
Citation: Ebrahim, A. High-Level

Design Optimizations for

Implementing Data Stream Sketch

Frequency Estimators on FPGAs.

Electronics 2022, 11, 2399. https://

doi.org/10.3390/electronics11152399

Academic Editors: Luis Parrilla,

Antonio García and

Encarnación Castillo

Received: 4 July 2022

Accepted: 28 July 2022

Published: 31 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

High-Level Design Optimizations for Implementing Data
Stream Sketch Frequency Estimators on FPGAs
Ali Ebrahim

Department of Computer Engineering, University of Bahrain, Sakhir P.O. Box 32038, Bahrain;
ahasan@uob.edu.bh; Tel.: +973-17437029

Abstract: This paper presents simple yet effective optimizations for implementing data stream
frequency estimation sketch kernels using High-Level Synthesis (HLS). The paper addresses design
issues common to sketches utilizing large portions of the embedded RAM resources in a Field
Programmable Gate Array (FPGA). First, a solution based on Load-Store Queue (LSQ) architecture
is proposed for resolving the memory dependencies associated with the hash tables in a frequency
estimation sketch. Second, performance fine-tuning through high-level pragmas is explored to
achieve the best possible throughput. Finally, a technique based on pre-processing the data stream
in a small cache memory prior to updating the sketch is evaluated to reduce the dynamic power
consumption. Using an Intel HLS compiler, a proposed optimized hardware version of the popular
Count-Min sketch utilizing 80% of the embedded RAM in an Intel Arria 10 FPGA, achieved more
than 3x the throughput of an unoptimized baseline implementation. Furthermore, the sketch update
rate is significantly reduced when the input stream is skewed. This, in turn, minimizes the effect of
high throughput on dynamic power consumption. Compared to FPGA sketches in the published
literature, the presented sketch is the most well-rounded sketch in terms of features and versatility.
In terms of throughput, the presented sketch is on a par with the fastest sketches fine-tuned at the
Register Transfer Level (RTL).

Keywords: data stream; frequency estimation; sketch summary; Field Programmable Gate Arrays

1. Introduction

Data stream algorithms aim to extract useful insight from large streams of data mod-
eled as a sequence of items that can only be processed once using limited memory. In
general, processing speed is a major focus in streaming algorithms because of the high-
speed nature of the data and the lack of random access to the input. Streaming algorithms
are typically single-pass approximate algorithms as exact solutions are not feasible, due to
the time and memory complexity in data stream applications [1]. A distinct class of stream-
ing algorithms addresses the frequency estimation problem, wherein a small summary
of the input frequency distribution is constructed from the data stream. This summary
can be queried to estimate the frequency of the unique items in the stream. Estimating
how often items are appearing in the data is a fundamental task in many applications.
Frequency estimation has several applications in networking [2], web search analysis and
databases [3], signal processing and machine learning [4], among many other fields. Items
of interest in a data stream could represent popular search queries in a server, frequently
visited websites in network traffic, best-selling items in retail data, most active stocks in
financial data, etc.

Sketching is an emerging technique that deploys a unique data structure referred
to as a “sketch” or a “sketch summary” to solve several streaming problems, including
frequency estimation. Notable frequency estimation sketches include AMS [5], Count [6],
and Count-Min [7]. These sketches are fundamentally similar, consisting of several “item
counting” hash tables with a size in memory adjusted according to the required accuracy.

Electronics 2022, 11, 2399. https://doi.org/10.3390/electronics11152399 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11152399
https://doi.org/10.3390/electronics11152399
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7477-504X
https://doi.org/10.3390/electronics11152399
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11152399?type=check_update&version=1

Electronics 2022, 11, 2399 2 of 17

In addition to being very memory efficient, parallelizing the operation of these sketch
summaries is quite straightforward, as updating the different hash tables can be performed
in separate parallel tasks.

Several hardware architectures have been proposed to capitalize on the parallelism pos-
sible with frequency estimation sketches. Mainly, these architectures are implemented using
Field Programmable Gate Arrays (FPGAs), due to the two following reasons:
(1) the flexibility in implementing sketches tailored to specific streams and applications,
and (2) the high-bandwidth low-latency embedded memory available in FPGAs. Although
high-density FPGAs offer sufficient on-chip memory to implement practical sketches, main-
taining high throughputs in sketch designs utilizing large portions of the FPGA on-chip
memory can be difficult without expertise in FPGA chip planning. This issue is apparent
in reconfigurable accelerators proposed in academia, that either opt for smaller sketches
implemented on high-end expansive FPGA fabric or deploy simple pipelining techniques
that do not scale well in large sketches.

High-Level Synthesis (HLS) tools from major FPGA vendors (Xilinx/AMD, Intel and
recently Microchip) have become mature enough to be widely adopted by the industry to
generate production-quality systems or components in larger systems. With the proper
high-level optimizations, high-speed complex circuits can be developed and verified at
a fraction of the development time typically needed in Register Transfer Level (RTL)
design flow.

This paper details the optimization process of a hardware variant of the Count-Min
sketch data structure. The presented optimizations only require the addition of small
“weight accumulation” circuits that are simple to implement and can be generalized to
other sketch summaries. In the experimental results, an optimized Count-Min sketch
utilizing 80% of the on-chip RAM in a midrange Intel Arria 10 FPGA achieved more than
3x the throughput of a naïve baseline implementation. On an Intel Stratix 10 FPGA, an
optimized sketch achieved throughputs significantly higher than competing FPGA sketches
designed in RTL and on a par with the fastest software-generated fine-tuned sketches. In
addition, the optimized sketch exhibited reduced memory access rate when processing
streams with skewed frequency distribution (often the case in real-world data streams).
This was shown to have great potential for reducing the dynamic power consumption of
the sketch. In short, the main contributions of this paper can be summarized as follows:

(1) A simple item weight accumulation circuit that is entirely specified at the C lan-
guage level to remove dependencies associated with memory updates in frequency
estimation sketches.

(2) A scheme for scaling the performance of an HLS-generated sketch through fine-tuning
the dependance distance in the memory blocks of a sketch.

(3) A scheme for scaling performance through partitioning the sketch into separate
update/query hardware tasks that can be constrained separately.

(4) A power-optimized sketch design that takes advantage of the natural skew in typical
data streams to reduce memory accesses, and consequently reduce the overall dynamic
power consumption.

(5) The fastest and most well-rounded FPGA implementation of the popular Count-Min
sketch compared to previous work.

The remainder of this paper is organized as follows. Section 2 introduces the Count-
Min sketch data structure. Section 3 discusses some of the most relevant related work on
FPGA frequency estimation accelerators. Section 4 presents a baseline HLS implementation
of Count-Min. Sections 5 and 6 detail the optimization process of the baseline. Section 7
presents the evaluation of the optimized sketch against previously published work. Finally,
conclusions and future work plans are summarized in Section 8.

We draw the readers’ attention to the Intel HLS documentation [8], as the remainder
of this paper explains the proposed optimizations using technical terminology that may be
specific to Intel “System of Tasks” HLS design flow.

Electronics 2022, 11, 2399 3 of 17

2. Background: Count-Min Sketch

The work presented in this paper is applicable to several frequency estimation sketches,
such as AMS [5], Count [6], and Count-Min [7]. The Count-Min sketch was selected for
implementation and evaluation as it is one of the most popular frequency estimation
sketches, with applications spanning many domains. In fact, this sketch is widely adopted
in the industry. For example, twitter used this sketch to track popular tweets [9], and Apple
also used this sketch in their private data collection [10]. In addition, Count-Min has great
support in many databases and big data analytics tools (examples: Apache Spark [11],
Redis [12]).

The main goal of the algorithm behind Count-Min is to count the number of occurrences
of distinct items in a stream. The sketch consists of d hash tables, each with t entries
representing count estimates of items in the stream. The tables can be stored in memory as
a two-dimensional array (see Figure 1). A family of pairwise independent hash functions is
used to map item hits to the table entries. Count-Min supports weighted updates, meaning
that any item hit, x, in the stream could have a weight value, w, associated with it.

Electronics 2022, 11, x FOR PEER REVIEW 3 of 17

Electronics 2022, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

We draw the readers’ attention to the Intel HLS documentation [8], as the remainder

of this paper explains the proposed optimizations using technical terminology that may

be specific to Intel “System of Tasks” HLS design flow.

2. Background: Count-Min Sketch

The work presented in this paper is applicable to several frequency estimation

sketches, such as AMS [5], Count [6], and Count-Min [7]. The Count-Min sketch was se-

lected for implementation and evaluation as it is one of the most popular frequency esti-

mation sketches, with applications spanning many domains. In fact, this sketch is widely

adopted in the industry. For example, twitter used this sketch to track popular tweets [9],

and Apple also used this sketch in their private data collection [10]. In addition, Count-

Min has great support in many databases and big data analytics tools (examples: Apache

Spark [11], Redis [12]).

The main goal of the algorithm behind Count-Min is to count the number of occur-

rences of distinct items in a stream. The sketch consists of d hash tables, each with t entries

representing count estimates of items in the stream. The tables can be stored in memory

as a two-dimensional array (see Figure 1). A family of pairwise independent hash func-

tions is used to map item hits to the table entries. Count-Min supports weighted updates,

meaning that any item hit, x, in the stream could have a weight value, w, associated with

it.

The update process of the sketch summary is simple, in that the item key is hashed

using the hash functions and the relevant count entries in the tables are incremented by

the item weight. Since different hash functions are used for the different tables, item col-

lisions will differ. This means that frequent items, which are usually the items of interest,

are likely to only collide with insignificant low-frequency items in some of the tables giv-

ing accurate count estimates for the frequent items. The total count of an item in the stream

can be estimated when the item is queried by taking the minimum count from the relevant

table entries. The minimum count represents the entry with the least number of collisions,

and, hence, the smallest count error. For the case of updates with positive weights, if W is

the sum of all weights in the stream, then the count overestimation error for any item is

guaranteed to be at most ɛW with probability (1 − δ). The size of the sketch is set to meet

the desired accuracy by selecting t = 2/ɛ, and d = log2 1/δ. In order for Count-Min error

guarantee to hold, the sketch must use pairwise independent hash functions. A common

pairwise independent hash function that is used by the authors of the sketch is shown in

(1). This hash function requires a large prime number p and two salts a and b that are

randomly selected for each hash table.

ℎ(�) = (�� + � ��� �) ��� � (1)

Figure 1. Count-Min sketch.

3. Related Work: FPGA-Based Data Stream Frequency Estimators

FPGAs and other hardware accelerators, such as Graphical Processing Units (GPUs),

have been extensively studied for accelerating frequent itemset mining of large datasets

Figure 1. Count-Min sketch.

The update process of the sketch summary is simple, in that the item key is hashed
using the hash functions and the relevant count entries in the tables are incremented by the
item weight. Since different hash functions are used for the different tables, item collisions
will differ. This means that frequent items, which are usually the items of interest, are
likely to only collide with insignificant low-frequency items in some of the tables giving
accurate count estimates for the frequent items. The total count of an item in the stream
can be estimated when the item is queried by taking the minimum count from the relevant
table entries. The minimum count represents the entry with the least number of collisions,
and, hence, the smallest count error. For the case of updates with positive weights, if W is
the sum of all weights in the stream, then the count overestimation error for any item is
guaranteed to be at most εW with probability (1 − δ). The size of the sketch is set to meet
the desired accuracy by selecting t = 2/ε, and d = log2 1/δ. In order for Count-Min error
guarantee to hold, the sketch must use pairwise independent hash functions. A common
pairwise independent hash function that is used by the authors of the sketch is shown in (1).
This hash function requires a large prime number p and two salts a and b that are randomly
selected for each hash table.

h(x) = (ax + b mod p) mod t (1)

3. Related Work: FPGA-Based Data Stream Frequency Estimators

FPGAs and other hardware accelerators, such as Graphical Processing Units (GPUs),
have been extensively studied for accelerating frequent itemset mining of large datasets [13],
which is a task related to item frequency estimation. These itemset mining accelerators were
designed to find common sets or sequences among a huge number of separate transactions,
rather than counting items in a data stream. In streaming applications, in which the data is
only looked at once, FPGAs tend to be more appealing than GPUs in situations that require
fast processing of data where it is generated or collected (examples: network switches and
sink nodes in wireless sensor networks).

Electronics 2022, 11, 2399 4 of 17

FPGA data stream frequency estimation accelerators take advantage of the paral-
lelism and deep pipelining possible in FPGAs to achieve significantly higher throughputs
compared to commodity processors. Several proposed accelerators are based on systolic
array architectures consisting of pipelined item-counting Processing Elements (PEs) [14–17].
These PEs store (item, count) pairs and achieve high processing rates by performing simul-
taneous compare-increment operations. The main disadvantage of such accelerators is that
items and item counts are stored in registers implemented using the FPGA logic resources
to achieve deep pipelining, and this limits the number of items that can be monitored
(hundreds to a few thousands).

To enhance scalability, other approaches utilize the abundant embedded RAM re-
sources in FPGAs to store the (item, count) pairs in hash tables. This allows for monitoring
a much larger number of items and allows for representing of items with larger integers.
However, the throughput can be significantly reduced due to the hash collision issue. An
example is the accelerator in [18], which implements a pipelined cuckoo hash table to
reduce the effect of hash collisions on throughput. A similar approach is presented in [19],
where several parallel hash tables are utilized at the same time to scale performance. In
general, in systems relying on generic hash tables the throughput always depends on the
input distribution and will be affected by the complex dependencies associated with the
hash table insertion operations.

As described in Section 2, hash collision resolution is not required in a frequency
estimation sketch. In addition, table entries in a sketch do not contain the item keys and
the operation of updating a table only requires incrementing the relevant table entry. Due
to their simplicity and low memory footprint, FPGA accelerators, based on frequency
estimation sketches, are gaining popularity. The authors in [20] detailed the RTL design
process of a Count-Min sketch accelerator used for heavy hitter detection (finding items
that occur frequently in a stream) and anomaly detection in network traffic data. The main
obstacle in scaling the sketch was implementing hash tables with large RAM blocks while
maintaining high operating frequency. This was addressed by manually partitioning the
large RAM blocks into smaller pipelined blocks. Manual RAM pipelining scaled well for
medium-sized sketches; however, large sketches suffered a significant drop in throughput.
A similar RAM pipelining technique is used in the software sketch generator tool presented
in [21]. This tool can be used to generate a sketch with user specified parameters, such as the
sketch size and desired throughput. It works alongside the FPGA vendor tools (Xilinx and
Intel) to come up with a configuration that meets the user specified parameters. The process
iterates over several compilations until the sketch is fine-tuned to the desired parameters.
The tool can generate sketches with very high throughputs that can be considered optimal
for the supported FPGA families. However, according to the authors, the fine-tuning
process can take up to two weeks for larger sketches implemented on large FPGA chips.

Other sketch design strategies avoid using large sketches to sustain high throughputs.
Using smaller sketches comes at the expense of reduced accuracy. This can be justified
in some applications. For example, the authors in [22,23] used a small sketch based on a
well-known optimized variant of Count-Min, alongside a priority queue data structure to
maintain an approximate list of the top items in the stream. This list was used to estimate
the entropy of the stream in a process that can tolerate the reduced accuracy imposed by
the smaller sketch size. A similar hardware sketch based on the same Count-Min algorithm
extension was presented in [24] for heavy hitter detection in data streams.

While the sketches in [22–24] are based on a well-known size-optimized variant of
Count-Min with proven error bounds, other implementations modify the sketch algorithm
to make it more efficient for hardware implementation without formal error analysis. The
implementations in [25,26] heavily modified the Count-Min sketch to gain more accuracy
out of a smaller high-throughput sketch. The algorithm modifications cannot be generalized
for all use cases of Count-Min and break its error guarantee, which is very important in
most applications.

Electronics 2022, 11, 2399 5 of 17

An interesting property of some sketches is the ability to merge separate sketches
with identical parameters by summing them up, entry-wise. This can be very useful in
large distributed systems. The authors in [21,27] demonstrated how implementing several
replicas of a Count-Min sketch on the same FPGA chip can significantly boost throughput by
processing several parallel streams at the same time. Considering that the on-chip memory
is relatively limited, implementing multiple replicas of a smaller sketch on a single chip
entails a significant accuracy compromise. For example, having two replicas of the same
sketch would double the memory requirement for the same accuracy. In many applications,
a more practical approach to implement Count-Min on an FPGA is to scale the size of a
single sketch as much as possible to extract the best accuracy from the FPGA chip while
trying to maintain a high throughput.

In a typical FPGA implementation of Count-Min, embedded RAM is the dominant
resource type. As RAM access is known to be a major contributor to dynamic power
consumption in FPGAs, especially at high clock rates, the increase in dynamic power in
large high-throughput sketches might be significant. To our knowledge, the sketch in [28] is
the only hardware sketch to be optimized for low power consumption. This sketch is aimed
at small energy-harvesting devices and works simply by deploying a filtering stage that
blocks portions of the stream to reduce RAM accesses at the expense of reduced accuracy.

4. Baseline FPGA Implementation

Intel “System of Tasks” HLS design flow allows for parallel hardware tasks to be
launched asynchronously from a top-level component [8]. An efficient Count-Min sketch
can be easily realized using this design flow. Figure 2 shows the basic building blocks of a
Count-Min sketch component with standard input and output streaming interfaces. The
component can be invoked with two stable arguments (N and Fn.). N is the number of
items consumed by the component in a single invocation, and Fn. is the main function
executed by the sketch (update or query). When invoked in update mode, the component
launches d hash table tasks and writes copies of the input stream data to separate internal
pipes that feed these tasks. A block diagram of a hash table task is shown in Figure 3. In a
hash table task, every item from the input pipe is hashed using the hash function in (1) and
the relevant location in a static RAM block with t memory locations is incremented by the
item weight. This operation is executed for N iterations before the task returns. It is noted
that the hash function random salts and the prime numbers needed in the different hash
table tasks are generated offline and stored as constants.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 17

Electronics 2022, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

data hazards related to memory dependency. Without stalling the task pipeline, consecu-

tive updates to the same RAM address cause functional failure because of memory latency

and the read-after-write data hazard. As on-chip RAM blocks in FPGAs have a typical

latency of 1 clock cycle, the best achievable ii would be 2.

A straightforward approach to mitigate the effect of higher ii on the throughput with-

out modifying the sketch pipeline is to de-multiplex the stream among several parallel

replicas of the sketch. This way, one or more items can be consumed every clock cycle by

the sketch combination. This technique has been demonstrated in the FPGA accelerator in

[29], which implemented the HyperLogLog sketch to measure the cardinality of a stream.

This technique, however, significantly limits the possible accuracy when implementing a

frequency estimation sketch on an FPGA, as the memory requirements are much higher

for frequency estimation sketches compared to cardinality estimation sketches.

Figure 2. The Count-Min sketch constructed using the Intel system of tasks HLS design flow.

Figure 3. A naive hash table task implementation. The HLS compiler inserts stalling hazard pro-

tection logic at the RAM interface due to memory dependency.

5. Optimizing for High Throughput

5.1. Effect of Relaxing Memory Dependency

HLS tools usually support high-level pragmas to relax memory dependencies in

loops, giving the compiler more flexibility in scheduling load and store operations. Using

these pragmas does not resolve memory dependency, so the designer needs to guarantee

that no such dependency will occur to prevent functional failure. In Intel HLS, the “ivdep

safelen(m)” pragma can be used with loops to tell the complier that no memory depend-

ency will occur for at least m loop iterations. Using this pragma has a significant effect on

the throughput of the hash table task in Figure 3. First, an ii of 1 is achievable if m is larger

than the memory latency. Second, the HLS scheduler is able to schedule the load and store

Figure 2. The Count-Min sketch constructed using the Intel system of tasks HLS design flow.

Electronics 2022, 11, 2399 6 of 17

Electronics 2022, 11, x FOR PEER REVIEW 6 of 17

Electronics 2022, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

data hazards related to memory dependency. Without stalling the task pipeline, consecu-

tive updates to the same RAM address cause functional failure because of memory latency

and the read-after-write data hazard. As on-chip RAM blocks in FPGAs have a typical

latency of 1 clock cycle, the best achievable ii would be 2.

A straightforward approach to mitigate the effect of higher ii on the throughput with-

out modifying the sketch pipeline is to de-multiplex the stream among several parallel

replicas of the sketch. This way, one or more items can be consumed every clock cycle by

the sketch combination. This technique has been demonstrated in the FPGA accelerator in

[29], which implemented the HyperLogLog sketch to measure the cardinality of a stream.

This technique, however, significantly limits the possible accuracy when implementing a

frequency estimation sketch on an FPGA, as the memory requirements are much higher

for frequency estimation sketches compared to cardinality estimation sketches.

Figure 2. The Count-Min sketch constructed using the Intel system of tasks HLS design flow.

Figure 3. A naive hash table task implementation. The HLS compiler inserts stalling hazard pro-

tection logic at the RAM interface due to memory dependency.

5. Optimizing for High Throughput

5.1. Effect of Relaxing Memory Dependency

HLS tools usually support high-level pragmas to relax memory dependencies in

loops, giving the compiler more flexibility in scheduling load and store operations. Using

these pragmas does not resolve memory dependency, so the designer needs to guarantee

that no such dependency will occur to prevent functional failure. In Intel HLS, the “ivdep

safelen(m)” pragma can be used with loops to tell the complier that no memory depend-

ency will occur for at least m loop iterations. Using this pragma has a significant effect on

the throughput of the hash table task in Figure 3. First, an ii of 1 is achievable if m is larger

than the memory latency. Second, the HLS scheduler is able to schedule the load and store

Figure 3. A naive hash table task implementation. The HLS compiler inserts stalling hazard protection
logic at the RAM interface due to memory dependency.

In query mode, the N items that need to be queried are written to the input stream
with zero weights when the sketch component is invoked. The sketch component launches
the hash table tasks as well as a “find-minimum” task. In this mode, the hash table tasks
read the relevant count estimates from the RAM blocks and write to internal pipes. The
find-minimum task reads these internal pipes and writes the minimum values to the
output stream.

Although the RAM resources in modern FPGAs can be configured to implement blocks
with dual-port capability, allowing for simultaneous load and store operations, compiling
the hash table task shown in Figure 3 would result in a circuit with an initiation interval
(ii) larger than 1 (ii is the number of clock cycles between the launch of successive loop
iterations). This occurs because the compiler inserts stalling logic to protect against data
hazards related to memory dependency. Without stalling the task pipeline, consecutive
updates to the same RAM address cause functional failure because of memory latency and
the read-after-write data hazard. As on-chip RAM blocks in FPGAs have a typical latency
of 1 clock cycle, the best achievable ii would be 2.

A straightforward approach to mitigate the effect of higher ii on the throughput
without modifying the sketch pipeline is to de-multiplex the stream among several parallel
replicas of the sketch. This way, one or more items can be consumed every clock cycle by
the sketch combination. This technique has been demonstrated in the FPGA accelerator
in [29], which implemented the HyperLogLog sketch to measure the cardinality of a stream.
This technique, however, significantly limits the possible accuracy when implementing a
frequency estimation sketch on an FPGA, as the memory requirements are much higher for
frequency estimation sketches compared to cardinality estimation sketches.

5. Optimizing for High Throughput
5.1. Effect of Relaxing Memory Dependency

HLS tools usually support high-level pragmas to relax memory dependencies in
loops, giving the compiler more flexibility in scheduling load and store operations. Using
these pragmas does not resolve memory dependency, so the designer needs to guarantee
that no such dependency will occur to prevent functional failure. In Intel HLS, the “ivdep
safelen(m)” pragma can be used with loops to tell the complier that no memory dependency
will occur for at least m loop iterations. Using this pragma has a significant effect on the
throughput of the hash table task in Figure 3. First, an ii of 1 is achievable if m is larger
than the memory latency. Second, the HLS scheduler is able to schedule the load and store
operation further apart in the pipeline, allowing for a higher maximum operating frequency
(fmax). This is particularly important when the table in the task is large and composed of
many blocks of the RAM primitives that could be physically distanced on the FPGA chip.

To study the effect of relaxing memory dependency on the hash table task, three
variants of this task were compiled using the Intel Arria 10 GX 1150 FPGA as a target. In

Electronics 2022, 11, 2399 7 of 17

the first variant the ivdep safelen(m) pragma was not used, whereas the safe length m was
set to 4 and 8 in the second and third variants, respectively. The RAM word size, items
and weights were fixed to 4 bytes. The size of the hash table t was varied from 215 to 219

(approximately 2.5% to 40% of the chip memory). The pipelining effort of the HLS compiler
was set to meet the default target fmax of 240 MHz. No specific ii values were forced on
the loops in the sketch, so, the compiler was free to select the best fmax-ii tradeoff. The
achieved post-fit throughputs reported by the synthesis tools are shown in Figure 4. We
can see the significant improvements possible by just relaxing memory dependency. The
improvements were attributed to the lower ii and the higher achieved fmax. Experimenting
with higher values of m did not achieve further improvements, as the feedback path to the
RAM block did not seem to be the bottleneck any longer.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 17

Electronics 2022, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

operation further apart in the pipeline, allowing for a higher maximum operating fre-

quency (fmax). This is particularly important when the table in the task is large and com-

posed of many blocks of the RAM primitives that could be physically distanced on the

FPGA chip.

To study the effect of relaxing memory dependency on the hash table task, three var-

iants of this task were compiled using the Intel Arria 10 GX 1150 FPGA as a target. In the

first variant the ivdep safelen(m) pragma was not used, whereas the safe length m was set

to 4 and 8 in the second and third variants, respectively. The RAM word size, items and

weights were fixed to 4 bytes. The size of the hash table t was varied from 215 to 219 (ap-

proximately 2.5% to 40% of the chip memory). The pipelining effort of the HLS compiler

was set to meet the default target fmax of 240 MHz. No specific ii values were forced on

the loops in the sketch, so, the compiler was free to select the best fmax-ii tradeoff. The

achieved post-fit throughputs reported by the synthesis tools are shown in Figure 4. We

can see the significant improvements possible by just relaxing memory dependency. The

improvements were attributed to the lower ii and the higher achieved fmax. Experiment-

ing with higher values of m did not achieve further improvements, as the feedback path

to the RAM block did not seem to be the bottleneck any longer.

Figure 4. Effect of relaxing memory dependency by using the ivdep safelen(m) pragma in a hash

table task (Arria 10).

In [20], the authors experimented with scaling a similar hash table in a Xilinx Virtex

UltraScale FPGA, using a simple optimization technique in RTL (see Section 3). Table 1

shows the drop in fmax when scaling the RAM block from 5% to 40% of the available on-

chip RAM. We can see that the HLS-generated task scaled better than its RTL counterpart,

even when partitioning the RAM to 64 pipelined blocks.

Table 1. Drop in fmax when scaling the RAM block from 5% to 40%.

Optimization Device Drop in fmax

ivdep safelen(8) pragma Intel Arria 10 11%

RTL 64-stage pipeline [20] Xilinx Virtex UltraScale 17%

RTL 32-stage pipeline [20] Xilinx Virtex UltraScale 26%

RTL 16-stage pipeline [20] Xilinx Virtex UltraScale 56%

5.2. Pre-Update Weight Accumulation

As low-level access to the RAM ports is possible with RTL designs, several data for-

warding techniques have been proposed to deal with the memory dependency issues

[20,21,30]. To exploit the benefits of relaxing memory dependency in an HLS-generated

sketch, we first need a high-level mechanism to break memory dependency in the hash

table tasks. The HLS sketch in [27] deployed a “collector” circuit that stores a short history

50

100

150

200

250

300

15 16 17 18 19

T
hr

o
ug

hp
ut

 (
m

il
li

o
n

up
d

at
e/

s)

log2 t

No Safe Length (ii = 2) m = 4 (ii = 1) m = 8 (ii = 1)

Figure 4. Effect of relaxing memory dependency by using the ivdep safelen(m) pragma in a hash
table task (Arria 10).

In [20], the authors experimented with scaling a similar hash table in a Xilinx Virtex
UltraScale FPGA, using a simple optimization technique in RTL (see Section 3). Table 1
shows the drop in fmax when scaling the RAM block from 5% to 40% of the available on-
chip RAM. We can see that the HLS-generated task scaled better than its RTL counterpart,
even when partitioning the RAM to 64 pipelined blocks.

Table 1. Drop in fmax when scaling the RAM block from 5% to 40%.

Optimization Device Drop in fmax

ivdep safelen(8) pragma Intel Arria 10 11%
RTL 64-stage pipeline [20] Xilinx Virtex UltraScale 17%
RTL 32-stage pipeline [20] Xilinx Virtex UltraScale 26%
RTL 16-stage pipeline [20] Xilinx Virtex UltraScale 56%

5.2. Pre-Update Weight Accumulation

As low-level access to the RAM ports is possible with RTL designs, several data forward-
ing techniques have been proposed to deal with the memory dependency issues [20,21,30].
To exploit the benefits of relaxing memory dependency in an HLS-generated sketch, we
first need a high-level mechanism to break memory dependency in the hash table tasks.
The HLS sketch in [27] deployed a “collector” circuit that stores a short history of the
most recent memory updates in a small cache memory implemented using shift registers.
Values from past updates are re-used in new updates to the same memory addresses. A
similar approach was demonstrated in an Intel OneAPI kernel that computed the frequency
histogram of a dataset [31]. Both approaches require the read and write ports of the sketch
memories to be active all the time and they perform many redundant updates that could
amount for most of the sketch updates when the stream is skewed, as will be seen in a
later section.

Electronics 2022, 11, 2399 8 of 17

A better and less complex solution based on Load-Store Queue (LSQ) architecture is
presented in the modified hash table task shown in Figure 5. The solution requires the
addition of a small observation window after the hash function stage. This window can be
viewed as a pair of shift registers of size m with parallel-in parallel-out connections to some
logic. One shift register takes the hashes of the items in the stream and the other takes the
associated weights. The logic compares the hash in the first register to all the hashes ahead
in the shift register. The weight of the first hash is then incremented by the weight of any
identical hash ahead in the shift register, which is replaced with a zero weight. Any hash
with a zero weight in update mode represents a bubble (labelled null in Figure 5), which
is removed further in the pipeline before initiating memory load and store operations.
Implementing pre-update weight accumulation in HLS is straightforward, as only two
unrolled loops are required (see Figure 6). One loop represents a shift register, and the other
loop represents the weight accumulation logic. The shift register is defined with a structure
type encapsulating two members, the first being a memory update address, generated by
the hash function, and the second the associated weight. The weight accumulation loop
needs to be minimal to limit the critical path when m is increased.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 17

Electronics 2022, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

Figure 5. Breaking memory dependency in a hash table task using pre-update weight accumula-

tion.

Figure 6. Pre-update weight accumulation with loop unrolling.

It is noted that an “aggregate” circuit similar to the LSQ in Figure 5 was implicitly

suggested in [27]. However, it is not clear why it was not used in the sketch implementa-

tion. Perhaps, the deployment of the LSQ did not make a significant difference to the fmax

of the small sketches used (t = 213).

5.3. Mixed Intiation Interval Design

Most sketches presented in Section 3 are based on an “always run” model [1], mean-

ing that the sketch does not have separate update/query functionality. Instead, the sketch

continuously reads items from an input stream and writes count updates to an output

stream for every item hit. While this model might be suitable for some applications, other

applications may require a generic sketch approach with the flexibility to query items

without updating the sketch. Consider for example a sketch accelerator paired with an

embedded processor, which initiates Direct Memory Access (DMA) transfers from exter-

nal memory to update the sketch. Intermittently, the processor initiates short transfers

Figure 5. Breaking memory dependency in a hash table task using pre-update weight accumulation.

By accumulating the weights backwards in the window, and ignoring the inserted
bubbles, we effectively break the memory dependency for m iterations. The only difference
in the invocation of a sketch component that deploys pre-update weight accumulation
is the requirement to send an extra padding sequence with zero weights to flush the
shift registers.

There is one safety issue that needs to be addressed when opting for the simple LSQ
architecture in Figure 5. When flushing the shift register in a table task at the end of a
sketch invocation in update mode, it is possible that one or more of the padding characters
generate addresses that cause weights in the last m items in the stream to accumulate
backwards and not update the tables in one or more table tasks. As m is generally small,
and the hash function salts are generated offline, a simple and effective way around this
issue is to flush the shift register with a unique padding sequence pre-calculated offline so
that it guarantees that there would be no address collisions in any of the table tasks for at
least m consecutive characters.

Electronics 2022, 11, 2399 9 of 17

Electronics 2022, 11, x FOR PEER REVIEW 9 of 17

Electronics 2022, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

Figure 5. Breaking memory dependency in a hash table task using pre-update weight accumula-

tion.

Figure 6. Pre-update weight accumulation with loop unrolling.

It is noted that an “aggregate” circuit similar to the LSQ in Figure 5 was implicitly

suggested in [27]. However, it is not clear why it was not used in the sketch implementa-

tion. Perhaps, the deployment of the LSQ did not make a significant difference to the fmax

of the small sketches used (t = 213).

5.3. Mixed Intiation Interval Design

Most sketches presented in Section 3 are based on an “always run” model [1], mean-

ing that the sketch does not have separate update/query functionality. Instead, the sketch

continuously reads items from an input stream and writes count updates to an output

stream for every item hit. While this model might be suitable for some applications, other

applications may require a generic sketch approach with the flexibility to query items

without updating the sketch. Consider for example a sketch accelerator paired with an

embedded processor, which initiates Direct Memory Access (DMA) transfers from exter-

nal memory to update the sketch. Intermittently, the processor initiates short transfers

Figure 6. Pre-update weight accumulation with loop unrolling.

It is noted that an “aggregate” circuit similar to the LSQ in Figure 5 was implicitly
suggested in [27]. However, it is not clear why it was not used in the sketch implementation.
Perhaps, the deployment of the LSQ did not make a significant difference to the fmax of
the small sketches used (t = 213).

5.3. Mixed Intiation Interval Design

Most sketches presented in Section 3 are based on an “always run” model [1], meaning
that the sketch does not have separate update/query functionality. Instead, the sketch
continuously reads items from an input stream and writes count updates to an output
stream for every item hit. While this model might be suitable for some applications, other
applications may require a generic sketch approach with the flexibility to query items
without updating the sketch. Consider for example a sketch accelerator paired with an
embedded processor, which initiates Direct Memory Access (DMA) transfers from external
memory to update the sketch. Intermittently, the processor initiates short transfers only
to query some items of interest. As these queries are intermittent and short, the sketch
throughput is only important when updating the sketch with stream data.

HLS tools allow users to specify certain ii values for the different hardware tasks
in the design, provided that such values are achievable (example: table task in Figure 3
cannot achieve an ii of 1). In general, it is desirable to optimize an HLS design to achieve
an ii of 1, as demonstrated with the pre-update weight accumulation technique. In some
situations, users may want to increase the ii in some non-critical parts of the design to
give the compiler more flexibility in scheduling the different operations in the pipeline.
This can yield higher throughputs when higher target fmax is specified for the compiler.
We can take advantage of this optimization when implementing a sketch following the
separate update/query model (see Figure 7). By forcing an ii of 1 in the tasks invoked
when updating the sketch and increasing the ii in the tasks only invoked for item queries
(find-minimum in case of Count-Min sketch), stream update throughput can be increase at
the expense of lower query throughput.

Electronics 2022, 11, 2399 10 of 17

Electronics 2022, 11, x FOR PEER REVIEW 10 of 17

Electronics 2022, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

only to query some items of interest. As these queries are intermittent and short, the sketch

throughput is only important when updating the sketch with stream data.

HLS tools allow users to specify certain ii values for the different hardware tasks in

the design, provided that such values are achievable (example: table task in Figure 3 can-

not achieve an ii of 1). In general, it is desirable to optimize an HLS design to achieve an

ii of 1, as demonstrated with the pre-update weight accumulation technique. In some sit-

uations, users may want to increase the ii in some non-critical parts of the design to give

the compiler more flexibility in scheduling the different operations in the pipeline. This

can yield higher throughputs when higher target fmax is specified for the compiler. We

can take advantage of this optimization when implementing a sketch following the sepa-

rate update/query model (see Figure 7). By forcing an ii of 1 in the tasks invoked when

updating the sketch and increasing the ii in the tasks only invoked for item queries (find-

minimum in case of Count-Min sketch), stream update throughput can be increase at the

expense of lower query throughput.

Force ii =1

Force ii =1

Force ii =1

Table Tasks

Relax
ii

(ii = x)

Find-Minimum

Update: 1 item every clock cycle

Query: 1 item every x clock cycles

backpressure

Figure 7. Raising target fmax in a mixed ii design can yield higher update throughput at the ex-

pense of lower query throughput.

5.4. Evaluation

This section evaluates the presented throughput optimizations on a fully functioning

Count-Min sketch constructed as a system of tasks (see Figure 2). The sketch complies with

Intel FPGA standard interfaces and can be easily integrated with an Intel Avalon bus sys-

tem. To evaluate the optimized sketch against the naïve implementation, the midrange

Arria 10 GX 1150 FPGA was selected as a target device. This is the largest chip from the

Arria 10 family with 427,200 Adaptive Logic Modules (ALMs), 1518 Digital Signal Pro-

cessing (DSP) blocks and 2713 M20K embedded RAM blocks. The word size in the RAM

blocks, the item and weight registers were all fixed to 4 bytes. The hash function parame-

ters were generated offline and specified as constants at compile time.

First, the pre-update weight accumulation optimization technique was evaluated.

Throughout the evaluation experiments, the compiler settings were kept at default (target

fmax of 240 MHz, best fmax-ii tradeoff). Three sketch sizes that fit the target chip were

used in the evaluation. The first with (d = 16, t = 216), the second with (d = 8, t = 217) and the

third with (d = 4, t = 218). The safe distance was fixed to m = 8 in all optimized configura-

tions. Table 2 reports the post-fit resource utilization results for the optimized sketches

(the difference with the unoptimized sketches is negligible when m = 8). Table 3 compares

the performance metrics of the optimized sketches to their unoptimized counterparts. We

can see that with the optimization the sketch could achieve more than 3x the throughput.

Furthermore, the latency of a single item query was smaller when calculated according to

the achieved fmax.

Figure 7. Raising target fmax in a mixed ii design can yield higher update throughput at the expense
of lower query throughput.

5.4. Evaluation

This section evaluates the presented throughput optimizations on a fully functioning
Count-Min sketch constructed as a system of tasks (see Figure 2). The sketch complies with
Intel FPGA standard interfaces and can be easily integrated with an Intel Avalon bus system.
To evaluate the optimized sketch against the naïve implementation, the midrange Arria
10 GX 1150 FPGA was selected as a target device. This is the largest chip from the Arria
10 family with 427,200 Adaptive Logic Modules (ALMs), 1518 Digital Signal Processing
(DSP) blocks and 2713 M20K embedded RAM blocks. The word size in the RAM blocks,
the item and weight registers were all fixed to 4 bytes. The hash function parameters were
generated offline and specified as constants at compile time.

First, the pre-update weight accumulation optimization technique was evaluated.
Throughout the evaluation experiments, the compiler settings were kept at default (target
fmax of 240 MHz, best fmax-ii tradeoff). Three sketch sizes that fit the target chip were used
in the evaluation. The first with (d = 16, t = 216), the second with (d = 8, t = 217) and the third
with (d = 4, t = 218). The safe distance was fixed to m = 8 in all optimized configurations.
Table 2 reports the post-fit resource utilization results for the optimized sketches (the
difference with the unoptimized sketches is negligible when m = 8). Table 3 compares
the performance metrics of the optimized sketches to their unoptimized counterparts. We
can see that with the optimization the sketch could achieve more than 3x the throughput.
Furthermore, the latency of a single item query was smaller when calculated according to
the achieved fmax.

Table 2. Chip utilization (Arria 10, m = 8).

Sketch Feature Chip Utilization (%)

t d ε (1 − δ) ALMs DSPs M20K

216 16 0.00003 0.99998 18 2 80
217 8 0.000015 0.996 10 1 80
218 4 0.0000076 0.94 5 0.5 80

Table 3. Performance (Arria 10, target fmax = 240 MHz).

t d Optimized? ii fmax
(MHz)

Latency
(ns) 1

Throughput
(M Updates/s)

216 16 No 2 153 712 77
217 8 No 2 139 790 70
218 4 No 2 123 886 62
216 16 Yes (m = 8) 1 255 459 255
217 8 Yes (m = 8) 1 232 466 232
218 4 Yes (m = 8) 1 234 462 234

1 Measured for a single item query at fmax.

Electronics 2022, 11, 2399 11 of 17

To extract more throughput from the Arria 10 chip, a mixed ii design strategy with a
higher target fmax of 400 MHz was evaluated. Table 4 shows the performance results for the
sketch when relaxing the ii for the find-minimum task and specifying an ii of 1 for the table
tasks. In general, the achieved update throughput was higher for all tested configurations.
We can see that a higher throughput of up to 30% was achieved for the sketch configurations
with (d = 8, t = 217) and (d = 4, t = 218). No significant gain was reported for the sketch
configuration with 16 table tasks. Analysis of the compiler report revealed that in this
configuration the find-minimum task was not a performance bottleneck.

Table 4. Performance (Arria 10, target fmax = 400 MHz).

t d Optimization ii fmax (MHz) Query Throughput
(M Updates/s)

Update Throughput
(M Updates/s)

216 16 m = 8, mixed ii 1,2 264 132 264
217 8 m = 8, mixed ii 1,2 330 165 330
218 4 m = 8, mixed ii 1,2 312 156 312

It is noted that the optimizations evaluated in this section could be seamlessly ap-
plied to other FPGA HLS tools, such as Xilinx Vitis, as they only require basic pragma
support (loop unrolling, constraining memory dependence distance and forcing certain
loop initiation interval values). The benefit of achieving high throughput with minimal
place-and-route effort could also be extended to platforms other than FPGAs, especially
with recent industry trends in deploying technologies like structured Application Specific
Integrated Circuits (ASICs) and embedded FPGAs (eFPGAs). Major FPGA vendors provide
customers with the option to easily migrate their FPGA designs to special structured ASICs
with properties between FPGAs and standard-cell ASICs. For example, the intel eASIC
development flow allows for an FPGA design to be migrated to an eASIC device to achieve
much higher performance, lower power consumption and lower unit cost [32].

6. Optimizing for Low Power
6.1. Reduced Memory Accesses in Skewed Streams

As discussed earlier, the primary use of pre-update weight accumulation is break-
ing memory dependency in the hash table tasks. In Section 5, test results showed that
only a small memory dependency safe distance m was sufficient for achieving significant
throughput gains, even for large sketches. The use of the pre-update weight accumulation
technique could be extended to reduce the total number of memory accesses when pro-
cessing the data stream. We could take advantage of the fact that data streams typically
have a skewed frequency distribution. According to [33], many real-word streams can be
modeled as heavily skewed Zipfian distributions [34]. By pre-counting item weights in the
LSQ, significant reduction in total memory access rate is possible, as the bubble inserted in
the pipeline would be removed before triggering memory load and store operations. This
is particularly important in large sketches that are updated at high throughput as RAM
is known to be a major contributor to the total dynamic power consumption in a typical
FPGA system implementation.

Figure 8 evaluates the effect of pre-update weight accumulation on the memory access
rate when different values of m are used. The reported results were calculated by simulation
of synthetic input streams following a Zipfian distribution with Zipf parameter (α) values
ranging from 1 to 1.5, without considering hash collisions. For moderately skewed inputs
(α = 1), m had to be large to achieve reasonable reduction in memory access rate. For
heavily skewed inputs, the reduction in memory access was significant, even for small
values of m. Since, RAM is the dominant resource in a sketch, the optimization could be
used to achieve significant reduction in total dynamic power consumption without loss in
accuracy as in the stream filtering power optimization technique in [28].

Electronics 2022, 11, 2399 12 of 17

Electronics 2022, 11, x FOR PEER REVIEW 12 of 17

Electronics 2022, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

technique could be extended to reduce the total number of memory accesses when pro-

cessing the data stream. We could take advantage of the fact that data streams typically

have a skewed frequency distribution. According to [33], many real-word streams can be

modeled as heavily skewed Zipfian distributions [34]. By pre-counting item weights in

the LSQ, significant reduction in total memory access rate is possible, as the bubble in-

serted in the pipeline would be removed before triggering memory load and store opera-

tions. This is particularly important in large sketches that are updated at high throughput

as RAM is known to be a major contributor to the total dynamic power consumption in a

typical FPGA system implementation.

Figure 8 evaluates the effect of pre-update weight accumulation on the memory ac-

cess rate when different values of m are used. The reported results were calculated by

simulation of synthetic input streams following a Zipfian distribution with Zipf parame-

ter (α) values ranging from 1 to 1.5, without considering hash collisions. For moderately

skewed inputs (α = 1), m had to be large to achieve reasonable reduction in memory access

rate. For heavily skewed inputs, the reduction in memory access was significant, even for

small values of m. Since, RAM is the dominant resource in a sketch, the optimization could

be used to achieve significant reduction in total dynamic power consumption without loss

in accuracy as in the stream filtering power optimization technique in [28].

Figure 8. Memory access rate in a hash table task processing skewed synthetic data streams (Zip-

fian distribution).

6.2. Power Optimized Sketch

To capitalize on the possible reduction in total dynamic power consumption using

pre-update weight accumulation, we can increase the safe length m inside each table task.

However, this increases the area overhead, especially when the sketch parameter d is

large. Also, when d and m have large values, any possible reduction in dynamic power

can be offset by the power consumed by the LSQs. For reasonably small item sizes (say

32-bit integers), we can introduce a single accumulation window of size l at the input in-

terface of the sketch, while keeping m small inside the hash table task (see Figure 9). The

operation of this accumulation window is identical to the LSQ inside the hash table tasks;

however, the window takes in the item identifiers rather than the hashes of the items.

Flushing the shift register at the end of a sketch invocation in update mode is straightfor-

ward, as any padding sequence of unused item identifiers with zero weights is sufficient.

10

30

50

70

90

110

1 1.1 1.2 1.3 1.4 1.5

M
em

o
ry

 A
cc

es
s

(%
)

α

m = 32 m = 64 m = 128 m = 256

Figure 8. Memory access rate in a hash table task processing skewed synthetic data streams (Zipfian
distribution).

6.2. Power Optimized Sketch

To capitalize on the possible reduction in total dynamic power consumption using
pre-update weight accumulation, we can increase the safe length m inside each table task.
However, this increases the area overhead, especially when the sketch parameter d is large.
Also, when d and m have large values, any possible reduction in dynamic power can be
offset by the power consumed by the LSQs. For reasonably small item sizes (say 32-bit
integers), we can introduce a single accumulation window of size l at the input interface of
the sketch, while keeping m small inside the hash table task (see Figure 9). The operation
of this accumulation window is identical to the LSQ inside the hash table tasks; however,
the window takes in the item identifiers rather than the hashes of the items. Flushing the
shift register at the end of a sketch invocation in update mode is straightforward, as any
padding sequence of unused item identifiers with zero weights is sufficient.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 17

Electronics 2022, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

Figure 9. Power optimized sketch: pre-update weight accumulation with length l at the input stream

interface.

6.3. Evaluation

To evaluate the power optimized sketch, several configurations of the sketch were

compiled with different values of l using the mixed ii compilation strategy and using an

Arria 10 GX 1150 FPGA as a target device. Only l was varied in the different configurations

of the sketch, all other parameters were fixed as: 32-bit items, m = 8, d = 4 and t = 218. The

accumulation window length l was varied from 32 to 256 in four different configurations.

In all configurations, the compiler achieved an fmax of at least 300 MHz. The RAM blocks

in the hash table tasks were implemented as simple dual-port RAM (one port dedicated

for reading and the other for writing), which consumed less power than true dual-port

RAM.

Table 5 reports the dynamic power consumption estimates for the different sketch

configurations obtained from the Intel FPGA early power estimation tool [35]. All config-

urations were assumed to operate at 300 MHz and assumed to process an input stream with

a normal distribution, meaning that the window was unlikely to accumulate any weights

and the RAM read and write ports were active all the time during streaming activity (the

RAM read and write ports enable rate was set to 100% in the power estimation tool).

Table 5. Dynamic power consumption estimates (Arria 10 GX 1150, normal distribution, f = 300

MHz, m = 8, d = 4 and t = 218).

Accumulation Window Length (l)
Dynamic Power (W)

RAM Logic Others Total

32 7.03 0.70 0.94 8.67

64 7.03 0.74 1.00 8.77

128 7.03 0.88 1.10 9.01

256 7.03 1.32 1.30 9.65

When processing skewed distributions, bubbles would be inserted in the pipeline by

the accumulation window, as described in Section 5. Although these bubbles can theoret-

ically eliminate the need for RAM read and write operations at the respective clock cycles,

initial investigation of the HLS compiler generated source files suggested that the default

RAM implementation internally enabled the ports of the RAM blocks, regardless of

memory operations.

The limitation causing the RAM ports to be activated all the time is only related to

the way the memory blocks are configured using the high-level wrapper files generated

by the HLS tool. There is no low-level limitation in the FPGA RAM primitives preventing

the deactivation of RAM operations in response to bubbles in the sketch pipeline. There-

fore, it was worth studying the effect of deactivating the RAM operations on the dynamic

power consumption of the sketch. Figure 10a shows the estimated reduction in dynamic

power consumption caused by the recued RAM write operations in the optimized

sketches when processing input streams modeled as Zipfian distribution with Zipf pa-

rameter (α) values ranging from 1 to 1.5. The power estimates were obtained from the

Intel early power estimation tool after varying the write access rate in the tool according

Figure 9. Power optimized sketch: pre-update weight accumulation with length l at the input
stream interface.

6.3. Evaluation

To evaluate the power optimized sketch, several configurations of the sketch were
compiled with different values of l using the mixed ii compilation strategy and using an
Arria 10 GX 1150 FPGA as a target device. Only l was varied in the different configurations
of the sketch, all other parameters were fixed as: 32-bit items, m = 8, d = 4 and t = 218. The
accumulation window length l was varied from 32 to 256 in four different configurations.
In all configurations, the compiler achieved an fmax of at least 300 MHz. The RAM blocks
in the hash table tasks were implemented as simple dual-port RAM (one port dedicated for
reading and the other for writing), which consumed less power than true dual-port RAM.

Table 5 reports the dynamic power consumption estimates for the different sketch
configurations obtained from the Intel FPGA early power estimation tool [35]. All configu-
rations were assumed to operate at 300 MHz and assumed to process an input stream with
a normal distribution, meaning that the window was unlikely to accumulate any weights

Electronics 2022, 11, 2399 13 of 17

and the RAM read and write ports were active all the time during streaming activity (the
RAM read and write ports enable rate was set to 100% in the power estimation tool).

Table 5. Dynamic power consumption estimates (Arria 10 GX 1150, normal distribution, f = 300 MHz,
m = 8, d = 4 and t = 218).

Accumulation Window
Length (l)

Dynamic Power (W)

RAM Logic Others Total

32 7.03 0.70 0.94 8.67
64 7.03 0.74 1.00 8.77
128 7.03 0.88 1.10 9.01
256 7.03 1.32 1.30 9.65

When processing skewed distributions, bubbles would be inserted in the pipeline
by the accumulation window, as described in Section 5. Although these bubbles can
theoretically eliminate the need for RAM read and write operations at the respective clock
cycles, initial investigation of the HLS compiler generated source files suggested that the
default RAM implementation internally enabled the ports of the RAM blocks, regardless of
memory operations.

The limitation causing the RAM ports to be activated all the time is only related to the
way the memory blocks are configured using the high-level wrapper files generated by
the HLS tool. There is no low-level limitation in the FPGA RAM primitives preventing the
deactivation of RAM operations in response to bubbles in the sketch pipeline. Therefore, it
was worth studying the effect of deactivating the RAM operations on the dynamic power
consumption of the sketch. Figure 10a shows the estimated reduction in dynamic power
consumption caused by the recued RAM write operations in the optimized sketches when
processing input streams modeled as Zipfian distribution with Zipf parameter (α) values
ranging from 1 to 1.5. The power estimates were obtained from the Intel early power
estimation tool after varying the write access rate in the tool according to the rates reported
in Figure 8. We can see that the configuration with l = 64 performed slightly better than the
other configurations, with an average reduction in dynamic power of 23% compared to the
case of an input stream with a normal distribution. Figure 10b shows the dynamic power
of the optimized sketches when deactivating both the RAM read and write operations in
response to bubbles in the pipeline. We can see that the sketch configuration with l = 128
achieved an average reduction in dynamic power of 53%, compared to the case of an input
stream with a normal distribution.

It is noted that the power analysis in this section was based on early rough estimates
that demonstrated the potential benefit of the pre-update weight accumulation technique on
reducing the dynamic power consumption. In fact, the power saving using this technique
can be further extended to exploit clock-gating optimization features in modern FPGAs [36].
For example, by implementing a weight accumulation window as a separate component in
a separate clock domain that precedes the sketch, power saving can be extended by gating
the entire sketch. This, however, requires structural modifications to the presented sketch
that we left for future work.

Electronics 2022, 11, 2399 14 of 17

Electronics 2022, 11, x FOR PEER REVIEW 14 of 17

Electronics 2022, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

to the rates reported in Figure 8. We can see that the configuration with l = 64 performed

slightly better than the other configurations, with an average reduction in dynamic power

of 23% compared to the case of an input stream with a normal distribution. Figure 10b

shows the dynamic power of the optimized sketches when deactivating both the RAM

read and write operations in response to bubbles in the pipeline. We can see that the sketch

configuration with l = 128 achieved an average reduction in dynamic power of 53%, com-

pared to the case of an input stream with a normal distribution.

It is noted that the power analysis in this section was based on early rough estimates

that demonstrated the potential benefit of the pre-update weight accumulation technique

on reducing the dynamic power consumption. In fact, the power saving using this tech-

nique can be further extended to exploit clock-gating optimization features in modern

FPGAs [36]. For example, by implementing a weight accumulation window as a separate

component in a separate clock domain that precedes the sketch, power saving can be ex-

tended by gating the entire sketch. This, however, requires structural modifications to the

presented sketch that we left for future work.

Figure 10. Dynamic power consumption estimates for a stream with a Zipfian distribution: (a)

deactivating RAM write operations in response to bubbles in the pipeline, (b) deactivating both

RAM write and read operations in response to bubbles.

7. Comparison with the State-of-the-Art

This section compares the HLS optimized Count-Min sketch to the most relevant

FPGA Count-Min sketch implementations in the published literature. Table 6 compares

the design details and features of the sketches selected for evaluation (all designed using

RTL description languages apart from the HLS sketch in [27]). All these sketches did not

support weighted updates and used hardware-friendly hash functions to reduce the area

overhead and design complexity. The only sketches to support the error guarantee of

Count-Min were the sketches in [20,21], as they used a pairwise-independent hash family

and did not modify the algorithm behind Count-Min. The sketch in [23] was based on a

well-known variant of Count-Min based on a conservative sketch update strategy that

would update a table entry for an item hit only if the entry actually contained the current

Figure 10. Dynamic power consumption estimates for a stream with a Zipfian distribution:
(a) deactivating RAM write operations in response to bubbles in the pipeline, (b) deactivating
both RAM write and read operations in response to bubbles.

7. Comparison with the State-of-the-Art

This section compares the HLS optimized Count-Min sketch to the most relevant
FPGA Count-Min sketch implementations in the published literature. Table 6 compares the
design details and features of the sketches selected for evaluation (all designed using RTL
description languages apart from the HLS sketch in [27]). All these sketches did not support
weighted updates and used hardware-friendly hash functions to reduce the area overhead
and design complexity. The only sketches to support the error guarantee of Count-Min
were the sketches in [20,21], as they used a pairwise-independent hash family and did not
modify the algorithm behind Count-Min. The sketch in [23] was based on a well-known
variant of Count-Min based on a conservative sketch update strategy that would update a
table entry for an item hit only if the entry actually contained the current minimum count
estimate for the item [37]. The sketch in [25] was a modified hardware-optimized variant
of the Count-Min sketch with limited empirical accuracy evaluation.

Table 6. Sketch Comparison with Published Work.

Sketch Hash Function Weighted
Updates?

Error
Guarantee?

Memory Access
(%)

Proposed Equation (1) Yes Yes various
[20] H3 No Yes 100%
[21] H3 No Yes 100%
[23] MurmurHash No No various
[25] Xoodoo-NC No No 100%
[27] MurmurHash No No 100%

All the previously published work, apart from the work in [20,21,27], did not explicitly
mention how the data hazard issue was resolved. The sketches in [20,21] implemented
similar data forwarding mechanisms that required the memory to be accessed all the time,
regardless of the input distribution. Memory access was also 100% for the HLS sketch in [27]

Electronics 2022, 11, 2399 15 of 17

when the “collect” default data forwarding method was applied rather than the “aggregate”
LSQ technique. The sketch in [23] exhibited reduced memory update operations, due the
conservative update strategy deployed by the sketch.

Most of the sketches in Table 6 were implemented using high-end Xilinx UltraScale
and UltraScale + FPGA devices. Since our work was based on Intel FPGA technology,
the proposed sketch was re-implemented on a Stratix 10 FPGA for better throughput
comparison. There were two sketch sizes that matched the largest sizes used in the RTL
optimized hardware sketches in [20,21]. Parameter m was set to 16 and pre-update weight
accumulation was not used at the input interface. The mixed ii compilation strategy was
used with a target fmax of 600 MHz (ii = 1 for table tasks and ii = 2 for find-minimum
task after compilation). Table 7 compares the performance of the proposed sketch to the
sketches in previously published work. In particular, we compared the throughputs of the
sketches, as well as the accuracy parameters, assuming that all sketches were applying
strong pairwise-independent hash functions. The Count-Min sketch in [27] was excluded
from the comparison, as it is a part of a parallel multi-sketch system with no report of
fmax. Additionally, sketches with sub-par throughputs and very small size parameters
were excluded from the comparison

Table 7. Performance comparison with published work.

Sketch Device
Sketch Size Accuracy Parameters Throughput

(M Updates/s)t d ε (1 − δ)

Proposed Stratix 10 217 14 0.000015 0.99994 494
Proposed Stratix 10 217 5 0.000015 0.97 513

[20] Virtex UltraScale 217 14 0.000015 0.99994 325
[21] Stratix 10 217 5 0.000015 0.97 503
[23] UltraScale+ MPSoC 214 4 0.00012 0.94 354
[25] Virtex UltraScale+ 216 4 0.00003 0.94 415

We can see that the reported throughput of 495 M updates/s in the proposed sketch
with size parameters (d = 14, t = 217) was faster than its fastest counterpart by 50%. Moreover,
the proposed sketch with size parameters (d = 5, t = 217) achieved a similar throughput
compared to the extensively fine-tuned sketch in [21]. In fact, according to the extensive
experiments conducted in [21], the maximum possible fmax for any sketch implemented
on an Intel Stratix 10 FPGA was near 500 MHz. It is noted that in the relevant publications
of the sketches in Table 7, the throughputs were reported in bits/s and calculated by
multiplying the update rate by the item size, or by the network packet size in sketches
targeting networking applications.

8. Conclusions and Further Research

This paper presented high-level design optimizations to better scale HLS-generated
frequency estimation sketch data stream summaries. The paper demonstrated how the
optimizations can be used with the Intel “System of Tasks” HLS design flow to implement
efficient sketches that utilize large portions of an FPGA chip. When opting for these
optimizations to implement an FPGA sketch, the benefits can be summarized as follows:

(1) Easier design entry for a range of frequency estimation sketches compared to RTL
(the main optimization only requires the addition of a small circuit specified with two
simple unrolled loops).

(2) Achieving significant throughput and latency advantages compared to unoptimized
sketches designed with HLS (more than threefold increase in throughput is achieved).

(3) Extracting the best possible accuracy from a given chip with error guarantee that
can be tailored to specific streams with minimal effort at the design level (sketches
utilizing 80% of the FPGA were easily synthesized).

Electronics 2022, 11, 2399 16 of 17

Another important benefit of the presented work is the possible reduction in power
consumption, due to the reduction in memory accesses (bubbles being continuously in-
serted in the pipeline). With early power estimates, the dynamic power consumption was
shown to be reduced when processing skewed data streams, which are typical in many
real-world applications. Future work will address power optimizations and analysis in
more detail. Different ideas that involve stream filtering, power-gating and working with
multiple clock domains will be explored and evaluated.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Babcock, B.; Babu, S.; Datar, M.; Motwani, R.; Widom, J. Models and issues in data stream systems. In Proceedings of the

Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Madison, WI, USA, 3–5 June 2002;
pp. 1–16.

2. Kfoury, E.F.; Crichigno, J.; Bou-Harb, E. An exhaustive survey on p4 programmable data plane switches: Taxonomy, applications,
challenges, and future trends. IEEE Access 2021, 9, 87094–87155. [CrossRef]

3. Muthukrishnan, S. Data streams: Algorithms and applications. Found. Trends Theor. Comput. Sci. 2005, 1, 117–236. [CrossRef]
4. Gribonval, R.; Chatalic, A.; Keriven, N.; Schellekens, V.; Jacques, L.; Schniter, P. Sketching data sets for large-scale learning:

Keeping only what you need. IEEE Signal Processing Mag. 2021, 38, 12–36. [CrossRef]
5. Alon, N.; Matias, Y.; Szegedy, M. The space complexity of approximating the frequency moments. J. Comput. Syst. Sci. 1999, 58,

137–147. [CrossRef]
6. Charikar, M.; Chen, K.; Farach-Colton, M. Finding frequent items in data streams. In Proceedings of the International Colloquium

on Automata, Languages, and Programming, Eindhoven, The Netherlands, 30 June–4 July 2002; pp. 693–703.
7. Cormode, G.; Muthukrishnan, S. An improved data stream summary: The count-min sketch and its applications. J. Algorithms

2005, 55, 58–75. [CrossRef]
8. Intel®High Level Synthesis Compiler Pro Edition: User Guide. Available online: https://www.intel.com/content/www/us/en/

docs/programmable/683456/21--4/pro-edition-user-guide.html (accessed on 26 June 2022).
9. Bledaite, L. Count-Min Sketch in Real Data Applications. Available online: https://skillsmatter.com/skillscasts/6844-count-min-

sketch-in-real-data-applications (accessed on 18 July 2022).
10. Team, D.P. Learning with Privacy at Scale. Apple Mach. Learn. J. 2017, 1, 1–25.
11. Apache Spark: CountMin Data Structure. Available online: https://spark.apache.org/docs/2.0.1/api/java/org/apache/spark/

util/sketch/CountMinSketch.html (accessed on 18 July 2022).
12. RedisBloom: Bloom Filters and Other Probabilistic Data Structures for Redis. Available online: https://github.com/RedisBloom/

RedisBloom/ (accessed on 18 July 2022).
13. Bustio-Martínez, L.; Cumplido, R.; Letras, M.; Hernández-León, R.; Feregrino-Uribe, C.; Hernández-Palancar, J. FPGA/GPU-

based acceleration for frequent itemsets mining: A comprehensive review. ACM Comput. Surv. (CSUR) 2021, 54, 1–35. [CrossRef]
14. Ebrahim, A.; Khalifat, J. Fast Approximation of the Top-k Items in Data Streams Using a Reconfigurable Accelerator.

In Proceedings of the International Symposium on Applied Reconfigurable Computing, Virtual Conference, 29–30 June 2021;
pp. 3–17.

15. Ebrahim, A.; Khlaifat, J. An Efficient Hardware Architecture for Finding Frequent Items in Data Streams. In Proceedings of the
IEEE International Conference on Computer Design (ICCD), Lake Tahoe, NV, USA, 23–26 October 2020; pp. 113–119.

16. Sun, Y.; Wang, Z.; Huang, S.; Wang, L.; Wang, Y.; Luo, R.; Yang, H. Accelerating frequent item counting with FPGA. In Proceedings
of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 26–28 February 2014;
pp. 109–112.

17. Gololo, M.G.D.; Zhao, Q.; Amagasaki, M.; Iida, M.; Kuga, M.; Sueyoshi, T. Low-cost Hardware that Accelerates Frequent Item
Counting with an FPGA. IEIE Trans. Smart Processing Comput. 2017, 6, 347–354. [CrossRef]

18. Sha, M.; Guo, Z.; Wang, K.; Zeng, X. A High-Performance and Accurate FPGA-Based Flow Monitor for 100 Gbps Networks.
Electronics 2022, 11, 1976. [CrossRef]

19. Zhang, Y.; Liu, Z.; Wang, R.; Yang, T.; Li, J.; Miao, R.; Liu, P.; Zhang, R.; Jiang, J. CocoSketch: High-performance sketch-based
measurement over arbitrary partial key query. In Proceedings of the ACM SIGCOMM 2021 Conference, Virtual Conference,
23–27 August 2021; pp. 207–222.

http://doi.org/10.1109/ACCESS.2021.3086704
http://doi.org/10.1561/0400000002
http://doi.org/10.1109/MSP.2021.3092574
http://doi.org/10.1006/jcss.1997.1545
http://doi.org/10.1016/j.jalgor.2003.12.001
https://www.intel.com/content/www/us/en/docs/programmable/683456/21--4/pro-edition-user-guide.html
https://www.intel.com/content/www/us/en/docs/programmable/683456/21--4/pro-edition-user-guide.html
https://skillsmatter.com/skillscasts/6844-count-min-sketch-in-real-data-applications
https://skillsmatter.com/skillscasts/6844-count-min-sketch-in-real-data-applications
https://spark.apache.org/docs/2.0.1/api/java/org/apache/spark/util/sketch/CountMinSketch.html
https://spark.apache.org/docs/2.0.1/api/java/org/apache/spark/util/sketch/CountMinSketch.html
https://github.com/RedisBloom/RedisBloom/
https://github.com/RedisBloom/RedisBloom/
http://doi.org/10.1145/3472289
http://doi.org/10.5573/IEIESPC.2017.6.5.347
http://doi.org/10.3390/electronics11131976

Electronics 2022, 11, 2399 17 of 17

20. Tong, D.; Prasanna, V.K. Sketch acceleration on FPGA and its applications in network anomaly detection. IEEE Trans. Parallel
Distrib. Syst. 2017, 29, 929–942. [CrossRef]

21. Kiefer, M.; Poulakis, I.; Breß, S.; Markl, V. Scotch: Generating fpga-accelerators for sketching at line rate. Proc. VLDB Endow. 2020,
14, 281–293. [CrossRef]

22. Soto, J.E.; Ubisse, P.; Fernández, Y.; Hernández, C.; Figueroa, M. A high-throughput hardware accelerator for network entropy
estimation using sketches. IEEE Access 2021, 9, 85823–85838. [CrossRef]

23. Soto, J.E.; Ubisse, P.; Hernández, C.; Figueroa, M. A hardware accelerator for entropy estimation using the top-k most frequent
elements. In Proceedings of the Euromicro Conference on Digital System Design (DSD), Virtual Conference, 26–28 August 2020;
pp. 141–148.

24. Saavedra, A.; Hernández, C.; Figueroa, M. Heavy-hitter detection using a hardware sketch with the countmin-cu algorithm. In
Proceedings of the 2018 21st Euromicro Conference on Digital System Design (DSD), Prague, Czech Republic, 29–31 August 2018;
pp. 38–45.

25. Sateesan, A.; Vliegen, J.; Scherrer, S.; Hsiao, H.-C.; Perrig, A.; Mentens, N. Speed records in network flow measurement on
FPGA. In Proceedings of the 2021 31st International Conference on Field-Programmable Logic and Applications (FPL), Dresden,
Germany, 30 August–3 September 2021; pp. 219–224.

26. Tang, M.; Wen, M.; Shen, J.; Zhao, X.; Zhang, C. Towards memory-efficient streaming processing with counter-cascading sketching
on FPGA. In Proceedings of the ACM/IEEE Design Automation Conference (DAC), Virtual Conference, 20–24 July 2020; pp. 1–6.

27. Chiosa, M.; Preußer, T.B.; Alonso, G. SKT: A One-Pass Multi-Sketch Data Analytics Accelerator. Proc. VLDB Endow. 2021, 14,
2369–2382. [CrossRef]

28. Singla, P.; Goodchild, C.; Sarangi, S.R. EHDSktch: A Generic Low Power Architecture for Sketching in Energy Harvesting Devices.
In Proceedings of the 26th Asia and South Pacific Design Automation Conference, Virtual Conference, 18–21 January 2021; pp.
615–620.

29. Kulkarni, A.; Chiosa, M.; Preußer, T.B.; Kara, K.; Sidler, D.; Alonso, G. Hyperloglog sketch acceleration on fpga. In Proceedings of
the 2020 30th International Conference on Field-Programmable Logic and Applications (FPL), Gothenburg, Sweden, 31 August–4
September 2020; pp. 47–56.

30. Preußer, T.B.; Chiosa, M.; Weiss, A.; Alonso, G. Using DSP Slices as Content-Addressable Update Queues. In Proceedings of the
2020 30th International Conference on Field-Programmable Logic and Applications (FPL), Gothenburg, Sweden, 31 August–4
September 2020; pp. 121–126.

31. FPGA. Optimization Guide for Intel® oneAPI Toolkits. Available online: https://www.intel.com/content/www/us/en/
develop/documentation/oneapi-fpga-optimization-guide/top.html (accessed on 26 June 2022).

32. Intel Acquires eASIC—Why? Strategic Moves in the FPGA World. Available online: https://www.eejournal.com/article/intel-
acquires-easic-why/ (accessed on 20 July 2022).

33. Cormode, G.; Muthukrishnan, S. Summarizing and mining skewed data streams. In Proceedings of the 2005 SIAM International
Conference on Data Mining, Newport Beach, CA, USA, 21–23 April 2005; pp. 44–55.

34. Zipf, G.K. Human Behavior and the Principle of Least Effort; Addison-Wesley Press: Boston, MA, USA, 1949.
35. Early Power Estimator for Intel® Arria® 10 FPGAs User Guide. Available online: https://www.intel.com/content/www/us/en/

docs/programmable/683688/18--0-1/overview-of-the-early-power-estimator.html (accessed on 26 June 2022).
36. Designing for Stratix 10 Devices with Power in Mind. Available online: https://www.intel.com/content/www/us/en/docs/

programmable/683058/current/designing-for-stratix-10-devices-with.html (accessed on 26 June 2022).
37. Goyal, A.; Daumé III, H.; Cormode, G. Sketch algorithms for estimating point queries in nlp. In Proceedings of the 2012 Joint

Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island,
Korea, 12–14 July 2012; pp. 1093–1103.

http://doi.org/10.1109/TPDS.2017.2766633
http://doi.org/10.14778/3430915.3430919
http://doi.org/10.1109/ACCESS.2021.3088500
http://doi.org/10.14778/3476249.3476287
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top.html
https://www.eejournal.com/article/intel-acquires-easic-why/
https://www.eejournal.com/article/intel-acquires-easic-why/
https://www.intel.com/content/www/us/en/docs/programmable/683688/18--0-1/overview-of-the-early-power-estimator.html
https://www.intel.com/content/www/us/en/docs/programmable/683688/18--0-1/overview-of-the-early-power-estimator.html
https://www.intel.com/content/www/us/en/docs/programmable/683058/current/designing-for-stratix-10-devices-with.html
https://www.intel.com/content/www/us/en/docs/programmable/683058/current/designing-for-stratix-10-devices-with.html

	Introduction
	Background: Count-Min Sketch
	Related Work: FPGA-Based Data Stream Frequency Estimators
	Baseline FPGA Implementation
	Optimizing for High Throughput
	Effect of Relaxing Memory Dependency
	Pre-Update Weight Accumulation
	Mixed Intiation Interval Design
	Evaluation

	Optimizing for Low Power
	Reduced Memory Accesses in Skewed Streams
	Power Optimized Sketch
	Evaluation

	Comparison with the State-of-the-Art
	Conclusions and Further Research
	References

