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Abstract: In this paper, we proposed an effective and efficient approach to the classification of breast
cancer microcalcifications and evaluated the mathematical model for calcification on mammography
with a large medical dataset. We employed several semi-automatic segmentation algorithms to
extract 51 calcification features from mammograms, including morphologic and textural features. We
adopted extreme gradient boosting (XGBoost) to classify microcalcifications. Then, we compared
other machine learning techniques, including k-nearest neighbor (kNN), adaboostM1, decision tree,
random decision forest (RDF), and gradient boosting decision tree (GBDT), with XGBoost. XGBoost
showed the highest accuracy (90.24%) for classifying microcalcifications, and kNN demonstrated the
lowest accuracy. This result demonstrates that it is essential for the classification of microcalcification
to use the feature engineering method for the selection of the best composition of features. One of the
contributions of this study is to present the best composition of features for efficient classification
of breast cancers. This paper finds a way to select the best discriminative features as a collection
to improve the accuracy. This study showed the highest accuracy (90.24%) for classifying microcal-
cifications with AUC = 0.89. Moreover, we highlighted the performance of various features from
the dataset and found ideal parameters for classifying microcalcifications. Furthermore, we found
that the XGBoost model is suitable both in theory and practice for the classification of calcifications
on mammography.

Keywords: adaboostM1; breast cancer; classification; GBDT; kNN; mammographic; microcalcifications;
RDF; XGBoost

1. Introduction

Breast cancer is a common but critical disease of women in the world, as stated in the
World Health Organization GLOBOCAN 2012 report [1]. In China, breast cancer is currently
one of the most common causes of death. Due to China’s large population, approximately
11% of worldwide breast cancers occur in China [2]. Moreover, breast cancer patients in
China tend to be younger and have denser breasts. To date, various conventional methods,
such as infrared, X-ray mammography, computed tomography, ultrasound and magnetic
resonance imaging, have been widely used for breast tumor diagnosis [3]. Mammography
is one of the most reliable methods for early detection as well as reduction of mortality [4–6].
Given the enormous size of the screened population, interpreting mammograms, even
by experienced radiologists, can be both time and energy-consuming. Computer-aided
detection and diagnosis (CAD) systems have long been studied as alternatives to save
time and minimize subjectivity. The Breast Imaging Reporting and Data System (BI-RADS)
lexicon, by American College of Radiology, provides standard mammographic reports to
facilitate biopsy decision-making [7]. Both the sensitivity and efficiency of mass detection
for mammography are still low. In mammography, clustered microcalcifications are the
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main warning signs for cancer and sometimes may be the only signs. Typical malignant
or benign microcalcifications can be classified on the basis of their distribution and mor-
phologic features. In addition, studies have shown that 90% of non-palpable in situ ductal
carcinomas and 70% of non-palpable minimal carcinomas were visible as microcalcifica-
tions alone during the screening process. Therefore, accurate as well as rapid identification
of malignant calcifications improves the true positive detection rate. Traditionally, CAD in
mammography relies on pattern recognition and classification. Classical image processing
and machine learning techniques were combined to identify suspicious calcifications and to
differentiate among types. Traditional CAD systems perform image segmentation, feature
extraction for calcification, as well as classification [8]. For breast cancer, the selection
of the classification method is critical. Several algorithms can be applied to the effort,
including k-nearest neighbor (kNN), adaboostM1, decision tree, random decision forest
(RDF), and gradient boosting decision tree (GBDT). Indeed, these techniques have already
been developed for and applied in breast cancer research. Among these techniques, one of
the most widely used approaches is tree boosting. Recently, in academia and the intelli-
gence industry, a scalable end-to-end tree boosting system called extreme gradient boosting
(XGBoost) has been employed in a number of machine learning and data mining challenges
and has been successfully applied to many classification problems to achieve what are
considered as state-of-art results [9]. XGBoost learns an ensemble of decision trees. This
boosting technique was adjusted to enhance a Taylor expansion of the loss functions. In this
study, we employed extreme gradient boosting to discriminate among microcalcifications
in mammograms automatically. Moreover, we analyze and select the best composition of
features from various extracted features provided by a CAD system related to breast cancer.

2. Related Work

This paper presents the classification of breast cancer based on a computer-aided
diagnosis (CAD) system. A standard CAD system is capable of segmenting structures, de-
tecting abnormalities, and extracting features. Algorithms have been proposed to evaluate
the classified features extracted from CAD systems. These algorithms for CAD systems
must consider sensitivity, specificity, and evaluation of positive predictions. For instance,
algorithms can discriminate various stages of cancer using texture characteristics with these
algorithms [10,11]. Feature selection is often used to reduce the dimension of data in order
to improve the efficiency of data processing [12,13]. In comparison with previous studies,
this paper is able to select the best composition of features, through coordinate descent.

In recent years, the radiological evaluation of breast cancer has focused on microcal-
cification or masses, with relatively more attention on microcalcification. A wide range
of machine learning algorithms have been developed for the early diagnosis of breast
cancers [14–16]. The most common algorithms are based on the algorithm of k-nearest
neighbor (kNN) [17,18], adaboostM1, and a series of tree models, such as decision tree,
random decision forest (RDF), and gradient boosting decision tree (GBDT).

For a given dataset with n examples and m features D = (xi, yi)(|D| = n, xi ∈ Rn, yi ∈ {0, 1}),
a tree ensemble model uses K additive functions to predict the output. The final score, shown in
Equation (1), also represents the differentiable loss function that measures the difference between
the predicted ŷi and the target yi:

ŷi = φ(xi) = ∑K
k=1 fk(xi), fk ∈ F (1)

where fk and F represent the independent tree structure with leaf scores and the space of
all regression trees (also known as CART), respectively. Equation (2) is used to optimize
the regularized objective:

L(φ) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk) (2)

where Ω( f ) = γT +1
2 λ ‖ ω ‖2.
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Ω(f ) is present to avoid overfitting, which penalizes the complexity of the model. It
is given by Equation (3), where T represents the number of leaves and ω represents the
weight of each leaf. λ and γ are two constants to control the regularization degree.

γT +
1
2

λ ∑T
j=1 w2

j (3)

From the use of regularization, two additional techniques are used to prevent overfit-
ting further [7]. The first technique is shrinkage [19], and the second is column (feature)
subsampling, also called random forest [20,21].

However, Equation (2) includes functions as parameters that cannot be optimized
using traditional optimization methods. Let y(t)i be the prediction of the i-th instance at
the t-th iteration. We will need to add ft to minimize the following objective [9], thus
Equation (2) can be written as Equation (4).

L(t) = ∑n
i=1 l(yi, ŷ(t−1)

i + ft(xi)) + Ω( ft) (4)

Furthermore, a second-order approximation can be used to quickly optimize the
objective in the general setting [22] as shown in Equation (5):

L(t) '
n

∑
i=1

[
l
(

yi, ŷ(t−1)
)
+ gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (5)

where gi = ∂ŷ(t−1) l
(

yi, ŷ(t−1)
)

and hi = ∂2
ŷ(t−1) l

(
yi, ŷ(t−1)

)
are first and second-order

gradient statistics on the loss function, respectively. Moreover, a simplified objective
function without constants at step t is shown in Equation (6):

L̃(t) = ∑n
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (6)

Equation (7) is an objective function generated by expanding the regularization term:

L̃(t) =
n
∑

i=1

[
gi ft(xi) +

1
2 hi f 2

t (xi)
]
+ γT + 1

2 λ
T
∑

j=1
w2

j

=
T
∑

j=1
[( ∑

i∈Ij

gi)wj +
1
2 ( ∑

i∈Ij

hi + λ)w2
j ] + γT

(7)

Here, we define equation Ij = {q(xi) = j} as the instance set of the leaf j. For a fixed
structure q(x), we can compute the optimal weight w∗j of the leaf j by Equation (8), and
calculate the corresponding optimal value by Equation (9). It can be used as a scoring
function to measure the quality of a tree structure q.

w∗j = −
∑i∈Ij

gi

∑i∈Ij
hi + λ

(8)

L̃(t)(q) = −1
2

T

∑
j=1

(∑i∈Ij
gi)

2

∑i∈Ij
hi + λ

+ γT (9)

Equation (10) is the loss reduction after the split, usually used in practice for evaluating
split candidates. Letting I = IL ∪ IR, thus IL and IR are the instance sets of left and right
nodes after the split, and Gj = I ∈ gI and Hj = I ∈ hi.

Lsplit =
1
2

[
(∑i∈IL

gi)
2

∑i∈IL
hi + λ

+
(∑i∈IR

gi)
2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

]
− γ (10)
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3. Image Segmentation and Feature Selection

Images were obtained on a GE Senographe DS mammography system and a Siemens Mam-
momat Inspiration mammography system. All images were digitized at 1024 × 1024 pixels
and an 8-bit greyscale level. Data regarding microcalcifications were extracted through image
segmentation. Both statistical and textural features were used to classify image features. To
obtain a comprehensive characterization of microcalcifications, we considered various types of
features that have been widely used in studies of breast lesions as input data rather than original
images [23–25]. A total of 13 features were extracted from regions of interest (ROI) and were
recorded for each patient. These extracted features were intended to provide as comprehensive
a characterization of the image as possible. These consisted of intensity, statistic, shape, and
texture features. These features have been extensively tested in breast lesion studies [23–27].

The features are not selected randomly. The main warning signs and even the only
signs for breast cancer alone have low sensitivity and efficiency. In this paper, we aim to find
the best composition of features for efficient and accurate classification of breast cancers.
Our method selects a feature to be included in the feature set using a process similar
to the coordinate ascent. Initially, the feature set only includes the most discriminative
feature. Then, features are selected one by one, given the fact that adding a feature can
significantly improve the performance of classification. This process continues until adding
a feature cannot improve the performance or can even deteriorate the performance. This
way, the method is able to select the best discriminative features as a collection to improve
the accuracy.

All features were selected to represent various dimensional aspects of microcalcifi-
cations, including one-dimensional shape features (average diameter), two-dimensional
morphological features (area), dimensional fractal features (density, circularity propor-
tion, solidity, sandy microcalcification, spiculation, and volume ratio), grey-level intensity
statistics features (mean grey value), and statistics features (microcalcification number,
circularity, and linear microcalcification). To increase the diversity of features and optimize
experimental conditions, we selected 38 features with the approach of texture features in
MATLAB. Two popular methods estimated the texture features, grey-level co-occurrence
matrix (GLCM) [28–30], and grey-level run length matrix (GLRLM) [31,32]. The GLCM
was calculated by counting the number of times adjacent pixels have the same orientation.
These features can characterize the scattering of calcification satisfactorily.

The definition of these features (autocorrelation, contrast, cluster prominence, cluster
shade, dissimilarity, energy, entropy, homogeneity, maximum probability, the sum of
squares, sum average, sum variance, sum entropy, difference variance, difference entropy,
information measure of correlation, inverse difference normalized, and inverse difference
moment normalized) can be found in the MATLAB toolbox.

4. Results

The training group consisted of 5476 images, including 2813 benign and 2663 malig-
nant lesions. All parameters were estimated by 10-fold cross-validation on the training
group. Data regarding microcalcifications were extracted through image segmentation in
CAD. All histopathological features, including statistical and textural features, were used to
classify image features and obtain a comprehensive characterization of microcalcifications.

We recorded 51 features for each patient, including 38 features made from grey co-
variance matrix in two dimensions. All features were fed into kNN, adaboostM1, decision
tree, RDF, GBDT, and XGBoost algorithms. If there are N samples and each of which
has dimension D, the complexity of kNN is O(N × D). The complexity of adaboostM1 is
O
(

N × D2). The complexity of decision tree is O
(

N2 ×D× log(D)
)

. The complexity of
RDF is O(M(DNlogN)), where M is the number of trees. The complexity of XGBoost is
O(DNlogN) + O(KDNE), where K is the number of trees and E is the depth of trees. To
normalize the images and improve processing efficiency, we extracted the region of interest
(ROI) first by a coarse segmentation scheme. The coarse segmentation procedure used
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Otsu’s method and morphological filters. Then, the resulting image was dilated using a
dilation filter to obtain maximal connected region as calcification area.

The segmentation scheme is illustrated in Figure 1. Figure 2 displays an example of
the automatic detection and segmentation pipeline for suspicious microcalcifications in the
left breast of a 56-year-old patient with invasive ductal carcinoma. The microcalcifications
were extracted from the raw data to delineate the image characteristics (Figure 2b).
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Figure 2. An illustrative example showing segmentation of microcalcifications in a mammogram of
the left breast of a 56-year-old patient. (a) The mediolateral oblique (MLO) view shows clustered
coarse and low-density microcalcifications (indicated by thin arrows). (b) The image shows the region
of suspicious microcalcifications (indicated by thin arrows). (c) The segmented microcalcifications
from (b) are used to characterize the features.

Figure 3 shows the image of the right breast of a 49-year-old patient with fibrocystic
changes in which the focal microcalcifications appear as low contrast compared with the
high-density background. Then, we combined texture features and the actual situation and
obtained 51 features through the image.
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Figure 3. An illustrative example showing segmentation of microcalcifications in a mammogram of
the right breast of a 49-year-old patient with fibrocystic changes. (a) The focal microcalcifications
(indicated by thin arrows) appear as low contrast compared with the dense background in the
mediolateral oblique (MLO) view. (b) Thin arrows indicate the region of suspicious microcalcifications.
(c) A zoomed-in view of (b) highlights the segmented microcalcifications.

To evaluate the performance and discriminative power of every technique, we made
quantitative measurements for overall classification accuracy, precision, recall, and F1-score,
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Recall =
TP

TP + TN
(12)

Precision =
TP

TP + FP
(13)

F1 =
2TP

2TP + FN + FP
(14)

ROC indicates the receiver operating characteristic, which is a graphical plot that
illustrates the diagnostic ability of classifier systems as their discrimination threshold is
varied. The ROC curve is created by plotting the true positive rate (TPR) against the
false positive rate (FPR) at various threshold settings. AUC indicates the area under
the ROC curve.

Earlier experiments suggested that the classifiers’ discriminative performance can
be increased through the comprehensive characterization of microcalcifications rather
than the characterization of individual features. Therefore, this approach was used in the
following experiments.

Three scenarios for discriminating between benign and malignant lesions were experi-
mented: The result of all the raw microcalcifications features; the result of raw combined
with GLCM texture features; the result of feature selection via the random forest. The three
scenarios’ primary aims were to investigate the power of various features of microcalcifica-
tions and increase the number of features to improve the strength generalization ability of
the model. Feature selection helps in reducing the influence of weak correlation features.
The results were compared to those of kNN, adaboostM1, decision tree, RDF, GBDT, and
XGBoost benchmark classifiers.

In the first scenario, image segmentation yielded 13 raw features. The overall accura-
cies were 64.0%, 84.8%, 85.1%, 85.1%, 85.5%, and 87.3% for kNN, decision tree, adaboostM1,
RDF, GBDT, and XGBoost, respectively (Table 1).
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Table 1. Overall result performance of all algorithms (13 features).

Algorithms Accuracy Recall Precision F1-Score AUC

kNN 63.99% 0.6612 0.6263 0.6433 0.6407
Decision Tree 84.78% 0.8511 0.8390 0.8511 0.8501
adaboostM1 85.07% 0.8734 0.8451 0.8590 0.8504

random forest 85.08% 0.8526 0.8514 0.8378 0.8501
GBDT 85.45% 0.8801 0.8595 0.8696 0.8695

XGBoost 87.21% 0.8750 0.8597 0.8697 0.8699

In the second scenario, the image segmentation process yielded 51 features; all the
experimental data results generally increased by two percentage points than the first
scenario, and achieved the highest results among the three scenarios. The overall accuracies
were 65.1%, 86.9%, 85.3%, 87.3%, and 88.7%, 90.2% for kNN, decision tree, adaboostM1,
RDF, GBDT, and XGBoost, respectively (Table 2). XGBoost achieved the highest accuracy
and AUC values (90.24% and 0.8903, respectively).

Table 2. Overall result performance of all algorithms (51 features).

Algorithms Accuracy Recall Precision F1-Score AUC

kNN 65.06% 0.6673 0.6350 0.6500 0.6707
Decision Tree 86.89% 0.8701 0.8514 0.8378 0.8520
adaboostM1 85.27% 0.8734 0.8300 0.8590 0.8527

random forest 87.29% 0.8774 0.8672 0.8643 0.8629
GBDT 88.74% 0.8801 0.8765 0.8758 0.8774

XGBoost 90.24% 0.8845 0.9000 0.8952 0.8903

In the third scenario, based on the 51 features, we obtained the top 15 features (Table 3)
ranked by random forest. The overall accuracies were somewhat lower than those of the
second scenario: 65.3%, 85.2%, 85.8%, 86.3%, 89.2% for kNN, adaboostM1, RDF, GBDT, and
XGBoost, respectively. Furthermore, the performance of GBDT was only marginally higher
than the adaboostM1 and RDF model, while the accuracy of XGBoost exceeded GBDT by
about 3% (Table 4).

Table 3. Top 15 important calcification features after feature selection.

Rank Feature Remark

1 number of calcification spots morphologic features
2 percentage of gravel calcification morphologic features
3 sum average texture features
4 sum entropy texture features
5 average diameter of calcification morphologic features
6 percentage of circular degree morphologic features
7 number of linear calcification point morphologic features
8 circular degree morphologic features
9 axis ratio morphologic features
10 proportion of calcification morphologic features
11 entity morphologic features
12 volume rate morphologic features
13 difference entropy texture features
14 difference variance texture features
15 average grey-level morphologic features
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Table 4. Overall result performance of all algorithms (15 features).

Algorithms Accuracy Recall Precision F1-Score AUC

kNN 64.90% 0.6566 0.6059 0.6303 0.6408
Decision Tree 85.04% 0.8290 0.8490 0.8429 0.8411
adaboostM1 85.17% 0.8367 0.8300 0.8428 0.8426

random forest 85.77% 0.8249 0.8574 0.8456 0.8519
GBDT 85.90% 0.8670 0.8627 0.8598 0.8591

XGBoost 88.13% 0.8713 0.8810 0.8690 0.8792

These findings confirmed that, by accessing a large dataset, XGBoost produced the
highest accuracy, showing an excellent capacity to discriminating between benign and
malignant lesions through mammography, compared with standard models. Our model
achieved similar outcomes in agreement with these reports, as demonstrated by the ROC
curves in Figure 4.

These ROC curves compare the discriminative performances of individual features
versus combinations of features. The accuracy of the XGBoost model exceeded 90%, and
the kNN returned the worst performance, with nearly 63% accuracy. AdaboostM1, decision
tree, and RDF gave similar results, with both higher than kNN. GBDT was slightly better
than RDF, achieving the second-highest accuracy (88%) in both three scenarios.

To compare whether the prediction error rate of XGBoost and other models are signifi-
cantly different, we used Kolmogorov-Smirnov (KS) predictive accuracy (KSPA) test [33]
on different features sets. The KSPA test consists of a two-sided KS test followed by a one-
sided KS test to check for model errors. The two-sided KS test checked significant statistical
differences between the two models (when p-value is less than 0.05). The one-sided KS test
conveys whether the model provides a smaller random error rate (also when p-value is less
than 0.05).

In this paper, the absolute value error of each model was used as input in the KSPA test,
and we defined the significance level as 0.05. The experimental results (Tables 5–7) indicate
that there is indeed a significant statistical difference in the prediction errors between
XGBoost and other models. Apart from RDF, XGBoost has lower prediction errors than
other models in the prediction of these three features of quantity sets. Although there is no
significant difference between XGBoost and RDF on 13 and 15 features sets, one-sided KS
test provides sufficient evidence that XGBoost has a lower random error rate than other
models on 51 features sets.
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Table 5. Kolmogorov-Smirnov predictive accuracy test (13 features).

kNN
vs. XGBoost

Decision Tree vs.
XGBoost

adaboostM1
vs. XGBoost

Random Forest
vs. XGBoost

GBDT
vs. XGBoost

Two-Sided
(p-Value) 2.2 × 10−16 * 6.633 × 10−6 * 0.005486 * 0.3342 0.03193 *

One-Sided
(p-Value) 2.2 × 10−16 * 3.317 × 10−6 * 0.002743 * 0.1679 0.01597 *

Note: * indicates that results are statistically significant based on p-value of 0.05.

Table 6. Kolmogorov-Smirnov predictive accuracy test (51 features).

kNN
vs. XGBoost

Decision Tree vs.
XGBoost

adaboostM1
vs. XGBoost

Random Forest
vs. XGBoost

GBDT
vs. XGBoost

Two-Sided
(p-Value) 2.2×10−16 * 5.228 × 10−5 * 0.00135 * 0.03609 * 0.01286 *

One-Sided
(p-Value) 2.2 × 10−16 * 2.614 × 10−5 * 0.0006752 * 0.01805 * 0.006429 *

Note: * indicates that results are statistically significant based on p-value of 0.05.
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Table 7. Kolmogorov-Smirnov predictive accuracy test (15 features).

kNN
vs. XGBoost

Decision Tree vs.
XGBoost

adaboostM1
vs. XGBoost

Random Forest
vs. XGBoost

GBDT
vs. XGBoost

Two-Sided
(p-Value) 2.2 × 10−16 * 0.0004882 * 0.01121 * 0.4522 0.0648

One-Sided
(p-Value) 2.2 × 10−16 * 0.0002441 * 0.005604 * 0.2289 0.0324 *

Note: * indicates that results are statistically significant based on p-value of 0.05.

5. Discussion

Mammography is the primary breast imaging modality for early detection and diag-
nosis of breast cancer. However, achieving accurate diagnoses through mammography
is often challenging for radiologists due to the difficulty in distinguishing the features
of malignant lesions in dense breasts [34–36]. Consequently, a large amount of research
is undertaken to develop computer-based applications, including various classification
models [37–42].

Machine learning, especially on a large-scale for classifying breast cancer, remains
an endeavor that is statistical in nature. Nevertheless, data obtained in this way can be
associated with biomedical evidence. In this study, we employed one calcification dataset
from one hospital. Our aim was to aid oncologists and medical image processing engineers
in distinguishing benign from malignant breast cancers with high efficiency.

To date, various available machine learning methods have been used for identifying
breast cancer. Jacob et al. [43] carried out a series of studies on various algorithms in the
Wisconsin Breast Cancer diagnosis dataset. In kNN, an object is classified by a majority
vote of its neighbors; namely, the object is assigned to the class most common among its
k-nearest neighbors. AdaboostM1 is an ensemble algorithm that creates a highly accurate
classifier by merging many relatively weak and inaccurate classifiers [44]. GBDT is an
iterative decision tree algorithm composed of multiple decision trees. The results of all the
trees are accumulated to provide the final result. GBDT is generally used for regression
prediction. In this paper, we use it for classification after adjustment. XGBoost (extreme
gradient boosting), first developed by Tianqi Chen and Gusetrin, is an open-source project.
It is designed to implement an efficient, fast, scalable machine learning system (Gradient
Tree Boosting) applicable to a wide variety of machine learning problems [9]. Here, we
compared six popular techniques: kNN, decision tree, adaboostM1, RDF, GBDT, and
XGBoost. We focused on the performance of XGBoost for the classification of breast cancer
with microcalcifications. XGBoost had 90.24% accuracy in distinguishing benign from
malignant lesions, achieving the best accuracy of all the other algorithms.

In addition, XGBoost has higher accuracy and lower false negatives compared with
deep learning, although it lacks flexibility due to the requirement of manual feature ex-
traction [45]. Recently, many studies identified relevant biomarkers or histopathological
images for predicting diagnosis and outcome by XGBoost [46–52]. More importantly, XG-
Boost is effective in imaging for aiding the diagnosis of breast cancer. It has been reported
that enhanced CT combined with XGBoost improves the performance of predicting the
efficacy of anti-HER2 therapy for patients with liver metastases from breast tumor [53].
The integration of Ensemble Learning methods within mpMRI radiomic analysis helps in
the diagnosis of breast cancer [54]. Radiomics and machine learning based on PET/CT
images are used to predict HER2 status in breast cancer lesions [55]. Similarly, Vu et al. [56]
found that the XGBoost model combined with clinical, mammographic, ultrasonographic,
and histopathologic findings, assisted prognosis prediction in patients with breast cancer,
reaching an accuracy of 0.84 and an AUC of 0.93. In this study, XGBoost was used to auto-
matically discriminate between microcalcifications in mammograms, the main warning
signs and even the only signs of breast cancer, yet with low sensitivity. Feature engineering
is one of the important characteristics used in image classification. The majority of the
traditional CAD systems rely on accurate features calculation for the microcalcification after
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feature engineering [29]. In this study, 51 features were extracted according to the BI-RADS
and were defined by the radiologists’ requirements, which were clinically meaningful. In
addition, the use of feature selection made a certain contribution to this study. The features
ranked among the top 15 after feature selection are better interpreted by the clinicians, and
were found to be promising and should be given more attention in clinical practice.

However, the current study suffered from the following limitations. First, this was
a retrospective single-center study, and the sample was not conclusive. The testing and
training dataset should be expanded and collected from different medical centers to achieve
higher statistical power. In addition, the features extracted in our study may not be enough
to fully characterize microcalcifications; thus, we will extract more meaningful ones in the
future. By selecting and optimizing various features, it helps in the improvement of the
performance of XGBoost in the classification stage. In future work, we will make a great
effort to find a better representation of XGBoost and help in obtaining more describable
information in breast cancer diagnosis. Moreover, this will further facilitate the systematic
investigation of breast cancer for early detection, diagnosis, and clinical management [57].

6. Conclusions and Future Work

In this paper, we proposed an effective and efficient approach to the classification of
breast cancer microcalcifications. This study finds a way to select the best discriminative
features as a collection to improve the accuracy. It provides the best composition of
features for efficient and accurate classification of breast cancers. With the set of specially
selected features, we employed extreme gradient boosting to classify microcalcifications
and achieved the highest accuracy of 90.24% on the dataset from our cancer center. This
result demonstrates that it is essential for the classification of microcalcification to use
the feature engineering method for the selection of the best composition of features, and
the KSPA test results are statistically significant. Moreover, we showed that imaging
segmentation makes a certain contribution to our research. In the future, we will make an
effort to find a better representation of XGBoost, combined with feature engineering and
selection, to obtain more describable information in breast cancer diagnosis.
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