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Abstract: This paper aims to improve the response speed of SPDC (stochastic primal–dual coordinate
ascent) in large-scale machine learning, as the complexity of per-iteration of SPDC is not satisfactory.
We propose an accelerated stochastic primal–dual coordinate ascent called ASPDC and its further
accelerated variant, ASPDC-i. Our proposed ASPDC methods achieve a good balance between low
per-iteration computation complexity and fast convergence speed, even when the condition number
becomes very large. The large condition number causes ill-conditioned problems, which usually
requires many more iterations before convergence and longer per-iteration times in data training
for machine learning. We performed experiments on various machine learning problems. The
experimental results demonstrate that ASPDC and ASPDC-i converge faster than their counterparts,
and enjoy low per-iteration complexity as well.

Keywords: stochastic optimization; machine learning; empirical risk minimization; coordinate ascent
algorithm; primal–dual algorithm; strongly convex and smooth

1. Introduction

In this paper, we consider a composite convex optimization problem, Regularized
Empirical Risk Minimization (RERM), that can be solved by SPDC [1]. Our goal is to use
our proposed ASPDC find the approximate solution of the following optimization problem:

min
w∈Rd
{P(w) =

1
n

n

∑
i=1

φi(yi, wTxi, b) + g(w)} (1)

where xi ∈ Rd is a feature vector, yi is the corresponding label in a machine learning task,
{(xi, yi)}, i = 1, 2, . . . , n are n samples in the dataset, φi is the proper convex function of
the linear predictor wTxi, and g(w) the simple convex regularization function.

RERM is one of the central problems in machine learning. It is now prevalent in the
data mining and machine learning domain. More background information on RERM can
be found in [2]. The following are four examples of RERM:

1. Linear SVM, where φi(yi, wTxi, b) = max{0, 1− yi(wTxi + b)}, g(w) = λ
2 ||w||22

2. Ridge Regression, where φi(yi, wTxi, b) = 1
2 (yi − (wTxi + b))2, g(w) = λ

2 ||w||22
3. Lasso, where φi(yi, wTxi, b) = 1

2 (yi − (wTxi + b))2, g(w) = λ||w||1
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4. Logistic Regression, where φi(yi, wTxi, b) = log(1 + exp(−yi(wTxi + b))), g(w) =
λ
2 ||w||22

Here, we focus on the scenario in which the number of samples n is very large, as
the per-iteration complexity of SPDC is intolerable in this scenario. Computing a full
gradient becomes extremely expensive in terms of time and space costs. Therefore, RERM
algorithms with a lower per-iteration complexity are more attractive in large-scale machine
learning applications.

General optimization methods to the RERM problem using gradients are categorized
into two types, namely, first-order and second-order. Second-order methods such as the
Newton algorithm employ a Hessian matrix at each iteration to decrease the objective value.
The disadvantage of these second-order methods is that both obtaining and using a Hessian
matrix is computationally expensive. On the other hand, while first-order optimization
schemes are lightweight in gradient computation, they may converge slowly [3,4].

Among the algorithms for solving the RERM problem, we are more interested in
dual algorithms such as stochastic dual coordinate ascent-SDCA, as the dual-gap is a
clearer stopping criterion than gradients. In addition, they are capable of handling non-
differentiable primal optimal functions more easily [5]. SDCA is a first-order optimization
method and is widely used in the current machine learning domain. Dual coordinate
methods have been implemented in open machine learning libraries [4].

The dual methods do not solve the primal problem directly. Instead, they solve the
dual or saddle point problem of the primal problem. The corresponding dual problem of
the primal problem in Equation (1) is formulated as follows:

max
α∈Rn
{D(α) =

1
n

n

∑
i=1
−φ∗i (αi)− g∗(− 1

n

n

∑
i=1

αixi)} (2)

where g∗(u) = max
w∈Rd
{wTu− g(w)} and φ∗i are the convex conjugate functions of g and φi,

respectively. Due to the structure of this dual problem, coordinate ascent methods can be
more efficient than full gradient methods [4,6,7] .

In the stochastic dual coordinate ascent method (SDCA) [5], a dual coordinate αi is
picked randomly at each iteration and then updated to increase the dual objective value.
This helps SDCA to reach a low per-iteration computational complexity. Nevertheless, the
convergency speed of SDCA becomes much slower as the condition number grows. A
large condition number leads to an ill-conditioned problem. An ill-conditioned scenario
refers to a case in which a small change in one of the values of the coefficient matrix causes
a large change in the solution vector [8–11]. Hence, SDCA is not applicable to large-scale
data processing in ill-conditioned scenarios. Unfortunately, many traning tasks involving
large-scale data involve ill-conditioned scenarios. Ill-conditioned problems are particularly
common in mathematics and geosciences [12].

Paper Organization. The rest of this paper is organized as follows. In Section 2, we
describe related works.

In Section 3, we describe the relevant assumptions and preliminaries.
In Section 4, we discuss the accelerated stochastic primal–dual coordinate method. In

this section, we present ASPDC in Algorithm 1 and its convergence analysis for the saddle
point problem in Equation (3).

In Section 5, we extend ASPDC to ill-conditioned problems, in particular, those in
which λ ≤ 4

nγ . Our proposed extension method is called ASPDC-i, where i means “for
ill-conditioned problems”.

In Section 6, we evaluate the performance of our proposed ASPDC algorithms with
several state-of-art algorithms for solving machine learning problems, then discuss the
experimental results.

In Section 7, we conclude the paper and discuss potential avenues for future work.
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2. Related Work

Shalev-Shwartz and Zhang [13] developed an accelerated proximal stochastic dual
coordinate ascent method (ASDCA), which converges faster than traditional methods when
the condition number is large (Table 1). ASDCA can be regarded as a variant of a proximal
point algorithm equipped with Nesterov’s accelerated technique [14–16]. ASDCA uses an
inner–outer iteration procedure, where the outer loop is a minimization of an auxiliary
problem with a regularized quadratic term. Then, the proximal SDCA starts to solve the
auxiliary problem with a customized precision. At the end of each outer loop, Nesterov’s
accelerated update is performed on the primal variable w. Nonetheless, ASDCA requires λ

to be limited to a range of low-level values, for example, λ ≤ R2

10nγ , where γ is the smooth
parameter of φi, n is the number of samples, and R2 = max

i
||xi||22.

Studies have extended the inner–outer iteration method in order to derive more
general accelerated proximal-point algorithms, e.g., Catalyst, [17,18]. Theoretically, one can
replace the inner-loop proximal SDCA algorithm using other algorithms, such as SVRG
[19] and Prox-SVRG [20], to obtain the same overall complexity concerning the number of
outer loops.

More recently, Zhang and Xiao [1,21] proposed a stochastic primal–dual coordinate
(SPDC) method to solve the RERM problem defined in Equation (1). SPDC achieves a faster
convergence rate in reducing the dual-gap than ASDCA and other dual methods in general
optimization problems with condition numbers that are not very large. The per-iteration
computation complexity of SPDC is much higher than ASDCA and SDCA. Theoretically,
the per-iteration complexity of SPDC is O(d). However, due to the auxiliary variable
update and the momentum item, SPDC requires much more time to process one pass of a
dataset, as verified in our experiments. When the condition number is large, the SPDC per-
iteration computation complexity of SPDC is intolerable, which makes SPDC inapplicable
to large-scale data processing. Our experiments verified that SPDC is more time-consuming
than ASDCA and other low per-iteration complexity methods. Moreover, the dual-gap of
SPDC is much larger when the data are sparse and have high dimensionality.

The above issue leads to the following key question: “Can we design an algorithm with
both a low per-iteration complexity and a fast convergence rate, especially for ill-conditioned
scenarios in large-scale data processing?” We propose the ASPDC and ASPDC-i algorithms as
the answer to this question. ASPDC methods have the following three advantages:

• Simple structure at each iteration. In comparison with SPDC or other accelerated
variants, ASPDC does not need to keep track of any other auxiliary variables; it only
maintains the primal and dual variable. Each iteration only involves a dual update
and primal update. This design makes its per-iteration complexity much lower than
SPDC and other variants. The simple iteration design makes it easy to be implemented
as well.

• Short running time. Our experiments show that to reach the same precision, our
methods need far less time and fewer epochs (numbers of passes through the entire
data) to satisfy the stop condition.

• Theoretical guarantee. ASPDC adopts Nesterov’s estimation technique [22,23]. We
present a new proof onf the convergence of proposed methods.

Table 1. Abbreviations used in this study.

Complete Name Abbreviation

Stochastic primal-dual coordinate ascent SPDC

Stochastic dual coordinate ascent method SDCA

Accelerated stochastic primal-dual coordinate ascent ASPDC

Extended ASPDC to the ill-conditioned problem ASPDC-i

Accelerated stochastic dual ascent ASDCA
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3. Assumptions and Preliminary

Throughout this paper, the standard Euclidean is denoted as an equation such as
||w||2 =

√
∑i |wi|2. We use E to denote the expectation that is taken with respect to the

randomness of αi. For the sake of convenience, we use the new notation xi ← (xT
i , 1)T , w←

(wT , b)T . Without loss of generality, we continue to assume w ∈ Rd, xi ∈ Rd. Then, we
make the following assumptions to clearly specify the problem in Equation (1) as follows:

Assumption 1. Each φi is lower semi-continuous and convex, and its derivative is 1
γ -Lipschitz

continuous (or equivalently: φi is 1
γ -smooth), i.e., there exist γ > 0 such that |φ′i(a)− φ′i(b)| 6

1
γ |a− b| ∀a, b ∈ R i = 1, 2, . . . , n.

It is widely known that Assumption 1 implies that φ∗i is γ-strongly convex (see
Theorem 4.2.2 in the convex fundamental book [24]).

Assumption 2. The primal function P(w) is λ-strongly convex: There exists λ > 0 such that
∀w1, w2 ∈ Rd,

P(w1) ≥ P(w2) +∇P(w2)
T(w1 − w2) +

λ

2
||w1 − w2||22

The convexity of P(w) may come from either φi or g(w) or both. For instance, if
g(w) = λ

2 ||w||22, Assumption 2 holds.

Assumption 3. ||xi||2 6 1, ∀i = 1, 2, . . . , n.

Assumption 3 is not a strict one, as when data are normalized, Assumption 3 holds.
Under the three assumptions above, the RERM problem defined in Equation (1) can

be rewritten as the following convex–concave saddle point problem [1]:

min
w∈Rd

max
α∈Rn
{ f (w, α) =

1
n ∑[αiwTxi − φ∗i (αi)] + g(w)} (3)

where φ∗i (αi) = sup
s∈R
{sαi − φi(s)} is a convex conjugation function of φi. Lemma 1 demon-

strates the relationship between the primal problem of Equation (1) with the problem of
Equation (3).

Lemma 1. Let w∗ = arg min
w∈Rd

P(w) and α∗ = arg max
α∈Rn

D(α), then we have

(1) P(w) = max
α∈Rn

f (w, α)

(2) D(α) = min
w∈Rd

f (w, α)

(3) There exists a unique solution (w∗, α∗) such that P(w∗) = D(α∗) = f (w∗, α∗).

Proof. Presented in Appendix A.

Lemma 1 implies that we can calculate the optimal solution of the primal problem in
Equation (1) by solving the saddle point problem in Equation (3).

4. Accelerated Stochastic Primal–Dual Coordinate Method

In this section, we present ASPDC in Algorithm 1 and its convergence analysis for the
saddle point problem in Equation (3).

Each iteration in ASPDC can be divided into two steps: the dual update step and
the primal update step. The dual update step is executed first. As shown in lines 4–6 of
Algorithm 1, a dual coordinate, αi, is picked randomly and updated to increase the objective
value of f (w, α) while keeping the primal variable w and other αj(j 6= i) fixed. Then, the
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primal update step is executed later. As shown in line 7 of Algorithm 1, the primal variable
w is updated to decrease the objective value of f (w, α) while keeping αj(j = 1, 2, . . . , n)
fixed.

The update of the dual variable α is extremely simple. It can be simplified as a univari-
ate optimal problem, which makes its per-iteration complexity much lower than traditional
SPDC algorithms. Specifically, the local update of dual variable αi is

∆α∗i = arg max
∆αi∈R

f (w, α + ∆αiei)

= arg max
∆αi∈R

(∆αixT
i w(t) − φ∗i (α

(t)
i + ∆αi)), (4)

where ei ∈ Rn is a unit vector with the i− th element being one.
The update of primal variable w is shown in Equation (5) as follows:

w∗ = arg min
w∈Rd

f (w, α(t+1)) (5)

= arg min
w∈Rd

{( 1
n

n

∑
i=1

α
(t+1)
i xi)

Tw + g(w)} (6)

= arg max
w∈Rd

{(− 1
n

n

∑
i=1

α
(t+1)
i xi)

Tw− g(w)} (7)

= ∇g∗(− 1
n

n

∑
i=1

α
(t+1)
i xi), (8)

where the last equation is derived from the conjugation sub-gradient theorem in [25]. In this
way, we turn the optimization process into a derivative operation of g∗(w). For instance, if
g(x) = λ

2 ||w||22 the update of primal variable can be written as w(t+1) = − 1
λn ∑n

i=1 α
(t+1)
i xi.

We compare the complexity of SPD1, SPD1-VR, and SVRG [19] with our methods in
Table 2. In Table 2, r is the maximum number of non-zero elements in each sample, S is
the number of non-zero elements in the whole data sets, d is the dimension of the dataset,
and n the number of data samples. Usually, S is much smaller than nd when the data are
sparse and high-dimensional. Apparently, in most large-scale data applications the data
sets are sparse have high dimensionality, i.e., most of the attributes are zeros. At each
iteration, SPD1 and SPD1-VR choose xij (the j-th value of sample xi) to update the primal
variable and dual variable regardless of whether xij is 0 or not. This method enables the
per-iteration complexity of SPD1 and SPD1-VR to be reduced to O(1). However, their
complexity of pass-through data is O(nd), which is the same as SVRG. In contrast, ASPDC
will not execute the update if xij = 0. Thus, the complexity of its pass-through data isO(S),
which is much lower than SPD1 and SVRG when the data are sparse and high-dimensional.

Table 2. Complexity comparison of per-iteration and pass through data.

Per-Iteration Pass through Data

ASPDC, ASPDC-i O(r) O(S)

SPD1, SPD1-VR O(1) O(nd)

SVRG [19] O(d) O(nd)

There are two major differences between SDCA and ASPDC, as follows. First, SDCA
tries to solve the dual problem, while ASPDC tries to solve a saddle point problem. Second,
the dual update of ASPDC is significantly simpler than the update of SDCA. The dual
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update of SDCA is shown in (9). In comparison with that of ASPDC in Equation (4), the
dual update of SDCA involves the additional computation of 1

2λn ||xi||22(∆αi)
2:

∆α∗i =

arg max
∆αi∈R

(−∆αixT
i w(t) − φ∗i (−α

(t)
i − ∆αi)) +

1
2λn
||xi||22(∆αi)

2 (9)

We use the dual-gap metric as the stopping criterion, as shown in line 9 of Algorithm 1.
The dual-gap is calculated by P(w)−D(α), and it is sufficient to say that |P(w)− P(w∗)| ≤
ε if P(w)− D(α) ≤ ε, as |P(w)− p(w∗)| ≤ P(w)− D(α) ≤ ε. This stopping criterion is
easier to implement than the other criteria, e.g., |P(w)− P(w∗)| ≤ ε. This is for the reason
that w∗ is not known in advance in real-world machine learning applications.

Algorithm 1 ASPDC

1: Input f (w, α), α(0), ε

2: Initialize w(0) = ∇g∗(− 1
n ∑n

i=1 α
(0)
i xi)

3: for t = 0, 1, 2, . . . do
4: pick i ∈ {1, 2, . . . , n} under uniform distribution.
5: ∆α∗i = arg max

∆αi∈R
(∆αixT

i w(t) − φ∗i (α
(t)
i + ∆αi))

6: α(t+1) = α(t) + ∆α∗i ei

7: w(t+1) = ∇g∗(− 1
n ∑n

i=1 α
(t+1)
i xi)

8: end for
9: Stop condition: P(w(T))− D(α(T)) ≤ ε

Output w(T), α(T), P(w(T))− D(α(T))

In the rest of this section, we show the proof for ASPDC’s convergence. We first
present the following lemma.

Lemma 2. On the basis of Assumptions 1–3, let w(t) and α(t) be the sequence produced by ASPDC
and let g(w) = λ

2 ||w||22. ∀λ ≥ 4
nγ ; then, we have:

E(P(w(t))− D(α(t))) ≤ 2n(1− 1
2n

)t(P(w(0))− D(α(0))) (10)

Proof. The detailed proof can be found in the Appendix. In the proof, we assume that
g(w) = λ

2 ||w||22 for convenience. Therefore, the theory only works for l2 regularization.
The extension to l1 regularization is a topic for future work.

The skeleton of the proof in the Appendix can be described using the following three
steps:

First, we obtain

E(D(α∗)− D(α(t))) ≤ (1− 1
2n

)t(D(α∗)− D(α(0))).
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Second, we have

1
2n

E(P(w(t))− D(α(t)))

≤ E(D(α(t+1))− D(α(t)))

≤ E(D(α(t+1))− D(α∗) + D(α∗)− D(α(t)))

≤ D(α∗)− D(α(t))− E(D(α∗)− D(α(t+1))

≤ D(α∗)− D(α(t))

Finally, using the weak duality we can obtain

E(P(w(t))− D(α(t))) ≤ 2n(1− 1
2n

)t(P(w(0))− D(α(0))).

Theorem 1. The total number of iterations needed to achieve the expected duality gap of E(P(w(t))−
D(α(t))) ≤ ε is

t ≥ 2n log(2n(P(w(0))− D(α(0)))
1
ε
)

Proof. Using Lemma 2, we can obtain

E(P(w(t))− D(α(t))) ≤ 2n exp(
−t
2n

)(P(w(0))− D(α(0))), (11)

where, in the inequality, we use the fact that (1− 1
2n )

t ≤ exp(−t
2n ). Let 2n exp(−t

2n )(P(w(0))−
D(α(0))) ≤ ε; then, we finally obtain t ≥ 2n log(2n(P(w(0))− D(α(0))) 1

ε ).

As shown by Equation (11), the complexity of ASPDC is O(n log(n 1
ε )), In contrast,

the complexity of SVRG is O(d(n + κ) log(1/ε)) and the complexity of SPDC is O(d(n +√
nκ) log(1/ε)).

5. ASPDC for Ill-Conditioned Problems

According to convex theory [16], the value Q f = L/µ is called the condition number
of function f if f is L − smooth and µ − strongly convex. Under Assumptions 1–3, the
condition number of the primal function in Equation (1) is (1 + γλ)/λ = 1

λγ + 1. Suppose
λ becomes lower; then, the condition number, Q f , will be larger. When Q f � 1, the
problem f is called ill-conditioned.

In this section, we extend ASPDC to the ill-conditioned problem, especially when
λ ≤ 4

nγ . The extension method is called ASPDC-i, in which the suffix i means “for ill-
conditioned problems”.

As shown in Algorithm 2, the procedure of ASPDC-i can be divided into epochs,
indexed s = 1, 2, 3, . . . , S. Each epoch uses ASPDC to solve the following problem with a
decreasing precision parameter ξs:

min
w∈Rd

max
α∈Rn

f̃s(w, α) =
1
n

n

∑
i=1

[αiwTxi − φ∗i (αi)] + g̃(w) (12)

where g̃(w) = g(w) + κ
2 ||w||22 − κwTw̃s, κ ∈ R is a constant throughout the procedure, and

g̃(w) is g(w) plus an additional perturbation term. This additional term is employed to
ensure that the strongly convex parameter λ + κ of g̃(w) satisfies λ + κ ≥ 4

nγ . Note that

a smaller κ is preferable, as a larger κ leads to a severe bias between f (w, α) and f̃s(w, α).
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Therefore, in the implementation of our ASPDC algorithms we simply use the smallest κ:
κ = 4

nγ − λ.
These calls of ASPDC produce a sequence w̃s, s = 1, 2, . . . , which are the solu-

tions of the corresponding approximate problem in Equation (12). Here, we need to
prove that each running procedure of ASPDC from these calls can stop itself after fi-
nite epochs as well as that the output w̃S satisfies the condition |P(w̃S) − P(w∗)| ≤ ε.
In this condition, the variable w∗ is the theoretical optimal solution of P(w). These facts are
illustrated in the following Theorem 2.

Theorem 2. Algorithm 2 needs S ≥ 1 + 2
η log(ξ1

1
ε ) epochs to approach the approximate solution

w∗, where |P(w̃S)− P(w∗)| ≤ ε.

The proof can be found in the Appendix A. The settings of the hyper parameters of
Algorithm 2 are presented in the proof.

Algorithm 2 ASPDC-i

1: Parameter: λ ≤ 4
nγ , κ = 4

nγ − λ, η = λ
λ+2κ ,

ξ1 = (1 + η−1)(P(w̃1)− D(α̃1))
2: Initialize: w̃1 = 0, α̃1 = 0
3: for s= 1,2,3,. . . do
4: (w̃s+1, α̃s+1, εs+1)=ASPDC( f̃s(w, α), α̃s, η

2(1+η−1)
ξs)

5: ξs+1 = (1− 0.5η)ξs
6: end for
7: stop condition: S ≥ 1 + 2

η log(ξ1
1
ε )

Output w̃S, α̃S

To make for a fair comparison with other algorithms, we provide an realistic imple-
mentation version of Algorithm 2. This implementation version is shown in Algorithm 3.
Here, the number of iterations in Algorithm 3 is set to be a constant m (e.g., m = 2n). As be
demonstrated in the experiment section, this approach works well.

Algorithm 3 Implemented version of ASPDC-i

1: Parameter: λ ≤ 4
nγ , κ = 4

nγ − λ

2: Initialize: w̃0 = 0, α̃0 = 0
3: for s = 1, 2, 3, . . . , S do
4: α(0) = α̃(s−1), w(0) = ∇g̃∗(− 1

n ∑n
i=1 xiα

(0)
i )

5: for t = 0, 1, 2, . . . , m− 1 do
6: pick i ∈ {1, 2, . . . , n} under uniform distribute
7: ∆α∗i = arg max

∆αi∈R
(∆αixT

i w(t) − φ∗i (α
(t)
i + ∆αi))

8: α(t+1) = α(t) + ∆α∗i ei

9: w(t+1) = ∇g̃∗(− 1
n ∑n

i=1 xiα
(t+1)
i )

10: end for
11: w̃s = w(m), α̃s = α(m)

12: end for
Output w̃S, α̃S

6. Experiments

In this section, we evaluate the performance of our ASPDC algorithms along with
several state-of-art algorithms for solving machine learning problems such as SVM. All
the algorithms were implemented in C++ and executed through a Matlab interface. The
experiments were performed on a PC with an Intel i5-4690 CPU and 16.0 GB RAM. The
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source code and the detailed proofs can be downloaded from the GitHub website (https:
//github.com/lianghb6/ASPDC, access on 28 June 2022) and the datasets can be obtained
from the LIBSVM website (https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/,
access on 28 June 2022).

As the computation processes of the problems are similar, in these experiments we
mainly evaluated the practical performance of ASPDC for solving the following SVM
optimization problem:

min
w∈Rd
{P(w) =

1
n

n

∑
i=1

φi(wTxi) +
λ

2
||w||22}

where φi is a smooth hinge loss, and is used in [1,5] as well.

φi(wTxi) =


0 yiwTxi ≥ 1
1
2
− yiwTxi yiwTxi ≤ 0

1
2
(1− yiwTxi)

2 otherwise.

The corresponding convex–concave saddle point problem is as follows:

min
w∈Rd

max
α∈Rn
{ f (w, α) =

1
n

n

∑
i=1

[αiwTxi − φ∗i (αi)] +
λ

2
||w||22}

where

φ∗i (αi) =

yiαi +
1
2

α2
i − 1 ≤ yiαi ≤ 0

+ ∞ otherwise.

Under Assumption 3, the smooth parameter γ of φi is 1. The strongly convex parameter
of P(w) is λ, which comes from the regularized function g(w) = λ

2 ||w||22.
In Figure 1 and Table 3, we show the cases when λ is relatively large (e.g., 10−2, 10−3, 10−4).

We compare ASPDC (Algorithm 1) with state-of-art dual methods: the stochastic dual coor-
dinate ascent method (SDCA)[5] and stochastic primal–dual coordinate method (SPDC) [1].
Note that accelerated stochastic dual ascent (ASDCA) [13] cannot be applied to this sce-
nario, as ASDCA requires λ to be extremely small (i.e., λ ≤ 1

10nγ ). We omit the comparison
between ASPDC and the stochastic gradient descent method and its variants (e.g., SVRG
[19] and Katyusha [26]), as there have already been extensive experiments using SPDC and
this situation performed in the literature.

The horizontal axis in Figure 1 is the number of passes through the entire dataset,
and the vertical axis is the logarithmic dual-gap. It can be seen from Figure 1 that ASPDC
and SDCA have comparable performances on relatively large λ. With the same epoch,
the dual-gap of ASPDC is lower than that of SPDC by two orders of magnitude after
several epochs.

Figure 1 shows that both SDCA and ASPDC are faster than SPDC. This is because λ
in Figure 1 is relative large (e.g., 0.01). In this case, the condition number of problems is
relatively small. When the condition number is large, ASPDC and SPDC perform better
than SDCA. In total, ASPDC is faster and is well suited for ill-conditioned problems.

Table 3. The running time for dual-gap approaches to the given precision (10−6) when λ = 0.01.

SDCA SPDC ASPDC

a9a 0.505 s 1.311 s 0.636 s

ijcnn 0.984 s 1.438 s 1.183 s

covtype 11.502 s 20.526 s 14.972 s

https://github.com/lianghb6/ASPDC
https://github.com/lianghb6/ASPDC
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 1. Dual-gap (y-axis) vs, the number of epochs (x-axis). Comparing ASPDC with other methods
for smooth hinge SVM on real-world datasets with regularization coefficient λ ∈ {0.1, 0.01, 0.001, 0.0001}.
The horizontal axis is the number of passes through the entire dataset, and the vertical axis is the
logarithmic dual-gap.

Table 3 lists the needed running time for the dual-gaps of different algorithms to
decrease to the given precision (e.g., dual gap ≤ 10−6) for different algorithms and datasets.
Table 3 demonstrates that ASPDC and SDCA need less time to approach the given precision,
and verifies that the convergence of ASPDC and SDCA is faster than SPDC. Table 4 presents
the total running time for the algorithms to go through the entire dataset once to measure the
per-iteration computation complexity. An algorithm with a shorter running time indicates
that the algorithm has a lower per-iteration computation complexity. Table 4 shows that
ASPDC and SDCA have a lower per-iteration complexity than SPDC. Among all of the
running time results, ASPDC demonstrates both fast convergence and low per-iteration
complexity when λ is large.
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Table 4. The average running time for the algorithms to pass through the entire dataset once when
λ = 0.01.

SDCA SPDC ASPDC

a9a 0.029 s 0.052 s 0.028 s

ijcnn 0.053 s 0.061 s 0.052 s

covtype 0.650 s 0.840 s 0.644 s

We then tested the case when λ is relatively small (e.g., λ ≤ 4
γn ) and compared ASPDC-

i with SDCA, SPDC, and ASDCA. Figure 2 plots the convergence results. Figure 2 shows
that the convergences of SDCA, ASDCA, and SPDC are significantly slower than those of
the same algorithms in Figure 1. The reason for this is that the condition number of the
problem in this test case is larger than that in Figure 1. ASPDC-i performs much better in
this experiment, as can be seen from Figure 2. ASPDC-i needs far fewer epochs than other
algorithms to approach the same level of dual-gap. Additionally, ASPDC can approach a
significantly lower dual-gap than the others with the same epochs.
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Figure 2. Dual-gap (y-axis) vs. the number of epochs (x-axis). Comparing ASPDC-i with
other methods for smooth hinge SVM on real-world datasets with regularization coefficient
λ ∈ {10−6, 10−7, 10−8}. The horizontal axis is the number of passes through the entire dataset,
and the vertical axis is the logarithmic dual-gap.
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In addition, we compared ASPDC-i to a widely used non-dual-based algorithm, SVRG [19].
As SVRG is not dual-based, we directly compared its reduction speed of the primal value
with ASPDC-i. Figure 3 shows that the convergence speed of ASPDC-i is faster than SVRG.
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Figure 3. Optimal primal value (y-axis) vs. the number of epochs (x-axis): Comparing ASPDC-i with
SVRG for smooth hinge SVM on real-world datasets with the regularization coefficient 10−6. The
x-axis is the number of passes through the entire dataset, and the y-axis is the logarithmic dual-gap.

Note that ASDCA cannot be applied to cases in which the dataset is covtype and
λ = 10−6, as ASDCA needs the extra condition λ ≤ 1

10nγ . Table 5 illustrates the run-
ning time that different algorithms spend to decrease the dual-gap to the given precision
(e.g., 10−4). Table 6 demonstrates the total running time for the algorithms to go through the
entire dataset once. It shows that ASPDC and ASDCA have lower per-iteration complexity
than SPDC. Although SDCA has low per-iteration complexity, its convergence is the slowest
among these methods when λ is relatively small. We did not list the corresponding results
of SDCA in Tables 5 and 6. In summary, the above experiments show that our proposed
methods achieve both fast convergence and low per-iteration complexity.

Table 5. The running time for dual-gaps to approach the given precision (10−4) when λ = 10−6.

ASDCA SPDC ASPDC-i

a9a 0.582 s 2.262 s 0.8464 s

ijcnn 0.994 s 3.127 s 2.033 s

covtype 8.407 s 91.132 s 47.734 s

Table 6. The average running time for the algorithms to pass through the entire dataset once when
λ = 10−6.

ASDCA SPDC ASPDC-i

a9a 0.0165 s 0.0857 s 0.0167 s

ijcnn 0.0305 s 0.0821 s 0.0302 s

covtype 0.208 s 1.253 s 0.408 s

7. Conclusions and Future Work

In this paper, we propose two stochastic primal–dual coordinate methods, ASPDC
and its accelerated variant version, ASPDC-i. These two algorithms are designed for the
regularized empirical risk minimization problem. We proved the theoretical convergence
guarantee of the algorithms and performed a series of experiments. The results illustrate
that our methods achieve a good balance between low per-iteration computation com-
plexity and fast convergence. The new convergence proof presented here uses Nesterov’s
estimation sequence technique and g(w) = λ

2 ||w||22. We believe that it is possible to extend
this proof to the more general regularized function g(w); however, we leave this as a
possibility for future work.
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Appendix A

Appendix A.1. Proof of Lemma 1

We prove the following equations: P(w) = max
α∈Rn

f (w, α), D(α) = min
w∈Rd

f (w, α) and

P(w∗) = D(α∗) = f (w∗, α∗). We first prove P(w) = max
α∈Rn

f (w, α).

Proof.
max
α∈Rn

f (w, α)

= max
α∈Rn
{ 1

n ∑n
i=1[αiwTxi − φ∗i (αi)] + g(w)}

= max
α∈Rn
{ 1

n ∑n
i=1[αiwTxi − φ∗i (αi)]}+ g(w)

= 1
n ∑n

i=1 max
αi∈R
{αiwTxi − φ∗i (αi)}+ g(w)

= 1
n ∑n

i=1 φi(wTxi) + g(w)

= P(w)

(A1)

In the last equation, we use the Conjugate Theorem (Convex Optimization Theory).
Then, we prove that D(α) = min

w∈Rd
f (w, α).

min
w∈Rd

f (w, α)

= min
w∈Rd
{ 1

n

n

∑
i=1

[αiwTxi − φ∗i (αi)] + g(w)}

=
−1
n

n

∑
i=1

φ∗i (αi) + min
w∈Rd
{( 1

n

n

∑
i=1

αixi)
Tw + g(w)}

=
−1
n

n

∑
i=1

φ∗i (αi)− max
w∈Rd
{(−1

n

n

∑
i=1

αixi)
Tw− g(w)}

=
−1
n

n

∑
i=1

φ∗i (αi)− g∗(
−1
n

n

∑
i=1

αixi)

= D(α)

The proof of P(w∗) = D(α∗) = f (w∗, α∗) can be found in [1].

Appendix A.2. Proof of Lemma 2

Proof. When g(w) = λ
2 ||w||22, the primal objective can be written as follows:

P(w) =
1
n

n

∑
i=1

φi(wTxi) +
λ

2
||w||22. (A2)

The corresponding dual objective is

D(α) =
−1
n

n

∑
i=1

φ∗i (αi)−
λ

2
||−1

λn

n

∑
i=1

αixi||22. (A3)
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Note that at through the algorithm, we can set

w(t) =
−1
λn

n

∑
i=1

α
(t)
i xi. (A4)

Thus, the D(α(t)) can be written as

D(α(t)) =
−1
n

n

∑
i=1

φ∗i (α
(t)
i )− λ

2
||w(t)||22. (A5)

Suppose we have α(t) and that the i− th coordinate is chosen at iteration t + 1:

D(α(t+1))− D(α(t))

= − 1
n

φ∗i (α
(t+1)
i )− λ

2
||w(t) − 1

λn
∆α∗i xi||22︸ ︷︷ ︸

R1

(A6)

− {− 1
n

φ∗i (α
(t)
i )− λ

2
||w(t)||22︸ ︷︷ ︸

R2

}.

The variables in the algorithm are as follows:

∆α∗i = arg max
d∈R

(dxT
i w(t) − φ∗i (α

(t)
i + d))

= arg max
d∈R

((α
(t)
t + d)xT

i w(t) − φ∗i (α
(t)
i + d))

= arg max
α
(t)
t +d∈R

((α
(t)
t + d)xT

i w(t) − φ∗i (α
(t)
i + d))

= arg max
β∈R

(βxT
i w(t) − φ∗i (β))− α

(t)
i ,

(A7)

where in the last inequality we define β = α
(t)
i + d, and correspondingly have β∗ =

α
(t)
i + ∆α∗i .
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R1 = − 1
n φ∗i (α

(t+1)
i )− λ

2 ||w(t) − 1
λn ∆α∗i xi||22

= − 1
n φ∗i (α

(t)
i + ∆α∗i ) +

1
n ∆α∗i xT

i w(t)

− 1
2λn2 ||xi||22(∆α∗i )

2 − λ
2 ||w(t)||22

= 1
n{max

d∈R
(dxT

i w(t) − φ∗i (α
(t)
i + d))}

− 1
2λn2 ||xi||22(∆α∗i )

2 − λ
2 ||w(t)||22

1©
≥ 1

n{q(β∗ − α
(t)
i )xT

i w(t) − φ∗i (α
(t)
i + q(β∗ − α

(t)
i ))}

− 1
2λn2 ||xi||22(∆α∗i )

2 − λ
2 ||w(t)||22

= − 1
n φ∗i ((1− q)α(t)i + qβ∗) + 1

n q(β∗ − α
(t)
i )xT

i w(t)

− 1
2λn2 ||xi||22(∆α∗i )

2 − λ
2 ||w(t)||22

2©
≥ − 1

n{qφ∗i (β∗) + (1− q)φ∗i (α
(t)
i )− γq(1−q)

2 (β∗ − α
(t)
i )2}

+ 1
n q(β∗ − α

(t)
i )xT

i w(t) − 1
2λn2 ||xi||22(∆α∗i )

2 − λ
2 ||w(t)||22

≥ q
n{−φ∗i (β∗) + β∗xT

i w(t)} − 1−q
n φ∗i (α

(t)
i )

+ γ(1−q)q
2n (β∗ − α

(t)
i )2 − q

n α
(t)
i xT

i w(t)

− 1
2λn2 ||xi||22(∆α∗i )

2 − λ
2 ||w(t)||22

(A8)

where q ∈ (0, 1) in the inequality 1©, while in the inequality 2©we use the fact that if φi is 1
γ

smooth, then φ∗i is γ strong convex.
On the one hand, according to (A7), we obtain

β∗ = arg max
β∈R

(βxT
i w(t) − φ∗i (β)). (A9)

This implies that

xT
i w(t) = ∇φ∗i (β∗). (A10)

On the other hand, by the definition of the convex conjugate function, we have
φ∗∗i (xT

i w(t)) = max
β∈R

(βxT
i w(t) − φ∗i (β)). According to the Fenchel conjugate sub-gradient

theorem, we have

xT
i w(t) = ∇φ∗i (β∗)⇐⇒ β∗xT

i w(t) − φ∗i (β∗)

= φ∗∗i (xT
i w(t))

3©
= φi(xT

i w(t)),
(A11)

where in 3©we apply the Fenchel Dual theorem.
Combined with (A8) and (A11), we obtain

R1 ≥ q
n{φi(xT

i w(t)) + φ∗i (α
(t)
i )− α

(t)
i xT

i w(t)}

+ γ(1−q)q
2n (β∗ − α

(t)
i )2 − 1

2λn2 ||xi||22(∆α∗i )
2

+{− 1
n

φ∗i (α
(t)
i )− λ

2
||w(t)||22︸ ︷︷ ︸

R2

}.
(A12)
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Combining β∗ = α
(t)
i + ∆α∗i with (A6) and (A12), we have

D(α(t+1))− D(α(t))

≥ q
n{φi(xT

i w(t)) + φ∗i (α
(t)
i )− α

(t)
i xT

i w(t)}

+{ γ(1−q)q
2n − 1

2(λ)n2 ||xi||22}(∆α∗i )
2

≥ q
n{φi(xT

i w(t)) + φ∗i (α
(t)
i )− α

(t)
i xT

i w(t)}

+{ γ(1−q)q
2n − 1

2(λn2 }(∆α∗i )
2,

(A13)

where in the last inequality we use the assumption ||xi||22 ≤ 1. Note that we have supposed
that the i− th coordinate of α is chosen, thus, we use the expectation of (A13) with respect
to i, obtaining

E{D(α(t+1))− D(α(t))}

≥ q
n

1
n ∑n

i=1{φi(xT
i w(t)) + φ∗i (α

(t)
i )− α

(t)
i xT

i w(t)}

+{ γ(1−q)q
2n − 1

2λn2 } 1
n ∑n

i=1(∆α∗i )
2.

(A14)

Recall that
P(w(t))− D(α(t))

= 1
n ∑n

i=1{φi(xT
i w(t)) + φ∗i (α

(t)
i )}+ λ||w(t)||22

4©
= 1

n ∑n
i=1{φi(xT

i w(t)) + φ∗i (α
(t)
i )− α

(t)
i xT

i w(t)},

(A15)

where in 4©we use the fact that w(t) = −1
λn ∑n

i=1 α
(t)
i xi.

Combined (A14) with (A15), we obtain

E{D(α(t+1))− D(α(t))}

≥ q
n{P(w(t))− D(α(t))}+ { γ(1−q)q

2n − 1
2λn2 } 1

n ∑n
i=1(∆α∗i )

2.
(A16)

Using q = 1/2 and λ ≥ 4
nγ , we have γ(1−q)q

2n − 1
2λn2 ≥ 0, and

E{D(α(t+1))− D(α(t))} ≥ 1
2n
{P(w(t))− D(α(t))}. (A17)

Note that α∗ = arg maxα D(α); it is well known that P(w(t)) ≥ D(α∗) ≥ D(α(t)).
Combined with (A17), we obtain

1
2n{D(α∗)− D(α(t))}
≤ 1

2n{P(w(t))− D(α(t))}
≤ E{D(α(t+1))− D(α(t))}
= E{D(α(t+1))− D(α∗) + D(α∗)− D(α(t))}
= {D(α∗)− D(α(t))} − E{D(α∗)− D(α(t+1))}.

(A18)

This further implies that

E{D(α∗)− D(α(t+1))} ≤ (1− 1
2n

){D(α∗)− D(α(t)). (A19)

Until now, we have assumed that α(t) is known and the expectation is for random
variable i; if below we take this expectation with all the history i, we obtain

E{D(α∗)− D(α(t+1))} ≤ (1− 1
2n

)(t+1){D(α∗)− D(α(0)). (A20)
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In addition, it can be known from (A17) that

1
2n

E{P(w(t))− D(α(t))} ≤ E{D(α(t+1))− D(α(t))}

= {D(α∗)− D(α(t))} − E{D(α∗)− D(α(t+1))}

≤ {D(α∗)− D(α(t))}

≤ (1− 1
2n

)t{D(α∗)− D(α(0))}

This implies that E{P(w(t))− D(α(t))} ≤ 2n(1− 1
2n )

t{D(α∗)− D(α(0))}.
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