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Abstract: With the development of network technology, various network protocols different from
TCP/IP have emerged. The heterogeneous integrated network has been proposed to realize the
interconnection between heterogeneous networks running different protocols. However, current pro-
tocol conversion mechanisms often can only handle a few pre-defined protocols and do not support
the flexible expansion of new protocols, which cannot meet the needs of the efficient convergence
of different heterogeneous networks. Addirionally, due to the lack of security mechanisms, data
in the core network is confronted with the risk of stealing and tampering. Our aim is to provide a
protocol-extensible protocol conversion and secure transmission integration mechanism, MultiSec,
for heterogeneous converged networks. First, based on the programmable data plane, the parser is
reconfigured to realize multi-protocol parsing. Furthermore, the encryption mechanism implemented
in the P4 extern is proposed and unified to the data plane together with the protocol conversion
mechanism. Finally, the MultiSec prototype is implemented on a programmable software switch and
accelerated by a dedicated encryption card. Experiments show that MultiSec successfully realizes
multi-protocol conversion and data encryption, and the system performance is significantly improved
with the help of an encryption card.

Keywords: MultiSec; protocol conversion; VPN technology; programmable data plane; heteroge-
neous integrated network.

1. Introduction

With the development of various network applications and the extensive access of
various heterogeneous terminals, the current TCP/IP protocol struggles to meet the re-
quirements of various applications on bandwidth, delay, power consumption, mobility, and
so on. New protocols such as Named Data Networking(NDN) [1], MobilityFirst(MF) [2],
and GeoNetWorking(Geo) [3] have emerged to meet users’ application needs. The NDN
protocol uses content as the addressing condition and caches the data through a switch,
making data transfer faster and improving the efficiency of content retrieval. The MF
protocol uses name-based routing to support not only endpoints but also network mobility,
i.e., migration of entire networks. The Geo protocol uses geographical positions for packet
transport to support the communication among individual Intelligent Transport Systems
(ITS) [4] stations as well as the distribution of packets in geographical areas.

Heterogeneous protocols [5] meet the needs of some network applications. However,
they also encounter problems when trying to connect with the Internet due to incompatible
protocols. Thus, protocol conversion mechanisms are proposed to interconnect heteroge-
neous networks with each other. A heterogeneous integrated network usually consists of
a core network and multiple edge heterogeneous sub-networks. The sub-networks with
new protocols are connected to the core network through gateways. Take, as an example,
heterogeneous subnet A and heterogeneous subnet B to show the network diagram of

Electronics 2022, 11, 2389. https://doi.org/10.3390/electronics11152389 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11152389
https://doi.org/10.3390/electronics11152389
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11152389
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11152389?type=check_update&version=1


Electronics 2022, 11, 2389 2 of 20

the heterogeneous integrated network, as shown in Figure 1. Specifically, the data in
heterogeneous subnet A are converted into the IP protocol after passing through gateway
A and then to the core network. Then, the data is restored to the original protocol through
gateway B and sent to the receiving terminal in heterogeneous subnet B.

There are many protocols in the heterogeneous network. Supposing that different
protocol conversion devices are deployed to support communication between heteroge-
neous subnets and the core network, there should have been a variety of gateways, and
it will become highly bloated as new protocols emerge. Nick McKeown et al. propose
the Programmable Protocol-independent Packet Processor (P4) [6] and the corresponding
forwarding model [7,8]. With the data plane programming capabilities that P4 brings,
network devices can be more flexible in handling multi-protocol packets [9]. However,
most research on protocol conversion mechanisms primarily targets reducing design cost
and improving conversion speed rather than implementing multi-protocol conversion [10].
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Figure 1. The heterogeneous integrated network.

Many new methods are introduced into the protocol conversion to provide more
convenience for network convergence. However, the lack of consideration of security issues
makes IP-based communication vulnerable to tapping and forgery of external information,
resulting in an insecure and unreliable network [11]. Encrypted communication technolo-
gies [12] such as Multi-Protocol Label Switching (MPLS), Secure Sockets Layer (SSL), and
Internet Protocol Security (IPsec) solve the data security issues at different layers in the
network. However, they are protocol-dependent and cannot provide a general-purpose
encryption mechanism for packets of other protocols.

To address the issues mentioned above, we propose MultiSec, a multi-protocol security
forwarding mechanism based on programmable data plane, which successfully implements
a prototype for the Polymorphic Processing Kit (PPK) P4 software switch (see Section 4 for
details) and conducts a performance evaluation. MultiSec flexibly modifies the protocol
parsing process according to the input protocol type and can process any protocol. MultiSec
combines protocol conversion and encryption mechanisms, realizing the integration of
protocol conversion and secure forwarding. We refer to devices running MultiSec as secure
forwarding gateways that support multi-protocol access or security gateways. Every secu-
rity gateway implements the same MultiSec functionality, i.e., encryption, decryption, and
conversion between private and IP protocols, which facilitates flexible deployments. The
implementation of MultiSec has made essential contributions to developing heterogeneous
converged networks and improving reliable data transmission in the core network.

The major contributions of this paper are as follows:
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1. We analyze the problem that existing protocol conversion mechanisms can only
process specific protocols and propose a programmable multi-protocol conversion
mechanism. By reconfiguring the programmable parser and designing the packet
header-caching method, this mechanism realizes the interconnection between hetero-
geneous networks with multiple addressing methods and the Internet.

2. Encryption, decryption, and authentication functions are added to the P4-based
programmable data plane. We integrate protocol conversion and secure forwarding
functions by designing a recirculation mechanism. Security gateway configuration
files are leveraged in the Software Defined Network (SDN) controller to distribute
and update Security Association (SA) dynamically.

3. We build a heterogeneous network test environment with the help of a virtual hetero-
geneous network. We evaluate the implementation of the PPK P4 software switch. The
experiments show that the goodput increases by 20 times, and transmission latency is
reduced by two orders of magnitude through hardware acceleration.

The rest of the paper is structured as follows. We review the relevant work in Section 2.
Section 3 gives the architecture and details of MultiSec. The experiments are analyzed in
Section 4. Finally, Section 5 gives the conclusion and prospects of this work.

2. Relevant Work and Background
2.1. Protocol Conversion Mechanism

In recent years, there has been an increasing amount of literature on hardware-based
protocol conversion mechanisms. In terms of performance improvement, the ACR128
protocol conversion motherboard is used to develop a protocol converter based on Modbus
and NMEA0183, which effectively reduce the time required for industrial monitoring
devices to analyze communication protocols [13]. Based on this, Ananda, M.P. et al. [14]
implement a low-cost protocol converter by using a generic socket modulator–demodulator.
A protocol conversion system is constructed through the BF548 and universal media inter-
face devices, which can provide connectivity between analog public-switched telephone
network (PSTN) cellular, WIFI, and Bluetooth. In terms of applicability, a multi-layer
system-on-chip protocol conversion algorithm [15] is proposed. For different layers of the
Open System Interconnection (OSI) model, it is allowed to generate realizable converters for
IP protocols by using any existing converter generation algorithm. Similarly, Nie et al. [16]
present a Field Programmable Gate Array (FPGA)-based Ethernet and G. SHDSL protocol
converter, which adopts MAC soft core to process Ethernet data frame and enables Ethernet
users to access the local area network through a single twisted pair over long distances.
However, the above research studies on protocol conversion mainly focus on performance
optimization, such as reducing latency and costs, and do not realize multi-protocol conver-
sion. In the study of multi-protocol conversion, Luo [17] investigates the bridge between
Fibre Channel (FC) protocol and other network protocols based on network virtualization,
where an overall network architecture with FC as the primary network is designed to apply
the advantages of FC to large embedded systems. This scheme needs to design mapping
tables for two virtualization nodes in different networks, which is not conducive to the
flexible deployment of the new protocol. Wang [18] implements multi-protocol conversion
between various industrial bus protocols based on FPGA. A new architecture is proposed,
which is dedicated to meeting the needs of multi-protocol conversion. However, it can only
process a few specific protocols and cannot process complex private protocols. Currently,
most hardware-based multi-protocol conversion mechanisms can only deal with limited
protocols. The extraction order of data fields is also fixed in the hardware and cannot
be modified, which cannot meet the needs of multi-protocol parsing in heterogeneous
integrated networks.

The main methods to realize protocol conversion include the direct mapping
method [19,20] (DMM for short), the mapping method based on intermediate descrip-
tors [21,22] (MMID for short), and the protocol conversion matrix [23](PCM for short).
DMM is generally implemented using hardware. It first searches for the target protocol
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field information corresponding to the input field in the storage module according to the
field mapping relationship between the original protocol and the target protocol. Then,
the corresponding field information is generated according to the matching result. Finally,
together with the payload, a new target protocol packet is formed. However, when the
number of protocols in the system exceeds three, the processing efficiency of this method
decreases significantly. MMID adds intermediate descriptors to the direct mapping method
to solve this problem. Specifically, the original protocol is first converted into intermediate
descriptor information and then mapped to the destination protocol. The method can
improve the overall efficiency of the system during multi-protocol conversion. However,
the conversion efficiency of each pair of protocols is reduced by half due to the need for
secondary mapping. PCM designs a parameter matrix for protocol conversion by ana-
lyzing the characteristics of the protocols between the two sides of the communication.
The method first abstracts each component of the protocol into a set of parameters then
calculates the product of the set of parameters and the protocol conversion matrix to ob-
tain the parameters corresponding to the target protocol, and finally generates the target
protocol. Since both protocols need to meet the requirement of being able to abstract the
parameter matrix, this method does not have broad applicability. Aiming at the above
problems, we propose a protocol conversion method based on the programmable data
plane (PCPDP for short). This method realizes the parsing of any protocol by reconfiguring
the programmable parser. It implements protocol conversion by encapsulating the entire
heterogeneous protocol packet as part of the payload into an IP packet in the network
layer, simplifying the conversion complexity. We compare the pros and cons of the above
methods in Table 1.

Table 1. Comparison of four protocol conversion methods.

Method Mode Protocol Flexibility Complexity

DMM Mapping Fixed Low High

MMID Mapping Fixed Low High

PCM Parameter Matrix Fixed Low High

PCPDP Encapsulation Any High Low

The DMM, MMID, and PCM methods convert all the key fields of the original protocol
to the target protocol by means of mapping and parameter matrix, which is a complicated
conversion process. In addition, the above methods are usually done in hardware and
can only handle specific protocols with low flexibility. PCPDP is designed to enable the
transmission of multiple heterogeneous protocol packets across the core network and
does not involve complex mapping algorithms. Therefore, compared with other methods,
PCPDP can achieve flexible expansion of new protocols with lower engineering overhead.

2.2. Encrypted Communication Technology and Mechanism

The rapid development of Virtual Private Network (VPN) technology further ensures
data security. MPLS is a technology that uses tags to guide the efficient transmission of
data. Xia [24] ensures the end-to-end service quality of MPLS-VPN users by mapping the
IP Precedence and Differentiated Services Code Point (DSCP) priorities in data traffic to the
EXP field in MPLS. On the other hand, scholars do a lot of research on the performance op-
timization and security improvement of security protocols. A high-performance SSL VPN
system scheme based on Data Plane Development Kit(DPDK) technology and user mode
network protocol stack is proposed [25], which significantly improves the transmission
performance of the SSL VPN system. Similarly, Ren [26] optimizes both authentication and
session key transmission in the traditional SSL protocol, enhancing the attack resistance
and confidentiality of SSL. However, the above research does not expand new application
scenarios, and the innovation is slightly insufficient. Besides, Xiao [27] proposes a MACsec
security association scheme under the trusted computing environment, which adds plat-
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form authentication to the terminal equipment, thereby effectively enhancing the security
of the local area network. However, the above research mainly focuses on the optimization
of the traditional security protocols and does not expand new application scenarios, and
the innovation is slightly insufficient.

Some research provides lightweight mechanisms to support encryption and authenti-
cation for real-world scenarios. In order to better realize the integration and development
of continuous authentication (CA) [28] in mobile devices, M. Frank et al. [29] implement
and compare different ML agent models for CA in mobile environments. Experiments
show that among the mentioned ML classifiers, ensemble methods (RFC, ETC, and GBC)
perform the best, while SVM performs the worst among all classifiers. However, the main
problem in their scheme is that decisions were based on a single key event resulting in
relatively low performance. Aiming at the existing healthcare applications that are vul-
nerable to weak security against some known attacks, M. Al-Zubaidie et al. [30] propose a
new robust authentication protocol (RAMHU) to prevent internal, external, passive, and
active attacks. This scheme uses multiple pseudonyms for both users and medical centers
to prevent the transmission of real information in the authentication request and a MAC
address to prevent counterfeit devices from connecting to the network. Experiments show
that RAMHU is resistant to a variety of known attacks, but the study did not verify its
performance. Significant performance degradation will affect the actual deployment of
the mechanism. The studies of [31,32] also use lightweight encryption and authentication
methods. However, they have problems such as low encryption efficiency and unclear
encryption mode.

AES and SM4 are two typical symmetric encryption algorithms [33]. AES is widely
used and has four modes for cryptographic operations in different scenarios [34]. The SM4
algorithm is a Chinese secret grouping algorithm, which is safe, efficient, and simple in
design, and meets the requirements of a lightweight security communication mechanism.
Ge, G. et al. [35] propose a video surveillance key management scheme based on SM3 [36]
and SM4 algorithms for identity identification. The SM4 symmetric encryption algorithm
is used to encrypt the video data collected by the video front-end equipment, and the SM3
hash algorithm is used to implement the integrity verification of the video signaling, which
enhances the overall efficiency of video surveillance data storage and sharing. However,
given security, asymmetric encryption algorithms may be more suitable for encryption
keys. To improve the high security of power grid data transmission, Liu et al. [37] propose
a security encryption method for power Internet of Things terminals based on the SM3
algorithm. However this mechanism can only protect a single-terminal device but cannot
protect the entire local area network.

2.3. Application of Programmable Data Plane

In recent years, the new type of network represented by SDN has been developing
rapidly. Moreover, the research on the application of P4 programmable language has
gradually come into the vision of scholars. The authors in the literature [38] implement
cryptographic hash functions in the data plane to mitigate potential attacks against hash
conflicts. Furthermore, Chen et al. [39] implement the Advanced Encryption Standard
(AES) protocol at the data layer using scrambled lookup tables. AES is one of the most
widely used symmetric encryption algorithms, which applies several rounds of encryption
to 128-bit input data blocks to improve security. In P4-MACsec [40], the authors implement
IEEE 802.1AE (MACsec) at P4 and introduce an automatic deployment mechanism to pro-
vide MACsec for links detected between P4 switches. Link monitoring relies on encrypted
payloads and sequence numbers to prevent Link Layer Discovery Protocol (LLDP) packet
manipulation and replay attacks. Hauser et al. [41] attempt to implement host-to-site IPsec
in P4 switches. Another study focuses on protecting the identity of Internet users. Moghad-
dam et al. [42] propose Practical Anonymity at Network Level (PANEL), a lightweight
and low-overhead in-network solution to provide anonymity for the Internet forwarding
infrastructure. Similarly, Datta et al. [43] propose surveillance protection in network ele-
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ments (SPINE), a system for anonymous communication to hostile autonomous systems
(as) in the data plane by hiding IP addresses and associated TCP fields (e.g., sequence
numbers). However, the above studies still have limitations. These studies only strengthen
the security of data transmission, but cannot meet the conversion requirements between
other protocols to IP protocols.

2.4. Programmable Data Plane

The programmable data plane extends network programmability to data plane func-
tions. The packet processing flow can be defined using a dedicated programming language,
keeping the packet processing behavior separate from the underlying hardware. P4 is the
most widely used data plane programming language today. Figure 2 depicts the packet
processing pipeline and the core concepts of P4.
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The P4 parser extracts header fields of packets by applying predefined procedures,
where the extraction behavior of the parser is expressed as a finite state machine. The
primary function of the control block is to modify packet headers and perform forwarding
operations according to the match-action table (MAT) issued by the control plane. The
MAT gives the matching relationship between keywords and actions. Moreover, the
control blocks also provide additional functionality for packet processing by developing
a component called extern. The deparser reassembles the individual packet headers and
loads them into well-formed network packets, which are sent out through the out port of
the packet forwarding device.

3. MultiSec Design
3.1. Overview

Figure 3 outlines an application scenario for a security gateway running MultiSec. A
secure connection is established between security gateway A and security gateway B to
provide encryption protection for data transmitted in the core network.
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Figure 3. The application scenario of MultiSec.

Terminals in different heterogeneous networks establish secure connections through
two security gateways supporting multi-protocol access, with the SDN controller unifying
the configuration of the security gateways. As a core principle of MultiSec, each security
gateway implements the same protocol conversion and security functions, with the specific
actions performed determined by the type of packets being processed and the table entries
configured by the controller. Suppose a packet is sent by host 1 inside heterogeneous
network A. After receiving it, security gateway A encrypts the packet. It converts the
private protocol to IP protocol, where the source address is the IP address of gateway
A, and the destination address is the IP address of gateway B. The packet is forwarded
through the core network to security gateway B, which decrypts the encrypted data and
converts the IP protocol to the original protocol. The functional unification of the security
gateway facilitates flexible deployment in the network.

3.2. Framework

The processing flow of MultiSec in the data plane is shown in Figure 4. It is mainly
comprised of the programmable parser, Security Policy Database (SPD) module, (Conver-
sion and Encryption) C&E module, (Restoration and Decryption) R&D module, and other
modules. The main function blocks are as follows:

Parser: used to extract the input packet header.
SPD module: Matches given packets with SPD rules and determines the correspond-
ing security policy. The packets that need to be encrypted are sent to the C&E module.
C&E module: integrates encryption and conversion of the private protocol to the IP
protocol and is implemented in an extern.
R&D module: integrates the decryption and conversion of IP protocol to the original
protocol (protocol restoration) and is implemented in another extern.

During the protocol conversion, the original packet is encrypted using the Encapsulate
Security Payload(ESP) protocol [44] according to the SA information configured by the
control plane. SA is a part of the Security Association Database (SAD) which has all the data
required for the encryption and decryption process, such as the Security Parameter Index
(SPI), encryption algorithm, encryption key, authentication key, and SA survival period.

When a packet arrives via the ingress, the programmable parser extracts the packet
header according to the configuration. In case of a header other than ESP and the recircu-
late_flag is 0, the packet will be sent to the protocol-related basic function module, which
implements user-defined operations for the specific protocol. The SPD module then pro-
cesses the packet, and the matched entry in the SPD MAT (similar to the packet forwarding
MAT) determines the action to be executed on the packet. In the case of DROP, the packet is
dropped. In the case of BYPASS, the packet is forwarded directly to the protocol conversion
module, which performs protocol conversion of the packet and then sends it to the Layer
3 forwarding module. In the case of PROTECT, the packet is passed to the C&E module
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to implement the protocol conversion and encryption. Let us go back to the parser: if
the packet contains an ESP header or the recirculate_flag is 1, it is forwarded to the R&D
module. This module verifies the authenticity of the packet, decrypts the ESP message,
and restores the IP protocol to the original protocol. Then it forwards the packet to the
protocol-related forwarding module according to the flow table. The packets parsed for the
second time will be sent directly to this module to apply the protocol-related forwarding
actions (See Section 3.4). If a matching entry is missing in the MAT of the SPD, C&E,
or R&D module, the packet will be dropped. The deparser reassembles all headers and
re-calculates the IP checksum, such as time-to-live (TTL) and header checksum (checksum)
fields. The matching and forwarding behavior of the data plane is managed uniformly
through the SDN controller manipulating the MAT. The C&E module and the R&D module
are described in detail below.
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Figure 4. The processing flow of MultiSec in the data plane.

A. C&E module
Figure 5 shows the working principle of the C&E module. We introduce a C&E MAT

similar to the packet forwarding MAT. Packets are first matched against keywords in the
C&E MAT. If there is no corresponding matching entry, the packet will be discarded; if
the match is successful, the Con&Enc action will be performed. Among them, the spe-
cific encryption and protocol conversion is implemented in the extern; the register saves
the number of received packets to realize the timely update of SA; the packet descriptor
records the information of the packet before encryption to avoid errors during decryp-
tion. The parameters in the MAT are generated by the controller as SA information and
updated periodically.
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We implement protocol conversion and encryption as actions that depend on externs,
registers, and packet descriptors. Taking SM4-SM3 [45] as an example, the Con&Enc action
receives two types of parameters: base data required for all cipher suites and cipher-specific
data. We first describe the base data. SPI is part of the ESP header and is used to identify
the SA. The endpoint addresses (IPv4 source/destination addresses) identify the source
and destination of the secure connection, both of which are part of the new outer IPv4
header that encapsulates the ESP frame. Register index points to a particular index that
holds the packet counter for a particular SA used by the cipher suite extern. Packet limits
define timeout conditions for packets based on SA counter thresholds. Packet limits include
soft and hard limits. If the soft limit is reached, rekeying will be triggered. If the hard
limit is reached, packets encrypted with this SA information will be dropped. In addition
to the base data, cipher suites that implement specific encryption and authentication
mechanisms require cipher-specific parameters such as keys, initialization vectors (IVs),
and even additional structures to hold cipher states such as registers. As an example of
such a cipher suite, SM4-SM3 requires a key for SM4 and a key for the keyed-hash message
authentication code. The packet descriptors hold essential information about the packet
header and determine where the new IP header should be in the packet.

The processing flow of this module is as follows: the header information of the packet
is matched with the matching key. If there is no matching entry, the packet will be discarded.
If there is, the Con&Enc action will be executed. First, the packet counter for a particular
SA is read from the register and incremented. Second, the SA information generated by
the controller is passed to the corresponding extern, and the ESP packet header is created.
We use the SM4 encryption algorithm to protect the original packet while the SM3 hash
algorithm is applied to the complete ESP packet. If the packet length is less than 128 bits,
it will be padded at the ESP trailer. The checksum value of the ESP packet is saved in the
ESP authentication. Third, a new IP packet header is created using the endpoint address
to encapsulate the ESP packet and complete the protocol conversion. Finally, check for
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timeout conditions. If the soft limit is reached, rekeying will be triggered. If the hard limit is
reached, packets will be dropped. The packet encapsulation mode of this module is shown
in Figure 6. The original packet is encrypted after passing through the C&E module and
encapsulated in a new IP packet as part of the payload.

Original header Original payload

Original header Original payload

Original packet

ESP 
auth

ESP headerIP header

Encrypted

Authenticated

C&E module

IP packet

Nextead

ESP trailer

Figure 6. The packet encapsulation mode of C&E module.

B. R&D module
The R&D module also introduces an R&D MAT to implement the protocol restoration

and decryption. The parameters used by the R&D MAT are the same as those of the C&E
MAT, while the operation process is opposite to that of the C&E function. The processing
flow of this module is as follows: first, delete the new IP header and extract the ESP
packet. Second, pass the ESP packet and the key required for the cipher suite to the
corresponding extern, which decrypts the ESP packet while restoring the IP protocol to the
original protocol. Finally, parse the original packet, add the Ethernet header, and perform a
forwarding operation based on the parsed content.

3.3. Programmable Protocol Conversion Mechanism

We reconfigure the processing flow of the programmable parser according to different
private protocols to allow any protocol type network to access the security gateway with
the help of the P4 language. The extraction behavior of the parser is abstracted as a finite
state machine, which extracts the packet and outputs it in the form of the headers. Figure 7
shows the analysis and processing flow of packets by taking MF as an example. We simplify
the program to show only the key parts.

The process of the parser is shown in Figure 7a. The parser is initiated in the state
start. It parses the Ethernet packet header, checks the packet protocol according to the
Ethertype, and selects the next state with an exact match. The possible states in this
example are parse_mf or parse_ipv4, representing the MobilityFirst header and IPv4
header, respectively. The default state of the parser is accept. After parsing the last header,
the corresponding field information and names are saved (not shown in the figure). The
INGRESS (shown in Figure 7b,c) defines some actions and the corresponding match-action
tables (tables). The action Con&Enc performs protocol conversion and encryption, and
the action Res&Dec performs protocol restoration and decryption. The tables declare the
matching keys of the above actions. The apply action declares the processing logic of the
packet: if the ESP header is valid, apply the relevant actions of the dec table to decrypt the
packet and forward it out; if the MF header is valid, the spd flag is added. If the flag bit
is 0, the data packet will be bypassed without encryption; if the flag bit is 1, the enc table
is applied and sent to the forwarding table. Finally, the DEPARSER (shown in Figure 7c)
regroups the packet and sends it to the output ports.
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/******PARSER******/
state start 
    transition parse_ethernet;       

state parse_ethernet      
    packet.extract(hdr.ethernet);
    transition select(hdr.ethernet.etherType) 
        0X27C0: parse_mf;   
        0X0800:parse_ipv4;             
        default: accept;

state parse_mf
    packet.extract(hdr.mf);
    transition select(hdr.mf.protocol)
       TYPE_ESP:parser_esp;
       default: accept;

state parse_ipv4
    packet.extract(hdr.ipv4);
    transition accept;

state parse_esp
    packet.extract(hdr.esp);
    transition accept;

/*****INGRESS*****/
extern void conversion&encrypt( );
extern void restoration&decrypt( );
actions :Con&Enc();
               Res&Dec();
               Add_spd_flag();
               L3_forward() ;
               Protocol-related forward();
               Drop();
table spd
    key = hdr.mf.dest_guid: exact; 
    action = Add_spd_flag; Drop;

table enc 
    key = hdr.mf.dest_guid: exact;
    actions = Con&Enc; Drop;

table dec
    key = hdr.ipv4.srcAddr: exact; 
              hdr.ipv4.dstAddr: exact;
    action = Res&Dec; Drop;

table forward_1
     key =  hdr.ipv4.dstAddr: lpm; 
     actions = L3_forward; Drop;

table forward_2
     key =  hdr.mf.dest_guid: exact; 
     actions = Protocol-related forward; Drop;

apply 
    if(hdr.esp.isValid())
       dec.apply();
       forward_2.apply
    else if(hdr.mf.isValid())
       spd.apply();
        if(metadata.spd_flag == 0)
            BYPASS; 
        else if(metadata.spd_flag == 1)
            enc.apply();
            forward_1.apply();

/****DEPARSER****/
control MyDeparser()
    apply
        packet.emit(hdr.ethernet);
        packet.emit(hdr.ipv4);
        packet.emit(hdr.mf);
        packet.emit(hdr.esp);

(a) The process of PARSER

/******PARSER******/
state start 
    transition parse_ethernet;       

state parse_ethernet      
    packet.extract(hdr.ethernet);
    transition select(hdr.ethernet.etherType) 
        0X27C0: parse_mf;   
        0X0800:parse_ipv4;             
        default: accept;

state parse_mf
    packet.extract(hdr.mf);
    transition select(hdr.mf.protocol)
       TYPE_ESP:parser_esp;
       default: accept;

state parse_ipv4
    packet.extract(hdr.ipv4);
    transition accept;

state parse_esp
    packet.extract(hdr.esp);
    transition accept;

/*****INGRESS*****/
extern void conversion&encrypt( );
extern void restoration&decrypt( );
actions :Con&Enc();
               Res&Dec();
               Add_spd_flag();
               L3_forward() ;
               Protocol-related forward();
               Drop();
table spd
    key = hdr.mf.dest_guid: exact; 
    action = Add_spd_flag; Drop;

table enc 
    key = hdr.mf.dest_guid: exact;
    actions = Con&Enc; Drop;

table dec
    key = hdr.ipv4.srcAddr: exact; 
              hdr.ipv4.dstAddr: exact;
    action = Res&Dec; Drop;

table forward_1
     key =  hdr.ipv4.dstAddr: lpm; 
     actions = L3_forward; Drop;

table forward_2
     key =  hdr.mf.dest_guid: exact; 
     actions = Protocol-related forward; Drop;

apply 
    if(hdr.esp.isValid())
       dec.apply();
       forward_2.apply
    else if(hdr.mf.isValid())
       spd.apply();
        if(metadata.spd_flag == 0)
            BYPASS; 
        else if(metadata.spd_flag == 1)
            enc.apply();
            forward_1.apply();

/****DEPARSER****/
control MyDeparser()
    apply
        packet.emit(hdr.ethernet);
        packet.emit(hdr.ipv4);
        packet.emit(hdr.mf);
        packet.emit(hdr.esp);

(b) The process of INGRESS

/******PARSER******/
state start 
    transition parse_ethernet;       

state parse_ethernet      
    packet.extract(hdr.ethernet);
    transition select(hdr.ethernet.etherType) 
        0X27C0: parse_mf;   
        0X0800:parse_ipv4;             
        default: accept;

state parse_mf
    packet.extract(hdr.mf);
    transition select(hdr.mf.protocol)
       TYPE_ESP:parser_esp;
       default: accept;

state parse_ipv4
    packet.extract(hdr.ipv4);
    transition accept;

state parse_esp
    packet.extract(hdr.esp);
    transition accept;

/*****INGRESS*****/
extern void conversion&encrypt( );
extern void restoration&decrypt( );
actions :Con&Enc();
               Res&Dec();
               Add_spd_flag();
               L3_forward() ;
               Protocol-related forward();
               Drop();
table spd
    key = hdr.mf.dest_guid: exact; 
    action = Add_spd_flag; Drop;

table enc 
    key = hdr.mf.dest_guid: exact;
    actions = Con&Enc; Drop;

table dec
    key = hdr.ipv4.srcAddr: exact; 
              hdr.ipv4.dstAddr: exact;
    action = Res&Dec; Drop;

table forward_1
     key =  hdr.ipv4.dstAddr: lpm; 
     actions = L3_forward; Drop;

table forward_2
     key =  hdr.mf.dest_guid: exact; 
     actions = Protocol-related forward; Drop;

apply 
    if(hdr.esp.isValid())
       dec.apply();
       forward_2.apply
    else if(hdr.mf.isValid())
       spd.apply();
        if(metadata.spd_flag == 0)
            BYPASS; 
        else if(metadata.spd_flag == 1)
            enc.apply();
            forward_1.apply();

/****DEPARSER****/
control MyDeparser()
    apply
        packet.emit(hdr.ethernet);
        packet.emit(hdr.ipv4);
        packet.emit(hdr.mf);
        packet.emit(hdr.esp);

(c) The process of DEPARSER

Figure 7. Analysis and processing flow of a MF packet.

Packets running different protocols have different packet structures and numbers of
headers. To store and locate the parsed packet headers at each level, we design a packet
header caching method by introducing a packet descriptors table and a header descriptors
table, as shown in Figure 8. While parsing the packet, the parser maps packet information
to the packet descriptors table. It contains every state of the parser (header of the packet)
and records the total length of all parsed headers. Each state information is mapped to
the second level table, called the header descriptor table, which records the header type,
location, and length of each header. The location and total packet length are automatically
updated with each new header parsed. In this mechanism, all headers are located by the
packet descriptors.

Compared with the traditional protocol conversion, MultiSec is designed to process
any protocol. How to obtain the original protocol number when the security gateway B
(shown in Figure 3) performs protocol restoration is a key issue in the design process of
MultiSec. To save bandwidth, we redefine the function of the NextHead field of the ESP
trailer. Take the application scenario shown in Figure 3 as an example. After parsing the
packet, Security Gateway A saves the EtherType field value of the Ethernet header in the
NextHead field, which is sent to the Internet along with the packet. Security Gateway
B receives the packet, parses the ESP trailer to obtain the original protocol number, and
then fills in the Ethertype field of the newly encapsulated Ethernet header, restoring the IP
protocol to the original protocol.

S

D

A

type pointer length

instance
type

position
header
length

…

…

state
name

totle
length

ethernet

geo

…

Packet descriptor Header descriptor Parser 

Figure 8. The packet header caching method.

3.4. The Integration of Protocol Conversion and Secure Forwarding
3.4.1. Recirculation Mechanism

To guarantee the reliability of data transmission and minimize the system overhead,
we add a security mechanism to the protocol conversion mechanism. The key to integrating
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protocol conversion and secure forwarding is the integration of the decryption of encrypted
packets and the parsing of the decrypted packets, that is, the problem of secondary parsing
of the same packet in a P4 pipeline. Developing a decryption mechanism in the parser
module may be able to decrypt the ESP packet and parse the original packet at the same
time. However, this method needs to delete the parsed header in the parser, which is
currently not supported by P4. We develop a recirculation mechanism based on the
v1model architecture. The mechanism introduces the standard metadata recirculate_flag
in the R&D module and determines whether the packet needs to be parsed again by the flag
bit value. In the definition of the P4 language, the standard metadata is used to carry the
configuration information of the switch itself. We provide the algorithm for the recirculation
mechanism to process encrypted packets in Algorithm 1.

Algorithm 1 Recirculation mechanism

Input: encrypted packet
Output: original packet

1: apply Res&Dec action
2: recirculate_flag← 1
3: send to the Deparer
4: if recirculate_flag = 0 then
5: send to the output ports
6: else
7: send to the Parser
8: extract original packet
9: if ESP header is valid OR recirculate_flag = 1 then

10: recirculate_flag← 0
11: send to R&D module
12: send to Protocol related forwarding module
13: send to the Deparer
14: if recirculate_flag =0 then
15: send to the out ports

Lines 1 to 3 indicate that a packet enters the R&D module for the first time and
uses the Red&Dec action to perform the decryption and protocol restoration. Then, the
recirculate_flag is set to 1, and the data packet is forwarded to the Deparser module. Lines
4 to 7 indicate that the Deparser module selects the packet sending path according to the
value of recirculate_flag. If recirculate_flag is 0, the packet will be sent to the output ports,
and if it is 1, the packet will be sent to the recirculate port for secondary parsing. Lines
8 to 11 indicate that the decrypted data packet re-enters the Parser module through the
recirculate port for parsing. The parser sends the packet to the R&D module based on the
recirculate_flag value of 1 and then sets the recirculate_flag to 0. Lines 12 to 13 indicate that
the decrypted packet is directly sent to the protocol-related forwarding module to perform
the forwarding operation. Finally, the packet is sent to the output ports.

3.4.2. Automatically Distribute and Dynamically Update SA

In the security mechanism, the keys used to encrypt and authenticate packets need
to be updated in time to prevent them from being leaked. In order to configure and
automatically update SAs, we add the security gateway configuration files to the controller,
as shown in Figure 9. This file can be manually defined by an administrator or generated
by other software components. The security gateway configuration files are the basis for
establishing a secure connection between programmable gateways. Files contain essential
information such as switch identification, endpoint IP, and network resources. The SDN
controller generates SA configuration data for the data plane based on the security gateway
configuration files and interacts with the switching devices through P4runtime. For the
SM4-CBC-HMAC-SM3 cipher suite, the SA data includes keys for SM4 and Hash-based
Message Authentication Code(HMAC), register indices, and configuration data for SPD. To
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periodically update the key material, we set a limited lifetime for SAs. If an SA needs to be
updated, the P4 switch will send the packet that triggers the update to the SDN controller
to update the SA information. This process is implemented using packet counters in the
register. When the SDN controller receives the SA expiration notification, it generates a
new SA identified by the new SPI and updates the table entry following three steps. First,
the new SA is installed in the R&D MAT. Then, the existing SA in the C&E MAT is replaced
by the new SA via a modified operation. Last, as it can be ensured that no packets are
encrypted using the previous SA, its entry can be removed from the R&D MAT.

SDN controller

Multi-Protocol Security Gateway 

 Security Gateway Profiles

Key
(SM4-CBC)

Key
(HMAC)

Register
SPD&

forwarding

SA(SPI)

Data plane

P
4

R
u

n
ti

m
e

Figure 9. Application of security gateway profiles.

4. Security Analysis and Experimental Evaluation

In this section, we first analyze the security of MultiSec, then evaluate its functionality
and performance on the testbed, and finally compare it with IPsec.

4.1. Security Analysis

Data confidentiality: The MultiSec uses SM4-CBC and HMAC-SM3 encryption modes
to encrypt and authenticate data before transmission. The controller uses a random number
to construct the initialization vector of the SM4 encryption algorithm and SM3 authenti-
cation algorithm and sends it to the security gateways. The security gateway encrypts
the first group of packet data using initialization vectors. Because random numbers are
used in encryption and verification and are generated by the controller, the attacker cannot
calculate the key stream and random numbers by capturing data packets, which ensures
the confidentiality of data transmission in the core network. Moreover, the content and
format of data packets sent by heterogeneous networks are different, making it difficult to
analyze the corresponding laws of ciphertext data, and it is difficult to carry out attacks
such as replay and hijacking to ensure confidentiality and authenticity of the data.

Data integrity: The sender first encrypts the data block to generate the ciphertext.
Then, the ciphertext, ESP head, and ESP tail are calculated with the group key to obtain the
authentication summary, which is added to the ESP authentication field and sent with the
ciphertext. Since random numbers are introduced into SM4 and SM3 algorithms, attackers
cannot construct valid data validation information. Additionally, the receiver can not only
detect unexpected errors in the data by verifying and then decrypting, but also judge
whether the data packet is maliciously tampered with or destroyed, which has more robust
security in terms of data integrity. The key in the system is generated by the controller and
then delivered to the switches, and the process of key transmission, storage, and decryption
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is performed in hardware and updated according to the corresponding rules. Unless the
attacker obtains the decryption algorithm and private key, the key is safe.

4.2. Prototype Implementation

On the data plane, we extend the v1model P4 forwarding model to be able to run P4
programs that describe the functionality of the data plane. The PPK based on Data Plane
Development Kit (DPDK) includes a P4 compiler, which generates platform-independent
C codes from the P4 codes, and then compiles them into target-related underlying code
through the back-end compiler. The underlying codes are tied to the DPDK, which allows
P4 programs to bypass the system kernel and be executed in the user space of the CPU-
based software system, increasing runtime speed.

Our goal is to implement a lightweight, simple-to-understand controller. We use
p4runtime_lib to program the interface of the P4 switch and the central controller, which
leverages the P4Runtime API for communication. Compared to using a controller archi-
tecture, this approach reduces the potential for errors caused by version conflicts. We
implement the P4 processing pipeline as a p4-16 program and execute it on a P4 switch
running PPK.

4.3. Testbed Setup

The evaluation setup shown in Figure 10 is built using two heterogeneous networks.
Each heterogeneous network contains a sending or receiving device, an access switch,
a programmable security gateway, and a network switch. MultiSec is applied to the
programmable security gateways s1 and s2. The security gateway implements the pro-
totype system on a switch based on the PPK. PPK is a compilation environment of the
programmable data plane, which can configure the operation of the data plane and is
compatible with the P4 language. The switches are equipped with a Ubuntu20.04 operating
system, a Zhaoxin KH-20000 processor, and 64GB of memory.

We perform performance evaluation experiments to investigate the goodput and
latency. We vary the frame lengths of packets sent from h1 and measure goodput and
latency for 74 to 1518 frame sizes. For each evaluation experiment, we consider three
scenarios. In the first scenario, we implement MultiSec on the security gateways to protect
all packets with SM4-CBC. In the second scenario, we enable MultiSec but bypass SM4-CBC
encryption and decryption in the P4 extern, where the plaintext payloads are sent within
the MultiSec packets. We use this scenario to measure the effect of the security function
and the overhead it brings by comparing it to network packet forwarding with a P4 extern.
In the third scenario, we implement MultiSec and offload encryption and decryption to an
encryption card to improve the performance defects of the P4 software.

Sending 
device h1

Security 
Gateway s1

Heterogeneous 
Network 1

Receiving
device h2

Security 
Gateway s2

Access 
switch B

Network 
switch

Network 
switch

Network 
switch

Access 
switch A

Heterogeneous 
Network 2

Figure 10. Evaluation testbed of MultiSec.

4.4. Functional Verification

In the interconnection test between heterogeneous subnets, we mainly test encryption,
decryption, and the conversion between multi-protocol packets and IP packets. We take MF
and Geo packets as test cases. We first configure the flow table in the programmable security
gateway s1 and s2 and send packets into the security gateway s1 from h1. By capturing
packets on s1 and s2, we can see the change of packet structure in Figures 11 and 12.

Figure 11 shows the processing flow of the MF packet. The MF protocol number is
0X27C0, which is displayed in the Ethertype field of the MAC header. The mftype indicates
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the type of the MF packet. The packet payload is transmitted in plaintext before encryption.
After being processed by the security gateway s1, the MF packet is converted into an IP
packet encrypted by the ESP protocol, in which the original MF header and payload are
encrypted as the new payload of the IP packet, and the information security is guaranteed.
The IP packet is forwarded into the security gateway s2 through the Internet. It can be seen
that the IP packet is decrypted and restored to the MF packet after passing through the
security gateway s2.

Figure 12 shows the processing flow of the Geo packet. The Geo header shall be
comprised of a Basic Header, Common Header, and an optional Extended Header. The
composition of the Basic Header and Common Header equals for all packet transport
types and differs for the Extended Header. Extended Header is determined by the Header
type field in Common Header. In this case, the Extended Header is a GBC, which is used
to provide the transport of packets in the ITS ad hoc network. Similar to the processing
flow of the MF packet, the Geo packet is first converted into an IP packet encrypted by the
ESP protocol and then restored to the MF packet by the security gateway s2.

b4 05 5d a4 1b 62 b4 05 5d a4 1e c2 27 c0 00 00 00 01 00 00 c9 00 65 00 00...05 0b 84 0a 00 01 00

MAC mf
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Figure 11. The processing flow of a MF packet.

01 00 5e 00 17 aa 00 26 55 ea 9f e5 89 47 20 41 00 80 00 33 0a 0001 00 f1 0a

MAC Basic Common

00 1c 00 00 94 2e...00 05 dc 00 00 

GBC

plaintext

payload

Security Gateway s1

Protocol Conversion and Encryption

a0 36 9f 05 00 cd 01 00 5e 00 17 aa 08 00

MAC

21 0c 86 ce 
00 00 00 12

ESP

encrypted

payload

45 00 00 6c 00 21 00 00 ff 32 fc 66 c0 a8 1e c3 c0 a8 1e c4

IPv4

Security Gateway s2

Protocol Restoration and Decryption

0c 63 51 40 00 c5 a0 36 9f 04 fe 79 89 47 20 41 00 80 00 33 0a 0001 00 f1 0a

MAC Basic Common

00 1c 00 00 94 2e...00 05 dc 00 00 

GBC payload

GEO

GEO

plaintext

GEO

GEO

IP

Header 
type

Figure 12. The processing flow of a Geo packet.

4.5. TCP Goodput

We investigate the TCP goodput in MultiSec in our setting with security gateways.
To that end, we use h1 to randomly send three different types of packets of IPv4, MF, and
Geo and measure TCP transmissions between h1 and h2 with Spirent. Each experiment
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comprises 10 runs, each with a duration of 30 s and a Maximum Transmission Unit (MTU)
set to 1518 B. Figure 13 shows the results calculated as average over the 10 runs. The
goodput increases with the frame size, resulting from decreased packet number due and,
in particular, lower packet loss rate. We can see that MultiSec achieves a significantly larger
throughput with the encryption card than in the other two scenarios. The encryption card
could reduce packet processing delay. However, the experimental results show similar TCP
goodput rates for MultiSec and MultiSec without encryption. Therefore, we conclude that
the usage of the encrypted card increases the TCP goodput, and the encryption only has
minimal impact on throughput.
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Figure 13. TCP Goodput evaluation.

4.6. Latency

In the second experiment, we investigate the latency between the two network hosts
connected by two security gateway. Figure 14 depicts the latency calculated as an average
over the 10 runs. The evaluation results are similar to those of the experiment for TCP
goodput. The latency increases with the frame size. MultiSec with the encryption card
significantly reduces latency. Again, applying or omitting SM4-CBC in the P4 extern
does not cause significant differences in the latency. However, their latency is very high,
resulting from software switches having limited processing capability in the face of complex
operations.
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Figure 14. Latency evaluation.

4.7. Comparison and Analysis with IPsec

We compared the proposed MultiSec with IPSec in function and performance. We
build the experimental topology shown in Figure 15. The device h1 sends a packet, and the
P4 switch P1 encrypts the packet after receiving it and establishes a secure connection with
the P4 switch P2. After transmission over the core network, P2 receives and decrypts the
packet and finally sends it to the receiving device h2. IPsec uses the AES-CTR-HMAC-MD5
cipher suite to protect the internal IP network (Local Area Network, LAN) by establishing
a virtual tunnel.
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device h1

P4 Switch 
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IP Network 1

Receiving
device h2

P4 Switch 
P2

Access 
switch B

Network 
switch

Network 
switch

Network 
switch

Access 
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IP Network 2

Figure 15. Evaluation testbed of IPsec.

The comparison results are shown in Table 2. The encryption and decryption speed
of MultiSec is faster than that of IPsec, but the authentication speed is slower than that of
IPsec. Because the key scheduling algorithm of SM4 is simpler, and AES considers integer
alignment during the polling process, the key generation is more complicated. Since the
length of the output summary value of the SM3 algorithm is 256 bits, which is higher
than 128 bits of MD5, the processing time is longer than that of MD5, but the security
performance is much higher than that of MD5. There is little difference in goodput, with
MultiSec slightly higher than IPsec. IPsec provides protection for terminals in the IP subnet,
but only IP protocol access is allowed. MultiSec provides protection for heterogeneous
subnets and allows multi-protocol access.

Table 2. The comparison of MultiSec and IPsec.

Mechanism Algorithm Latency (µs) Goodput (Mbps) Protection Range Access Protocol

MultiSec SM4-DEC 79.55 101.38 Heterogeneous subnets (LAN) Multi-protocolSM3-AUT 12.63

IPsec AES-DEC 104.24 98.27 IP LAN IP protocolMD5-AUT 6.10
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5. Conclusions

In this paper, we propose MultiSec, a multi-protocol secure forwarding mechanism
based on the programmable data plane, which provides encryption protection for het-
erogeneous protocols transported across the core network. Benefiting from the flexible
and definable advantages of the programmable network architecture, MultiSec supports
the flexible extension of protocols to facilitate the convergence of various heterogeneous
networks. Meanwhile, we design a recirculation mechanism in the data plane so that
MultiSec can implement encryption, decryption, and protocol conversion on one switch,
improving the completeness of functions. Finally, we realize the automatic distribution and
update of SA information by adding the security gateway configuration file in the controller.
Experiments show that MultiSec supports multi-protocol parsing and conversion, and
provides security protection for packets forwarded on the core network. Compared with
software switches, the goodput increases by 70 times, and transmission latency is reduced
by two orders of magnitude through hardware acceleration.

Currently, some new network protocols lack a security transmission mechanism,
or their security transmission mechanism is imperfect. However, due to the number of
protocols, designing a set of security mechanisms for each protocol is not only burdensome
but also inflexible. In the next step, we will study a general-purpose encrypted transmission
scheme deployed in programmable network equipment, which takes effect for all protocols
to improve the forwarding efficiency and data security.
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