ Scikitlearn GridSearchCV (https://scikit-learn.org/stable/modules/generated/
sklearn.model_selection.GridSearchCV.html (accessed on 10 June 2022)) with sklearn.svm.SVC
(https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html (accessed on
10 June 2022)) Support Vector Classification for model fitting and performing classification.
In GridSearchCV, we set LinearSVC(c = 1), param_grid = [′C′ : np.range(0.1, 7, 0.2)],
cv = 5, n_jobs = 5 as parameters.

5.1. Document Classification (Long Text)

We compare the classification results of the WSDV with a study was done by
Wagh, V. et al. [73], as their experiments range from simple NaiveBayes to complex
BERT approaches intending to compare the classification performance of machine learning
algorithms under the same set of long document datasets. To avoid training complexity
(e.g., computational environment, parameter settings of different models) of the baselines,
we prefer to use the obtained results by Wagh, V. et al. [73] as the standard for all three
(long text) datasets mentioned above.

To train WSDV, we set γ = 7 in Equation (5). For other hyper parameters settings, we
follow similar settings as SCDV [6], such as word embedding dimension to 200, document
vector sparsity threshold to 0.04, minimum word count to 20, window size to 10, and
downsampling to 10−3.

For the classification, we set the number of topics to 20 (ground truth) for 20News-
group, 8 (ground truth) for R8, and 4 (ground truth) for AgNews. Table 2 illustrates
classification accuracy compared with the proposed WSDV and the baselines [73] using
different datasets (long-text), where bold indicates the best results in the table. From
Table 2 we see, WSDV obtaines superior scores in terms of accuracy—about 97.83% accu-
racy using AgNews, about 86.05% accuracy using 20Newsgrup and about 98.76% accuracy
using R8 datasets.

Table 2. Classification accuracy (%) evaluation using different datasets.

Model AgNews 20Newsgroup R8

TFIDF with
Naive-Bayes 90.45 81.69 84.24

GloVe+Average 92.07 80.43 95.57
GloVe+Attention 92.39 81.65 95.61

LSTM+CNN 92.71 79.74 97.17
BiLSTM+Max 92.59 83.02 97.03

BiLSTM+Attention 93.14 81.76 95.80
USE 92.09 81.76 95.61

ULMFiT 94.00 82.4 96.48
HAN 92.11 85.01 94.47
BERT 94.04 85.78 97.62

DistilBERT 94.02 85.43 97.53
WSDV 97.83 86.05 98.67

WSDV is closely related to SCDV and SCDV-MS. For the efficiency assessment of
the proposed WSDV, we compare the time and space complexity, sparsity analysis, and
the obtained F1 scores using the 20Newsgroup corpus. For the fair assessment, we use
SCDV-MS with word2vec instead of the Doc2vecC version in the comparison, as both other
(WSDV and SCDV) models use SkipGram negative sampling (SGNS). We use an unlabeled
20Newsgroup corpus and set the number of topics to 20. Table 3 represents class-wise
F1 scores obtained by WSDV, SCDV, and SCDV-MS (word2vec), where bold indicates the
best results in the table. For the experiments in this section, we use the default parameters
settings for SCDV and SCDV-MS.

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Table 3. Class-wise F1-Score comparison among the three most related models using the 20News-
group dataset (20 clusters).

Class Name WSDV SCDV SCDV-MS
(word2vec)

alt.atheism 0.819355 0.789727 0.821830
comp.graphics 0.750000 0.738035 0.752525

comp.os.ms-windows.misc 0.754098 0.739300 0.727742
comp.sys.ibm.pc.hardware 0.712846 0.724005 0.684796

comp.sys.mac.hardware 0.812261 0.832250 0.784211
comp.windows.x 0.808625 0.812332 0.787798

misc.forsale 0.844784 0.834805 0.766709
rec.autos 0.898734 0.906566 0.867008

rec.motorcycles 0.940431 0.931373 0.928136
rec.sport.baseball 0.946716 0.930991 0.936709
rec.sport.hockey 0.977612 0.967980 0.970149

sci.crypt 0.928040 0.927681 0.912060
sci.electronics 0.751309 0.738186 0.741772

sci.med 0.886275 0.886010 0.861538
sci.space 0.923077 0.911111 0.877680

soc.religion.christian 0.868852 0.876325 0.858156
talk.politics.guns 0.815920 0.818955 0.812579

talk.politics.mideast 0.942779 0.947083 0.952255
talk.politics.misc 0.695035 0.671587 0.714286
talk.religion.misc 0.647450 0.616740 0.630872

Table 4 illustrates an empirical study of the time and space complexities of WSDV,
SCDV, and SCDV-MS (word2vec). WSDV deals with weighted data clustering, where
every data point is associated with a unique point weight. Weighted data clustering
takes a little extra time for the clustering process of WSDV (22.36 s). However, it carries
faster (0.54 s) prediction characteristics inherited from the Pomegranate General Mixture
model [16] that acquires less memory space (66.9 kb). When comparing WSDV (multi-
sense) with SCDV-MS (word2vec), again WSDV (multi-sense) takes a higher clustering
time (104.6 s) but faster (0.96 s) prediction time than SCDV-MS (word2vec) and takes less
memory space (102.1 kb).

Table 4. Time and Space complexity analysis using the 20Newsgroup dataset (20 clusters).

Model Vocab ~wtv Dim Cluster (s) Prediction (s) Model (kb)

WSDV 16,676 4000 22.36 0.54 66.9
SCDV 16,676 4000 19.52 0.71 133.6

WSDV (multi-sense) 25,465 4000 104.6 0.96 102.1
SCDV-MS (word2vec) 25,465 4000 40.19 1.20 203.9

Table 5 demonstrates sparsity level in the word-topic ~wtv vector and document ~wtv
vector. WSDV applies a threshold to remove outliers (similar to SCDV-MS), which leads
to higher sparsity (94.85%) in the word-topic ~wtv vector. When comparing WSDV (multi-
sense) with SCDV-MS (word2vec), WSDV has an additional document vector sparsity
mechanism (similar to SCDV) and achieves higher (65.50%) sparsity in the final document
representation than SCDV-MS (word2vec).
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Table 5. Document Sparsity analysis using the 20Newsgroup dataset (20 clusters).

Model Vocab ~wtv Dim
~wtv Sparsity

(%)
~dv Sparsity

(%)

WSDV 16676 4000 94.85 63.54
SCDV 16676 4000 (0.01) n/a 66.19

WSDV (multi-sense) 25465 4000 95.04 65.50
SCDV-MS (word2vec) 25465 4000 95.04 27.16

Table 6 exhibits the effects of weighted data clustering and re-ranking the top words
for topical representation of WSDV over SCDV. Topic1 related to sports where WSDV
represents a better topic (with the PMI score −372.469) than SCDV (with the PMI score
−373.966). After re-ranking the top words, WSDV improves topic quality with a PMI
score of −181.043. Topic2 related to IT, it is interesting to see that both the SCDV (PMI
score −403.195) and the WSDV (PMI score −404.763) represent similar top 10 words. After
re-ranking, WSDV surpasses both scores by obtaining an improved PMI score of −230.419.
Topic3 related to vehicles, though WSDV shows a better PMI score (−380.499) than the
SCDV (−394.077), SCDV seems to represent more relevant words than WSDV. Again after
re-ranking, WSDV shows more relevant words (with the PMI score −210.754). Table 6 also
proves the necessity of clustering on weighted data for exuberant document representation.

Table 6. Top words and Coherence scores of few topics using 20newsgroup dataset (20 clusters).

Topic 1 Topic 2 Topic 3

SCDV WSDV WSDV SCDV WSDV WSDV SCDV WSDV WSDV
(Re-Rank) (Re-Rank) (Re-Rank)

Game Game Game Nx System Windows Power Car Car
Team John Team System Windows File Car Heard Bike
Win Team Hockey Windows File Drive Buy Couple Cars

Games St Players File Software Dos Price Bike Engine
Play Win Season Software Bit Card Sale Mine Miles

Hockey Games Nhl Bit Number Image Light Cars Bmw
Canada Play Teams Data Data Files Bike Recently Ride

St Vs Leafs Drive Drive Pc Speed Gas Battery
Division Toronto Bruins Program Program Graphics Cost Insurance Radar

Red Hockey Scoring Version Version Mac Model Engine Riding

−373.966 −372.469 −181.043 −403.195 −404.763 −230.419 -394.077 −380.499 −210.754

From the discussion above, we see the efficiency of the WSDV in the multi-class
document classification tasks over SCDV and other baselines.

5.2. Short Text Classification

Yi, F. et al. proposed a regularized non-negative matrix factorization topic model
(TRNMF) [12] for short text. TRNMF utilized pre-trained distributional vector represen-
tation of words using an external corpus and employed a clustering mechanism under
document-to-topic distribution. One of our research objectives was to model efficient sparse
short-length documents utilizing available corpus statistics instead of depending on exter-
nal knowledge sources. Therefore, for a fair assessment of the classification performance of
the proposed WCDV using the same (SearchSnippet and Twitter) datasets and to avoid
train complexity of the baselines, we consider the obtained short text classification scores
in the study done by Yi, F. et al. [12] as standard for the baselines.

To train WCDV, we follow the same parameters settings as Multimodal word Dis-
tributions [18], such as embedding size to 50, window size to 5, batch size to 256, train
epoch to 10, variance scale to 0.05, and choose spherical covariance matrix. To compare
short text classification accuracy with baselines, in WCDV, we set the number of topics
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to 8 (ground truth) and 4 (ground truth) for the SearchSnippets and the Twitter dataset
correspondingly. Table 7 illustrates classification accuracy obtained by baselines [12] and
the proposed WCDV using SearchSnippets and Twitter datasets, where WCDV shows
superior scores, about 72.7% accuracy using SearchSnippets, and about 89.4% accuracy
using Twitter datasets.

Table 7. Classification accuracy (%) evaluation using Short text datasets.

Model SearchSnippets Twitter

BTM 19.8 40.9
WNTM 46.8 77.6

LF-DMM 17.1 69.5
GPU-DMM 15.1 48.7

PTM 10.7 43.1
TRNMF 56.9 79.9
WCDV 72.7 89.4

Short texts tend to have a small number of themes. Besides performing the classifica-
tion accuracy under the ground truth (Table 7), similar to Yi, F. et al. [12], we also perform
short text classification under the number of topics to 10 (ten) for both (SearchSnippets
and Twitter) datasets to explore F1 scores obtained by the proposed WCDV. The F1 score
is a statistical explanation of the classification performance; higher F1 scores indicate bet-
ter classification performance. Figure 5 exhibits the obtain F1 scores. TRNMF has the
best (55.1%) F1 score compared to other benchmark methods (BTM 24.2%, WNTM 50.8%,
LF-DMM 18.9%, GPU-DMM 34.3%, PTM 16.6%) using the SearchSnippet dataset, where
WCDV surpass all the baselines (including TRNMF) by obtaining 60.7% F1 score.

Figure 5. Exploring F1 Scores for 10 (k = 10) topics using SearchSnippets and Twitter datasets.

Similarly, WCDV shows outstanding performance over the baselines [12] using the
Twitter dataset, where WCDV obtains the highest F1 score of 90.1 %, which surpass the
best baseline model TRNMF (80.4%) by the margin of 9.7% improvement.

For all classification experiments using WCDV, we set the minimum word count to
10 for the SearchSnipts dataset and 5 for the Twitter dataset. The Multimodal word Distri-
butions [18] has proved effective in the polysemous word representation. To evaluate the
efficiency of the newly proposed objective (Equation (19)), we compare nearest neighbors
(cosine similarity) between the Gaussian mixtures (components k = 2) mean vectors for the
base Lθ (Equation (15)) and the new Lθω (Equation (19)) objectives.
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For this experiment, we use the Text8 dataset and set the number of topics to 2, the
embedding dimensions to 50, the context window size to 10, the learning rate to 0.05, batch
size to 128, the number of epochs to 10, use adagard as the optimizer, and choose spherical
covariance model with variance scale 0.05. For both objectives, we use Tensorflow 1.5.0.

Table 8 contains three words corresponding to two components (namely 0 and 1) of the
mixtures of Gaussian. The notation w:i denotes the ith mixture component of the word w.

Table 8. Nearest neighbor words (cosine similarity) using text8 dataset for both objectives (Lθ and
Lθω) in the Multimodal word Distributions settings.

Rock0 Rock1 Bank0

Lθ Lθω Lθ Lθω Lθ Lθω

band:1 albums:0 rocks:1 crust:0 airport:1 corner:0
rap:1 jazz:0 uplifted:0 sand:0 kahului:0 islet:0

musicians:0 song:0 limestone:0 rolling:1 eilat:1 chester:1
music:1 devo:1 stalactites:0 rocky:0 mostar:1 northwards:0
punk:0 songwriting:1 sand:1 volcanic:0 omari:1 holyhead:1
pop:1 rap:1 meltwater:1 undulating:1 skyscraper:0 evansville:1

reggae:1 album:0 dunes:1 thick:0 caucasoid:0 dobruja:1
blues:1 funk:1 sandy:0 outcrops:1 dubai:1 sacramento:1
disco:0 grateful:1 melts:1 boulders:0 kyiv:1 shambles:0

Bank1 Apple0 Apple1

Lθ Lθω Lθ Lθω Lθ Lθω

monetary:1 banking:0 mac:1 macintosh:0 ibm:1 mint:0
eurozone:1 monetary:0 marketed:0 microsoft:0 macintosh:0 brandy:1
banking:0 investment:0 desktop:1 ibm:1 microsoft:1 apples:1

eu:0 privatization:1 fermented:0 amiga:0 amiga:0 fried:1
businesses:1 imf:1 sourced:0 desktop:0 beos:0 liqueur:0

sector:1 multilateral:0 oyster:0 console:1 windows:1 quince:0
exchange:0 revenue:1 micro:0 intel:0 developers:0 fruit:0

loans:0 exporting:0 portable:0 powerpc:1 hardware:1 juice:1
currencies:1 billion:1 pies:0 macromedia:1 microprocessor:0 juicy:1

Words Rock and Bank represent the right theme corresponding to each mixture com-
ponent for both objectives. However, the new objective Lθω works in more detail than
the base objective Lθ . Bank0 represents a specific area of a place. Words for Lθω in the
table pose this characteristic, which is not true for words represented by Lθ , specifically, in
Lθ word mostar:1 is the name of a person, which is irrelevant. Bank1 represents a theme
related to finance, where for Lθω words are relevant. For Lθ eu:1, sector:1 and eurozone:1
do not directly hold financial sense. However, for the word Apple we found inconsistency
for the base objective Lθ , where Apple1 and Apple0 represent the same theme. In the case
of Apple0, the nearest neighbor words pies:0, oyster:0, and fermented:0 are neither related
to the computer technology nor the fruit; those may relate to the food theme, but other
neighboring words represent the computer-related sense. However, the new objective Lθω

represents the fruit (particularly apple; food, and drinks processed from apple; quince:0
is a fruit related to apple.) theme for Apple1 and the computer technology theme for
Apple0 properly.

From the overall analysis, we see the new objective Lθω performs better than the base
objective Lθ in terms of the similarity measure of the polysemous words. It proves the
efficiency of the Weight attained Expected Likelihood Kernel as a novel energy function.

5.3. Discussion

This research focused on utilizing available corpus statistics to enhance document
classification performance, where we proposed Weighted Sparse Document Vector (WSDV)
for the long text and Weighted Compact Document Vector (WCDV) for the short text.
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SCDV [6] and SCDV-MS [13] have achieved enormous performance by addressing
the challenges in the document (long text) modeling. However, we proposed further es-
calation in the document classification by introducing WSDV. Designing WSDV includes
emphasizing potential terms of the document in the corpus (using weighted data clus-
tering), noise elimination (soft threshold noise removal) from the noisy long tail clusters,
and utilizing corpus statistics in different steps of the vectorial representation of docu-
ments. Experiments in Section 5.1 demonstrate that WSDV significantly outperforms SCDV
and SCDV-MS in document modeling (long text). Moreover, WSDV efficiently handles
balanced (AgNews) and imbalanced (R8) corpus for the classification task (according to
Table 2). Therefore, WSDV is an excellent addition to the existing state-of-the-art long text
classification approaches.

Most state-of-the-art short text models suggest acquiring knowledge from external
rich knowledge sources to tackle data sparseness. However, depending on the external
knowledge sources is not reliable (e.g., data unavailability, missing URLs, etc.). Sometimes
it may increase unusual noise in the current corpus or cause higher costs. Therefore, we
proposed Weighted Compact Document Vector (WCDV). WCDV utilizes corpus statistics in
different steps of the vectorial representation of short-length documents. Experiments
reveal that WCDV efficiently deals with sparse short texts without depending on external
knowledge sources with balanced (SearchSnippets) and imbalanced (Twitter) datasets (ac-
cording to Table 7, and Figure 5). Moreover, we have introduced a novel energy function to
capture the affinity of the distributions, which emphasizes the potential terms by assigning
corresponding point weights to them. Experiment in Section 5.2 demonstrate that the
proposed Weight attained Expected Likelihood Kernel is an excellent addition to the similarity
kernel and performs better than its counterpart.

6. Conclusions

Overall experiments witness the undoubted enhancement of the document representa-
tion capability by the proposed WSDV and WCDV that utilize corpus statistics to improve
document classification for noisy long and sparse short texts.

WSDV represents an expressive document by logically dividing the embedding space
into the number of clusters semantic subspaces, which involves clustering on weighted data
(using point weights in the clustering process) and utilizes corpus statistics at different levels
of document representation. Experiments demonstrate that along with reducing noise on
the weight data clustering, using inverse document frequency (IDF) for topic construction and
smooth inverse frequency (SIF) in the document embedding made WSDV robust for the long
texts classification. WCDV successfully operates on the sparse short text by capturing better
semantic insights using proposed Weight attained Expected Likelihood Kernel that emphasizes
potential terms. Experiments demonstrate that without acquiring external knowledge,
the newly proposed energy function alongside inverse document frequency (IDF) for topic
construction and smooth inverse frequency (SIF) in the document embedding sufficiently
performs for short-length documents classification.

Moreover, this study will positively impact future Natual Language Processing (NLP)
research. The proposed Weight attained Expected Likelihood Kernel has opened a new door in
distribution level similarity measuring for future downstream tasks (e.g., image processing).
On the other hand, the Weighted data clustering combined with the noise elimination
technique may utilize in different downstream Natural Language Processing (NLP) studies
for the desired performance.
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15. Šuman, S.; Čandrlić, S.; Jakupović, A. A Corpus-Based Sentence Classifier for Entity–Relationship Modelling. Electronics 2022, 11,
889. [CrossRef]

16. Schreiber, J. Pomegranate: Fast and Flexible Probabilistic Modeling in Python. J. Mach. Learn. Res. 2017, 18, 5992–5997.
17. Navigli, R.; Martelli, F. An overview of word and sense similarity. Nat. Lang. Eng. 2020, 25, 693–714. [CrossRef]
18. Athiwaratkun, B.; Wilson, A.G. Multimodal word distribution. In Proceedings of the 55th Annual Meeting of the ACL, Vancouver,

BC, Canada, 30 July–4 August 2017; Volume 1, pp. 1645–1656.
19. Jebara, T.; Kondor, R. Bhattacharyya and expected likelihood kernels. Learn. Theory Kernel Mach. 2003, 57–71. [CrossRef]
20. Yang, L.; Chen, X.; Liu, Z.; Sun, M. Improving Word Representations with Document Labels. IEEE/ACM Trans. Audio Speech Lang.

Process. 2017, 25, 863–870. [CrossRef]
21. Obayes, H.K.; Al-Turaihi, F.S.; Alhussayni, K.H. Sentiment classification of user’s reviews on drugs based on global vectors for

word representation and bidirectional long short-term memory recurrent neural network. Indonesian J. Electr. Eng. Comput. Sci.
2021, 23, 345–353.

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
https://www.kaggle.com/mantunes/semantic-corpus-from-web-search-snippets
https://www.kaggle.com/mantunes/semantic-corpus-from-web-search-snippets
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://www.kaggle.com/datasets/weipengfei/ohr8r52
https://github.com/zfz/twitter_corpus
https://deepai.org/dataset/text8
https://deepai.org/dataset/text8
http://doi.org/10.48550/arXiv.1310.4546
http://dx.doi.org/10.3390/electronics10222739
http://dx.doi.org/10.1109/ACCESS.2020.2973207
http://dx.doi.org/10.1007/s10844-020-00635-4
http://dx.doi.org/10.3390/electronics11060889
http://dx.doi.org/10.1017/S1351324919000305
http://dx.doi.org/10.1007/978-3-540-45167-9_6
http://dx.doi.org/10.1109/TASLP.2017.2658019


Electronics 2022, 11, 2168 21 of 22

22. Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; Hovy, E. Hierarchical attention networks for document classification. In Proceedings
of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego,
CA, USA, 12–17 June 2016; pp. 1480–1489.

23. Zhang, Z.; Wu, Z.; Shi, Z. An improved algorithm of TFIDF combined with Naive Bayes. In Proceedings of the 7th International
Conference on Multimedia and Image Processing, Suzhou, China, 20–22 July 2022; pp. 167–171.

24. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M. Transformers:
State-of-the-art natural language processing. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Online, 16–20 November 2020; pp. 38–45

25. Bilal, M.; Almazroi, A.A. Effectiveness of Fine-Tuned BERT Model in Classification of Helpful and Unhelpful Online Customer
Reviews. Electron. Commer. Res. 2022, 38–45. [CrossRef]

26. Wang, B.; Kuo, C.-C.J. SBERT-WK: A Sentence Embedding Method by Dissecting BERT-Based Word Models. IEEE/ACM Trans.
Audio Speech Lang. Process. 2020, 28, 2146–2157. [CrossRef]

27. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv 2019,
arXiv:1910.01108.

28. Pradhan, R.; Sharma, D.K. An ensemble deep learning classifier for sentiment analysis on code-mix Hindi—English data. Soft
Comput. 2022, 1–18. [CrossRef]

29. AlBadani, B.; Shi, R.; Dong, J. A novel machine learning approach for sentiment analysis on Twitter incorporating the universal
language model fine-tuning and SVM. Appl. Syst. Innov. 2022, 5, 13. [CrossRef]

30. Kesiraju, S.; Plchot, O.; Burget, L.; Suryakanth, V.G. Learning Document Embeddings Along With Their Uncertainties. IEEE/ACM
Trans. Audio Speech Lang. Process. 2020, 28, 2319–2332. [CrossRef]

31. Chen, X.; Qiu, X.; Jiang, J.; Huang, X. Gaussian Mixture Embeddings for Multiple Word Prototypes. arXiv 2015, arXiv:1511.06246.
32. Arora, S.; Li, Y.; Liang, Y.; Ma, T.; Risteski, A. Linear algebraic structure of word senses, with applications to polysemy. Trans.

Assoc. Comput. Linguist. 2018, 6, 483–495. [CrossRef]
33. Newman, D.; Bonilla, E.V.; Buntine, W. Improving Topic Coherence with Regularized Topic Models. Adv. Neural Inf. Process. Syst.

2011, 24, 496–504.
34. Mittal, M.; Sharma, R.K.; Singh, V.P. Validation of k-means and Threshold based Clustering Method. Int. J. Adv. Technol. 2014, 5,

153–160.
35. Sia, S.; Dalmia, A.; Mielke, S.J. Tired of topic Models? Clusters of Pretrained Word Embeddings Make for Fast and Good Topics

too! arXiv 2020, arXiv:2004.14914.
36. Gebru, I.D.; Alameda-Pineda, X.; Forbes, F.; Horaud, R. EM Algorithms for Weighted-Data Clustering with Application to

Audio-Visual Scene Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2402–2415. [CrossRef]
37. Chen, L.M.; Xiu, B.; Ding, Z.Y. Multiple weak supervision for short text classification. Appl. Intell. 2022, 52, 9101–9116. [CrossRef]
38. Murakami, R.; Chakraborty, B. Neural Topic Models for Short Text Using Pretrained Word Embeddings and Its Application to

Real Data. In Proceedings of the 4th International Conference on Knowledge Innovation and Invention (ICKII), Taichung, Taiwan,
23–25 July 2021; pp. 146–150.

39. Zuo, Y.; Li, C.; Lin, H.; Wu, J. Topic modeling of short texts: A pseudo-document view with word embedding enhancement. IEEE
Trans. Knowl. Data Eng. 2021. [CrossRef]

40. Zhang, P.; He, Z. Using data-driven feature enrichment of text representation and ensemble technique for sentence-level polarity
classification. J. Inf. Sci. 2010, 41, 531–549. [CrossRef]

41. Sulaimani, S.; Starkey, A. Multiple weak supervision for short text classification. IEEE Access 2022, 9, 149619–149629. [CrossRef]
42. Xu, J.; Cai, Y.; Wu, X.; Lei, X.; Huang, Q.; Leung, H.; Li, Q. Incorporating context-relevant concepts into convolutional neural

networks for short text classification. Neurocomputing 2020, 386, 42–53. [CrossRef]
43. Fieberg, J. Utilization distribution estimation using weighted kernel density estimators. J. Wildl. Manag. 2007, 71, 1669–1675.

[CrossRef]
44. Zhou, H.; Cheng, Q.; Yang, H.; Xu, H. Weighted Kernel Density Estimation of the Prepulse Inhibition Test. In Proceedings of the

6th World Congress on Services, Miami, FL, USA, 5–10 July 2010; pp. 291–297.
45. Saif, A.; Zainodin, U.Z.; Omar, N.; Ghareb, A.S. Weighting-based semantic similarity measure based on topological parameters in

semantic taxonomy. Nat. Lang. Eng. 2018, 24, 861–886. [CrossRef]
46. Pittaras, N.; Giannakopoulos, G.; Papadakis, G.; Karkaletsis, V. Text classification with semantically enriched word embeddings.

Nat. Lang. Eng. 2020, 27, 391–425. [CrossRef]
47. Yue, T.; Li, Y.; Hu, Z. DWSA: An Intelligent Document Structural Analysis Model for Information Extraction and Data Mining.

Electronics 2021, 10, 2443. [CrossRef]
48. Liu, J.; Cao, F.; Gao, X.; Yu, L.; Liang, J. A Cluster-Weighted Kernel K-Means Method for Multi-View Clustering. In Proceedings

of the AAAI Conference on Artificial Intelligence, Hilton New York Midtown, New York, NY, USA, 7–12 February 2020;
pp. 4860–4867.

49. Lee, Y.; Song, S.; Cho, S.; Choi, J. Document representation based on probabilistic word clustering in customer-voice classification.
Pattern Anal. Appl. 2018, 22, 221–232. [CrossRef]

50. Boyd-Graber, J.; Hu, Y.; Mimno, D. Applications of topic models. Found. Trends Inf. Retr. 2017, 11, 143–296 [CrossRef]

http://dx.doi.org/10.1007/s10660-022-09560-w
http://dx.doi.org/10.1109/TASLP.2020.3008390
http://dx.doi.org/10.1007/s00500-022-07091-y
http://dx.doi.org/10.3390/asi5010013
http://dx.doi.org/10.1109/TASLP.2020.3012062
http://dx.doi.org/10.1162/tacl_a_00034
http://dx.doi.org/10.1109/TPAMI.2016.2522425
http://dx.doi.org/10.1007/s10489-021-02958-3
http://dx.doi.org/10.1109/TKDE.2021.3073195
http://dx.doi.org/10.1177/0165551515585264
http://dx.doi.org/10.1109/ACCESS.2021.3125768
http://dx.doi.org/10.1016/j.neucom.2019.08.080
http://dx.doi.org/10.2193/2006-370
http://dx.doi.org/10.1017/S1351324918000190
http://dx.doi.org/10.1017/S1351324920000170
http://dx.doi.org/10.3390/electronics10192443
http://dx.doi.org/10.1007/s10044-018-00772-1
http://dx.doi.org/10.1561/1500000030


Electronics 2022, 11, 2168 22 of 22

51. Dey, N.; Rahman, M.; Mredula, M.S.; Hosen, A.; Ra, I. Using Machine Learning to Detect Events on the Basis of Bengali and
Banglish Facebook Posts. Electronics 2021, 10, 2367. [CrossRef]

52. Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022.
53. Athey, T.L.; Pedigo, B.D.; Liu, T.; Vogelstein, J.T. Autogmm: Automatic gaussian mixture modeling in python. arXiv 2019,

arXiv:1909.02688.
54. Peel, D.; McLachlan, G.J. Robust mixture modelling using the t-distribution. Stat. Comput. 2000, 10, 339–348. [CrossRef]
55. Svens, M.; Bishop, C.M. Robust Bayesian mixture modelling. Neurocomputing 2005, 64, 235–252. [CrossRef]
56. Archambeau, C.; Verleysen, M. Robust Bayesian clustering. Neural Netw. 2007, 20, 129–138. [CrossRef]
57. Sun, J.; Kaban, A.; Garibaldi, J.M. Robust mixture clustering using Pearson type VII distribution. Pattern Recognit. Lett. 2010,

31, 2447–2454. [CrossRef]
58. Andrews, J.L.; McNicholas, P.D. Model-based clustering, classification, and discriminant analysis via mixtures of multivariate

t-distributions. Stat. Comput. 2012, 22, 1021–1029. [CrossRef]
59. Forbes, F.; Wraith, D. A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweight:

Application to robust clustering. Stat. Comput. 2014, 24, 971–984. [CrossRef]
60. Lee, S.; McLachlan, G.J. Finite mixtures of multivariate skew t-distributions: Some recent and new results. Stat. Comput. 2014,

24, 181–202. [CrossRef]
61. Damnjanovic, I.; Davies, M.E.; Plumbley, M.D. SMALLbox—An evaluation framework for sparse representations and dictionary

learning algorithms. In Proceedings of the International Conference on Latent Variable Analysis and Signal Separation, St. Malo,
France, 27–30 September 2010; pp. 418–425.

62. Kondor, R.; Jebara, T. A kernel between sets of vectors. In Proceedings of the 20th International Conference on Machine Learning
(ICML-03), Washington, DC, USA, 21–24 August 2003; pp. 361–368.

63. Jebara, T.; Kondor, R.; Howard, A. Probability product kernels. J. Mach. Learn. Res. 2004, 5, 819–844.
64. Zelenko, D.; Aone, C.; Richardella, A. Kernel methods for relation extraction. J. Mach. Learn. Res. 2003, 3, 1083–1106.
65. Lafferty, J.; Lebanon, G. Information diffusion kernels. Adv. Neural Inf. Process. Syst. 2003, 391–398.
66. Blakely, D.; Collins, E.; Singh, R.; Norton, A.; Lanchantin, J.; Qi, Y. FastSK: Fast sequence analysis with gapped string kernels.

Bioinformatics 2020, 36, i857–i865. [CrossRef]
67. Croce, D.; Rossini, D.; Basili, R. Neural embeddings: Accurate and readable inferences based on semantic kernels. Nat. Lang. Eng.

2019, 25, 519–541. [CrossRef]
68. Leppä-aho, J.; Silander, T.; Roos, T. Bayesian network Fisher kernel for categorical feature spaces. Behaviormetrika 2020, 47, 81–103.

[CrossRef]
69. Zhou, Y.; Chen, C.; Xu, J. Learning Manifold Implicitly via Explicit Heat-Kernel Learning. arXiv 2020, arXiv:2010.01761.
70. Wei, S.; Wang, D.; Peng, Z. Principal Component Analysis Based Kullback-Leibler Divergence for Die Cracks Detection. In

Proceedings of the International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence
(ICSMD), Xi’an, China, 15–17 October 2020; pp. 224–228.

71. Arora, S.; Liang, Y.; Ma, T. A simple but tough-to-beat baseline for sentence embeddings. In Proceedings of the International
Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

72. Wei, C.; Luo, S.; Ma, X.; Ren, H.; Zhang, J.; Pan, L. Limin Pan Locally Embedding Autoencoders: A Semi-Supervised manifold
Learning Approach of Document Representation. PLoS ONE 2016, 11, e0146672.

73. Wagh, V.; Khandve, S.; Joshi, I.; Wani, A.; Kale, G.; Joshi, R. Comparative study of long document classification. In Proceedings of
the TENCON 2021—2021 IEEE Region 10 Conference (TENCON), Auckland, New Zealand, 7–10 December 2021; pp. 732–737.

http://dx.doi.org/10.3390/electronics10192367
http://dx.doi.org/10.1023/A:1008981510081
http://dx.doi.org/10.1016/j.neucom.2004.11.018
http://dx.doi.org/10.1016/j.neunet.2006.06.009
http://dx.doi.org/10.1016/j.patrec.2010.07.015
http://dx.doi.org/10.1007/s11222-011-9272-x
http://dx.doi.org/10.1007/s11222-013-9414-4
http://dx.doi.org/10.1007/s11222-012-9362-4
http://dx.doi.org/10.1093/bioinformatics/btaa817
http://dx.doi.org/10.1017/S1351324919000238
http://dx.doi.org/10.1007/s41237-019-00103-6

	Introduction
	Literature Review
	Methodology
	Clustering on Weighted Data
	Moderate Clustering 
	Re-Ranking the Top Words
	Kernel Based Similarity

	Proposed Approaches
	Weighted Sparse Document Vector (WSDV)
	Weighted Compact Document Vector (WCDV)
	Weight Attained Expected Likelihood Kernel
	Algorithm WCDV


	Experimental Results and Discussion
	Document Classification (Long Text)
	Short Text Classification
	Discussion

	Conclusions
	References

