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Abstract: Multi-rotor drones have a wide range of applications in practical scenarios; however, the
use of multi-rotor drones for illegal acts is also on the rise, in order to improve the recognition
accuracy of multi-rotor drones. A new multi-rotor drone detection algorithm is proposed. Firstly, the
Yolov5 backbone is replaced with Efficientlite, thus reducing the number of parameters in the model.
Secondly, adaptively spatial feature fusion is injected into the head of the baseline model to facilitate
the fusion of feature maps with different spatial resolutions, in order to balance the accuracy loss
caused by the lightweight of the model backbone. Finally, a constraint of angle is introduced into the
original regression loss function to avoid the mismatch between the prediction frame and the real
frame orientation during the training process in order to improve the speed of network convergence.
Experiments show that the improved Yolov5s exhibits better detection performance, which provides
a superior method for detecting multi-rotor UAVs in real-world scenarios.

Keywords: multi-rotor UAV detection; Yolov5; adaptively spatial feature fusion

1. Introduction

With the rise of the fourth industrial revolution and the rapid development of artificial
intelligence, computer vision and other technologies, multi-rotor UAV manufacturing
technology is developing rapidly. It has become an important part of military technological
warfare [1]. Its applications in the battlefield are mainly divided into reconnaissance and
surveillance, accompanying escort, precision destruction strikes, and cluster operations.
Not only that, but it also has quite a wide range of applications in the fields of agricultural
production, animal husbandry, industry, and urban management, for example, environ-
mental pollution monitoring, mineral exploration, and the detection of life activities of wild
animals [2]. A multi-rotor UAV is a special type of unmanned rotorcraft with three or more
rotor axes. Compared to ordinary UAVs, it is low-cost, flexible and lightweight, easy to
install, has the ability to take off and land independently, has a high degree of intelligence,
can adapt to various complex terrain environments, is easy to maneuver, and can fly in
various attitudes, such as hovering forward and side flight in tight spaces [3]. The previ-
ous multi-rotor UAV detection methods mainly rely on audio signal analysis, radar data
analysis, radio frequency signal analysis and computer vision technology for detection [4].
Hauzenberger et al. proposed a speech detection method through linear predictive coding
(LPC) to analyze the unique sounds emitted by UAVs to detect UAVs [5]. However, in
noisy environments, when the wings of multi-rotor UAVs rotate, the tiny sound produced
is easily disturbed by noise. Mohajerin et al. proposed to use the characteristics of radar
trajectories to detect UAVs [6]. However, radar signals have a short detection distance in
bad weather, such as rain, fog and haze, which cannot meet the long-distance detection
requirements [7]. Al -Emadi et al. proposed a UAV detection technique using CNN to
collect RF signals generated during the communication process between the UAV and the
controller for study in the training phase [8]; however, some UAVs may not be controlled
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via a wireless connection, but it has been programmed to fly a specific route so that the
network cannot collect the radio frequency signals generated during the communication
process.

With the wide application of neural networks in the field of computer vision in recent
years, it provides a new idea for multi-rotor UAV detection. Target detection algorithms
are mainly divided into traditional target detection algorithms based on artificial features
and target detection techniques based on deep neural networks [9]. Yicheng Liu et al.
proposed a method to detect UAVs by using a support vector machine and naive Bayesian
manual feature extraction. This traditional manual feature extraction method not only
relies on manual feature extraction but also requires a lot of computation [10]. Influenced
by the successful application of deep learning in the field of computer vision, multi-rotor
UAV detection has also made some preliminary attempts using deep learning in recent
years. Vasileios Magoulianitis et al. propose to enlarge the image twice by super-resolution
technology (SR) before it enters the detection network to increase its recall ability, and then
use super-resolution technology and a Fast R-CNN model at the same time for end-to-end
matching [11]. In order to give full play to the effect of joint optimization, this traditional
convolutional neural network-based UAV detection method has a great improvement
compared to the manual extraction method, but this method takes a long time and cannot
meet the real-time detection requirements. demand. Wei et al. used SSD Inception V2 [12],
SSD MobileNet [13], R-FCN Resnet [14], Faster R-CNN Inception Resnet [15], Faster R-CNN
Resnet [16] and Yolov2 [17] to UAV perform real-time detection. In terms of speed, SSD
MobileNet is the fastest model, followed by Yolov2, followed by SSD Inception V2. In
terms of detection accuracy, the best effect is given by FRCNN Inception Resnet, followed
by RFCN Resnet, and then Yolov2. Yolov2 achieves a balance between detection speed and
accuracy [18]. Nader Al-Qubaydhi et al. used Yolov3, Yolov4, and Yolov5 to detect UAVs
respectively, analyzed these results respectively, and found that Yolov5 is superior in UAV
detection [19].

The current mainstream target detection technology based on deep neural networks
is divided into a one-stage method and two-stage method. For the two-stage approach,
the first stage generates a number of candidate region boxes based on a region suggestion
network (RPN), the second stage classifies the candidate regions by a softmax function to
determine whether there are detection targets in these boxes, and then the suggested boxes
are corrected by a boundary regression function [20]. The above-mentioned Faster R-CNN
Inception Resnet, Faster R-CNN Resnet, and R-FCN Resnet belong to two-stage methods.
Although variant algorithms, such as Faster R-CNN Inception Resnet and Faster R-CNN
Resnet, have made many improvements on the basis of R-CNN, this has not changed the
disadvantage that the second-order target detection is slow in terms of detection speed,
so some researchers took a different approach, combining the generation of the candidate
region frame and the regression of the candidate region box into one step, and proposed
a single-stage detector, SSD. The single-stage detector is much better than the two-stage
detector in terms of inference speed, and the detection accuracy cannot meet people’s
needs. So, the researchers made improvements on the basis of SSD and launched the
above-mentioned algorithms, such as SSD MobileNet, SSD Inception V2, and Yolo series.
They are all one-stage methods. In the one-stage approach, the detection network directly
classifies and regresses anchor boxes that are densely sampled from the feature map, and
omits the region proposal network (RPN). The two-stage detection method achieves good
results in detection accuracy, but the real-time performance is poor. Meanwhile, single-stage
detection methods have lower accuracy but faster detection speed [21].

In most previous studies, the limited computational resources of a large number
of practical application platforms are often ignored in order to improve the detection
accuracy of network detection models. Therefore, the focus of research on multi-rotor
UAV target detection should be on how to improve detection accuracy while keeping the
model lightweight, and in this paper, we propose an improved Yolov5 multi-rotor UAV
detection model. First, the Yolov5 backbone is replaced with Efficientlite, thus reducing



Electronics 2022, 11, 2330 3 of 13

the number of parameters in the model. Then, the adaptive feature fusion technique is
injected into the head of the baseline model to suppress the inconsistent information in
the feature maps at different scales and facilitate the fusion of feature maps with different
spatial resolutions in the model to balance the accuracy loss caused by the lightweight of
the backbone part. Finally, the original loss function in Yolov5 is replaced with SIoU, and
the angle cost criterion is introduced into the previous loss function metric to improve the
speed of network convergence. Experiments show that the improved Yolov5 model can
show better detection performance in the UAV_data dataset.

2. Materials and Methods
2.1. Yolov5

Yolov5 is a very popular, single-stage target detector that has a total of 4 mod-
els, Yolov5s, Yolov5m, Yolov5l, and Yolov5x, representing Yolov5_small, Yolov5_media,
Yolov5_large, and Yolov5_extra large, respectively. As the model depth and width of the
model increase, the number of parameters increases as well. Glen Jocher controls the
depth of the model and the number of convolutional kernels with the depth_multiple and
width_multiple parameters, respectively, to meet different detection requirements. yolov5
is divided into the following four parts: the input, the backbone network model, the neck
network model, and the output. The backbone model is a convolutional neural network
used to accumulate fine-grained images and generate image feature maps. The neck net-
work model is responsible for combining the image features collected by the backbone
model and then passing the integrated feature maps to the output, which is responsible for
the detection and classification of the model [22]. The framework of the yolov5s is shown
in Figure 1.
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Iuput:
Yolov5 uses mosaic data augmentation on the input side and has built-in adaptive

anchoring and adaptive scaling. Mosaic data augmentation is achieved by randomly
cropping any four images and stitching them onto a single image as training data, reducing
the size of the detection target in the image in terms of pixel points and allowing Yolov5
to perform better in small target detection. Once the dataset enters the network, Yolov5
scales the images in the dataset to a size of 640 × 640 and then uses the k-means clustering
algorithm to calculate the anchor boxes that match the annotated boxes in this dataset and
compares them with the preset anchor boxes. If the calculated best recall is greater than
0.98, it means that the preset anchor box size meets the requirements of this dataset; if it
does not, then the network parameters are updated in the reverse direction.

Backbone:



Electronics 2022, 11, 2330 4 of 13

In the backbone model, Yolov5 uses the FOCUS, SPP, and CSP structures. Focus is a
slicing operation that obtains a value for every pixel in an image, similar to neighborhood
downsampling, so that the input channel is expanded by a factor of four, but without
information loss. The new image is then convolved to obtain a bipartite downsampled
feature map without information loss. Yolov5 uses the CSPNet residual structure for
both the backbone and neck network models, which divides the feature mapping of the
basic layer into two parts and then combines them in a cross-stage hierarchy, reducing the
computational effort while ensuring the integrity of the feature information [23].

Neck:
Yolov5 used a combination of FPN and PAN in the neck network model part. The

shallow feature map will have more location information and less semantic information
and as the number of neural network layers increases, the deeper feature map will have
more semantic information, some small pixel points will be ignored and some location
information will be lost; however, both types of information are important for target detec-
tion, so a deeper network structure to obtain more semantic information while preserving
the original location information is essential for a good network structure. FPN passes
strong semantic features from the top feature map to the lower feature map. Meanwhile,
PAN conveys stronger localization features from the lower feature maps to the higher
feature maps, and these two structures together enhance the feature fusion capability of the
neck network model part [24].

2.2. Replace the Yolov5 Backbone with Efficientlite

Traditional convolutional neural networks improve the detection performance by
deepening the number of network layers, widening the number of channel letters, and
increasing the image resolution [25]. However, too deep a network structure causes the
gradient to disappear and the network accuracy gain to be reduced, too wide a network
structure causes the detection network to fail to extract the rich semantic information in the
deeper layers of the image, and too high an image resolution causes additional difficulties
in training. The backbone part of the Yolov5 model relies on five ordinary convolution
operations of step 2 to spatially downscale the feature maps to obtain feature maps with
different spatial resolutions and to learn the residual features through four C3 modules,
which divide the feature information from the upper layers after spatial downscaling into
two parts, with one part going through multiple bottleneck modules that are stacked and
the other part needing to go through only one ordinary convolution module, to deepen
the network structure as much as possible, while ensuring that the shallow rich location
information is not lost and avoiding the loss of network update momentum due to gradient
disappearance. In this research component, the baseline model backbone is replaced with
the Efficientlite lightweight model. Efficientlite was proposed by Google in March 2022, and
the structure searches the depth, width, and resolution of the composite scaling network
through multi-objective neural architecture. Compared to Efficient, Efficientlite replaces the
previous version, eliminates the squeeze-and-excitation structure and replaces the original
swish activation function with the Relu6 activation function to avoid the loss of feature
information in the non-linear layers [26]. It consists of a 3 × 3 normal convolutional layer, 7
MBConv and a 1× 1 normal convolutional layer, average pooling layer and fully connected
layer. MBConv is a feedforward neural network with fast connectivity, including a 1 ×
1 ordinary convolutional module at the beginning and end of each of the n × n depth-
separable convolutional modules to expand and compress the feature channels, and finally
a dropout layer, where in each convolutional module is a combination of a convolutional
layer, batchnormalization and Relu6 activation function, the internal structure of MBconv
is shown in the Figure 2. The depth-separable convolution layer is divided into two parts,
channel-by-channel convolution and point-by-point convolution [27]. The depth-separable
convolution layer takes an image with h × w pixel points and c channels and passes it
through a convolution operation with a kernel of (h − H + 1) × (w −W + 1) and a filter
with 1 channel to output a feature map of H ×W × c. The image is then expanded by C
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1 × 1 × c convolution kernels for channel expansion, as shown in Figure 3. Compared to
normal convolution, as shown in Figure 4, depth-separable convolution greatly reduces
the number of parameters and reduces the computational overhead required by the model,
while obtaining the same sensory field.
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2.3. Improvements to the Feature Fusion Part of the Baseline Model

In order to balance the loss of accuracy caused by simplifying the network model, this
paper improves the feature fusion part of the baseline model. Large targets are usually
associated with deep feature maps and small targets with shallow feature maps. The
detection network deepens the layers of the network by down-sampling and convolution
layer by layer to obtain more semantic information and to retain feature maps of different
depths. This is performed because usually deeper feature maps have more semantic
information; however, some small pixel points are ignored and some location information
is lost, while shallow feature maps have more location information and less semantic
information, both of which are both important information for target detection. In the
original baseline model Yolov5, feature maps at different scales rely on PANet as well as
FPN for fusion and FPN is currently the most classical feature pyramid structure. When the
image is input to the detection network, feature extraction is performed by the backbone
part, feature maps with different spatial resolutions are produced at different depths of the
network, FPN passes this feature information at different depths from the top to bottom,
retaining the relevant spatial location information of the feature maps at different scales,
supplementing the limited semantic information of the anchor points of the network
prediction, and fusing this feature information by 1 × 1 convolution operation. However,
this top-down laterally connected pyramid structure is prone to loss for shallow feature
maps, resulting in low accuracy of small target detection. Both FPN and PANet compress
the feature channels through convolutional operations, which inevitably brings about the
problem of information redundancy. In this process, FPN and PANet give the same level of
attention to the feature maps at each scale. However, feature maps with different spatial
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resolutions have a large semantic gap due to different depths. The feature maps at different
scales contain sometimes conflicting information about the size of target instances, which
can interfere with the calculation of gradients during the training of the network and reduce
the effectiveness of the feature pyramids. To avoid losing important information during
the feature fusion process, Guiyi Yang et al. proposed a new model based on FPN, called
PFF-FPN, which chose to use three different FPN structures to pass features and fuse the
feature information of the corresponding layers to enhance the important information [28].
Golnaz Ghaisi et al. also proposed a new feature pyramid network structure based on FPN
called NAS-FPN, which solves the large-scale search space problem in feature pyramids
by combining a scalable search space with a neural combination search algorithm [29].
Zexuan Guo et al. proposed to use the BiFPN [30] structure to replace the original PANET
structure in Yolov5. BiFPN is also a variant generated based on FPN that gives weights to
different feature layers in the fusion process through residual connections and enables the
fusion of features in both top-down and bottom-up paths. In this paper, the original feature
fusion approach of Yolov5 is improved by introducing the adaptive feature fusion structure
(ASFF), which consists of two parts, constant scaling, and adaptive fusion. For a spatially
fractionated feature map at one level, ASFF adjusts other feature maps at different scales to
the same resolution by up-sampling and down-sampling. When a target is specified and
considered as positive in a feature map at one level, the corresponding regions in the feature
maps at the other levels will be considered as the background, and then adaptively learn
the weight parameters by back-propagating through the network, giving smaller weights to
the locations where contradictory regions exist. The network is then trained to find the best
fusion point by back-propagating the adaptive learning weight parameters, giving smaller
weights to the locations where there are contradictory regions, larger weights to regions
with consistent size information and filtering out redundant information that interferes
with the normal detection of the network [31].

For constant scaling, since different levels of spatially resolved feature maps have
different channel counts and resolutions, ASFF uses different scaling strategies for spatially
fractionated feature maps at different levels. When the L2 level feature map is specified
as positive, the detection network first compresses the L1 level feature map by a 1 × 1
convolution operation and then uses interpolation to increase the resolution. For L3-level
feature maps, both the number of channels and the resolution can be modified using only
3 × 3 convolution layers with a step size of 2.

For adaptive fusion, I three detection heads of ASFF have the same structure, repre-
sented by ASFF_detect2, for example, when the n levels are adjusted to the feature vector
Gn→2

ij aI (i, j) on the L2 level feature map.

G2
ij = α2

ij · G1→2
ij + β2

ij · G2→2
ij + γ2

ij · G3→2
ij (1)

The weights of L1, L2 and L3 for L2 are denoted by α2
ij, β2

ij and γ2
ij, respectively.

α2
ij =

e
λ2

αij

e
λ2

αij + e
λ2

βij + e
λ2

γij

(2)

β2
ij =

e
λ2

βij

e
λ2

αij + e
λ2

βij + e
λ2

γij

(3)

γ2
ij =

e
λ2

γij

e
λ2

αij+e
λ2

βij + e
λ2

γij

(4)
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Three weights, λ2
αij

, λ2
βij

, λ2
γij

, are obtained by backward learning propagation of the

network, α2
ij, β2

ij and γ2
ij are obtained by the softmax function. α2

ij, β2
ij and γ2

ij belong to the
interval from 0 to 1 and add up to 1.

According to the improvement of the backbone and the head of the baseline model
Yolov5 in Sections 2.2 and 2.3, the improved Yolov5 model is obtained, and the specific
structure is shown in Figure 5.
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2.4. Optimization of the Regression Loss Function

Yolov5′s built-in loss function is GIoU, which is based on a variant generated by IoU.
It compensates for the problem that IoU prevents the network from optimizing when the
overlap area of the two objectives is zero [32]. However, GIoU is more dependent on the
IoU term and requires several iterations to converge when the predicted bounding box is
horizontal or vertical. To solve this problem, Zhaohui Zheng et al. proposed DIoU, which
speeds up the convergence of the network by minimally normalizing the centroids of the
two bounding boxes, and suggested that a good bounding box loss function should have
three important metrics, namely overlap area, centroid distance and aspect ratio [33]. The
SIoU introduced in this paper argues that the above-mentioned IoU, DIoU, and GIoU all
ignore the problem of directional mismatch between the GT and the prediction detection
frame, which may lead to the problem of the prediction frame floating around during
the training process, thus affecting the convergence speed of the network. To solve this
problem, SIoU first makes a prediction in the x- or y-axis direction and then allows the
prediction frame to continue to move in that direction. To achieve this, the module tends
to zero α or β as much as possible and introduces four metrics in the SIoU module, angle
cost, distance cost, shape cost, and IoU cost [34]; the formula for angle cost is shown in
Formula (5), and the schematic is shown in the Figure 6.

Λ = 1− 2 ∗ sin2
(

arcsin(x)− π

4

)
(5)

where
x =

ch
σ

= sin(α) (6)

where σ is the distance between the centroid of the ground truth bounding box and the
centroid of the prediction box.

ch = max(bgt
cy , bcy)−min(bgt

cy , bcy) (7)



Electronics 2022, 11, 2330 8 of 13

Electronics 2022, 11, x FOR PEER REVIEW 7 of 13 
 

 

Three weights, 𝜆ఈೕଶ , 𝜆ఉೕଶ , 𝜆ఉೕଶ , are obtained by backward learning propagation of the 
network, 𝛼ଶ , 𝛽ଶ  and 𝛾ଶ  are obtained by the softmax function. 𝛼ଶ , 𝛽ଶ  and 𝛾ଶ  belong 
to the interval from 0 to 1 and add up to 1. 

According to the improvement of the backbone and the head of the baseline model 
Yolov5 in Sections 2.2 and 2.3, the improved Yolov5 model is obtained, and the specific 
structure is shown in Figure 5. 

 
Figure 5. The internal structure of improved Yolov5. 

2.4. Optimization of the Regression Loss Function 
Yolov5′s built-in loss function is GIoU, which is based on a variant generated by IoU. 

It compensates for the problem that IoU prevents the network from optimizing when the 
overlap area of the two objectives is zero [32]. However, GIoU is more dependent on the 
IoU term and requires several iterations to converge when the predicted bounding box is 
horizontal or vertical. To solve this problem, Zhaohui Zheng et al. proposed DIoU, which 
speeds up the convergence of the network by minimally normalizing the centroids of the 
two bounding boxes, and suggested that a good bounding box loss function should have 
three important metrics, namely overlap area, centroid distance and aspect ratio [33]. The 
SIoU introduced in this paper argues that the above-mentioned IoU, DIoU, and GIoU all 
ignore the problem of directional mismatch between the GT and the prediction detection 
frame, which may lead to the problem of the prediction frame floating around during the 
training process, thus affecting the convergence speed of the network. To solve this prob-
lem, SIoU first makes a prediction in the x- or y-axis direction and then allows the predic-
tion frame to continue to move in that direction. To achieve this, the module tends to zero 
α or β as much as possible and introduces four metrics in the SIoU module, angle cost, 
distance cost, shape cost, and IoU cost [34]; the formula for angle cost is shown in Formula 
(5), and the schematic is shown in the Figure 6. 

 
Figure 6. The scheme for calculation of angle cost.

The formula for distance cost is shown in Formula (8).

Ldis = ∑
t=x,y

(
1− e−γρt

)
(8)

ρx = (
bgt

cx − bcx

cw
)

2

, ρy = (
bgt

cy − bcy

ch
)

2

, γ = 2−Λ (9)

From Formula (8), it can be observed that the smaller the angle between the center
point of the ground truth bounding box and the center point of the prediction box, the
smaller the value of Ldis and the smaller the weight of distance cost in the loss function,
and the larger Ldis becomes as the angle approaches π

4 .
The formula for shape cost is shown in Formula (10).

Lshape = ∑
t=w,h

(
1− e−ωt

)θ (10)

ωw =

∣∣w− wgt
∣∣

max(w, wgt)
, ωh =

∣∣h− hgt
∣∣

max(h, hgt)
(11)

where w and wgt refer to the width of the prediction box and the ground truth bounding
box, respectively, and h and hgt refer to the height of the prediction box and the ground
truth bounding box, respectively.

The final loss function is shown in Formula (12).

Lbox = 1− IoU +
Ldis + Lshape

2
(12)

3. Experimental Setup
3.1. Dataset

Similar to the human cognitive process, neural networks learn what an object is and
are learning processes that require many samples to provide a sufficient number of features,
and the quality and quantity of datasets play an important role in the performance of the
network during training. However, the number of existing mature UAV samples is not
very sufficient. Some datasets are cut from video streams, so the background information
is more similar, which may lead to overfitting of the network during training, and some
samples have too low pixel quality and the images are too blurred, which will make it
difficult for the network to identify its features after convolution and pooling operations.
Some of the datasets are mostly frontal views of the UAV in good lighting conditions, but
in real scenarios, the UAV has various attitude changes and is affected by different lighting,
and the pixel size in the image is greatly affected by the distance of the UAV from the lens.
It can learn the details of the multi-rotor UAV feature information, but it will reduce the
robustness of the detection network. Therefore, UAV_data should have some samples of
drones under non-ideal conditions. We integrate the dataset obtained from kaggle and
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augment the UAV dataset with data by adding random noise points and a binarization
operation, which is a common process in image processing and refers to adding a random
proportion of noise points to the image based on a set value. Binarization is the process
of taking a grey-scale image with 256 levels of brightness and selecting the appropriate
threshold to obtain a binarized image (black and white) that still reflects the overall and
local characteristics of the image, the schematic is shown in Figure 7.
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The final multi-rotor UAV dataset contains 1259 images of multi-rotor UAVs and the
corresponding txt format annotation files; however, the annotation files in the dataset are
manually annotated, so there are some errors, for example, the annotation boxes do not
fit very closely to the actual detection target edges, and there are also some mislabels and
omissions. Therefore, the dataset needs to be re-labeled and divided into a training set and
a test set in a 4:1 ratio, and then the file format needs to be changed to the format required
by Yolov5.

3.2. Training

To validate the effectiveness of the improved model, ablation experiments were con-
ducted based on the UAV_data dataset, with the data expansion learning strategies of
online-copy-paste and mixup. The experiments were conducted on a workstation equipped
with an AMD Ryzen 9 5900HS processor, NVIDIA GeForce RTX 3050 Laptop graphics
processor (16 gb RAM) and 512 gb RAM, and configured with CUDA11.4 and cuDNN11.4
to invoke GPU acceleration. The deep learning framework chosen was Pytorch, and the op-
erating system was Windows 10. These experiments were conducted using SGD (stochastic
gradient descent) to optimize the learning rate during training, with the same hyperparam-
eter settings, weight decay set to 0.0005, momentum set to 0.8, batch size of 16 and epochs
of 150.

4. Discussion

In this paper, the mean average precision (mAP) and the number of parameters were
chosen as the main evaluation metrics for model detection performance and measuring
model size, with precision and recall as reference metrics. Four potential categories can be
generated by detecting network predictions, including true positive (TP), false positive (FP),
true negative (TN), and false-negative (FN). Where TP refers to the number of correctly
marked UAV positive samples, FP is the number of incorrectly marked UAV positive
samples, TN is the number of correctly marked UAV negative samples and FN is the
number of incorrectly marked UAV negative samples [35]. If the IoU between the detection
box and the drone enclosing box is greater than 0.5, it is marked as TP. Otherwise, the
detection box is marked as FP. If the drone enclosing box does not have a matching detection
box, it is marked as FN. The IoU introduced here is the ratio of the intersection and the
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concatenation of the network predicted edge (anchor box) and the true edge (true box),
which can be expressed by the following equation:

IoU =
area(ab ∩ tb)
area(ab ∪ tb)

(13)

The formula for precision is shown in the Formula (14) and the formula for recall is
shown in the Formula (15). In simple terms, recall refers to the rate of complete checks and
precision refers to the rate of accurate checks.

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

Since in our detection task there is only one category of multi-rotor UAVs, N in the
mAP equation is equal to 1 and in this case, mAP is equivalent to AP. Generally speaking,
the higher the mAP, the higher the accuracy of the network. mAP is calculated as follows:

mAP =
1
N

N

∑
n=1

Ap(n) (16)

In order to verify the effectiveness of the selected backbone part, a comparison test
was conducted using the current mainstream lightweight backbone network based on the
UAV_data dataset, respectively.

Table 1 shows that Yolov5s_EfficientLite has 46.3% fewer parameters than Yolov5s,
but mAP0.5 has only 1% less, the recall is 0.5% higher than the original model, GFLOPS
is 54.5% lower, and precision is only 2.53% lower, although Yolov5s_MobileNetV3 has
0.24M fewer parameters and the precision loss is nearly 3%. Yolov5s_ShuffleV2 not only
has 0.19 M more parameters than Yolov5s_efficientLite, but also has 4.4% lower precision
than Yolov5s.

Table 1. Comparison results of lightweight models.

Methods Precision (%) Recall (%) mAP0.5 (%) Parameters (M)

Yolov5s 94.96 89.01 92.78 7.02
Yolov5s_MobileNetV3 87.29 86.33 89.81 3.52
Yolov5s_ShuffleV2 87.36 86.84 88.38 3.95
Yolov5s_EfficientLite 92.43 89.52 91.76 3.76

In order to further verify the effectiveness of the proposed algorithm, we compared
other current target detection algorithms in the field of computer vision with the algorithm
proposed in this paper based on a new multi-rotor UAV dataset for experimental purposes.
From Table 2, we can observe that our proposed algorithm is 2.04% higher than the
baseline model mAP, while the number of parameters is only increased by 2.17 M, and
compared with Yolov5s_ASFF, the number of parameters is less 26.2% with only a 0.63 loss
in accuracy, although Yolov3-Tiny has 0.52 M less than our proposed network model and
7.04 less accuracy.

Table 2. Results of comparison of target detection models.

Methods Precision (%) Recall (%) mAP0.5 (%) Parameters (M)

Yolov3-Tiny 89.53 76.44 87.18 8.67
Yolov5s 94.96 89.01 92.78 7.02

Ours 93.54 91.09 94.82 9.19
Yolov5s_ASFF 94.14 93.17 95.45 12.46
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We chose to use a multi-rotor UAV video obtained from the network to simulate the ac-
tual scene and used the best model derived from the training of Yolov5s and Yolov5s_CAM
+ ASFF + SIoU to detect this video, respectively, as shown in Figure 8. After the experiments,
we found that the existing Yolov5s algorithm can already achieve a high accuracy during
the training process, but there is still much room for improvement in the performance of
the actual detection scenario. As shown in Figure 8a, it is clear that the baseline model
Yolov5 produces missed detections, while in Figure 8b, it is clear that the improved Yolov5
can accurately identify multi-rotor UAVs. In Figure 8c, although the original model Yolov5
can also detect the UAV in the image, it has a lower confidence level of 0.35 for the detected
target, while the improved Yolov5s has a higher confidence level of 0.61 for the detected
UAV, indicating that the use of the improved Yolov5 has a better detection performance for
multi-rotor UAV detection.
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5. Conclusions

In this paper, an improved Yolov5-based algorithm for multi-rotor UAV target de-
tection is proposed. Firstly, the backbone part of the baseline model is replaced with
EfficientLite to reduce the model parameters and lower the network computational over-
head; secondly, the fusion of feature maps at different scales of the model is facilitated
by introducing adaptive feature fusion techniques to balance the loss of accuracy caused
by the lightweighting of the model, and then the angle as a constraint is introduced into
the original loss function in the baseline model, reducing the degrees of freedom of the
prediction frame. Then, different lightweight structures were experimentally compared as
the backbone of the network based on the new multi-rotor UAV dataset, and EfficientLite
was found to be balanced in terms of number of parameters and detection accuracy. Fi-
nally, we compare the improved model with the baseline model and other target detection
algorithms and find that the improved model improves the target detection accuracy, while
increasing the number of parameters by a smaller amount. In future work, we will continue
to refine the improved model and attempt to deploy it to hardware platforms.
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