
Citation: Yadav, C.S.; Singh, J.; Yadav,

A.; Pattanayak, H.S.; Kumar, R.;

Khan, A.A.; Haq, M.A.; Alhussen, A.;

Alharby, S. Malware Analysis in IoT

& Android Systems with Defensive

Mechanism. Electronics 2022, 11, 2354.

https://doi.org/10.3390/

electronics11152354

Academic Editor: Maciej Ławryńczuk

Received: 2 June 2022

Accepted: 21 June 2022

Published: 28 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Malware Analysis in IoT & Android Systems with
Defensive Mechanism
Chandra Shekhar Yadav 1,*, Jagendra Singh 2 , Aruna Yadav 2, Himansu Sekhar Pattanayak 2, Ravindra Kumar 3,
Arfat Ahmad Khan 4, Mohd Anul Haq 5,* , Ahmed Alhussen 6,* and Sultan Alharby 5

1 Standardisation Testing and Quality Certification, MeitY, Delhi 110003, India
2 School of Computer Sciences Engineering and Technology, Bennett University, Greater Noida 201310, India;

jagendrasngh@gmail.com (J.S.); aruna.yadav21@gmail.com (A.Y.);
himansusekharpattanayak@gmail.com (H.S.P.)

3 CSE Department, Galgotias College of Engineering and Technology, Greater Noida 201310, India;
ravindrakumarchauhan@gmail.com

4 College of Computing, Khon Kaen University, Khon Kaen 40000, Thailand; arfatkhan@kku.ac.th
5 Department of Computer Science, College of Computer and Information Sciences, Majmaah University,

Al-Majmaah 11952, Saudi Arabia; sa.alharby@mu.edu.sa
6 Department of Computer Engineering, College of Computer Science and Information Sciences,

Majmaah University, Al-Majmaah 11952, Saudi Arabia
* Correspondence: chandrtech15@gmail.com (C.S.Y.); m.anul@mu.edu.sa (M.A.H.);

aa.alhussen@mu.edu.sa (A.A.)

Abstract: The Internet of Things (IoT) and the Android operating system have made cutting-edge
technology accessible to the general public. These are affordable, easy-to-use, and open-source tech-
nology. Android devices connect to different IoT devices such as IoT-enabled cameras, Alexa powered
by Amazon, and various other sensors. Due to the escalated growth of Android devices, users are
facing cybercrime through their Android devices. This article aims to provide a comprehensive study
of the IoT and Android systems. This article classifies different attacks on IoT and Android devices
and mitigation strategies proposed by different researchers. The article emphasizes the role of the
developer in secure application design. This article attempts to provide a relative analysis of several
malware detection methods in the different environments of attacks. This study expands the aware-
ness of certain application-hardening strategies applicable to IoT devices and Android applications
and devices. This study will help domain experts and researchers to gain knowledge of IoT systems
and Android systems from a security point of view and provide insight into how to design more
efficient, robust, and comprehensive solutions. This article discusses different attack vectors and
mitigation strategies available to both developers and in the open domain. Certain guidelines are
also suggested for application and platform developers, as well as application databases (Google play
store), to limit the risk of attack, and users can form their own defense with knowledge regarding
keeping hardware and software updated and securing their system with a strong password.

Keywords: IoT; android system; malware; kernel-based attack; application attack; application
hardening technique

1. Introduction

Smartphone usage and associated devices and applications are rapidly increasing
because of the accessibility and effectiveness of different applications, as well as the growing
development of the software and hardware of electronic objects. By 2023, it is expected
that 4.3 billion people will own a smartphone. The Android operating system is the
most extensively used mobile operating system (OS). Its market share was more than
75 percent in May 2021. Apple iOS has the second greatest market share of 27 percent, with
Samsung, KaiOS, and other small suppliers sharing the remaining 0.81 percent. The official
application database for Android-based smartphones is Google Play. As of May 2021, it

Electronics 2022, 11, 2354. https://doi.org/10.3390/electronics11152354 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11152354
https://doi.org/10.3390/electronics11152354
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6871-2050
https://orcid.org/0000-0001-5913-5979
https://doi.org/10.3390/electronics11152354
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11152354?type=check_update&version=2

Electronics 2022, 11, 2354 2 of 20

had over 2.9 million applications. AppBrain has classified almost 2.5 million of these apps
as standard apps, while 0.4 million have been labeled as low-quality apps. Because of its
global prominence, Android is a more appealing target for cybercriminals and is more
vulnerable to malware and viruses. Malware is a combination of the terms “malicious” and
“software”. When software performs a common task without authority, it is referred to as
malevolent software. An operation is a malicious operation that occurs without the user’s
knowledge or that is not planned to occur at that particular time. Malware is made up of
two parts: Payload (carrier) and exploits (activity).

Hackers can be classified as Rogue hackers with no prior experience and APT agents
(Advanced Persistent Threat) who are highly trained and protected by safe-harbor countries
and agencies. Attackers may belong to organizations, such as Julian Paul Assange, an
American and former CIA operative, or may be outsiders. Hackers may have a wide
range of intentions, and they may be grouped into black-hat hackers and white-hat hackers.
Malware can be categorized as spyware, worms, logic bombs, viruses, rootkits, trojan
horses, adware, backdoors, ransomware [1], bots, and other types of malware. Following
the release of the ‘Pegasus’ spyware for Android and iOS phones, a debate over “National
Security” erupted. These viruses spread as a result of system vulnerabilities, insecure
design, the frequent usage of portable devices, homogeneity, and several other factors. An
expert hacker and a persistent attack adopt a strategy to stay alive for a long duration
while remaining hidden from users. Figure 1 explains how sophisticated malware attackers
follow an attack plan and exploitation.

Electronics 2022, 11, x FOR PEER REVIEW 2 of 22

standard apps, while 0.4 million have been labeled as low-quality apps. Because of its
global prominence, Android is a more appealing target for cybercriminals and is more
vulnerable to malware and viruses. Malware is a combination of the terms “malicious”
and “software”. When software performs a common task without authority, it is referred
to as malevolent software. An operation is a malicious operation that occurs without the
user’s knowledge or that is not planned to occur at that particular time. Malware is made
up of two parts: Payload (carrier) and exploits (activity).

Hackers can be classified as Rogue hackers with no prior experience and APT agents
(Advanced Persistent Threat) who are highly trained and protected by safe-harbor coun-
tries and agencies. Attackers may belong to organizations, such as Julian Paul Assange,
an American and former CIA operative, or may be outsiders. Hackers may have a wide
range of intentions, and they may be grouped into black-hat hackers and white-hat hack-
ers. Malware can be categorized as spyware, worms, logic bombs, viruses, rootkits, trojan
horses, adware, backdoors, ransomware[1], bots, and other types of malware. Following
the release of the ‘Pegasus’ spyware for Android and iOS phones, a debate over “National
Security” erupted. These viruses spread as a result of system vulnerabilities, insecure de-
sign, the frequent usage of portable devices, homogeneity, and several other factors. An
expert hacker and a persistent attack adopt a strategy to stay alive for a long duration
while remaining hidden from users. Figure 1 explains how sophisticated malware attack-
ers follow an attack plan and exploitation.

Figure 1. Malware exploitation stage.

The first stage is Reconnaissance and weaponization in which the attackers find the
weakness and vulnerability of the system. This may belong to the hardware side, namely
the CPU, memory, communication device’s antenna, and sim card, or the software side,
namely zero-day vulnerabilities, continued use of old patches, and a weak encryption al-
gorithm. The next step after finding the target is the preparation of the threat and payload
so that Malware is delivered to the user. Malware can be delivered either by a direct ap-
proach (user responsible), including E-Mail, SMS, or a malicious Link on malicious web-
sites, or an indirect approach (attacker’s experience), including an encrypted/encoded
link, an active directory attack, privilege escalation, the directory access method, adware,
etc. After the malware is transmitted, the following phase is Exploitation, or payload,
which refers to the activities that malware performs. At this stage, it may participate in an
active attack or passive attack. Active attacks are masquerade attacks such as login access
or a bypass, session hijacking/reply attack, message modification using a change in header
by taking advantage of weak cryptography algorithms, a Denial of Service/Distributed
DoS (DoS/DDoS) attack causing flooding, and malformed data. Possible passive attacks
are the monitoring of network traffic, scanning of open ports and vulnerabilities, eaves-
dropping, footprinting, spying, and dumpster driving (information collected from dis-
carded devices and the recycle bin).

Figure 1. Malware exploitation stage.

The first stage is Reconnaissance and weaponization in which the attackers find the
weakness and vulnerability of the system. This may belong to the hardware side, namely
the CPU, memory, communication device’s antenna, and sim card, or the software side,
namely zero-day vulnerabilities, continued use of old patches, and a weak encryption
algorithm. The next step after finding the target is the preparation of the threat and payload
so that Malware is delivered to the user. Malware can be delivered either by a direct
approach (user responsible), including E-Mail, SMS, or a malicious Link on malicious
websites, or an indirect approach (attacker’s experience), including an encrypted/encoded
link, an active directory attack, privilege escalation, the directory access method, adware,
etc. After the malware is transmitted, the following phase is Exploitation, or payload,
which refers to the activities that malware performs. At this stage, it may participate in an
active attack or passive attack. Active attacks are masquerade attacks such as login access or
a bypass, session hijacking/reply attack, message modification using a change in header by
taking advantage of weak cryptography algorithms, a Denial of Service/Distributed DoS
(DoS/DDoS) attack causing flooding, and malformed data. Possible passive attacks are the
monitoring of network traffic, scanning of open ports and vulnerabilities, eavesdropping,
footprinting, spying, and dumpster driving (information collected from discarded devices
and the recycle bin).

After this second phase is started, the attacker decides whether to quit or continue,
but in both cases, the threat continues. They install malware and use a backdoor to obtain

Electronics 2022, 11, 2354 3 of 20

access to more information, as well as steal credentials that allow them to maintain a long
life. They may install new malware, and the next stage is Command & Control (C&C) in
which a persistent connection is granted to an attacker, and this may infect other connected
systems, constituted as Data Exfiltration (the violation of data integrity and availability)
and Spread laterally (mapped drives and connected systems/devices).

The structure of this paper is as follows: Section 2 highlights work related to Malware,
the most famous attack on digital systems. Section 3 focuses on the architecture of the
Internet of Things (IoT), industrial IoT (IIoT), different attacks, and mitigation proposed by
several researchers, i.e., physical, network, data attacks, and software attacks. Section 4
explains details of the Android architecture, vulnerabilities in the Android system, and
different malware detection techniques, and Section 5 focuses on application-hardening
techniques applicable for any kind of digital system, but especially in the context of IoT and
Android. Section 6 concerns the novelty and limitations of the article, and finally, Section 7
presents the conclusion and future work. The taxonomy of this presentation is shown in
Figure 2.

Electronics 2022, 11, x FOR PEER REVIEW 3 of 22

After this second phase is started, the attacker decides whether to quit or continue,
but in both cases, the threat continues. They install malware and use a backdoor to obtain
access to more information, as well as steal credentials that allow them to maintain a long
life. They may install new malware, and the next stage is Command & Control (C&C) in
which a persistent connection is granted to an attacker, and this may infect other con-
nected systems, constituted as Data Exfiltration (the violation of data integrity and avail-
ability) and Spread laterally (mapped drives and connected systems/devices).

The structure of this paper is as follows: Section 2 highlights work related to Mal-
ware, the most famous attack on digital systems. Section 3 focuses on the architecture of
the Internet of Things (IoT), industrial IoT (IIoT),different attacks, and mitigation pro-
posed by several researchers, i.e., physical, network, data attacks, and software attacks.
Section 4 explains details of the Android architecture, vulnerabilities in the Android sys-
tem, and different malware detection techniques, and Section 5 focuses on application-
hardening techniques applicable for any kind of digital system, but especially in the con-
text of IoT and Android. Section 6 concerns the novelty and limitations of the article, and
finally, Section 7 presents the conclusion and future work. The taxonomy of this presen-
tation is shown in Figure 2.

Figure 2. Taxonomy of presented article.

2. Related Work
Modern IoT and IIoT devices are controlled and monitored by Android devices. Vul-

nerabilities may be present either in IoT devices or Android devices and both can hamper
the effectiveness of security measures implemented for the system. Therefore, some re-
search focused on countering attacks is presented here. The authors in[2]analyzed home
automation systems, i.e., motion sensors, magnetic sensors, and industrial IoT devices,
and found that smart meters are vulnerable to several attacks due to the limited protection
during their design and implementation. These devices communicate over an RF (Radio
Frequency) channel, and they recommend using an encrypted channel as a security meas-
ure. The research in [3]addressed the issues of mutual authentication, the physically un-
clonable function, limited resources, side-channel analysis, and cloning attacks. Security
measures for mutual authentication, session key establishment, and protocol verification
are presented in their article. Mutual authentication provides good insight into inter-de-
vice and session key distribution. The proposed solution mitigates the risk of man-in-the-
middle attacks and replay attacks. The author in [4] presented several security attacks and
issues, privacy concerns, integration with the Blockchain for IoT devices, and different

Figure 2. Taxonomy of presented article.

2. Related Work

Modern IoT and IIoT devices are controlled and monitored by Android devices.
Vulnerabilities may be present either in IoT devices or Android devices and both can
hamper the effectiveness of security measures implemented for the system. Therefore,
some research focused on countering attacks is presented here. The authors in [2] analyzed
home automation systems, i.e., motion sensors, magnetic sensors, and industrial IoT
devices, and found that smart meters are vulnerable to several attacks due to the limited
protection during their design and implementation. These devices communicate over
an RF (Radio Frequency) channel, and they recommend using an encrypted channel as
a security measure. The research in [3] addressed the issues of mutual authentication,
the physically unclonable function, limited resources, side-channel analysis, and cloning
attacks. Security measures for mutual authentication, session key establishment, and
protocol verification are presented in their article. Mutual authentication provides good
insight into inter-device and session key distribution. The proposed solution mitigates
the risk of man-in-the-middle attacks and replay attacks. The author in [4] presented
several security attacks and issues, privacy concerns, integration with the Blockchain for
IoT devices, and different security research areas. Application repackaging is one of the
most vulnerable issues in Android/iOS applications. The authors in [5] presented work on
repackaged applications. They addressed five issues, namely (1) the current unfavorable

Electronics 2022, 11, 2354 4 of 20

repackaging practices, (2) the way adware is embedded in the code, (3) the types of apps
used to repackage, (4) the reasons people download repackaged software, and (5) the
way the properties of an app change in the repackaged version. Static Malware detection
tools including TinyDroid, DroidFDR [6], DroidEnsemble, and NsDroid were presented
in [7], but their shortcoming is that these are not suitable for dynamic analysis. NsDroid
is a lightweight and fast Android malware detection tool. NsDroid is based on a local
function graph [8], therefore, comparatively, it is 20× times faster than other graph-based
approaches [9,10].

In [11], the author cited conflict between different sensors controlled via a smart-
phone and proposed a solution based on LOD (Linked Open Data). LOD enables better
exploitation of the qualities of the inhabitant’s profile and services, as well as defining
the relationship between the various services and objects in the house. The authors of the
article [12] presented good insight into mobile malware detection using signature- and
anomaly-based approaches.

3. Type of Attacks on IoT and IIoT Devices

The Internet of Things, in which “things” stands as a collection of diverse controllable,
recognizable, and addressable devices on the internet, constitutes connected devices with
the primary task of collecting and sharing information with its peers. According to one
study, applications of IoT devices are increasing in data day by day, and by 2025, there
will be approximately 64 billion IoT devices [11,13,14]. These devices will have some kind
of communication and sharing of data, and when this occurs, there is an obvious threat
of attacks and malware in these devices. Industrially used versions of IOT may be called
IIoT. IIoT is susceptible to various cyber threats, primarily due to the growth in the use
of sensors, the traditional and inefficient coordination and communication approach, and
the increase in the number of potential hackers. Different types of attacks and security
measures are listed below.

3.1. Physical Attack and Countermeasures

In this scenario, the attacker physically accesses the device and network, and harms
them in a significant way. Different physical attacks may be carried out by tampering with
physical devices, i.e., disconnection of the network cable, replacing evidence instruments,
rotating surveillance cameras, MCI (Malicious code Injection), RF Interference/Jamming
attacks, DDoS attacks, Fake Node Injection attacks, Sleep Denial attacks, SCA (Side-Channel
Attack), and PDoS (Permanent DoS). In this attack, the system becomes a completely
nonoperational state.

In [2], the authors examined the security and vulnerability of both industrial and
commercial IoT devices. Their experiment and analysis found that home automation
systems or commercial IoT systems are more vulnerable to brute force attacks for login
credentials. Smart meters have the possibility of ransomware attacks [1]. Devices used for
virtual personal assistance, such as Google Home and Amazon Echo, are prone to voice
masquerading and squatting attacks. An attacker can use similarly paraphrased names
or pronounced names to hijack voice commands, and in this voice, masquerade an attack.
The attacker uses skill to impersonate a legitimate voice in order to eavesdrop on user
conversations and user data.

Countermeasures against Physical Attacks: Security measures for this issue include
the inbuilt variability of the integrated circuit with the physical unclonable function (PUF)
for mutual authentication. Mutual authentication takes place via challenge–response
mechanics, where the output depends on the device’s microstructure. This makes PUF
unclonable, tamper-proof from physical attacks, and eliminates malicious code injection.
The work conducted by [15] focuses on providing a method of energy-efficient architecture
with increased security capabilities. To solve the energy problem, i.e., sleep denial attack,
they have proposed a CUTE-mote (Customizable and Trustable End device mote) for
heterogeneous architecture. The diverse architecture is developed by the hybridization of

Electronics 2022, 11, 2354 5 of 20

MCU (Micro Controller Unit), Contiki OS, and RCU (reconfigurable computing unit) with
an IEEE-802.15.4 radio transceiver. Experiments have shown that by considering the thread
metric benchmark and smart fusion of two SOC hardware platforms, the proposed system
is capable of preventing cyber-physical attacks such as jamming attacks and provides a
strong countermeasure against sleep denial attacks.

To solve the issue of distributed systems, one solution is the PAuthKey (Pervasive
Authentication Protocol). In the proposed protocol, the implicit certificate is obtained from
the cluster head, and later, a secured link is maintained between sensor nodes, peer nodes,
and the end-user. The authentication scheme depends on the respective arrangement
of sensor nodes, and the scheme is liable to provide a guarantee of application-layer
security. This is capable of impersonating attacks, masquerade attacks, and fake node
injection attacks.

Article [16] provides a lightweight encryption algorithm to counter side-channel
attacks. The lightweight and software-based solutions have been chosen by the authors
due to the power concern of IoT devices, faster communication, and dynamic capability of
software algorithms. According to the authors, masking techniques also make it hard to
analyze encryption and decryption keys and protect against side-channel attacks. Other
security measures for this kind of attack are power analysis, timing analysis, and physical
unclonable function.

3.2. Network Attacks

Network attacks are performed by the maneuvering of IoT networks to cause damage.
This may be launched from a remote location. Some common network attacks are Traffic
Analysis attacks, RFID Spoofing (Radio Frequency Identification), RFID Unauthorized
Access, Routing Information Attacks, Selective forwarding, Sinkhole attacks, Wormhole
attacks, Sybil attacks, Man-in-the-Middle Attacks (MiTM), and Replay attacks. Network
attacks may lead to serious consequences, and ultimately, may face a shutdown of the
system and services. The denial of one service, such as OTP in banking services, makes
other services inaccessible and useless.

Countermeasures against Network Attacks: The framework is named EPIC (Efficient
and Privacy-preserving traffic obfuscation), a multi-hop routing protocol to achieve strong
privacy. It protects commercial applications used for home automation or smart homes.
Three basic properties, referred to as CIA (Confidentiality, Integrity, Authentication), are
to be maintained for secure communication and to defend against Reply attacks. IBC
(Identity-Based Cryptography), which is a signcryption technique, efficiently satisfies CIA.
The IBC combines encryption and signature schemes and also eliminates the need to access
a trusted third party to fulfill the authentication process that survives against replay attacks.

Work conducted by [17] in the direction of IDS for IoT proposed three different models.
The first model is based on the unsupervised machine learning approach K-means to find
wormhole attacks, while the second is the supervised approach based on the decision tree.
Both models are dependent on the clause that if any router tries to add a new node outside
of its cluster or safe distance, it is declared as a wormhole. The third model is based on the
hybridization of the K-mean and decision-based tree [18,19]. The RPL protocol (Routing
Protocol for Low-Power and Lossy Networks), i.e., SecTrust-RPL, may be used to handle
Sybil attacks.

The MiTM attack has significant potential to harm the IoT system, as it can bypass
the control of the attackers. This attack can exploit the possible path of industrial robots,
which leads to potential damage to the assembly line of a system. To solve MiTM issues,
the work performed by [20] proposed MQTT (Message Queuing Telemetry Transport)
and MQTT-SN (MQTT Sensor Network) protocols. These protocols maintain end-to-end
communication. The MQTT protocol uses a key policy, whereas MQTT-SN uses an attribute-
based encryption policy and elliptic curve cryptography to defend MiTM.

Electronics 2022, 11, 2354 6 of 20

3.3. Software Attacks

Another type of possible attack is a software attack. This may be launched whenever
vulnerabilities are associated with the software system used for IoT systems. Viruses,
worms, adware, spyware, and trojan horses are malicious programs that may steal informa-
tion, are capable of tampering with the data, and may launch DoS or DDoS. Some malicious
programs may even infect data present in IoT devices, clouds, and data centers. According
to IoT domain experts, due to the wide range of applications in commercial as well as
industrial areas, we may have 75 billion devices by 2025. As it is comparatively new in
w.r.t. personal computers and the internet, it has more security concerns and more possible
attacks. In 2016, an IoT botnet was used for the deadliest DDoS attack on DNS service
providers by Mirai Botnet and Jeep Hack.

Countermeasures against Software Attacks: In the direction of countering software-
based attacks, previous research [21] presented a framework combining multiple aspects
to defend hardware-implanted Trojans. The three security aspects used in the proposed
model are an encryption mechanism to prevent unauthorized access, vendor diversity to
gain trust among untrusted participants, and mutual auditing to check the encryption
status and message content. A similar kind of work was performed by [22], in which a
secure hardware-based design was proposed to prevent Trojans. This mechanism directly
prevented Trojan’s injection into the network.

3.4. Data Attacks

Cloud computing plays an important role in maintaining and providing resources
such as virtual servers, databases, etc. Whenever a cloud server provides these services,
data security becomes a concern, and it may be improved by using software updates,
firmware, and proper authentication mechanisms. Some examples of data attacks are Data
Inconsistency, Unauthorized Access, and Data Breaches. Most common insider attacks are
due to weak access policy or weak login credentials. Examples of data attacks were seen
in 2018, when 50 million Facebook users’ data were breached by Cambridge Analytica,
and in 2021, when the AIRINDIA data server SITA was compromised, and due to that,
the details of users, including their travel history, payment card details, and date of birth,
were compromised.

Protection against Data Attacks: The protection of users’ data is the utmost significant
task. The following countermeasures are proposed against data attacks. The integrity may
be protected by a digital signature or message authentication code. However, there are
challenges in signature implementation in smartphones, i.e., Android OS, iOS, and IoT
sensors because these devices are computationally intensive and difficult to implement.

The model proposed by [23] used symmetric key cryptography. The model is based
on a message authentication protocol and chaos-based privacy protection to ensure the
integrity and secure data communication of smart home application devices. The au-
thor proposed a blockchain-based solution to ensure integrity in [24]. The proposed
approach is based on three layers, namely concepts of trust, a trust space–time protocol,
and the verification of data availability and integrity. Blockchain-based architecture for ABE
(Attribute-Based Encryption) also ensures the nonrepudiation, integrity, confidentiality, and
privacy of data transactions. The sender sends the encrypted data, and only validated users
who satisfy the access control mechanism can decrypt and use the data. Another security
measure is the Improved Secure Directed Diffusion protocol (ISDDP) for end-to-end data
protection in the IoT domain. In this protocol, first, a shared key is generated using the
bilinear pairing method; later, that key is used for the generation of multiple layers of
encryption. This protocol ensures privacy protection on multiple layers, and this makes it
impossible to retrieve the original data from malicious hackers. Some of these attacks and
mitigation solutions are presented concisely in Table 1.

Electronics 2022, 11, 2354 7 of 20

Table 1. Categorization and brief overview of possible attacks on IoT and IIoT systems with
security measures.

Attack Subcategory Effect Countermeasures
Proposed

Ph
ys

ic
al

A
tt

ac
ks

Tampering
(perception Layer)

Disclosure of sensitive
information, Unauthorized

Access, DoS Attack

Authentication based on
unclonable function.

Malicious Code Injection (perception Layer) Disclosure of sensitive info,
Access gain, DoS Authentication based on PUF.

RF Interference/Jamming (perception Layer) Squeeze Communication. DoS CUTE mode (Customizable and trustable
end device mote)

Fake Node Injection (perception Layer) Man in Middle attack
Data flow control Pervasive authentication protocol

Sleep Denial Attack (perception Layer) Node down CUTE Mote
SVM (SupportVector Machine)

Side Channel Attack (Perception,
Application Layer) Gather encryption keys PUF Authentication

Masking technique

Permanent Denial of Service
(perception Layer) Destruction of Resources NOS middleware (NetwOrked Smart object)

N
et

w
or

k
A

tt
ac

ks

Traffic Analysis Attack (Network Layer) Network Data Disclosure Traffic obfuscation framework,
Privacy protection

RFID Spoofing and Unauthorised
Access(Network Layer) Data Modification SRAM based PUF

Routing Information Attack
(Network Layer) Loop routing Authentication using Hashchain

Selective Forwarding (Network Layer) Message Destruction Authentication using Hashchain,
Monitor approach

Sinkhole Attack (Network Layer) Data leak and alteration Authentication using Hashchain,
Intrusion detection

Wormhole Attack (Network Layer) Packet tunneling IDS using clustering

Sybil Attack (Network Layer) Partial resource
allocation, Redundancy Trust-based Protocols

Man in the Middle Attack (Network Layer) Violation of Data Privacy

Message Quer Telemetry Transport,
Random number-based
mutual authentication,

Secret key and
parameter-based authentication

Replay Attack (Network Layer) Network congestion, DoS Signcryption

Denial/Distributed Denial of
Service(Network, Processing Layer) Network Flooding and crash

SDN supported IoT framework,
Multilevel DDoS mitigation framework,

EDoS server

So
ft

w
ar

e
A

tt
ac

ks

Virus (Application Layer) Infect system High-level synthesis

Malware Data Infected
Lightweight Neural

Network-based framework,
Malware image classification

D
at

a
A

tt
ac

ks

Data Inconsistency (Network,
Processing Layer) Inconsistent Data Blockchain-based architecture

Chaos-based scheme

Unauthorized Access (Processing Layer) Data Privacy violation ABE using Blockchain and
Privacy Preserving

Data Breach (Network Layer) Data Leak Data Protection and Privacy,
Multi-factor (two) authentication

4. Android System Architecture and Attacks

In November 2007, Android was unveiled by Google and the Open Handset Alliance
(OHA). As per the latest report of the International Data Corporation, nearly 85 percent of
mobiles are using the Android operating system. In 2020, Google revealed that 400 million
devices were running Android version 10, and the latest version is Android 11. Android

Electronics 2022, 11, 2354 8 of 20

has four types of components: Activities, services, content providers, and broadcast re-
ceivers. With the rising number of users, the number of threats and exploitations are also
rising. According to the authors of the work [5], malware developers inject code into the
service component that runs in the hidden layer without the concern of the user. The first
Android Malware included DroidSMS, which targeted SMS services, and TapSnake, which
transmitted GPS locations. Recently, CamScanner, which has millions of downloads from
the GooglePlay store, was detected as malware in Android OS. The research conducted by
Kaspersky on 5000 applications recorded more than 1000 cases of known vulnerabilities
and 700 zero-day vulnerabilities. Therefore, a deep understanding of Android Devices,
Architecture, and Android applications is a vital requirement. The overall Android archi-
tecture is presented in Figure 3. Attacks and exploit are possible at every layer, including
hardware and drivers used to run devices.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 22

Figure 3. Android framework layers.

Attacks on Android devices may be categorized into four categories, namely hard-
ware-based attacks, kernel-based attacks, attacks based on the hardware abstraction layer,
and application-based attacks. In this subsection, we mention certain threats, challenges,
and corresponding solutions, and this is summarized in Table 2.

Table 2. Layered attacks on Android Architecture with proposed security measures.

Classification of
Attack

Type of
Attacks

Vulnerabilities
Exploited by Attack

Strategy and Effect
of Attack

Security
Measure

H
ar

dw
ar

e-
Ba

se
d

A
tta

ck
 Rowhammerattack DRAM Memory leakage. GuardION

Drammer attack DRAM chip Gain root access GuardION

Glitch attack DDR3 and DDR4 Use graphics code to exploit
DDR3 and DDR4 loopholes GuardION

QuadRooter Attacks Linux IPC Root Access
Patch with Distrib-

uter

RAMpage attack RAM component
Gain access to sensitive

memory location. Leak Infor-
mation.

GuardION

K
er

ne
l-

Ba
se

d
A

t-
ta

ck
s

DroidKungFu
(Root Privilege)

Root privilege of adb and
udev

Privilege escalation, unlock all
system files and functions.

Security enhanced

ROP (Code reuse) The executable code pre-
sent in the library

Overwriting of the return ad-
dress, point to arbitrary code.

Instruction set ran-
domization

Figure 3. Android framework layers.

Attacks on Android devices may be categorized into four categories, namely hardware-
based attacks, kernel-based attacks, attacks based on the hardware abstraction layer, and
application-based attacks. In this subsection, we mention certain threats, challenges, and
corresponding solutions, and this is summarized in Table 2.

Electronics 2022, 11, 2354 9 of 20

Table 2. Layered attacks on Android Architecture with proposed security measures.

Classification of
Attack

Type of
Attacks

Vulnerabilities
Exploited by Attack

Strategy and Effect
of Attack

Security
Measure

H
ar

dw
ar

e-
Ba

se
d

A
tt

ac
k Rowhammerattack DRAM Memory leakage. GuardION

Drammer attack DRAM chip Gain root access GuardION

Glitch attack DDR3 and DDR4 Use graphics code to exploit
DDR3 and DDR4 loopholes GuardION

QuadRooter Attacks Linux IPC Root Access Patch with Distributer

RAMpage attack RAM component
Gain access to sensitive
memory location. Leak

Information.
GuardION

K
er

ne
l-

Ba
se

d
A

tt
ac

ks

DroidKungFu
(Root Privilege)

Root privilege of adb and
udev

Privilege escalation, unlock all
system files and functions. Security enhanced

ROP (Code reuse) The executable code
present in the library

Overwriting of the return
address, point to arbitrary

code.

Instruction set
randomization

Gooligan
(Root Privilege)

Kernel API
put_user/get_user

Inappropriate validation, Root
access, privilege escalation NA

SOP (Code reuse) Format String Overwrite GOT entry, stack
function pointer Stack canaries

JOP (Code reuse) Vulnerable jump
instruction

Overwriting stack, setjmp
pointer, function pointer Program shepherding

Return to user attack
(Code reuse)

The shared address
between user and kernel

Overwrite kernel pointer,
redirect execution flow. kGuard

TOCTOU (Zero Day)
The user and Driver

havedirect access to the
buffer

Gaining device driver control,
corrupt memory, privilege

escalation
NA

Kernel Space Mirroring
Attack (Permission

Exploitation)

Read/Write data access to
EL (0) user mode Accessing kernel NA

Boot Loader Attack (DoS) Non-verifiable address Flood of traffic BOOTSTOMP

H
ar

dw
ar

e
A

bs
tr

ac
ti

on
-b

as
ed

at
ta

ck

Invisible man attack
(sensor-based attack) Security weakness Launch Phishing attack Download applications from

Trusted sources.

Brute force attack
(Encryption system)

Weak passwords and
Authentication system. Guessing of right key pair. Strong encryption algorithm.

Two-factor Authentication.

Key reinstallation attacks
(Replay attack)

Allow reconnection using
the same key. Reset the encryption key. New Patch

Audio channel attacks
(media-based attacks)

A security weakness in
Android accessibility

application.
Use services of Talkback. AuDroid policy

enforcement.

Convert channel attacks
(sensor-based attacks)

Exploit IPC and
permission system.

Retrieve data from the
sensor.Steal sensitive data.

Security policy enforcement.
Strong permission.

A
pp

lic
at

io
n-

Ba
se

d
A

tt
ac

ks

Energy-Based Attack
(DoS)

Complex inter relationship
between network

and hardware
Resource consumption. Strong Permission

Runtime information
Gathering Attack

(permission exploit)
Default permission system Malicious application use. App Guardian

Code Injection Attack
(Permission exploit) Third-party libraries The attacker gains excess

permission. Profile matching algorithm

Ad Libraries attack
(Permission exploit) Intra library collusion The attacker exploits

additional permission. Justifiable permission

Mam in the middle attack
(Network Attack) Non-authentication The attacker pretends

legitimate host
TLS public key
Infrastructure.

Cloak and dagger attack
(Permission exploit) Default permission system Control over the user interface. Strong Permission.

Dirty COW
(Permission exploit)

Privilege Escalation
Attacks Create race conditions. New Patch

Electronics 2022, 11, 2354 10 of 20

4.1. Hardware-Based Attacks

Any device is made of a range of hardware, such as a printed circuit board, pro-
cessor (central processing unit, baseband processor, application processor, digital signal
processor, graphical processing unit), memory, touch screen, radio frequency interface,
Wi-Fi/Bluetooth device, SIM card, USB device, camera, and different sensors: GPS, motion
detection, environmental sensor, heat detector, network sensor, etc. In a hardware attack,
the attacker tries to exploit the preexisting vulnerabilities present in the hardware design
component. These kinds of vulnerabilities are hard to patch because the patch is only
available from distributors, and user-end updating is not possible. If these hardware com-
ponents are repaired by a third party, then it causes a question mark and threat regarding
the integrity of the device. This issue may be solved by cross-checking the communication
integrity between the repaired device and the central processing unit.

The Rowhammer is a type of hardware attack in which malicious JavaScript is used
to attack the Android device. After successful installation of the script, the attacker gains
access to GPU (general processing unit) and DRAM (dynamic random-access memory)
and causes the leakage of electrical current, i.e., Glitch, using the system library WebGL.
The triggered Glitch can harm DDR3 and DDR4 memory chips and exploit the GPU.
RAMpage classified as CVE-2018-9442 is an attack similar to Rowhammer where attackers
gain access to the restricted memory location and the complete system. GuardION is an
open-source technique that protects the system from authorized memory-access leaks and
Glitches. QuadRooter is a set of four vulnerabilities identified as CVE-2016-2059 (Common
Vulnerabilities and Exposures), CVE-2016-5340, CVE-2016-2503, and CVE-2016-2504, which
are present in the Qualcomm chipset. The attacker can gain access to the root of the
application and may exploit the vulnerabilities present. The patch is available from the
distributor or Qualcomm.

4.2. Kernel-Based Attack

Android is implemented over the kernel, and the Linux kernel is responsible for every
action and the management of different activities. The Linux kernel takes care of Android
runtime environment functionalities. The attacker tries to exploit the kernel and related
components such as the memory, device driver, and run time environment. Even though
Android uses several security measures such as Secure IPC (Inter-Process Communication),
Android Sandbox, cryptography, and an encrypted file system, vulnerabilities continue to
be exploited, and some recent examples may be broadly classified into (1) an attack that
targets the root privilege, (2) a memory target, (3) a boot loader target, and (4) a device
driver. A brief attack pattern, description, and solutions are mentioned below.

The attacker tries to access the critical section using the keyclt() function of the Linux
kernel and exploits the memory leakage, i.e., CVE-2016-0728.This provides unprivileged
access to the system. The zero-day vulnerability CVE-2013-6282 known as a Gooligan
Attack exists due to an error in put_user/get_user, a kernel API. The attacker performed
unauthorized read and write operations in memory using malicious code. This leads to
the exploitation, access, and execution of malicious code. This vulnerability was present in
Android versions 4 and 5. The second root privilege attack malware for Android devices
is DroidKungfu. It uses vulnerabilities identified by CVE-2010-EASY and CVE-2009-1185.
The motivation of this malware is to silently root into the mobile device and unlock the
file system and functionalities. It exploits the system resources without requesting services
from the kernel. This is performed by exploiting a vulnerability present in the root level
code “udev” by sending a NETLINK udev event ping. The message hint to udev runs into
an arbitrary binary as the root.

Jump-oriented programming, Return-oriented programming, Return to libc, and ret-2-
usr are some examples of such kinds of attacks. These attacks exploit the address space of
the code segment and address space of the kernel. A great deal of work was conducted to
secure devices against these attacks, including the randomization of the user address space
and kernel address space.

Electronics 2022, 11, 2354 11 of 20

The bootloader is responsible for scheduling vital tasks at the initialization of the oper-
ating system and kernel process. Mobile phone’s bootloaders have the special responsibility
of initializing the system, maintaining the device’s security, and ensuring the integrity
of CoT (Chain of Trust). There are several cases and malware that hinder the process of
bootloaders from performing their function and also make them vulnerable to attacks.
Most of the vulnerabilities are from the insecure design and coding errors categorized as
per OWASP Top 10 2021 (Open Web Application Security Project). The malware BOOT-
STMP exploits the vulnerabilities CVE-2014-9798 and CVE-2015-8893 that are present in
Qualcomm, Huawei, and NVIDIA’s bootloader. These vulnerabilities allow attackers to run
malicious code, hence imposing memory corruption, buffer overflow, privilege escalation,
and denial-of-service attacks on the device. Designing a bootloader while keeping in mind
the following issue is very crucial for developers.

The vulnerability present in the device driver allows an attacker to breach the driver,
cause the device to become unstable, gain access control, and crash devices. During de-
velopment, the designer’s primary focus is on driver functionality, not security. When a
new or updated driver appears, these are made available in the market by the developer,
distributor, or using reverse engineering, and an attacker finds security gaps available
in that driver. The researcher of Zlab discussed two vulnerabilities, CVE-2016-2411 and
CVE-2016-2435, which were present in the MSM thermal driver, and the NVIDIA video
driver affects Android version 6.0 in Nexus devices. The implementation flaw and vulnera-
bilities were present in both the kernel and external driver. The attacker used malicious
applications and successfully gained root access and launched attacks, i.e., privilege access,
root access, complete access gain, compromised confidential data, etc. The solution relies
on the developer understanding what to do and what not to do during the design and
implementation of drivers.

4.3. Hardware Abstraction Layer-Based Attacks

This layer contains library modules for the implementation of different devices such
as Wi-Fi, Bluetooth, Camera, GPS, and other components of Android devices. Here, the
attacker targets the interface and uses these components. Most of the devices contain a
Wi-Fi chipset designed by the M/S Broadcom company, and these chipsets are highly
vulnerable to a Booby-Trapped Signal. The same kind of vulnerability was present in Wi-Fi
security protocol WPA2 in Android version 6.0 and higher, IOS, OpenBSD, and Windows.
This vulnerability was exploited using an advanced attack method named KRACKs, i.e.,
Key Reinstallation Attack. To exploit the vulnerability, the attacker needs to be in the
Wi-Fi range. This attack can steal confidential data, decrypt encrypted data, and undertake
spying activity using a camera, voice recording, or GPS. The GooglePlay service also offered
common vulnerability challenges, e.g., default service enabling and disabling, which affects
the normal functioning of the android device.

Attackers also use rooting and jailbreaking tools, i.e., Aircrackng, to generate pass-
words. After gaining kernel control, the attacker gains full access to all the data and system
resources. The solution to this issue is a stronger encryption algorithm. This process is
slightly challenging to execute when considering brute force attacks due to the requirements
of memory, computation resources, and intensive knowledge.

4.4. Application-Based Attacks

Android applications are available in the Google Play store and other database stores.
These applications require certain default permissions and many other users, which are
never used by applications. Later, the Malware designer exploits the vulnerabilities present
in this application, and the user suffers attacks such as privilege escalation. The attacker
can leverage the third-party library and native libraries used for applications. Attackers
gain root privileges and can cause irreparable damage to devices, perform spying activity
leading to critical damage, or sell the gathered information. Upon the running/installation
of a malicious application, if it gathers sensitive information, then it is a kind of RIG

Electronics 2022, 11, 2354 12 of 20

attack (Run time Information Gathering). This attack can result in a potential threat to
the IoT device control administered by Android devices and can harm the CPU, files,
battery, disk, and memory of the device. App Guardian is a tool that handles RIG attacks,
in which it monitors the suspected application and suspicious activities and closes that
application, cleaning the memory to make sure nothing is left in the memory for the
attacker to access. WHYPER is a Natural Language Processing-based tool that analyzes the
requirements of different applications and the permission used by the application. When
application-based attacks use more power and devices are exhausted quickly, it is termed
energy-based attacks.

Other library-based attacks were present in OpenSSL and Boring SSL and considered
critical, allowing the attacker to corrupt the memory. The solution to this is available in
the updated version of OpenSSl1.0.2. The GNU C library used the third-party function
getaddrinfo(), which may be exploited for CVE-2015-7574 from are mote system. These
vulnerabilities may breach the user’s privacy, expose personal information to the dark web,
code injection attacks, and can even hijack the system’s control, compromise the Dropbox
account, etc. Table 2 represents a summary of the above section.

5. Android Vulnerability Detection

Vulnerabilities may be detected by static analysis, dynamic analysis, or a hybrid of the
two. Some techniques have been presented in this section.

5.1. Methods Based on Code Analysis

TinyDroid and DroidMoSS [7] are based on a static malware detection technique. The
input of TinyDroid is the application/.apk files, and machine learning is used for parameter
learning. By using the Apktool, first .apk file is decompiled into Smali code. Smali is a
higher-level explanation of the Dalvik bytecode, which may be further abstracted into
instruction representation. TinyDroid finds n-grams from the instructions and uses them
for classification. These n-grams are matched with benign and malicious applications’
n-grams. Based on this technique, classification takes place. The authors claimed that some
antivirus performances are below fifty percent, but TinyDroid’s classification rate is 95.6%.
The clone detection technique is another approach for Android malware. The process
first uses dex2jar for the conversion of the Dalvik VM (virtual machine) bytecode into the
JVM bytecode (Java VM). In the next step, the Java bytecode was decompiled using the
JD-CORE java decompiler. Decompilation yields higher-level code, which is used for clone
detection. The limitation of this approach is that it can detect the malware from defined
classes and similar malicious files. DroidMOSS is presented to measure the similarity
between applications to find the repackaged applications. To do that, applications are
considered from a third-party marketplace, their distinguishable features extracted, and
application-specific fingerprints are generated. Fingerprint generation is performed by the
fuzzy hashing technique. The third-party application marketplace chooses from 6296 apps
in USA, 12,595 apps in China, and4015 applications in Europe considered for experiments.
These applications are measured against 68,187 apps from the Android market. The author
concludes that 5–10% of applications are repackaged, and 13–30% of applications are just
redistributed on the Android marketplace. These repackaged applications not only harm
the economic interest of a developer/nation, but repackaged applications are also more
vulnerable to attacks such as backdoors and Trojans. The benefit of this approach is that it
operates directly on Dalvik code without source code requirements.

5.2. Android Vulnerability Detection Methods Based on API Calls and Permissions

The algorithm DroidSieve used extreme gradient boosting to perform various trial-
and-error runs to trace and segregate Android malware pertaining to the fixed inflow of
data. DroidSieve has evaluated over 1 million faulty apps, achieving a very high detection
rate of over 99%. However, since it performs malware detection by checking for similar
patterns in the app’s code, it may not be robust against mimicry attacks and app cloning.

Electronics 2022, 11, 2354 13 of 20

Code conversions [25] from one form to the other enable an analysis of the performance of
any application in terms of the time taken to carry out the conversion process. A sequence of
API calls also can be associated with a set of permissions to keep the malicious access away
from creating any havoc across the network. However, the use of various machine-learning
algorithms to estimate API-based detection on any real-time dataset can achieve better
accuracy rates, but, at the same time, can also be computationally expensive concerning
retrieving the set of permissions associated with the specific call, DroidMat, another ap-
proach based on fixed information analysis, includes permissions, intents, which are the
activating objects that contain information about other elements, and API calls, in addition
to the type of components integrated with the service. The use of various machine-learning
algorithms such as K-Means and k-nearest neighbors (KNN) to infer conclusions about the
static analysis are not applicable in dynamic analysis. Hence, it should be implemented in
a manner that supports both fixed and variable analyses.

5.3. Android Vulnerability Detection Based on Risk Signals

Before the installation of an app, a thorough analysis should be carried out by the users
to prevent malicious access from running in the background, eliminating the stakes of a
confidential data breach. Furthermore, in many real-time scenarios, the setup of an account
asks the user to grant permission to access their contacts, location, camera, and many
other features, which may exploit confidential data to derive commercial benefits if falling
into the wrong hands. The authors in [26] developed a model that relies on app-based
permissions as supported by Google Store environments. In addition to this, a sequence
of additional apps has also been tracked to perform efficient malware-free analysis, as
unusual permissions increase with the risk of app installation.

Probabilistic approaches used to detect and work on the elimination of malware play
a prominent role in terms of mathematical model design and applications. However, the
implication is thatthe outcome for the problem under consideration has an acceptance rate
of nearly 50%. The work presented in [27] uses a rank-based approach to grade the access
permissions. The adopted approach uses a mix of classification techniques that enable the
categorization of apps installed in the user’s environment into harmful and harmless apps.
However, the methodology is only applicable against malware detection and resolution for
a set of operating systems, making it inefficient to assess the risk factor against a wide set
of emerging systems.

DroidAPIMiner performs classification using four commonly used classification algo-
rithms, namely ID5 DT, C4.5 DT, KNN, and SVMs. The optimal results of 99% accuracy
and a 2.2% false-positive rate were obtained when using the KNN classifier. However, as
the dataset size increased further by adding more features, the accuracy did not remain
the same and was degraded, thereby defeating the overall purpose of the classification
techniques used. The DroidRanger tool uses a variety of malicious families to detect
the behavioral patterns present in malware. It performs the first operation based on a
permission-based behavioral footprint for classifiable malware, and another, for previously
unknown malware, that is based on a heuristic analysis of the app’s behavior. Suspicious
applications are then executed and monitored to verify whether they display malicious
behavior at runtime. If this is the case, the associated behavioral fingerprint is extracted
and included in the first detection process database. However, DroidRanger only covers
free applications and only five Android markets, with a false-negative rate of 4.2%, which
is highly insignificant for a dynamically increasing set of applications.

5.4. Android Vulnerability Detection Using NLP

Natural Language Processing (NLP) paves a path to identifying and processing abun-
dant approaches to deal with the widely emerging text and other data formats originating.
The experiments can also be efficiently conducted through the inbuilt library support
offered by a variety of programming domains to process the language semantics. The
analysis is more productive as a pair of attributes are considered to identify the correlation

Electronics 2022, 11, 2354 14 of 20

among them. Such models can be developed irrespective of the source code. Though
the probabilistic approaches serve to provide accurate results to estimate the correlation
amongst the attributes, they do not infer any assured outcomes for any combination of
data samples. The authors in [28] proposed a Long Short-Term Memory model (LSTM) to
eradicate the aforementioned difficulties by invoking system calls. LSTM assigns a proba-
bility to the occurrence of a sentence (i.e., the sequence of system calls of the application
being monitored) in both the valid and malicious models. Upon testing the model under
different conditions with varying lengths of system call sequences from 50 to 50,000, the
authors achieved an accuracy rate of above 90%. However, if the number of samples was
found to increase further, the accuracy may either drop or remain constant for streaming
analysis. Furthermore, the removal of noise from the samples is not covered while dealing
with the malware identification and removal process.

5.5. Android Vulnerability Detection Using System Call Logs

The model proposed in [29] is used to detect malicious behavior at runtime by ex-
ecuting the apps in a controlled environment for a static time and recording the system
call occurring during this time. The most common systems used for the classification of
malware using learning methods include the Naive Bayes algorithm, the Random Forest
algorithm, and the stochastic descent gradient algorithm. This work showcased a malware
detection rate of over 95% with a misclassification rate as low as 8%. The work used a
particular Chi-square model to cater to the analysis of malware, which may not serve the
accurate traceability aspect of every recorded system call.

Previous researchers [30] relied upon system calls to perform malware detection. Their
method draws upon the fact that malware tends to evolve through an iterative process of
borrowing and modifying code from other malware. As a result, malware samples are likely
to share common behavioral features. The authors performed an extensive experimental
evaluation using a real device on which they executed more than 1000 apps for a total of
nearly 20 K runs, which led to deriving an accuracy of over 95%. However, a malware
classification technique alone could not judge the validity of the call being traced. There is
a need to integrate the approach with malware elimination techniques.

Social media plays a prominent role as a data generator source that may increase
the fear of safe data falling into unsafe hands. Furthermore, the use of low-cost servers
as a deployment environment is significantly preferred over high-end servers to support
scalability to a greater extent. This phenomenon can be applied to the data emerging via
call logs associated with smartphones, irrespective of the nature of the operating system. A
similar idea underpins the static methods of previous authors [31] who looked for code
segments in multiple apps. A dynamic approach benefits from the fact that the same
behavior can be encoded in a number of different, but semantically identical, ways. An
analysis of over 7000 Smartphone application binaries showed that the developed schemes
detected all instances of plagiarism from a set of real-world malware incidents, with low
false-positives and on a scale of millions of applications, using only commodity servers. The
meta-information of nearly 158,000 applications from the Android Market was analyzed,
and it was found that nearly 29% of applications are likely to be plagiarized. However, the
approach is only proven to be efficient for one class of systems, uncovering the malware
issues identified with a generic set of classes. Furthermore, the assumption of random
methods to perform the analysis is insignificant when applied to real-world data samples
in the long run.

5.6. Android Vulnerability Detection Using Monitoring of System-Level Behaviors

EnDroid is a malware detection system based on several types of dynamic behavior at
the system level. A feature selection algorithm is adopted to eliminate irrelevant features
and extract critical features from the behavior. In this approach, various application actions
such as cryptographic operations, network operation, file operation, information leaks, SMS
messages sent, telephone calls, receiver actions, receiver startup, .dex class loading, and

Electronics 2022, 11, 2354 15 of 20

system calls were first monitored. Experimental results show that this approach detected
nearly more than 95% of malware with a good ratio of false-positives. The proposed
approach makes it hard to examine the flooding traffic over the device.

Andromaly repeatedly applies supervised anomaly detection techniques to continu-
ously monitor various system measures to detect suspicious activities. The various service
components synchronize feature collection, malware detection, and the alerting process.
The features upon which Andromaly relies include CPU consumption, the number of pack-
ets sent over the network, the number of processes running, and battery usage. However,
malware detection alone does not serve the recovery and removal approaches that exist
at a higher requirement rate for a particular class of systems. Moreover, the supervised
approaches are limited to dealing with the emerging data samples due to high-speed
bandwidth across the network. Hence, there is a need to devise a generic model that works
well irrespective of the sparse or dense availability of the samples.

5.7. Android Vulnerability Detection Using Monitoring of User-Space Level Behaviors

The design of a device is often integrated with its user interface functionality to attract
users and increase sales. The tool RespassDroid combines grammatical and lexical analysis
to automatically detect malicious Android programs. This synthesizes the API used in the
application as a semantic function and the essential permissions as a syntactic function with
an emphasis on two prime parameters. First, it generates a call graph of each application,
and then it extracts the application’s features in terms of APIs and permissions from the
graph to form feature vectors. The accuracy rate of the proposed technique is above
90%. However, the limited set of algorithms against which accuracy tests are conducted
remains to be proven for the scalable set of applications dynamically spanned across the
distributed environment.

The authors in [32] proposed a malware detection scheme for Android devices based
on the SVM (support vector machine) automatic learning classifier. The system is efficiently
designed for optimal smartphone utilization service. A warning is issued to the user
upon installation of an infected app. Experimental results show that this system yields
an accuracy rate of over 95% and a false-positive rate of over 13%. However, the chosen
dynamic features vary from one model to the other, and it is difficult to assess the behavior
of the device in such instances. The XManDroid (eXtended Monitoring on Android) tool
analyzes variable application permission percentages to detect a varying notion of attacks
at dynamic phases. The aforementioned attack can creep in when the invocation method
is nested into layers. At the other end, the interactions between a set of devices need to
be monitored to keep away the intruders. XManDroid was tested using a custom-made
suite of malware using a reasonably good number of benign apps taken from the Android
market. The results showed that XManDroid exhibits a low false-positive rate. However,
the coupling of authentication with hash-based security mechanisms in both fixed and
transition-based environments is a great focus to perform effective malware analysis.

5.8. Image Analysis-Based Method

DeepVisDroid is an amalgam of Image fusion with a one-dimensional convolutional-
layer neural network. Multiple image-based local and global features are extracted and
used to train a convolutional neural network in multiple scenarios. Multiple files from the
Android app’s contents are converted into grayscale images, such as the Manifest.xml file-
based dataset Manifest, DEX code file-based dataset, Manifest and Resources.arsc file-based
dataset, and Manifest and Dex file-based image dataset, to construct four grayscale image
datasets. Then, the four different image-based local features and three different image-
based global features were extracted to train the proposed model. After that, a lightweight,
one-dimensional, convolutional layers-based CNN model was proposed and trained using
the extracted image-based global and local features. Furthermore, two classical CNN
models were proposed, and two well-known deep learning models, namely ResNet and
Inception V3, were tested to compare the results of the proposed DeepVisDroid with the

Electronics 2022, 11, 2354 16 of 20

results of the state-of-the-art deep learning model [33]. The obtained results show that the
proposed model outperformed the classical CNN models in terms of classification accuracy
and computational cost.

Based on attributes collected from images and a manifest file, the authors in [34] offer
a unique mobile botnet detection system. The approach combines features derived from the
manifest files with a Histogram of Oriented Gradients and byte histograms produced from
images representing the executable app. The best features are then used for categorization
with ML algorithms after feature selection. The suggested system was tested on the ISCX
botnet dataset, and the findings show that it works, with F-1 varying from 0.923 to 0.96,
employing standard Machine-Learning techniques. Furthermore, employing an 80:20
train–test split and 10-fold cross-validation, the Extra Trees model [35] achieved up to
97.5 percent overall accuracy and 96 percent overall accuracy.

5.9. Policy Enforcement and Device-Based Solutions

The authors [36] proposed a privacy tool labeled Paranoid Android, which efficiently
identifies several malicious access mechanisms on remote servers hosting another replica
of the user’s device. The design is unique in its role of proving compatibility with the
cloud environment. A log of all actions is maintained on the user’s device, as well as on the
cloud, to match the sequences in terms of fraudulent access. The designed system is used
for various kinds of analysis such as instant and variable analysis, anti-viruses, memory
scanners, and system call-based analysis. The benefit of this is the capacity to perform
multiple detection mechanisms simultaneously to achieve a better detection rate. However,
it has been identified that the battery life is drained due to the transmission of data from
one mode to the other while also retrieving the encrypted versions.

The SeqDroidtool, assigning an identity to every device being sold on the market,
enables us to trace the device in the event of theft or loss attempts. This sequencing
varies from one model to another and is further encrypted to prevent malicious access
by hackers. The user purchasing a particular handset should digitally sign a certificate
that acts as a source during the transmission of ownership and also to prevent fraud. The
representation of data samples using mathematical models is of utmost interest to the
researchers to provide an effective understanding of the design via a set of flow models or
equations. It is also essential to preserve the consensus across all the participating entities
to ensure validity and transparency in terms of log access from a third-party virtualized
environment. However, the application of mathematical models should be justifiable
across a varied set of operations to identify the malicious attempts made to access the
data samples. This may come with the integration of several domains and increase the
maintenance costs. According to experts in [37], billions of users throughout the world
install Android apps on a daily basis, granting access to a vast array of sensitive personal
data. Over time, several methods have been developed to better understand how apps
protect or compromise the privacy of their users. These findings, on the other hand,
have come from a variety of research disciplines and approaches to privacy, resulting in
a growing but dispersed body of information. To close this gap, researchers conducted a
thorough mapping study to offer practitioners and scholars an overview of the state-of-
the-art techniques for assessing privacy in Android apps, released between 2016 and 2020.
They highlight the most important discoveries, identify and analyze the most critical gaps,
and outline promising research. A summary of the proposed techniques is presented in
Table 3.

Electronics 2022, 11, 2354 17 of 20

Table 3. Recapitulative table, where RF stands for Random Fo22rest, and Dynamic tool is prescribed
by the keyword Dynamic.

Tool
Efficiency Feature and Technique Applied for Vulnerability and

Malware Analysis

Accuracy Precision Recall

NSDroid 95% 96% 95% The similarity between Application, Function call graph, RF,
SVM, Decision Tree

TinyDroid 95 92 95 Disassembled application using smali code, Naïve Bayes, RF,
SVM, kNN

DroidSieve 99 99 99 Static analysis, synthetic features used, SVM, Extrac Tree,
XGBoost, RF

Qiao et al. [25] 94 - - API call and Permission, Source code analysis, RF, SVM,
Neural Network

DroidAPI Miner 99 - - Permission and API call, SVM, KNN, C4.5, ID3

DroidMat 97 96 87 Clustering, Activity service and receiver component, Singular
value decomposition, K-Means, KNN

DroidRanger - - - Behavioral footprint, Permission
Sarma et al. [26] - - 80 Attribute risk level, permission, SVM
Xiao et al. [28] 93 91 96 System call trace, LSTM, SVM, KNN, Random Forest
RepassDroid
(Dynamic) 97 99 96 API call and semantic information, Decision Tree, SVM. KNN

EnDroid
(Dynamic) 97 95 97 System call input output, Decision Tree, Stochastic Descent

algorithm, Boosted Tree
Chaba et al. [29]

(Dynamic) - 95 95 Runtime monitoring, Random Forest, Naïve Forest

6. Application Hardening Technique

Vulnerabilities of some sort always remain with in the system, and developers are
unaware of this. As a result, the application-hardening technique [14,38,39] offers a viable
alternative. There are multiple methods for accomplishing this, and some of the existing
solutions are discussed below.

Data Execution Prevention (DEP): DEP is host-dependent system-level memory pro-
tection technology that is used to protect against malicious code and injection attacks. This
feature designates certain memory locations as protected areas, where no code is performed.
If an application attempts to execute code in those protected areas, DEP raises an exception
as a memory access violation. Both hardware and software can be used to implement
DEP. The hardware-based implementation is performed at the processor level. Address
Space Layout Randomization (ASLR) improves security by limiting resource access and
preventing current weaknesses from being exploited. During the booting process of some
operating systems, engineers fix the original and starting addresses of each segment. Cer-
tificate and Public key Pinning (CPP) refers to pinning an X509 certificate and its public key
to a root. This aids in the establishment of trust between the sender and the receiver, as
well as ensuring the integrity of the website following the verification of a valid certificate
and removing harmful targets that break the pinning rules. Null Page Protection is a valid
address that refers to storage locations that are currently empty. Null page protection en-
ables PAGE GUARD on a specific location and reallocates virtual memory at 0X00000000 to
address such issues. Heap Spray Protection is an attack in which malicious code populates
a heap, causing any memory vulnerabilities to be diverted to malicious code. Heap spray
prevention aims to reduce the number of heap spray attacks. Regarding CPU-enhanced
application security, modern processors have isolated instruction-level execution and run-
time memory allocation to address these difficulties. Some of the processors’ enhanced
security features in modern processors include the Virtual Machine, VT-X/AMD-V, ARM
Trust Zone, and Intel SGX. In Virtual Secure Mode (VSM), a spume develops above the
hypervisor, and this spume acts as an isolated operating system, tagging connected mem-
ory spots and specific programs. Hypervisor code and the kernel mode for integrity and

Electronics 2022, 11, 2354 18 of 20

control, a non-physical platform for increased key-based access, and local security authority
are among the four components of the virtual secure mode. The local security authority
(LSA) component is responsible for protecting user credentials and authentication within a
private hypervisor environment [13]. As a result, people with local admin privileges are
unable to view the hashed passwords of registered users. Devices communicate with one
another in real-time using pre-programmed mechanisms or algorithms. The trusted plat-
form module (TMP) is a hardware-based security solution for the host that uses key-based
access mechanisms. TMP is installed on the motherboard and uses unique connections
to communicate with the host. Endorsement, Storage Root, and Attestation are the three
keys in this module. An endorsement key is a pair of RSA keys that are implemented on a
semiconductor and are inaccessible to software. The storage root key is produced by the
administrator during the ownership process.

7. Limitation and Novelty of Work

This work proposed the integration of security measures for Smartphones and IoT
devices. During the control, communication, and authentication, devices communicate
similar to peer devices. If any device, either IoT or smartphone device, has vulnerability
(hardware or software), then that may be exploited by attackers. In this work, security
measures for IoT devices against attacks (physical, network, software, and data) and for
Android devices/operating systems against attacks (hardware-induced, kernel-induced,
hardware abstraction-induced, and application-based) are enlisted. Corresponding security
measures proposed in the literature are also enlisted here.

The limitations of this article are that threat classification and solutions are not dis-
cussed as per the OWASP Top 10 vulnerabilities (Open Web Security project). Vulnerability
classification for IoT devices is not presented here. In the future, we will try to set up
vulnerability classification for IoT devices as prescribed for Android OS, i.e., OWASP Top
10 and NIST (National Institute of Standards and Technology) guidelines.

8. Conclusions and Future Scope

The primary objective of this work is to present the current security state of IoT
and Android systems. Developers and researchers are developing new technologies to
safeguard users and devices from attackers. This work discussed several attacks on various
layers of IoT and Android devices, as well as countermeasures offered by researchers.
This work tabulated explanations of threats and the solutions to prevent them. Several
important findings, including secure hardware architecture design, a two-step malware
detection approach, i.e., static followed by a dynamic approach, or hybrid techniques for
malware identification, are suggested. A strong suggestion is provided for developers to
follow security protocols, proper authentication and authorization, two-step or multi-step
verification, and a strong encryption algorithm. Along with these proposed techniques,
some additional steps that can provide a more secure environment are:

1. In order to solve the privacy issue, application developers should restrict permissions,
and only essential permissions should be granted. A robust permission system and a
standard should be followed.

2. To limit the common vulnerabilities and zero-day exploits, the database, i.e., the
Google Play Store, must come with robust permissions, malware detection tools, and
clone detection techniques, to protect users from exploitation.

3. Whenever a new application from a third party is installed on an Android device, it
must warn the user about the threat and the application must submit to Google for
static and dynamic analysis of potential threat identification.

4. Android must design an application where the user can trace the requested IP address,
webpages, port request, memory use, and CPU analysis in an accessible way, as is
available in Windows OS.

5. In order to comply with the CIA triad, developers must follow the latest SSL/TLS
security protocol on every page of the application.

Electronics 2022, 11, 2354 19 of 20

6. In order to solve the authentication and authorization issue, users must follow the
direction and advice of strong passwords, phishing sites, URLs, and not sharing
personal and confidential information, i.e., OTP, Login id, password, etc.

7. Applications related to the financial sector must be checked by CERT-in (The In-
dian Computer Emergency Response Team) and STQC (Standardisation Testing and
Quality Certification) impaneled organizations.

8. Continuous innovation and research are required to protect against unforeseen threats
and vulnerabilities in known and unknown environments.

Author Contributions: Writing—original draft, C.S.Y.; conceptualization, writing—review & editing,
J.S.; visualization, validation A.Y.; visualization, resources, specifically visualization/data presenta-
tion, H.S.P.; data curation, resources. conceptualization R.K.; funding acquisition, analysis A.A.K.;
project administration, supervision, funding acquisition, M.A.H.; funding acquisition, methodology,
writing—editing, A.A.; funding acquisition, analysis, writing—review, S.A. All authors have read
and agreed to the published version of the manuscript.

Funding: Sultan Alharby like to thank the Deanship of Scientific Research at Majmaah University for
supporting this work under Project No. R-2022-214.

Acknowledgments: Sultan Alharby like to acknowledge the Deanship of Scientific Research at
Majmaah University for supporting this work under Project No. R-2022-214.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Ethical Approval: This article does not contain any studies with human participants performed by
any of the authors.

References
1. Alsoghyer, S.; Almomani, I. Ransomware detection system for android applications. Electronics 2019, 8, 868. [CrossRef]
2. Wurm, J.; Hoang, K.; Arias, O.; Sadeghi, A.R.; Jin, Y. Security analysis on consumer and industrial IoT devices. In Proceedings of

the Asia and South Pacific Design Automation Conference, ASP-DAC, Macao, China, 25–28 January 2016; pp. 519–524. [CrossRef]
3. Aman, M.N.; Chua, K.C.; Sikdar, B. A Light-Weight Mutual Authentication Protocol for IoT Systems. In Proceedings of the

2017 IEEE Global Communications Conference, GLOBECOM 2017—Proceedings, Singapore, 4–8 December 2017; Volume 2018,
pp. 1–6. [CrossRef]

4. Sengupta, J.; Ruj, S.; Bit, S.D. A Comprehensive Survey on Attacks, Security Issues and Blockchain Solutions for IoT and IIoT.
J. Netw. Comput. Appl. 2019, 149, 102481. [CrossRef]

5. Khanmohammadi, K.; Ebrahimi, N.; Hamou-Lhadj, A.; Khoury, R. Empirical study of android repackaged applications. Empir.
Softw. Eng. 2019, 24, 3587–3629. [CrossRef]

6. Yang, Z.; Chao, F.; Chen, X.; Jin, S.; Sun, L.; Du, X. DroidFDR: Automatic Classification of Android Malware Using Model
Checking. Electronics 2022, 11, 1798. [CrossRef]

7. Razgallah, A.; Khoury, R.; Hallé, S.; Khanmohammadi, K. A survey of malware detection in Android apps: Recommendations
and perspectives for future research. Comput. Sci. Rev. 2021, 39, 100358. [CrossRef]

8. Yang, Y.; Du, X.; Yang, Z.; Liu, X. Android malware detection based on structural features of the function call graph. Electronics
2021, 10, 186. [CrossRef]

9. Yadav, C.S.; Sharan, A. Automatic Text Document Summarization Using Graph Based Centrality Measures on Lexical Network.
Int. J. Inf. Retr. Res. 2018, 8, 14–32. [CrossRef]

10. Yadav, C.S.; Sharan, A.; Joshi, M.L. Semantic graph based approach for text mining. In Proceedings of the 2014 International
Conference on Issues and Challenges in Intelligent Computing Techniques, Ghaziabad, India, 7–8 February 2014. [CrossRef]

11. Guebli, W.; Belkhir, A. Inconsistency Detection-Based LOD in Smart Homes. Int. J. Semant. Web Inf. Syst. 2021, 17, 56–75.
[CrossRef]

12. Kouliaridis, V.; Barmpatsalou, K.; Kambourakis, G.; Chen, S. A survey on mobile malware detection techniques. IEICE Trans. Inf.
Syst. 2020, 103, 204–211. [CrossRef]

13. Meddeb, M.; Dhraief, A.; Belghith, A.; Monteil, T.; Drira, K.; Al-Ahmadi, S. Named data networking: A promising architecture for
the Internet of Things (IoT). Int. J. Semant. Web Inf. Syst. 2018, 14, 86–112. [CrossRef]

14. Boukhalfa, S.; Amine, A.; Hamou, R.M. Border Security and Surveillance System Using IoT. Int. J. Inf. Retr. Res. 2022, 12, 21.
[CrossRef]

15. Gomes, T.; Salgado, F.; Tavares, A.; Cabral, J. Cute mote, a customizable and trustable end-device for the internet of things. IEEE
Sens. J. 2017, 17, 6816–6824. [CrossRef]

http://doi.org/10.3390/electronics8080868
http://doi.org/10.1109/ASPDAC.2016.7428064
http://doi.org/10.1109/GLOCOM.2017.8253991
http://doi.org/10.1016/j.jnca.2019.102481
http://doi.org/10.1007/s10664-019-09760-3
http://doi.org/10.3390/electronics11111798
http://doi.org/10.1016/j.cosrev.2020.100358
http://doi.org/10.3390/electronics10020186
http://doi.org/10.4018/IJIRR.2018070102
http://doi.org/10.1109/ICICICT.2014.6781348
http://doi.org/10.4018/IJSWIS.2021100104
http://doi.org/10.1587/transinf.2019INI0003
http://doi.org/10.4018/IJSWIS.2018040105
http://doi.org/10.4018/IJIRR.289953
http://doi.org/10.1109/JSEN.2017.2743460

Electronics 2022, 11, 2354 20 of 20

16. Choi, J.; Kim, Y. An improved LEA block encryption algorithm to prevent side-channel attack in the IoT system. In Proceedings
of the 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Jeju, Korea,
13–15 December 2016; pp. 1–4.

17. Shukla, P. ML-IDS: A machine learning approach to detect wormhole attacks in Internet of Things. In Proceedings of the 2017
Intelligent Systems Conference, IntelliSys 2017, London, UK, 7–8 September 2018; pp. 234–240. [CrossRef]

18. Yadav, C.S.; Sharan, A. Feature learning using random forest and binary logistic regression for ATDS. In Applications of Machine
Learning; Springer: Cham, Switzerland, 2020; pp. 341–352.

19. Yadav, M.; Verma, V.K.; Yadav, C.S.; Verma, J.K. MLPGI: Multilayer perceptron-based gender identification over voice samples in
supervised machine learning. In Applications of Machine Learning; Springer: Cham, Switzerland, 2020; pp. 353–364.

20. Singh, M.; Rajan, M.A.; Shivraj, V.L.; Balamuralidhar, P. Secure MQTT for Internet of Things (IoT). In Proceedings of the 2015 5th
International Conference on Communication Systems and Network Technologies, CSNT 2015, Gwalior, India, 4–6 April 2015;
pp. 746–751. [CrossRef]

21. Liu, C.; Cronin, P.; Yang, C. A mutual auditing framework to protect IoT against hardware Trojans. In Proceedings of the Asia
and South Pacific Design Automation Conference, ASP-DAC, Macao, China, 25–28 January 2016; pp. 69–74. [CrossRef]

22. Konigsmark, S.T.C.; Chen, D.; Wong, M.D.F. Information dispersion for trojan defense through high-level synthesis. In Proceedings
of the 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 5–9 June 2016. [CrossRef]

23. Song, T.; Li, R.; Mei, B.; Yu, J.; Xing, X.; Cheng, X. A privacy preserving communication protocol for IoT applications in smart
homes. IEEE Internet Things J. 2017, 4, 1844–1852. [CrossRef]

24. Machado, C.; Frohlich, A.A. IoT data integrity verification for cyber-physical systems using blockchain. In Proceedings of the 2018
IEEE 21st International Symposium on Real-Time Computing, ISORC 2018, Singapore, 29–31 May 2018; pp. 83–90. [CrossRef]

25. Qiao, M.; Sung, A.H.; Liu, Q. Merging permission and api features for android malware detection. In Proceedings of the 2016 5th
IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2016, Kumamoto, Japan, 10–14 July 2016; pp. 566–571.
[CrossRef]

26. Sarma, B.; Li, N.; Gates, C.; Potharaju, R.; Nita-Rotaru, C.; Molloy, I. Android permissions: A perspective combining risks and
benefits. In Proceedings of the ACM Symposium on Access Control Models and Technologies, SACMAT, Newark, NJ, USA,
20–22 June 2012; pp. 13–22. [CrossRef]

27. Peng, H.; Gates, C.; Sarma, B.; Li, N.; Qi, Y.; Potharaju, R.; Nita-Rotaru, C.; Molloy, I. Using probabilistic generative models for
ranking risks of Android apps. In Proceedings of the ACM Conference on Computer and Communications Security, Raleigh, NC,
USA, 16–18 October 2012; pp. 241–252. [CrossRef]

28. Xiao, X.; Zhang, S.; Mercaldo, F.; Hu, G.; Sangaiah, A.K. Android malware detection based on system call sequences and LSTM.
Multimed. Tools Appl. 2019, 78, 3979–3999. [CrossRef]

29. Chaba, S.; Kumar, R.; Pant, R.; Dave, M. Malware detection approach for android systems using system call logs. arXiv 2017,
arXiv:1709.08805.

30. Canfora, G.; Mercaldo, F.; Medvet, E.; Visaggio, C.A. Detecting Android malware using sequences of system calls. In Proceedings
of the 3rd International Workshop on Software Development Lifecycle for Mobile, DeMobile 2015—Proceedings, Bergamo, Italy,
31 August 2015; pp. 13–20. [CrossRef]

31. Potharaju, R.; Newell, A.; Nita-Rotaru, C.; Zhang, X. Plagiarizing smartphone applications: Attack strategies and defense tech-
niques. In Proceedings of the International symposium on engineering secure software and systems, Eindhoven, The Netherlands,
16–17 February 2012; pp. 106–120.

32. Wen, L.; Yu, H. An Android malware detection system based on machine learning. AIP Conf. Proc. 2017, 1864, 020136. [CrossRef]
33. Yerima, S.Y.; Alzaylaee, M.K.; Shajan, A. Deep learning techniques for android botnet detection. Electronics 2021, 10, 519.

[CrossRef]
34. Yerima, S.Y.; Bashar, A. A Novel Android Botnet Detection System Using Image-Based and Manifest File Features. Electronics

2022, 11, 486. [CrossRef]
35. Goswami, A.; Sharma, D.; Mathuku, H.; Gangadharan, S.M.P.; Yadav, C.S.; Sahu, S.K.; Pradhan, M.K.; Singh, J.; Imran, H.

Change Detection in Remote Sensing Image Data Comparing Algebraic and Machine Learning Methods. Electronics 2022, 11, 431.
[CrossRef]

36. Portokalidis, G.; Homburg, P.; Anagnostakis, K.; Bos, H. Paranoid android: Versatile protection for smartphones. In Proceedings of
the Annual Computer Security Applications Conference, ACSAC, Austin, TX, USA, 6–10 December 2010; pp. 347–356. [CrossRef]

37. Del Alamo, J.M.; Guaman, D.; Balmori, B.; Diez, A. Privacy Assessment in Android Apps: A Systematic Mapping Study.
Electronics 2021, 10, 1999. [CrossRef]

38. Medhi, S.; Bora, A.; Bezboruah, T. Security Impact on e-ATM Windows Communication Foundation Services using Certificate
based Authentication and Protection: An implementation of Message Level Security based on. NET Technique. Int. J. Inf. Retr.
Res. 2016, 6, 37–51. [CrossRef]

39. Sengan, S.; Khalaf, O.I.; Sharma, D.K.; Hamad, A.A. Secured and privacy-based IDS for healthcare systems on E-medical data
using machine learning approach. Int. J. Reliab. Qual. E-Healthc. 2022, 11, 1–11. [CrossRef]

http://doi.org/10.1109/IntelliSys.2017.8324298
http://doi.org/10.1109/CSNT.2015.16
http://doi.org/10.1109/ASPDAC.2016.7427991
http://doi.org/10.1145/2897937.2898034
http://doi.org/10.1109/JIOT.2017.2707489
http://doi.org/10.1109/ISORC.2018.00019
http://doi.org/10.1109/IIAI-AAI.2016.237
http://doi.org/10.1145/2295136.2295141
http://doi.org/10.1145/2382196.2382224
http://doi.org/10.1007/s11042-017-5104-0
http://doi.org/10.1145/2804345.2804349
http://doi.org/10.1063/1.4992953
http://doi.org/10.3390/electronics10040519
http://doi.org/10.3390/electronics11030486
http://doi.org/10.3390/electronics11030431
http://doi.org/10.1145/1920261.1920313
http://doi.org/10.3390/electronics10161999
http://doi.org/10.4018/IJIRR.2016070103
http://doi.org/10.4018/IJRQEH.289175

	Introduction
	Related Work
	Type of Attacks on IoT and IIoT Devices
	Physical Attack and Countermeasures
	Network Attacks
	Software Attacks
	Data Attacks

	Android System Architecture and Attacks
	Hardware-Based Attacks
	Kernel-Based Attack
	Hardware Abstraction Layer-Based Attacks
	Application-Based Attacks

	Android Vulnerability Detection
	Methods Based on Code Analysis
	Android Vulnerability Detection Methods Based on API Calls and Permissions
	Android Vulnerability Detection Based on Risk Signals
	Android Vulnerability Detection Using NLP
	Android Vulnerability Detection Using System Call Logs
	Android Vulnerability Detection Using Monitoring of System-Level Behaviors
	Android Vulnerability Detection Using Monitoring of User-Space Level Behaviors
	Image Analysis-Based Method
	Policy Enforcement and Device-Based Solutions

	Application Hardening Technique
	Limitation and Novelty of Work
	Conclusions and Future Scope
	References

