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Abstract: Machine-vision-based surface defect inspection is one of the key technologies to realize 
intelligent manufacturing. This paper provides a systematic review on leather surface defect in-
spections based on machine vision. Leather products are regarded as the most traded products all 
over the world. Automatic detection, location, and recognition of leather surface defects are very 
important for the intelligent manufacturing of leather products, and are challenging but notewor-
thy tasks. This work investigates a large amount of literature related to leather surface defect in-
spection. In addition, we also investigate and evaluate the performance of some edge detectors and 
threshold detectors for leather defect detection, and the identification accuracy of the classical 
machine learning method SVM for leather surface defect identification. A detailed and methodical 
review of leather surface defect inspection with image analysis and machine learning is presented. 
Main challenges and future development trends are discussed for leather surface defect inspection, 
which can be used as a source of guidelines for designing and developing new solutions in this 
field. 
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1. Introduction 
Leather and its products are regarded as the most traded products all over the 

world, with an annual international trade of more than USD 80 billion [1]. To produce 
leather products with novel design and comfort, the choice of leather has become the key 
factor to determine the success or failure of manufacturers. This inspection process 
mainly includes leather defect detection, location, identification, unavailable area divi-
sion, and quality grade determination. Reliable and effective inspection including detec-
tion and classification of leather surface defects is very important for the leather industry 
with leather as the main raw material, such as leather footwear and handbag manufac-
turers [2]. The traditional detection and classification of leather surface defects are per-
formed by human inspectors who tend to miss considerable numbers of defects because 
human beings are basically inconsistent and ill-suited for such simple and repetitive 
tasks [3]. Furthermore, manual inspections are slow and labor-intensive tasks. These 
factors have become bottlenecks restricting the leather industry [4]. 

In the past decades, amazing progress has been made in applying intelligent sys-
tems to solve practical problems in the fields of medicine, telecommunications, finance, 
medical diagnosis, transportation, information retrieval, energy, and so on [5]. The re-
quirements of automation have revolutionized the production mode of the manufactur-
ing industry. From resource optimization to industrial inspection, experts and intelligent 
systems have been applied in almost all types of industrial processing. Automatic defect 
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inspection of industrial products is one of the important application scenarios of such 
intelligent systems, and it is also one of the key technologies to realize intelligent manu-
facturing [6]. Some research has been carried out on automated inspection of metal sur-
faces [7], textile fabrics [8–10], structural health monitoring, and so on [11–13]. With the 
rapid development of intelligent manufacturing, leather product manufacturing has also 
entered a new stage of development [3–5]. 

Since the 1990s, some scholars and suppliers of automatic inspection equipment 
have begun to pay common attention to the automatic inspection of leather surface de-
fects. However, we investigated relevant enterprises in developed areas of leather prod-
ucts such as Guangdong and Zhejiang provinces in China (the highest producer, im-
porter, and exporter of leather products around the world [1]), and found that many en-
terprises still maintain the traditional manual defect inspection for the leather. Some en-
terprises have realized semi-automatic and semi-manual defect inspection, and a real 
fully automatic defect inspection system has not been realized. Relatively few works 
have been conducted on automated leather surface defect inspection, mainly because of 
the difficult nature of the problem [3]. It is very difficult to construct exact inspection 
models because their appearance and size greatly vary [3–5]. It is almost impossible to 
find two defects with the same shape and size, even if they belong to the same defect 
class [3]. Automatic detection, location, and recognition of leather surface defects are in-
teresting but challenging problems. It is expected that the automatic leather defect in-
spection system will make rapid progress shortly. 

In this work, we systematically reviewed a large amount of literature over the past 
three decades, and provided an extensive overview of the research on automatic detec-
tion and recognition of leather defects based on image processing and machine learning. 
In doing so, we investigated and evaluated the performance of some edge detectors and 
threshold detectors for leather defect detection, as well as the accuracy of the SVM-based 
leather surface defect identification, and we strive to provide a clear direction for re-
searchers and engineers to select, design, or implement the architecture of visual detec-
tion and recognition of leather surface defects. 

2. Vision-Based Leather Surface Defect Inspection System 
The requirements for leather surface defect inspection can be divided into three 

different levels: “what is the defect” (classification), “where is the defect” (location), and 
“what is the defect shape and how large is the area” (segmentation). The inspection 
technology of leather surface defects is mainly based on machine vision inspection 
methods [14]. 

As shown in Figure 1, similar to other visual surface defect inspection systems, the 
basic components of a machine vision system for leather defect automatic inspection in-
clude leather surface image acquisition, image processing, image analysis, data man-
agement, and human-machine interface [2]. Based on the defect location, shape, and area 
detected by the defect detection module, as well as the defect type detected by the defect 
identification module, combined with the location and various contextual characteristics, 
the applications of automatic grading of leather quality and intelligent layout of leather 
are realized with the assistance of the leather quality expert system. Stable, reliable, and 
effective automatic detection and recognition of leather surface defects are the key tech-
niques to realize intelligent manufacturing of leather products. 

In the last decade, many machine-vision-based techniques were developed in sur-
face defect inspection, not limited to the leather surface. These methods can be mainly 
divided into two categories, namely, the traditional image processing method and the 
machine learning method, which is based on handcrafted features or shallow learning 
techniques. Machine-learning-based methods generally include two stages of feature ex-
traction and pattern classification. By analyzing the characteristics of the input image, the 
feature vector describing the defect information is designed, and then the feature vector 
is put into a classifier model that is trained in advance to determine whether the input 
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image has a defect or not. In recent years, deep neural network methods have achieved 
excellent results in many computer vision applications, such as natural scene classifica-
tion, face recognition, fault diagnosis, target tracking, etc. 
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Figure 1. Overall pipeline for the leather visual defect inspection system. 

This review focuses on the application of the above methods in the field of leather 
surface defects. Taking “leather defect detection”, “leather defect identification”, “leather 
surface”, and “defect inspection” as keywords, we retrieved more than 65 English doc-
uments and more than 20 Chinese documents in Science Direct, IEEE Explore, and CNKI 
databases since 1990. Figure 2 presents the methods of leather surface defect inspection 
used in these literatures. In the next few sections, we will analyze and compare the rele-
vant technologies and their applications in this field. 
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Figure 2. Methods used in leather surface visual defect inspection in previous literatures. 
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3. Image Acquisition 
A leather surface image embraces three characteristics [15]: (i) large imaging area, 

i.e., a whole skin area can reach 2 × 3 m; (ii) small defect size, i.e., the defect area can be 
small, 150 μm × 150 μm, the maximum average diameter of the thin spots is about 0.98 
mm, the minimum average circular spot diameter is about 1.20 mm; and (iii) the leather 
surface belongs to the texture surface, and the defects are usually hidden in the irregular 
texture background of the leather surface. Therefore, leather image acquisition requires a 
large camera view and high resolution. The key factors affecting the leather surface ac-
quisition of defective images are the camera and illuminant. 

3.1. Camera 
In actual production, the leather is usually uniformly moved in a single direction to 

a designated location before processing. Therefore, online inspection often adopts the 
line-scan camera for image acquisition. At present, the online surface defect inspection 
for leather and other flat, wide, and continuous products mainly adopts line-scan mode, 
which can detect most of the defects. However, some leather surface defects such as 
stamping and ink are anisotropy. If similar anisotropic defect images were collected in a 
line-scan camera alone, the defect leak detection rate reached 22% [16]. 

The aerial camera can obtain two-dimensional information and intuitively measure 
images. Hence, many researchers chose to use the traditional CCD camera for collecting 
leather images. To avoid the small field of view weaknesses and obtain high-resolution 
imaging, one scheme is to move the CCD camera through a complex control system and 
scan the effective area of the whole leather; another alternative one is to take multiple 
camera imaging. Both of these schemes require the application of image fusion to obtain 
the entire leather image. He et al. [17] proposed the image splicing technology based on 
Gabor Zernike moments of geometric summary triangle texture block. They tried to solve 
the problems of image mosaicking algorithm complex and slow speed, and to realize the 
rapid and accurate splicing of sequence images in large-area leather visual inspection. Ho 
et al. [18] presented a real-time image capturing system using four cameras at 30 fps and 
stitched their views together to create a panoramic video with a resolution of 1280 × 960 
pix. However, these image acquisitions based on image fusion would increase the com-
plexity of the image processing algorithm and require a complex control system. 

With the development of the ultra-high definition (UHD) CCD aerial camera tech-
nology, UHD-based whole leather imaging technology has emerged. Deng et al. [19] tried 
to use an ultra-high CCD aerial camera to image the whole leather at one time. The sys-
tem has the characteristics of fast imaging, simple imaging process, no multi-view image 
fusion, and good imaging effect. Due to the cost reduction of the ultra-high definition 
CCD camera, it will become the main method of leather image acquisition. However, it is 
still necessary to solve the problems of uneven lighting and the overlapping of leather 
edge shadow and background [20]. 

Chen et al. [5] carried out a pilot research study in which they used hyperspectral 
imaging (HSI) to implement surface inspection in pixel level detection, which employed 
the spectral information of leather defects instead of the spatial information processing 
techniques to effectively identify leather defects. Hyperspectral image has become an 
emerging technology and has been extensively used in the domains of geology, agricul-
ture, global change, and national defense, with highly promising industrial potential [5]. 
Since hyperspectral data volume is very large, high data storage capacity is required, and 
reducing data volume is also a topic worth exploring. Their work [5] is a pilot study and 
guideline for HSI in the detection of wet blue leather to design appropriate algorithms. 

3.2. Illuminant 
The light source and its illumination mode will directly affect the image acquisition 

quality and inspection efficiency. The illumination uniformity and brightness of the tar-
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get surface are important indicators of the light source. Due to the influence of texture, 
conventional lighting methods find it difficult to accurately identify the printing and 
dyeing or indentation defects of leather with texture structure. Fan et al. [20] found that 
the brightness was different where there was a different distance between the imaging 
plane and the light source, resulted in uneven illumination. 

In leather defect inspection, common lighting sources include high-frequency fluo-
rescent lamp, energy-saving lamp, and LED array lamp. High-frequency fluorescent 
lamps and energy-saving lamps are suitable for large-area lighting with relatively poor 
uniformity. LED light source has high luminous efficiency and good stability, especially 
the small luminous surface, which makes it easy to carry out secondary optical design. At 
present, the method of uniform lighting using LED is mainly LED with array distribu-
tion, whose uniformity can reach more than 90%. Ring LED, plane and strip light source, 
and arch light source can well realize uniform and high illumination, but they all belong 
to the coaxial lighting system, that is, the illumination light is generally symmetrically 
distributed. Wang et al. [21] suggested that the printing and dyeing defects of some tex-
tured leather can be highlighted only through unilateral asymmetric uniform lighting, 
i.e., off-axis lighting, and they designed a set of off-axis LED curved surface array lighting 
for leather defect inspection, which provides a new idea for improving the image acqui-
sition quality of leather surface defects. Unfortunately, in most of the literature on leather 
surface defect inspection, the lighting design of the collected image was not described in 
detail. 

4. Traditional Image-Processing-Based Leather Visual Inspection 
As shown in Figures 1 and 2, the early leather visual inspection technology was 

mainly based on traditional image processing methods. These methods use the primitive 
attributes reflected by local anomalies to detect and segment defects, which can be fur-
ther divided into the structural method [22–24], threshold method, spectral method, 
texture analysis method [25], and some other segmentation methods based on specific 
theories (such as fuzzy clustering method [26], saliency method), etc. These methods 
have been applied to leather surface defect inspection in different scenarios. 

4.1. Structure Method 
The structural method includes edge and morphological operations. Edge detection 

is a commonly used image segmentation technique, using a series of mathematical 
methods to determine the presence of edges or lines (formally known as discontinuities) 
and to outline them in digital images in an appropriate manner. In the early 1990s, Li-
mas-Serafim [22–24] applied the multi-resolution pyramid algorithm to segment leather 
defects, and the main idea is to enhance the edges of the object through a multi-resolution 
method and eliminate most of the edges based on the background texture. Limas-Serafim 
et al. [23] built three pyramids to divide into characterization images. The first pyramid 
was constructed based on the mean of the two highest values in the neighborhood. The 
second pyramid had a RosenfeldS cone with 16 directions from the first pyramid. The 
third pyramid was built with a small number of edges, but it had to satisfy certain direc-
tional consistency and strength advantages. Defect segmentation was performed by 
connecting the nodes of the edge pyramid, and an edge-weighted function was defined 
for linking the nodes with different resolutions. These edges can be linked if the edges at 
different resolutions of the image belong to the same object. They can be rejected if they 
belong to a random background. The algorithm was applied to calf leather defects (seg-
mentation of calfskin venules and scar defects caused by animal disease). In this applica-
tion scenario, neither the threshold-based nor the ordinary edge segmentation algorithm 
can successfully segment the leather defect. Limas-Serafim [22–24] simply verified the 
proposed method, promising to reconstruct the boundaries of the object, but did not 
make a thorough and detailed evaluation of its effectiveness. 
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In the field of leather defect detection, Kasi et al. [24] evaluated conventional edge 
detectors such as Sobel, Canny, Prewitt, and Roberts et al. In these conventional methods, 
the detected edges are more often false ones, and find it difficult to meet the actual needs. 
The Sobel operator provides relatively better output, but it cannot provide any clear or 
well-defined edges for a given input image and is still not suitable for leather samples. 
Kasi et al. [24] presented a technique for identifying the defects in leather by using an 
auto-adaptive edge detection algorithm. Here, the edges were detected by using the So-
bel operator. The maximum and minimum values of the absolute gradient are taken as 
the thresholding conditions. If the threshold is above the actual value, the edges are 
maximum, and if the threshold is below it, there are no edges. Finally, the edges were 
refined to obtain clear, continuous image edges. During this refinement, interpolation 
was used to obtain the local maxima. The adaptive edge detection algorithm for leather 
images helps find clear and continuous edges. The algorithm has detected hundreds of 
leather surface image defects, and the detected leather edges are clear and continuous 
compared to the traditional edge detector. Only the edge detection of a kind of defect was 
shown; again, the detection method lacks broader validation. 

Liong et al. [14] utilized edge detectors and statistical approaches as feature extrac-
tors and obtained a classification accuracy rate of 84% from a sample of approximately 
2500 pieces of 400 × 400 leather patches. Qingyuan et al. [27], Popov et al. [28], Lovergine 
et al. [29], and Kwak et al. [3] applied morphological operations to leather defect inspec-
tion, which were often combined with other graphic segmentation algorithms. 

In this work, we evaluated Sobel, Canny, Prewitt, and Roberts detectors combined 
with morphological operations for the inspection of four kinds of leather defects (scratch, 
rotten surface, holes, and needle eye) as shown in Figure 3. The code is implemented by 
using Halcon toolkit, which is a famous machine vision software development kit in the 
industrial field. The detected results using four kinds of edge detectors are shown in Ta-
ble 1, where each kind of detection has 20 pieces of images. As shown in Table 1, the edge 
detectors with morphological operation cannot detect leather defects very well. Among 
the four defects, only holes can be completely detected, and the success rate is between 60 
and 75%. For the other three defects, only part of the defect information can be detected 
from the image. Therefore, we can draw a conclusion that the traditional edge detection 
algorithm can only be used for leather surface defect detection with few challenges. 

(a) (b)

(c) (d)
Figure 3. Four different leather defects: (a) hole; (b) wrinkle; (c) healing wound; and (d) 
needle eye. 

Table 1. The detected results by using edge detectors. 

Methods 
Hole Wrinkle Healing Wound Needle Eye 

All Part All Part All Part All Part 
A 65% 15% 0% 65% 0% 70% 0% 60% 
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B 60% 15% 0% 70% 0% 0% 0% 60% 
C 60% 20% 0% 50% 0% 35% 0% 70% 
D 75% 10% 0% 0% 0% 65% 0% 60% 

Method A—Mean filtering + Sobel + morphological operations; B—mean filtering + Roberts + 
morphological operations; C—mean filtering + Prewitt + morphological operations; and D—mean 
filtering + Canny + morphological operations. 

4.2. Threshold Method 
Threshold-based segmentation has been extensively used as a tool for image seg-

mentation. The method is based on the assumption that defects in the image and back-
ground (normal leather fabric) pixels can be distinguished by their grayscale values. 
Since the grayscale values of pixels belonging to the defect region are most likely to be 
darker or brighter than the background, it can be possible to separate the defect from fine 
leather by using thresholding techniques. Theoretically, since the defective objects are 
generally darker and/or brighter than the background, the distribution density function 
of the pixel grayscale values for leather surface images can be approximately expressed 
as a combination of three normal distributions, given by [30]: 𝑝(𝑔) = 1ඥ2𝜋𝜎ଵ exp ቆ− 𝑔 − 𝜇ଵ2𝜎ଵଶ ቇ + 1ඥ2𝜋𝜎ଶ exp ቆ− 𝑔 − 𝜇ଶ2𝜎ଶଶ ቇ + 1ඥ2𝜋𝜎ଷ exp (− 𝑔 − 𝜇ଷ2𝜎ଷଶ ) (1) 

where 𝜇ଷ > 𝜇ଶ > 𝜇ଵ , and (𝜇ଶ, 𝜎ଶଶ)  are the mean and variances for the background, (𝜇ଵ, 𝜎ଵଶ) and (𝜇ଷ, 𝜎ଷଶ) are the mean and variances for the darker and brighter part of the 
defects, respectively. However, owing to the small population of defects, the part of the 
distributions in the histogram reflecting the defects is not significant enough to form in-
dependent peaks [30]. The threshold methods include Otsu method [31], histogram 
method [3,32], quadtree decomposition [33], etc. 

Otsu method is the optimal threshold method based on discriminant analysis. Yeh et 
al. [31] were involved in establishing a leather trading compensation standard by using 
the Otsu method to detect defects. However, the Otsu method may crash when the pro-
portion of background pixels and defective objects in an image is too large [31]. So, the 
Otsu method is not suitable for leather surface defect inspection. 

Most studies on automatic threshold methods involve bimodal or multimodal dis-
tribution histograms. In practice, the global information cannot accurately describe the 
local region because of uneven illumination and color changes on the leather surface. The 
small neighborhoods of the pixels of interest are usually considered. However, due to the 
small proportion of defect regions to the entire leather surface, most of the histograms of 
the small sub-images remain unimodal even though these small neighborhoods contain 
defects. Some thresholding methods take advantage of the fact that the histograms in 
many sub-images become bimodal or multimodal for leather defect segmentation [3]. 

The grayscale distributions of leather surface defects and noise often overlap, and 
the only two distinct differences between noise and defects are their density and size. 
This complicates the separation of defects from noise using only traditional histo-
gram-based threshold methods (such as fixed or adaptive thresholds). Since a single 
histogram-based threshold technique could not meet the requirements of leather defect 
inspection, Kwak et al. [3] use a two-step segmentation procedure for inspection based on 
thresholding and morphological processing. After thresholding the gray level image, the 
resulting binary image is processed by a combination of binary morphological erosion 
and dilation operations along with median filters to remove noise and fill the holes in 
detected defects. A binary connected component analysis is then applied to the processed 
binary image. 

Histogram-based image analysis remains unchanged in image rotation and scaling, 
with the advantages of little influence on perspective and fast information processing, 
but the classification may go wrong due to an absence of information for the spatial color 
distribution. There are many classification criteria—χ2 test, histogram intersection, cor-
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relation coefficients, Kolmogorov–Smirnov’s distance, divergence, etc. Georgieva et al. 
[32] discussed the application of χ2 criteria for image analysis of leather surfaces and 
obtaining their standard histograms and thought that one of the most applicable criteria 
for the large image sizes is χ2 criterion. 

Krastev et al. [33] investigated 12 histogram and statistical features and quadtree 
decomposition for analysis of leather surface images. They used a technique that parti-
tions an image into homogeneous blocks. This method holds the possibility of investi-
gating the changes of the feature values depending on the area size. The quadtree de-
composition is a suitable method for fast localizing defective regions, but the additional 
local analysis is needed for the exact defect contour determination. Bigger features value 
difference is obtained with a bigger proportion of defective/non-defective pixels in the 
examined area. The most appropriate feature sets for leather surface defect inspection are 
histogram ends (left and right border), median, and mean values. 

As color is an important attribute for visual recognition of discrimination, and also 
the leathers have different colors, thus Kumar et al. [34] presented a color-based thresh-
olding segmentation approach for leather defect identification using a multi-level 
thresholding function with a given range of color features. In the presented work, the 
specific range of values for the color attributes is identified using the color histogram to 
detect the different leather defects, which could efficiently detect several types of defects 
such as a chick wire, heavy grain, and folding marks by using specific thresholds for the 
automated real-time inspection of leather defects. 

In this work, we evaluated local threshold and Otsu method combined with mor-
phological operations for the inspection of four kinds of leather defects as shown in Fig-
ure 3. The code is implemented by using Halcon toolkit. The detected results using two 
kinds of threshold detectors are shown in Table 2. As shown in Table 2, the two kinds of 
threshold detection methods are not good for leather defect detection, or are even worse 
than the previous edge detection. 

Table 2. The detected result by using edge detector. 

Methods 
Hole Wrinkle Healing Wound Needle Eye 

All Part All Part All Part All Part 
E 30% 50% 15% 40% 0% 70% 0% 60% 
F 35% 0% 0% 10% 0% 0% 0% 0% 

Method E—Gaussian filtering + local threshold + morphological operations; F—Gaussian filtering + 
Otsu + morphological operations. 

4.3. Texture Method 
Most natural surfaces have rich textural content, and these background macrotex-

tures can be fine and convex, producing many edges that are as valuable as the edges of 
other objects. Some machine vision systems often require defect inspection from the 
perspective of texture analysis. In each point of an image with a directional texture, the 
directional vector field can be evaluated as a 2D vector whose direction corresponds to 
the main local direction of the gradient and a length proportional to its consistency (iso-
tropic degree). 

Some literature [29,35,36] separated defects from a complex nonhomogeneous 
background by analyzing the leather texture properties and their strongly oriented 
structure. The patterns to be analyzed were represented in an appropriate parameter 
space using a neural network [29]; in this way, a parameter vector is associated with each 
different textured region in the original image. Finally, a filter process, based on 
knowledge about the parameter vectors representing the leather without defects, de-
tected and classified any abnormality [29]. In the literature [35], Branca et al. developed 
an algorithm that removes textural background by discriminating the signal singularities 
through an analysis of wavelet transform maxima indicating the location of edges in 
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images. The presented work [35] integrated an oriented singularity detection framework 
based on wavelet theory analyzing compositional textures through the vector fields of 
dominant local gradient orientations. Lovergine et al. [36] presented some results ob-
tained using a defects detector based on oriented texture analysis, which reveals itself to 
be useful for a few classes of leather defects, such as scars or folds. These kinds of defects 
can be detected by using a black and white camera running over the leather patch and by 
classifying textures based on their gradient orientations and local coherence. A morpho-
logical segmentation procedure was applied to the regularized oriented texture field to 
extract probable defective areas. In addition, literature [27] and [37] also utilize the tex-
ture properties of leather for leather defect inspection, the former combining mathemat-
ical morphology and the latter combining the edge detector with a texture analysis 
method to extract defects. 

The work of Branca et al., which has demonstrated the effectiveness of defect in-
spection methods based on leather texture analysis, but with a somewhat high computa-
tional cost and poor interference resistance, is not suitable for minor defect inspection. 
Extensive texture analysis may lead to computation being expensive and may fail to meet 
production requirements. Furthermore, some defects may be too subtle to strongly in-
fluence the parameter of the statistical model [30]. 

4.4. Spectral Method 
The spectral methods commonly include Fourier transform, wavelet transform, and 

Gabor transform. Texture image has a certain periodicity in spatial distribution, and its 
power spectrum has discreteness and regularity. For directional texture, the directivity 
will be well maintained in the Fourier spectrum. For random textures, the response dis-
tribution of the spectrum is not limited to some specific directions [38]. As a global 
transform, Fourier transform can well reflect the integrity of the signal, but it is not sen-
sitive to the local frequency domain. It is more suitable for detecting global and single 
defects, and it finds it difficult to detect small or multi-defect leather images [39]. 

Gabor transform is one of the short-time Fourier transforms. A Gaussian window 
function is added to extract the local information of the image, which overcomes the 
disadvantage that Fourier transform cannot be analyzed locally. This is a multi-scale 
analysis method in which the time-frequency window can be adjusted and the window 
changes with the frequency domain. It can provide good direction, and scale selection 
characteristics are insensitive to illumination changes, thus it is suitable for texture anal-
ysis. The advantage of this transformation is that it has a good effect on texture descrip-
tion, and can be applied to structural texture and statistical texture. The disadvantage is 
that it is necessary to obtain defect-free samples in advance and obtain the optimal pa-
rameters, which have poor portability and robustness. Gabor transform is mainly used to 
detect defects with large size, but it is powerless for small-size defects and complex 
random texture image segmentation [38,40]. Yin et al. [39] proposed a leather defect in-
spection algorithm based on wavelet transform with Gabor function as the basis function 
based on the multi-directional characteristics of Gabor function and the multi-resolution 
of wavelet transform. 

In wavelet transform, the frequency components of the image are organized such 
that the lower and higher frequencies are separated, which also gives the image varia-
tions at different scales because of its multi-resolution analysis and hence makes wavelet 
transform more suitable for leather defect inspection [41]. Sobral et al. [42] presented a 
methodology based on the wavelet transform to detect leather defects, where the un-
decimated Haar wavelet and eight optimized filters were used. The methodology used a 
bank of optimized filters, where each filter is tuned to one defect type. Filter shape and 
wavelet sub-band were selected based on the maximization of the ratio between feature 
values on defect regions and on normal regions. The morphology was evaluated using a 
database of about 150 samples. The author claimed that the method was able to achieve 
the same recognition rate as an experienced human operator. Adamo et al. [43] presented 
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a two-dimensional wavelet-based denoising technique of high-resolution leather images. 
This method produced a suitable number of decomposition levels of the image, and car-
ried out a thresholding operation on details, and finally, using the threshold levels, 
produced an estimate considering the actual noise level. He et al. [44] developed a 
wavelet band selection procedure to automatically determine the number of resolution 
levels and decompose sub-images for the best discrimination of defects and removal of 
repetitive texture patterns in the image. Adaptive binary thresholding was then used to 
separate the defective regions from the uniform gray-level background in the restored 
image. The methodology does not rely on textural features to detect local anomalies and 
alleviates all limitations of feature-extraction methods. With proper selection of a smooth 
sub-image or the combination of detailed sub-images at different multi-resolution levels 
for image reconstruction, the global repetitive texture pattern can be efficiently removed 
and only local anomalies are preserved in the restored image. 

4.5. Clustering Method 
Leather surface defects can also be viewed as textured images spatially composed of 

some collection of local irregular points, so defect detection can also be seen as a clus-
tering process. The most widely used in practice is the Fuzzy C-Means (FCM) algorithm. 

Based on Particle Swarm Optimization (PSO) and fuzzy clustering algorithms, He et 
al. [17] proposed a leather surface defect detection method. This method makes full use of 
the advantages of global optimization and rapid convergence of PSO, quickly finds the 
attribution of sample points, and combines the fuzzy clustering algorithm to cluster the 
leather surface texture information. The methodology was validated by using a 2000 × 
1500 pixel leather defect image for defect segmentation, which is superior to the conven-
tional methods such as Sobel, Canny, Prewitt, and Roberts edge detection. However, the 
generalization and stability of the above methodology require more validation. Cui [45] 
applied a fuzzy clustering algorithm to realize the automatic detection of defects and 
automatically determine the optimal cluster number. It is based on the leather image 
characteristics of the average of the five measures calculated from the symbiosis direc-
tions as the texture feature vector in the center of the neighborhood. However, only a 256 
× 256 grayscale leather image was used to verify its effectiveness. Although the reported 
experimental results are valid, the methodology also lacks generalization. In the experi-
mental verification of FCM-based defects detection for the leather unhealed scar and 
concave, Yan [46] found that the detection accuracy was seriously affected by the texture 
interference, and the subsequent post-processing could not separate the defects, and the 
defects were submerged in the texture interference. Based on the work of Cui [45] et al., 
Chen [47] further evaluated the improved FCM algorithm. After image segmentation, the 
difference between the defect regions and the non-defect regions becomes bigger, but the 
final result of separating defects cannot be achieved. The defect regions are somewhat 
disconnected, which may bring less noise in the process of segmentation. 

4.6. Visual Salient Method 
Image saliency object detection mainly focuses on the prominence of the whole im-

age, the goal of which is to uniformly highlight the object area that can attract visual at-
tention in the image, suppress the background area that cannot attract visual attention, 
and require the detected object to have clear boundaries; it is widely used in computer 
vision fields such as image segmentation [48]. 

Zhu et al. [49] segmented the leather surface defects based on a visual salient map 
that is fused by extracting the color and brightness salient features of leather images, re-
spectively. The methodology has a good inspection effect for defects with clear bounda-
ries, abrasions, healing and digging, insect spots, and small area, and its performance is 
better than FCM and threshold-based inspection. For the scattered defects such as un-
healed knife wounds, its performance is slightly worse, which is mainly due to the dif-
ferences in their internal saliency that results in more superficial defects that cannot be 
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highlighted. Although this inspection method is not disturbed by texture and can realize 
the rapid and effective inspection of texture images, leather is susceptible to the influence 
of factors such as light source strength and color temperature, and this method cannot 
meet the versatility of leather defect inspection. In addition, the edge of the defects can-
not be well identified, especially for the more scattered defects. 

Liu et al. [50] proposed a leather defect detection system based on photometric ste-
reo vision and image saliency. The photometric stereo technology was used to realize 
image enhancement, which effectively avoids the defect that leather is easy to be affected 
by light due to different colors and textures. At the same time, the image spectral residual 
algorithm effectively removes the influence of background information, which makes up 
for the disadvantage that the traditional saliency target inspection algorithm cannot ef-
fectively extract the foreground. In the leather surface scratch, hole, fold, and chromatic 
difference defect inspection, the accuracy rate reached 96.84%. The algorithm proposed 
by Liu [50] has a certain robustness, versatility, and noise resistance. 

Ding et al. [51] quantitatively classified leather defects by statistical analysis of ge-
ometry and grayscale to obtain salient features of each defect. Then, the salient features 
are combined with those extracted by convolutional neural network for defect inspection, 
where the features extracted by the convolutional neural network are dominant, which 
improves the accuracy of defect inspection by using convolutional neural networks. 

4.7. Heuristic-Algorithm-Based Defect Segmentation 
As an alternative to texture analysis, histogram thresholding, clustering, and so on, 

various biologically inspired algorithms were explored in image segmentation. Jamadar 
et al. [52] developed a fast convergence Particle Swarm Optimization algorithm (FCPSO) 
for segmenting defective regions in complex leather images. The Particle Swarm Opti-
mization (PSO) is a heuristic algorithm loosely inspired by birds flocking in search of 
food. Compared with conventional PSO and other PSO variants, the above algorithm 
was found to be efficient for various leather defect images. Gray level co-occurrence ma-
trix (GLCM) texture features from the segmented leather were extracted as input to dif-
ferent supervised classifiers, namely, Neural Network, Decision Tree, Support Vector 
Machine, Naïve Bayes, k Nearest Neighbor, and Random Forest. FCPSO along with the 
Random Forest algorithm using optimum feature set had good discrimination between 
defective and non-defective leather. 

4.8. Summary of This Section 
Traditional image processing methods often need multiple thresholds aiming at 

various defects in the algorithms. They are very sensitive to lighting conditions and 
background colors. When a new problem arises, those thresholds need to be adjusted, or 
it may even be necessary to redesign the algorithms [6]. Wavelet transform, mathematical 
morphology, Gabor filtering, fuzzy clustering, edge detection, threshold-based segmen-
tation, and other conventional image processing methods have been applied to leather 
surface defect inspection. This shows some effectiveness in the reported datasets. How-
ever, there are few examples of literature related to these studies, the research is not deep 
enough, the test datasets are relatively small, the diversity of defects is insufficient, and 
the dynamic change of leather defects is not considered, so it is difficult to ensure the 
generalization performance of these algorithms. In addition to the lack of a suitable 
benchmark, another problem that hinders the thorough comparative evaluation of 
leather defect inspection methods is the lack of publicly available software/code against 
the reported methods [2]. 
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5. Machine-Learning-Based Methods 
In recent years, many defect inspection tasks could be solved by designing a set of 

features for a certain defect and providing these features to a simple classifier; these 
methods are also called knowledge-based approaches [8]. In this section, we will inves-
tigate these machine learning methods based on handcrafted features or shallow learning 
techniques for leather surface defect inspection. Machine-learning-based methods gen-
erally include two stages of feature extraction and pattern classification. 

5.1. Feature Extraction of Leather Defect 
The features of leather surface defect can be divided into statistical features, spectral 

features, structural texture features, shape features, color features, and so on. These 
characteristics of color, texture, and defect shape are widely used to identify the leather 
image to realize defect inspection [51]. As shown in Table 3, the most used features are 
statistical features and color features. 

(1) Statistical features 
Leather inspection is considered to be a very complex problem in the field of texture 

classification. Like most natural textures, the eigenvalues change greatly and it is easy to 
form a pseudo-random structure, but it still follows the law of statistical distribution. 
Statistical methods can be used to analyze the distribution of textures. In the texture 
feature extraction of leather images, the widely used statistical features of texture mainly 
include histogram feature and gray level co-occurrence matrix (GLCM) feature. 

The histogram of an image is used to represent the distribution of pixel values of the 
image, which provides much information about the image. Histogram features include 
maximum, minimum, mean, median, value range, entropy, variance, and entropy. These 
histogram features are simple to calculate, insensitive to the spatial distribution of color 
pixels, and have the advantages of translation and rotation invariance. So, it has been 
widely used in the field of surface defect inspection [38]. 

Gray level co-occurrence matrix is a commonly and widely used technique in tex-
ture analysis. Since the texture is formed by the repeated occurrence of gray distribution 
in the spatial position, there will be a certain gray relationship between two pixels sepa-
rated by a certain distance in the image space, that is, the spatial correlation of gray in the 
image. GLCM describes the spatial correlation characteristics of the gray level. Several 
GLCMs must be constructed for each sliding window that scans the image during seg-
mentation. Each GLCM has an associated angle and displacement, related to the direc-
tion and frequency that will be represented by this GLCM. The most successful and 
highly used handcrafted texture features in the literature are Haralick features [52] de-
rived from GLCM. Based on GLCM, Haralick calculated 14 statistics features [51]: ener-
gy, entropy, contrast, uniformity, correlation, variance, sum average, sum variance, sum 
entropy, difference variance, difference average, difference entropy, correlation infor-
mation measure, and maximum correlation coefficient. These statistics features fit well to 
capture the spatial correlation of gray level values that contribute to texture perception. 
The commonly used feature quantities are contrast, correlation, energy, entropy, and 
autocorrelation. 
(2) Color features 

Color is an important parameter of image external features. Color features are in-
sensitive to the image change of rotation, translation, and scale. Color models mainly in-
clude HSV, RGB, HSI, etc. Common color features include color histogram, color set, 
color moment, and color aggregation vector. 

Bong et al. [53] divided the leather RGB image into three color channels (red, green, 
and blue), calculated the average, standard deviation, and skewness value in each color 
channel, and then converted the RGB image into a gray image to obtain the gray moment 
feature. Finally, the color moment and gray moment of each color channel were com-
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bined to form the color moment of the image. At the same time, the color core image 
features in the gray image were extracted as a part of the feature set [54–57]. Amorim et 
al. [57] extracted the average value of each color component of HSB and RGB and the 3D 
histogram value of HSB and RGB color space as part of the leather surface defect feature 
set. 
(3) Spectral features 

Filter transformation transforms the image from the spatial domain to the frequency 
domain or time-frequency domain. Fourier transform, wavelet transform, and Gabor 
transform are commonly used. Fourier transform transforms the image into a frequency 
domain and uses spectral energy or spectral entropy to express texture. Periodicity, di-
rectionality, and randomness are the three important factors to characterize texture [54]. 
The output of the Gabor filter can be used as a texture feature, but the dimension is high. 
To reduce the amount of data in the feature set, post-processing methods such as 
smoothing, Gabor energy feature, complex moment feature, and independent component 
analysis are often used for the output of the Gabor filter. Wavelet transform organizes the 
frequency components of the image and separates the low frequency from the high fre-
quency. Due to the multi-resolution analysis of wavelet transform, the extract features 
change at different scales. A series of high-frequency sub-band images representing dif-
ferent direction information constitutes images with different resolutions. 
High-frequency sub-band images reflect the texture characteristics of the image. There-
fore, wavelet transform is suitable for leather defect recognition. The traditional pyramid 
wavelet transforms only decompose the low-frequency part, while the high-frequency 
part of the texture image may also contain important feature information. Wavelet packet 
decomposition or tree structure wavelet decomposition can overcome this disadvantage. 
The wavelet transform method has been widely used to extract image features for surface 
defect inspection [38]. Jawahar et al. [41] used wavelet transform to extract wavelet sta-
tistical features and wavelet co-occurrence matrix features from leather images, such as 
entropy, energy, contrast, correlation, clustering significance, standard deviation, mean 
value, and local uniformity, which were used as the input of classifier. Sobral et al. [42] 
extracted texture features using Hal wavelet transform and eight optimized filters to 
obtain the same recognition rate as an experienced human operator. 
(4) Structural texture features 

The structural analysis method realizes oriented textures analysis according to the 
characteristics of texture periodicity and spatial geometry [38]. Generally speaking, the 
defects on the leather surface are characterized by a specific orientation structure, which 
can be represented by the orientation field. The orientation field of an image comprises 
the angle image and the coherence image. The former (representing the dominant local 
orientation) is computed over a neighborhood of each point from the orientations of 
gradients evaluated on the original image smoothed using a Gaussian filter. With 𝐺 exp൫𝑖𝜃൯ as the polar representation of the gradient vector at the point (i, j), the main 
gradient direction generally at ter (m, n) with 𝑁 × 𝑁 neighborhood can be estimated as 
Equation (2), and the dominant local direction is given by 𝜃 + 𝜋 2⁄  [35]. 

𝜃 = 12 arctan ∑ ∑ 𝐺ଶ sinଶ 2𝜃ୀேୀଵୀேୀଵ∑ ∑ 𝐺ଶୀேୀଵୀேୀଵ cosଶ 2𝜃 (2) 

The commonly used structural analysis methods also include morphology, graph 
theory, topology, and so on. Literature [27,28] applied mathematical morphology to an-
alyze the texture features of complex structures. Popov et al. [27] extracted local fractal 
features of a series of scales based on mathematical morphology for texture classification 
of brushed leather surfaces. Qing et al. [27] also proposed a texture classification method 
based on mathematical morphology. The global features were supplemented by local 
features for the classification of leather made of the same material. Branca et al. [29,35,36] 
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used the structure method to extract the edge features of the image for leather surface 
defect inspection. By analyzing the oriented structure of the defect, the defect was sepa-
rated from the complex non-uniform background. 
(5) Shape features 

In terms of geometry, leather defects can be divided into three types: point, line, and 
surface. Each type of defect is divided into different categories according to geometry 
shape. Some defects can be distinguished from other defects by four characteristics: 
roundness, area, linearity, and width [51]. Among them, roundness and area can be used 
as the salient feature of black spots and rotten surfaces. Linearity and width can be used 
as salient characteristics of scratches, necklines, and blood tendons. The area of surface 
defects such as branding is much larger than that of other surface defects, so the area can 
be used as the salient feature of branding. Point defects have high roundness and small 
area, while linear defects have the characteristics of small width and high linearity. Ding 
et al. [51] produced mathematical statistics on the geometric and gray features of defects, 
summarized the salient features of leather defects, and proposed an inspection method 
combining convolution neural network and salient features to detect leather defects. 
(6) Interaction maps 

Viana et al. [55] used interaction maps [56] as the feature descriptor for leather defect 
identification, which combine with gray co-occurrence matrices, RGB, and the HSB color 
space to extract texture and color features from a given set of raw hide leather images. 
The term “interaction map” was originally introduced by Gimel’farb in his Markov Gibbs 
texture model with pairwise pixel interactions [56]; it refers to the structure of the statis-
tical pairwise pixel interactions evaluated through the spatial dependence of a feature of 
the extended gray-level difference histogram (GLDH). The basic assumptions of the 
feature-based interaction map approach are as follows: (1) Pairwise pixel interactions 
carry important structural information. (2) Both short- and long-range interactions are 
relevant. (3) Fine angular resolution is essential. (4) Structural information can be ob-
tained through EGLDH features. This can be achieved more efficiently by analyzing the 
spatial dependence of the features than by selecting the “optimal” features for a limited 
number of pre-set spacing. (5) Texture orientation can be defined by the axes of maxi-
mum statistical symmetry [56]. 

5.2. Feature Selection 
Feature extraction of leather surface images implements a transformation from im-

age space to feature space, but not all features are useful for subsequent defect identifi-
cation. If the number of features extracted is large, there is likely to be redundant infor-
mation in these features, which is not only unable to improve the inspection accuracy, but 
also to enhance the complexity of the image processing algorithm. The purpose of feature 
selection is to find out the truly useful features from the original image features, reduce 
the algorithm complexity, and improve the accuracy of classification and identification. 
Commonly used feature selection methods include Principal Component Analysis 
(PCA), Independent Component Analysis (ICA), Fisher Linear Discriminant Analysis 
(FLDA), Correlation-Based Feature Selection (CFS), Evolutionary algorithm, and popular 
non-linear dimensionality reduction methods, and so on [38]. 

Amorim et al. [57] evaluated five FLDA-based approaches for attribution reduction. 
The techniques have been tested in combination with four classifiers and several attrib-
utes based on co-occurrence matrices, interaction maps, Gabor filter banks, and two dif-
ferent color spaces. Principal Component Analysis plays an important role in these 
methods. Experiments showed that for the blue wet leather defect inspection without 
singularity, the best case is to use 24 attributes, and for the original animal skin defect 
inspection without singularity, the best case is to use 16 attributes. 

Villar et al. [58] chose features based on the Sequential Forward Selection (SFS) 
method, which allows a high reduction of the numbers of descriptors. These descriptors 
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are computerized from grayscale image, RGB, and HSV color model, and there are 2002 
features in total. The descriptors extracted can be classified into seven groups: (i) 
first-order statistics; (ii) contrast characteristics; (iii) Haralick descriptors; (iv) Fourier and 
cosine transform; (v) Hu moments with information about the intensity; (vi) local binary 
patterns; (vii) Gabor features. SFS allows one to rank descriptors based on their contri-
bution to the classification. To determine the number of features required to classify, the 
following procedure is followed: a classifier is linked to each class of interest. Classifiers 
are trained with a determined number of features and the percentage of success in the 
classification is calculated. Successive training of the classifiers is performed, increment-
ing the number of features based on the ranking provided by SFS. Only 10 characteristics, 
from the universe of 2002 initially computed, are required. 

5.3. Machine-Learning-Based Identification 
Leather surface defect identification is essentially a classification problem. Defects 

should be classified into appropriate classes according to their cause and origin to locate 
the source responsible for those defects and take corrective action [3]. This classification 
process is necessary because it plays an important role in providing information for de-
fect prevention. The traditional leather surface defect identification is used to identify 
defects by using a pattern recognition algorithm based on extracting image features as 
first-order statistical measures, second-order statistical measures, spectral measures, or 
image-level descriptors (local binary patterns and Gabor features). Commonly used al-
gorithms such as k Nearest Neighbor (KNN), Neural Network (NN), Support Vector 
Machine (SVM), Bayesian Network (Bayes), and Decision Tree (DT) are widely used in 
the identification of leather surface defects. Based on the results reported in some litera-
ture, Table 3 presents some classification accuracy elements used by these algorithms for 
leather defect identification. 

As can be seen from Table 4, the classification accuracy of most methods reached 
above 90% [59–68], and the KNN method in the literature [59] even achieved 100%. This 
performance can be partly attributed to all these methods being evaluated on very small 
local datasets [2,60]. As shown in Tables 4 and 5, Pistori et al. [59] extracted 2000 samples 
on 16 images to evaluate their model, while Viana et al. [55] extracted 14,722 samples on 
15 images to evaluate their method. The largest test set used for evaluation in these 
studies consisted of only approximately 200 images. Given the possible natural changes 
in leather samples during industrial processing, this is the small test dataset [2]. Most of 
the leather defect classification methods in the literature only report the selected per-
formance metrics on their custom data, which is one of the main reasons for the difficulty 
in conducting a comprehensive comparative evaluation of them. Notably, these datasets 
contain at most 10 categories of defects, but most of them include three to four categories. 
Although the dataset used by Jawahar et al. [52,61,62] contains 10 categories of defects, it 
is divided into two types: defect and no defects. All datasets used in the literature 
[14,41,63,66,68] contain only one defect, which is essentially a binary classification. 

Table 3. Dataset used in the literature. 

Ref. Sample Size Data Raw or Wet Blue Animal 

1. Kwak et al. [3] 140 
140 defect samples with approximately 8 cm × 12 cm windows, 60 samples 

for training and 80 samples for test. 
unknown unknown 

2. Pistori et al. [59] 2000 
Samples with windows of 10 × 10, 20 × 20, 30 × 30, and 40 × 40 pixels from 

sixteen images, 400 for each defect. 
raw hide wet blue bovine 

3. Viana et al. [55] 14,722 
14722 samples with windows of 20 × 20 pixels scanning thirty segments 

extracted from fifteen bovine images: 2819 tick, 3716 brand, 2804 cut, and 
5383 scabies. 

raw hide bovine 

4. Amo. et al. [57] 2000 
2000 samples, consisting of a 40 × 40 pixel window from 50 different wet 

blue leather pieces 
wet blue cattle 

5. Villar et al. [58] 1769 
1769 samples with windows of 40 × 40 pixels from 159 leather images with 
1000 × 960 pixel: 341 samples of open cut, 336 closed cut, 374 fly bite, and 

wet blue beef 
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718 normal 

6. Jaw. et al. [41] 700 
700 leather images with 256 × 256 pixels comprising 500 defective and 200 

non-defective samples. 
unknown unknown 

7. Bong et al. [53] 2500 
Training data consist of 2000 samples; 400 samples for each kind of defect;

test on 500 samples 
unknown unknown 

8. Filho et al. [60] 350 
350 goat skins containing 50 images of each class were built. Each image 

has an original size of 3456 × 4608 
Wet blue goat 

9. Jaw. et al. [61] 90 90 leather images comprising 20 good leather and 50 defective samples dyed crust leather unknown 

10. Pere. et al. [63] 1874 
1874 samples from 150 goat leather images; 882 non-defective samples, 992 

defective samples with 10 kinds of defect 
unknown goat 

11. Jaw. et al. [52] 200 115 defective and 85 non-defective samples unknown unknown 

12. Gan et al. [65] 
398 Dataset I: 199 defective samples and 199 non-defective samples wet blue unknown 
1605 Dataset II: 503 defective samples and 1102 non-defective samples wet blue calf 

13. Gan et al. [66] 1605 
1605 pieces of calf leather patches with the size of 90 × 60 mm2, 503 sam-

ples with one or more tick-bite defects, 1102 non-defective samples 
wet blue calf 

14. Liong et al. [14] 2378 
2378 samples of the sample patches on a piece of leather that is approxi-
mately 90 × 60 mm, 475 samples have at least one tick-bite defect, 1903 

non-defective samples. 
wet blue calf 

15. Moga. et al. [67] 2000 2000 defective and non-defective samples unknown unknown 

Table 4. Traditional machine-learning-based leather surface defect identifications. 

Ref. #Class Feature Descriptors Classifiers Best Acc. 

1. Kwak et al. [3] 6 
Normalized compactness measure; first-order statistical measures; gray level 

co-occurrences matrix 
Decision tree 91.3% 

2. Pistori et al. [59] 5 Gray level co-occurrence matrices; color features in HSB color space SVM, NN, KNN 100% 

3. Viana et al. [55] 5 
Interaction Maps; gray level co-occurrences matrices; RGB and HSB color fea-

tures 
SVM 99.6% 

4. Amo. et al. [57] 7 
Gray co-occurrence matrix varying; iteration maps varying; Gabor filters fea-
tures; RGB and HSB color features (attributes reduction for the feature selec-

tion) 

C4.5, kNN, Naïve 
Bayes, SVM 

95.9% 

5. Villar et al. [58] 4 

(i) First-order statistics; (ii) contrast characteristics; (iii) gray level 
co-occurrences matrices; (iv) Fourier and cosine transform; (v) Hu moments 
with information about intensity; (vi) local binary patterns; (vii) Gabor filters 

features (sequential forward selection method for the feature selection) 

NN 96.6% 

6. Jaw. et al. [41] 2 Wavelet statistical features; wavelet co-occurrence features SVM 98.8% 

7. Bong et al. [54] 4 
Color moments, color correlograms, Zernike moments, and gray level histo-

gram 
SVM 98.8% 

8. Filho et al. [60] 6 Gray level co-occurrences matrices 
Naïve Bayes, Forest, 

SVM 93.2% 

9. Jaw. et al. [61] 2 12 texture features; discrete cosine transform NN 88.6% 

10. Pere. et al. [63] 2 
Gray level co-occurrences matrix; local binary patterns (LBP); structural 

co-occurrence matrix (SCM) 
MLP 90.3% 

11. Jaw. et al. [52] 2 Gray level co-occurrence 
MLP,DT, SVM, KNN, 

RF, Bayes 
88.6% 

12. Gan et al. [65] 2 
Statistical features: mean, variance, upper quartile value, lower quartile val-

ue, skew, and kurtosis 
SVM,DT,NN, Bayes, 

LR, KNN 
99.8% 
77.1% 

13. Gan et al. [66] 2 
Histogram of gradient after six steps of preprocessing: histogram matching, 
resizing, grayscale normalization, Gaussian blurring, and Canny edge detec-

tion. 

NN, XBoost, KNN, 
SVM 

94% 

14. Liong et al. [14] 2 
Edge detectors and statistical approach, histogram of pixel intensity values, 

histogram of oriented gradient, local binary pattern 
SVM,DT,NN,KNN, 

Ensembles 
84% 

15. Moga. et al. [67] 6 Gray level co-occurrence matrix NN 94.2% 

16. Vasa. et al. [68] 2 
Combining Canny edge detection, black hat transformation and Hough 

transformation 
SVM 94.5% 

#Class: Number of defect types in the data set. 

Table 5. Defect type used in the literature. 

Ref. #Class Defects 
1. Kwak et al. [3] 5 Line, hole, knot, stain, wear 

2. Pistori et al. [59] 4 Brand marks made from hot iron, tick marks, cuts, and scabies 
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3. Viana et al. [55] 4 Tick marks, brand marks from hot iron, cuts, and scabies 
4. Amo. et al. [57] 6 Hot-iron marks, ticks, open cuts, closed cuts, scabies, and botfly larvae 
5. Villar et al. [58] 3 Open cut, closed cut, and fly bite 
6. Jaw. et al. [41] - Two class classification problem: defect and no-defect 
7. Bong et al. [54] 3 Scars, scratches, pinholes 
8. Filho et al. [60] - Seven classes of qualification differentiated according to the quality level of the leather 

9. Jaw. et al. [61] 9 
Bacterial infection, pox mark, chrome patch, scratch, growth mark, grain off, fungal at-

tack, dye patch, lime blast 

10. Pere. et al. [63] 10 
Wire risk and knife cutting, poor conservation, sign, bladder, scabies, mosquito bite, scar, 

rufa, vegetable fat, hole. 
11. Jaw. et al. [52] 9 9 types of defect 

12. Gan et al. [65] 1 
Dataset I: dark line defects with the width range from ~7 pixel up to ~80 pixel with an 

average of ~20 pixel 

13. Gan et al. [66] 1 
Dataset II: circular tick-bite-like defects which vary greatly in area, from 30 pixel2 to 3195 

pixel2. The average area of the defects is 480 pixel2 
14. Liong et al. [14] 1 Tick-bite defects 
15. Moga. et al. [67] 5 Tick-bite defects 
16. Vasa. et al. [68] - Folding marks, grain off, growth marks, loose grain, and pin holes 

#Class: Number of defect types in the data set. 

To further evaluate the performance of the above traditional machine learning 
methods in leather defect recognition, the SVM is selected for evaluation by using dif-
ferent feature sets listed in Table 6. It is the most commonly used method for leather de-
fect identification as shown in Table 5. The dataset of literature [19] is used for the eval-
uation. SVC with Gaussian, Linear, and Polynomial kernel function is evaluated, where 
the optimal parameters are selected by cross-validation method, respectively. The ex-
periment results in three sets of features as presented in Table 7. As shown in Table 7, 
there are two groups of experiments using texture features; the recognition accuracy of 
SVC with Gaussian, Linear, and Polynomial kernel function is not high. When the color 
feature is added, the maximum accuracy reaches 86% and the performance is greatly 
improved. Feature extraction and selection have a great impact on the performance of the 
algorithm. Feature extractor designing requires designers to have rich prior knowledge 
and it is commonly well designed manually by experienced engineers case-by-case, thus 
making the development cycle relatively complex and time-consuming. The challenge is 
that such a method can hardly be generalized or reused and may be inapplicable in a real 
application. 

Table 6. Feature descriptions for experimental evaluation. 

Feature No. Feature Descriptions 
F1 The mean and variance of the histogram of gray image 
F2 The contrast, correlation, energy, entropy, and autocorrelation of GLCM of 0°, 45°, 90°, and 135° 
F3 Wavelet statistical features and wavelet co-occurrence matrix features [41] 
F4 The mean, variance, skewness, and kurtosis of color histogram of RGB and HSV image 
F5 The first, second, and third color moment RGB image.  

Table 7. SVM-based leather surface defect identification. 

Feature Defect 
SVC with Gaussian Kernel SVC with Linear Kernel SVC with Polynomial Kernel 

Precision Recall F1. Precision Recall F1. Precision Recall F1. 

F2 
Rotten surface 0.81 0.87 0.84 0.89 0.16 0.27 0.89 0.16 0.27 

Needle eye 0.42 0.25 0.31 0.27 0.21 0.23 0.27 0.21 0.23 
Scratch 0.33 0.39 0.36 0.23 0.27 0.25 0.23 0.27 0.25 
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Holes 0.78 0.71 0.74 0.98 0.87 0.92 0.98 0.87 0.92 
No defect 0.74 0.93 0.82 0.34 0.68 0.45 0.34 0.68 0.45 

 Accuracy = 0.63 Accuracy = 0.44 Accuracy = 0.58 

F1 + F2 
+ F3 

Rotten surface 0.90 1.0 0.99 0.87 1.00 0.93 0.90 1.00 0.94 
Needle eye 0.29 0.28 0.52 0.49 0.25 0.33 0.30 0.28 0.29 

Scratch 0.26 0.25 0.26 0.33 0.55 0.41 0.28 0.28 0.28 
Holes 0.54 0.50 0.28 0.82 0.47 0.60 0.58 0.53 0.55 

No defect 0.97 1.0 0.95 0.91 1.00 0.95 0.98 1.00 0.99 
 Accuracy = 0.61 Accuracy = 0.65 Accuracy = 0.62 

F1 + F2 
+ F3 + 

F4 + F5 

Rotten surface 1.00 1.00 1.0 1.00 1.00 1.00 0.95 1.00 0.98 
Needle eye 0.85 0.87 0.86 0.96 0.46 0.62 0.97 0.70 0.81 

Scratch 0.72 0.34 0.46 0.57 0.69 0.62 0.69 0.67 0.68 
Holes 0.72 0.87 0.79 0.78 1.00 0.87 0.75 0.93 0.83 

No defect 0.76 1.00 0.87 0.99 1.00 1.00 0.98 1.00 0.99 
 Accuracy = 0.82 Accuracy = 0.83 Accuracy = 0.86 

Leather products come mainly from cattle, crocodiles, lizards, goats, sheep, buffalo, 
and mink skins. Each kind of animal leather has a different texture and a different living 
environment. Yeh [3] collected and categorized a set of calf leather defects into 7 large 
categories by shape, 24 defects in regular shapes, and 17 defects of irregular types. Even 
the same type of defect varies greatly in shape, size, and color. More than 10 defects may 
be presented in one image with different contrasts. Therefore, the algorithms shown in 
Table 3, both the number of test sample sets and the types of defects identified by classi-
fication, are very different from the leather surface defects in practical industrial appli-
cations. Although the traditional machine learning method shown in Table 3 has high 
recognition accuracy, our experimental results show that the recognition progress only 
reached 86%. The recognition accuracy is greatly affected by the leather surface defect 
data and the extracted features. These results must be considered with caution, as each 
defect is only taken from two different pieces of leather, and does not represent all pos-
sible configurations of possible defects, for example, different size, color, and orientation 
[2]. This also means that in terms of using traditional machine learning methods, there is 
still a lot of work to be done. 

6. Deep-Learning-Based Leather Defect Inspection 
As described in Section 5, the shape of the leather surface defect image is changeable 

and random. There may be more than ten defects in one image. Even the same defect it-
self is very different in the image. The texture statistical feature extraction represented by 
the traditional gray level co-occurrence matrix has a large amount of calculation, and its 
effectiveness is also challenged by the high variation of leather surface defects. Deep 
learning (DL) adopts the hierarchical structure of multiple neural layers and extracts in-
formation from the input data through layer-by-layer processing. This “deep” layer 
structure allows it to learn the representation of complex original data with multiple 
levels of abstraction and to learn features directly from the original image. They perform 
feature engineering to yield natural features from images by combining both the tradi-
tional steps: feature extraction and classification, together as an end-to-end paradigm 
[52]. It has been widely used in the field of image processing and has achieved remarka-
ble results. Aslam et al. [2] suggested that the deep learning architecture can be used as a 
source of guidelines for the design and development of new solutions for leather defect 
inspection. Currently, deep learning (DL) methods are advancing at a rapid pace and 
they have become a promising data-driven learning strategy for leather surface defect 
inspection [5,19,69–76]. Different DL-based methods have been applied for leather defect 
inspection tasks such as detection and identification. 
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6.1. Deep Learning for Leather Defect Detection 
Table 8 lists some DL-based applications for leather surface defect detection. Liong 

et al. [69] developed an automatic identification system of tick bite defects inspection 
based on Regional Convolutional Neural Network (Mask R-CNN), which can automati-
cally mark the boundary of the defect region. Tick bite has slight surface damage on 
animal skin, which is often ignored by human inspection. Mask R-CNN is a popular 
image segmentation model that built a feature pyramid network (FPN) [57] with a Res-
Net-101 [70] backbone. This is an end-to-end defect detection system. The robot arm is 
used to collect and mark defects automatically. To form a continuous bounding mask for 
each defect, all the selected points are connected in a counterclockwise direction using 
the Graham Scan algorithm. A set of optimal coordinates of the irregular shape of defects 
is obtained by using the mathematical derivation of geometric graphics. The number of 
sample images in the train and test datasets is 84 and 500, respectively. To make up for 
the shortage of training data, the Mask R-CNN model has been pre-trained extensively 
on a Microsoft Common Objects in Context dataset (MSCOCO) [71]. On top of perform-
ing the transfer learning from the pre-trained model to detect and segment the defects of 
the leather, the parameters (i.e., weights and biases) are iteratively adjusted through 
learning the features of the leather input images. The segmentation accuracy of the algo-
rithm is 70.35%. From the perspective of segmentation accuracy, the robustness and ef-
fectiveness of the algorithm have great space for improvement, and only one defect is 
automatically identified. Following this work, Liong et al. [74] developed AlexNet and 
U-Net-based automatic defect detection techniques. U-Net was utilized to highlight the 
position of the defect, where the defect types focused on in this study were the black lines 
and wrinkles. Among 250 defective samples and 125 non-defective samples, the mean 
Intersection over Union rate (IoU) and the mean pixel accuracy achieve 99.00% and 
99.82% for the defect segmentation task, respectively. 

Table 8. Deep learning for leather defect detection. 

No. Ref. #Class Defect Type Data Size Method Best Acc. 
1 Liong et al. [69] 1 Tick bite 584 Mask R-CNN 70.35% 
2 Liong et al. [74] 2 Black line and wrinkle 375 U-Net 99.82% 

3 Gan et al. [75] 1 Noticeable open cut 560 Faster R-CNN, 
YOLOv2 

96.88% 

4 Chen et al. [5] 5 
Brand masks, rotten grain, 
rupture, insect bites, and 

scratches 
373 1D-CNN,2D-Unet, 

3D-Unet 96% 

#Class: Number of defect types in the data set. 

Chen et al. [5] designed three architectures named 1D-CNN, 2D-Unet, and 3D-UNet 
to segment defect areas of five wet blue leather defects including brand masks, rotten 
grain, rupture, insect bites, and scratches in the pixel level detection, respectively. This 
work is the first analytical study using hyper spectral imaging for wet blue leather at the 
pixel level. For various characteristics of defects, 1D-CNN emphasizes defects with 
spectral features, 2D-Unet emphasizes defects with spatial features, and 3D-Unet simul-
taneously processes spatial and spectral information in hyperspectral imaging. 1D-CNN 
has the best result in detecting insect bites. The 2D-Unet takes advantage of spatial in-
formation so that it performs the best in a brand mask. The 3D-UNet considers spatial 
information and spectral information simultaneously. Therefore, it has the best perfor-
mance in rotten grain, rupture, and scratch defects. 
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6.2. Deep Learning for Leather Defect Identification 
Table 9 lists some DL-based applications for leather surface defect identification. 

Murinto et al. [72] used a pertaining AlexNet [73] to extract the image features of tanned 
leather and used SVM for classification. The dataset of the validation model contains 1000 
flawless tanned leather images and five types of leather: giant lizard, crocodile, sheep, 
goat, and cow. The classification performance shows that the deep learning method can 
better capture the characteristics of leather, and the overall accuracy is 99.97%. However, 
this paper does not involve defect identification. 

Based on the ResNet-50, Deng et al. [19] carried out research on the identification of 
leather defects, and effectively classified four types of leather defects: scratch, rotten 
surface, broken hole, and pinhole. The average classification accuracy reached 92.34%, of 
which the recognition accuracy of a pinhole was 87.2%, and there is still a lot of space for 
improvement. This result is significantly better than the recognition accuracy using SVM 
shown in Table 7. Ding et al. [51] took nine common leather defects as the detection tar-
get, then fused the extracted features of a convolutional neural network with salient 
features to form a feature set, and the classification accuracy can reach more than 90%. 

Liong et al. [74] applied pre-trained AlexNet to classify the three-category (no defect, 
black line, and wrinkle) leather images with 250 defective samples and 125 non-defective 
samples. The best performance obtained is 94.67% for the classification task; 375 sample 
data are not enough to train a deep learning model. Owing to the data scarcity issue, Gan 
et al. [66] adopted the Generative Adversarial Network (GAN) to discover the feature 
regularities to produce plausible additional training samples, which is based on Liong’s 
work [74]. With the help of the GAN data enhancement strategy, the classification accu-
racy of the AlexNet-based model [66] increased from 94.67% to 100%, which is trained 
with a relatively small amount of readily captured training data. 

Table 9. Deep learning for leather defect identification. 

No. Ref. #Class Defect type Data Size Method Acc. 

1 Murinto et al. 
[72] 

5 Five type no defect leather: giant lizard, crocodile, 
sheep, goat, and cow 

1000 AlexNet + SVM 99.97% 

2 Dend et al. [19] 5 Scratch, rotten surface hole, needle eye, and no defect 15,000 ResNet50 94.6% 

3 Ding et al. [51] 9 Black spots, rotten surfaces, scratches, blood tendons,
neck lines, hole, branding, rotten scars, cuts 

270 CNN + Salient 
feature 

90% 

4 Liong et al. [74] 3 Black line, wrinkle, and no defect 375 AlexNet 94.67% 
5 Gan et al. [66] 3 Black line, wrinkle, and no defect 375 GAN + AlexNet 100% 
6 Gan et al. [75] 2 Noticeable open cut and no defect 560 AlexNet + SVM 100% 

#Class: Number of defect types in the data set. 

Another job [75] is to utilize AlexNet as the feature descriptor and use SVM as the 
classifier for the identification of noticeable open-cut defect, where the dataset contains 
560 leather images with a spatial resolution of 140 × 140 × 3. Among them, 280 images 
have noticeable open-cut defects on the surface, while 280 images do not have defects at 
all. The result achieved is 100%. 

6.3. Summary of This Section 
As shown in Tables 8 and 9, we retrieved eight pieces of literature on leather surface 

defect inspection based on the deep learning model. Among them, the convolutional 
neural network plays an important role in feature engineering. The feature engineering 
process led by the CNN training procedure is encountered with high adaptiveness of 
deep learning paradigms. However, deep learning does not work so well with small da-
ta. With the available smaller datasets of leather images, handcrafted feature-based clas-
sical ML algorithms such as regressions, random forest, and SVM often outperform deep 
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networks. Unfortunately for these leather defect detection applications, such large da-
tasets are not readily available and are expensive and time-consuming to acquire. In ad-
dition, among the literature we investigated, most of the leather defects involved in the 
dataset are 3–5 kinds, and only one document has 9 kinds; the above work shows that 
deep learning is a potential tool in leather defect detection. However, the depth and 
breadth of leather defect detection based on deep learning are not enough. Liong and 
Gan [14,64–66,69,74–76] are a team who conducted relatively in-depth research in this 
field, but their research is only limited to the detection of a few leather defects such as 
black line, wrinkle, noticeable open cut, and tick bite. 

In fact, defect detection based on deep learning has also been widely used in other 
industrial scenes in recent years. In the field of metallic surface defect detection, Nata-
rajan et al. [7] proposed a flexible multi-layered deep feature extraction framework based 
on a CNN via transfer learning to detect anomalies in anomaly datasets. Masci et al. [77] 
used a multi-scale pyramidal pooling network for the classification of steel defects, which 
is based on CNN and can adapt to the input images of different sizes. Xian Tao et al. [6] 
proposed a CNN and cascaded autoencoder-based architecture for a metallic surface 
against complex industrial scenarios, which consists of detection and classification mod-
ules. In the field of the textured surfaces defect detection, Qiu et al. [8] proposed a fully 
convolutional network-based cascaded framework for pixel-wise surface defect algo-
rithm, which combines a segmentation stage, a detection stage, and a matting stage. Mei 
et al. [10] proposed a Gaussian pyramid-based multiscale convolutional denoising au-
to-encoder architecture (MSCDAE) to detect and localize defects with only defect-free 
samples, which is an unsupervised learning-based defect inspection approach. Hu et al. 
[78] extends the standard deep convolutional generative adversarial network (DCGAN) 
and proposed DCGAN-based unsupervised method for automatically detecting defects 
in woven fabrics. Huang et al. [79] proposed a U-Net-based real-time model for the ce-
ramic tile defect inspection, which consists of three main components: MCue, U-Net, and 
Push network. In the field of the cracks detection on the surface of the construction, Cha 
et al. [80] developed two CNN and Faster-Region-CNN-based structural damage detec-
tion models successively to detect five types of surface damages. In other miscellaneous 
defect detection, Li et al. [81] conducted a systematic review of deep transfer learning for 
machinery defect detection. Chen et al. [82] developed a vision-based system that applies 
the deep convolutional neural networks (DCNNs) in the defect detection of fasteners on 
the catenary support device. Napoletano et al. [83] applied region-based CNNs to the 
detection and localization of anomalies in scanning electron microscope images. Tabernik 
et al. [84] designed a segmentation-based deep learning architecture for surface-crack 
detection of an electrical commutator. Long et al. [85,86] presented a self-training 
semi-supervised deep learning method and a deep hybrid learning approach for ma-
chinery fault diagnosis. Zhong et al. [87] proposed a weighted residual regression-based 
index to provide monotonic trends for gear and bearing degradation assessment. Liu et 
al. [86] constructed Deep Belief Networks that are combined with a transfer learning 
strategy for surface defect detection of solar cell and capsule samples. 

In summary, automated surface-anomaly detection using machine learning has be-
come an interesting and promising area of research, with a very high and direct impact 
on the application domain of visual inspection. Deep learning methods have become the 
most suitable approaches for this task [84,88]. These works can inspire us to design and 
develop new solutions for leather surface defect inspection such as detection and identi-
fication. 

7. Discussion and Conclusions 
So far, we have summarized and evaluated the application of traditional image 

processing methods and machine learning models in the field of leather surface defect 
inspection including detection, identification, and so on. In this section, we discuss the 
various challenges that exist in the design and deployment of machine-vision-based so-
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lutions for leather defect inspection. Furthermore, this review will shed some light on 
how these challenges can be transformed into opportunities, leading to future research 
directions in this field. 

7.1. Challenges and Opportunities 
Although leather surface defect inspection is an important subject in industrial in-

spection, it has not been paid much attention. Among the literature reviewed, about 50% 
of the retrieved English papers are conference papers, and 60% of the Chinese papers fall 
within masters’ theses. From the distribution of the authors, the nationality of the main 
researchers is from China, Brazil, Chile, Australia, India, and other places with relatively 
developed leather industries, and there is only one article from the United States. Apart 
from Liong and Gan’s team [14,64–66,69,74–76] and Jawahar’s team [41,52,61], there are 
few teams who conduct continuous in-depth research. At present, the actual application 
of the leather vision system has not been fully realized with automation and intelligence, 
and manual assistance is still needed for discrimination and identification. 

In the leather industry, the earliest machine vision system is LeaVis [89], which re-
quires manual operators to draw the boundary of the quality defect area, mark the area 
with specially designed stamps (called quality mark or Q mark), and indicate defects. 
Taurus XD leather cutting system launched by Gerber Technology Co., Ltd, tolland, 
conn., USA realizes four levels of defect inspection through visual inspection, but it still 
needs experienced technicians to assist in dividing the defect location. Lectra, a leading 
cutting technology and supporting service provider in the industry, developed the Dig-
itLeather leather visual inspection system, which can record leather defect information 
and divide leather into six quality grades for processing. According to the current liter-
ature, these vision systems and proposed technical methods are aimed at specific defect 
categories, and the types that can be recognized are very limited. Theoretically, the algo-
rithms shown in Table 5 have achieved good performance, but there is still a gap from a 
real application. There are still many problems in the practical application of automatic 
inspection of leather surface defects and corresponding machine vision technology. Rel-
atively little work has been conducted in automated leather defect inspection, mainly 
because of the difficult nature of the problem. We therefore state that the following 
challenges may hinder the progress in this scintillating field of research. 
(1) Small sample problem. Leather defect datasets are relatively small, and the types of 

defects covered by the dataset are incomplete, which is difficult to represent for 
leather defects with changeable morphology. As shown in Tables 3–5, the datasets 
used in most studies are customized. The Nelore and Hereford cattle dataset used 
by Amorim et al. [57] have 50 images of wet blue leather. The Campo Grande team 
of Dom Bosco Catholic University in Brazil built a dataset that is part of the Brazilian 
national scientific research and technology development project DTCOURO, which 
envisages the development of a computer-based, fully automated system for the 
classification and grading of rawhide and leather in bovine animals. All datasets 
except DTCOURO are relatively small, which limits the extensive evaluation of the 
developed algorithm. To address these issues, Aslam’s team [2] is building a rela-
tively large dataset, as is the authors’ team; both teams are expanding the defect 
category and data scale of the dataset. 

(2) Data samples have a high degree of variance in terms of defects. Leather images 
show randomness in many changes in morphology and defects. There may be more 
than 10 defects in an image. Even a defect itself is very different in different images. 
It is practically difficult to construct exact models of leather surface defects for clas-
sification because their appearance and size vary greatly. 

(3) There is no unified standard for leather defect identification and classification in the 
industry. Inconsistent performance evaluation of algorithms and lack of common 
benchmark datasets are another obstacle to progress in this field. At present, the 
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performance evaluation of developed algorithms is inconsistent and lacks a com-
mon benchmark. The difference in judging defects between the leather industry and 
leather products industry makes the technical indicators of quality inspection of 
various enterprises inconsistent, which seriously affects the quality of leather 
products production. Yeh [15] et al. established a compensation standard for leather 
defects to complete leather trading, and divided leather defects into seven types. 
Hoang et al. [90] realized the computerization of the quarter rule, which is the 
standard method for evaluating leather grade in the shoemaking industry. These 
research results provide a good foundation for establishing a unified standard for 
leather defect identification and classification, but it needs to be further refined in 
favor of practical application. 

(4) Real-time problem. Machine-learning-based defect inspection methods include 
three main links in industrial applications: data annotation, model training, and 
model inference. Real-time performance in real industrial applications focuses more 
on this part of model inference. Most current defect inspection methods focus on the 
accuracy of classification or identification, with little attention to the efficiency of 
model inference. 

7.2. Future Research Directions 
(1) Data augmentation. One reason for no large leather datasets is that most industries 

are reluctant to share their data with researchers. Leather defect classification and 
quality grading need to adapt to the high variability of leather defects in industrial 
environments, so sufficient data have to be collected and defect variations have to be 
captured to evaluate and improve the performance of the algorithm. In the field of 
leather defect inspection, there is an option to obtain large datasets, which is data 
augmentation. Data augmentation will not only increase the number of defects in 
the dataset but also increase defect variation. Aiming at the common small sample 
problem in surface inspection, a rare defect sample generation and random expan-
sion algorithm needs to be constructed. An important research direction will be to 
design a unique data enhancement method for leather surface defect generation. The 
most commonly used defect image amplification method is to obtain more samples 
by image processing operations such as mirror image, rotation, translation, distor-
tion, filtering, contrast adjustment, and so on. Another common method is data 
synthesis, in which individual defects are often fused and superimposed on normal 
(defect-free) samples to form defect samples. Those data enhancement methods are 
worth practicing in the field of leather defect inspection. 

(2) Network pertaining and transfer learning. Generally speaking, training deep learn-
ing networks with small samples can easily lead to overfitting. Therefore, the 
method based on pre-training network or transfer learning is one of the most com-
monly used methods for a small sample problem. In the field of leather defect in-
spection, there are not many pre-trained models available. The most closely related 
is the textured surface inspection such as textile inspection, wood inspection, and 
ceramic tile inspection. The weights of these models can be used for transfer learn-
ing, which is a research problem that needs to be investigated. 

(3) Reasonable network structure design. By designing a reasonable network structure, 
the demand for samples can also be greatly reduced. Based on the compressed 
sampling theorem to compress and expand the small sample data, CNN is used to 
extract the data features of compressed sampling directly. Compared with the 
original image input, compressed sampling can greatly reduce the sample demand 
of the network. In addition, the surface defect inspection method based on a twin 
network can also be regarded as a special network design, which can greatly reduce 
the sample demand. 

(4) Unsupervised or semi-supervised learning. In the unsupervised model, only normal 
samples are used for training, so there is no need for defective samples. 
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Semi-supervised method can solve the problem of network training in the case of 
small samples by using unmarked samples. The strategies have been used for the 
defect inspection of other industrial scenes, and are worth testing in the leather de-
fect inspection. 

(5) Accurate semantic segmentation. In addition to being able to identify defects, it is 
necessary to accurately segment the extracted detailed information such as defect 
shape, size, position, color, and type. Semantic segmentation is an effective strategy 
to achieve this in deep neural networks. Full Convolution Networks (FCNs) have 
made good progress in semantic segmentation in practical scenes, medical image 
segmentation, and industrial defect inspection. Other semantic segmentation mod-
els based on deep learning are mostly developed based on FCN. They may be suit-
able for leather defect segmentation. AlexNet- and ResNet-architecture-based net-
works can adapt to the task of leather defect segmentation, but they also need to be 
deeply studied in combination with the actual situation of leather defects. 
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