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Abstract: (1) Background and objectives: Parkinson’s disease (PD) is one of the most prevalent neu-
rodegenerative diseases whose typical symptoms include bradykinesia, abnormal gait and posture,
shortened strides, and other movement disorders. In this study, we present a novel framework
to evaluate PD gait patterns using state of the art deep learning algorithms. A comparative analysis
with three different approaches is presented and evaluated upon three groups of subjects: PD pa-
tients, Young Healthy Controls (YHC), and Elderly Healthy Controls (EHC). (2) Methods: The three
approaches used in the study include: (i) The energy content of the gait signals in the frequency
domain is captured with spectrograms that are used to feed a CNN model, (ii) Temporal information
is incorporated by creating GRU networks, (iii) Temporal and spectral information is simultaneously
captured by creating a new architecture based on CNNs and GRUs. (3) Results: Accuracies of up
to 83.7% and 92.7% are found for the classification between PD vs. EHC and PD vs. YHC, respectively.
According to our observations, the proposed approach based on the combination of temporal and
spectral information, yields better results than others reported in the state of the art. (4) Conclusions:
The results obtained in this study suggest that the combination of temporal and spectral information
is more accurate than individual approaches used to classify and evaluate gait patterns in PD patients.
To the best of our knowledge, this is the first study in gait analysis where temporal and spectral
information is combined in an architecture of deep learning.

Keywords: Gait analysis; Parkinson’s disease; convolutional neural networks; gate recurrent units;
deep learning

1. Introduction

Parkinson’s Disease (PD) is a neurodegenerative disease that produces movement
disorders including tremor, rigidity, postural instability and lack of coordination which
affect patients’ gait [1–3]. PD patients are characterized by abnormal gait patterns associated
with bradykinesia (slowness of movement), less steady walk, reduced stride length and
shuffling steps or impaired gait initiation [4–6]. The symptoms of PD may appear about
10 years prior to the clinical manifestations [7], besides, several studies show that PD
mainly impacts elderly people [8]. An important fact is that the prevalence of the disease is
increasing with age worldwide [9,10]. Neurologists usually use clinical scales to evaluate
and quantify the neurological state of the patient. The most used is the Movement Disorder
Society—Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [11]. This scale allows
neurologists to evaluate the patient’s state and it is useful to follow up on therapies.
The MDS-UPDRS scale is composed of four sections. The third one is called MDS-UPDRS-III
and corresponds to the assessment of routine motor activities including 33 tasks, therefore
it ranges from 0 to 132.
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Gait patterns allow to obtain information about different movement disorders that
are sometimes associated to Parkinson’s disease (PD) symptoms. In the literature, the use
of Inertial Movement Units (IMU) has increased considerably since they allow to capture
gait patterns to study the movement dynamics of patients. This includes the study of kine-
matic characteristics of PD patients [12,13], nonlinear dynamics [14,15], stability and deep
learning approaches [16], among others.

Computer vision methods and force platforms are used in laboratories to evaluate gait
disorders [17,18]; however, they are expensive and difficult to access. Conversely, wearable
sensors allow for designing low-cost and unobtrusive solutions that enable continuous
monitoring of patients [19]. The most common wearable sensors for gait analyses are those
based on plantar pressure systems [20–22] and IMU sensors [23,24]

Gait analysis is of great interest for the research community due to its suitability
to perform unobtrusive automatic and continuous evaluation of motor symptoms of PD
patients.

1.1. State of the Art

The study of gait patterns is related to the human locomotion and includes the study
of people move while walking. Models can be created considering different gait features,
related to kinematics, such as: stride length, stride velocity, turning angle, swing phase,
and others [25,26]. The analysis of abnormal gait patterns have been typically performed
considering Inertial Movement Units (IMU). An IMU is an electronic device usually consist-
ing of accelerometer and gyroscope sensors, and in some cases also include magnetometer
sensors. In [27] the authors presented a complete study related to the use of IMU sensors.
The aim of the authors is to model abnormal gait patterns. According to the authors IMU
sensors in gait analysis are used due to their low cost and the potential for designing wear-
able devices for continuous monitoring. Even though the study was presented about seven
years ago, the same claim continues to be valid today. In [28] the authors proposed the use
of one IMU sensor in each foot to analyse patients with different neurological conditions.
The authors extracted several kinematic gait measures like stride length, stance time, swing
time, and cycle time. The proposed method was tested with a dataset comprised of 22
healthy control (HC) subjects recorded with a camera-based system. A clinical discussion
using a dataset of 17 subjects with different neurological disorders was also presented.
According to the authors, it is possible to obtain relevant information on different neurode-
generative diseases, even outside clinical settings. In [20] the classification of PD patients
and HC subjects was performed by using several spatial-temporal measures like stride
length, cadence, stance time, and swing time. Different classifiers were tested including Ran-
dom Forest (RF), Support Vector Machine (SVM) and Kernel Fisher Discriminant. The best
result was found with a RF classifier (92.6%). A multi-modal study for the discrimination
between PD patients and HC subjects, considering information of three bio-signals: speech,
handwriting, and gait, was presented in [16]. To merge the information of each bio-signal
a Convolutional Neural Networks (CNN) was implemented. The authors reported the high-
est accuracy with the combination of the three bio-signals (97.6%). Another approach in gait
analysis is based on non-linear dynamics (NLD) measures. In [14] the authors extracted sev-
eral NLD and Entropy measures. Three classifiers were compared: SVM, RF and k-nearest
neighbours (KNN). Accuracies up to 92% were reported In [15] the authors proposed a new
strategy considering Poincaré sections. Accuracies up to 89% in the classification of PD vs.
HC were reported, besides, the authors’ proposal includes experiments with PD patients
in three different stages of the disease: mild, moderate, and severe where accuracies up
to 67.2% were reported. Recently, in [13] the authors computed three sets of features named
kinematics, NLD, and stability, and proposed a clinical interpretation based on the most
discriminant feature per subset. The authors reported accuracies of up to 92% when using
only three of the features.

In this paper, we use raw gait signals captured using IMU sensors to assess the ability
of different deep learning architectures to classify PD patients vs. HC subjects.
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Three architectures were considered: Convolutional Neural Networks (CNN), Gate Re-
current Units (GRU) and a new approach that considers energy information at the input
of a CNN and temporal information with a GRU. In order to consider the effect of age three
groups of subjects are examined: Young Healthy Control (YHC), Elderly Healthy Control
(EHC), and PD patients. The EHC group and the PD group are matched in age. Accuracies
up to 85.3% were reported in the PD vs. EHC scenario, and accuracies of up to 92.7% were
found in PD vs. YHC.

1.2. Contributions of this Study

Three different deep learning architectures, namely CNN, GRU and CNN + GRU were
evaluated in this study to classify between PD patients and HC subjects. Models based
on CNNs yielded good results but did not consider temporal information, therefore we
decided to evaluate an architecture based on GRUs to incorporate relevant information pos-
sibly encoded in the evolution of the patterns, i.e., temporal information. The combination
of CNNs and GRUs in the same model was introduced to take advantage of incorporating
temporal and frequency information in the same model, which potentially enables clinical
interpretation. We believe that the CNN+GRU model did not show better results due
to the small amount of data available for the present experiments.

In this study two tasks were considered: 2× 10 m task corresponds to a 10 m walk
performed twice and 4× 10 m task corresponds to a 10 m walk which is performed 4 times.
In general terms, the 4 × 10 m task is better than the 2 × 10 m one. We think that this is
because longer tasks allow to collect more information and therefore increase the chances
to find abnormal patterns in the gait signal.

2. Materials and Methods
2.1. Methodology

The general methodology proposed in this study is summarized in Figure 1. Gait sig-
nals are collected using wearable IMU sensors. Note that the main characteristic of the pro-
posed methodology is that there is no a sophisticated feature extraction stage. The seg-
mentation process is based on sliding windows of fixed length and, in the case of the CNN
architecture, we compute the spectrogram that is used as input. Information of each foot
and their combination are considered. In the following subsections, the stages of this
methodology are explained.

INPUT 
(Raw signals)

Signal processing and
segmentation

Deep Learning
architecture

OUTPUT
(PD or HC)

Figure 1. Scheme of the general methodology addressed in the study.

2.2. Data Collection and Participants

The eGaIT system (Embedded Gait analysis using Intelligent Technology),
was used to record gait signals. eGaIT consists of a 6 degrees of freedom sensor to capture
accelerometer and gyroscope signals. The accelerometer allows to measure the acceleration
in a range of ±6 g and 200 mV/g of sensibility. Gyroscope allows to measure rotational
velocities in a range of ±500 /s and ±2 mV/g of sensitivity. A representation of the eGait
system and the position of the sensor in the shoe is shown in Figure 2. Signals are collected
using an Android Application.

The sensor used captures motion patterns at a sampling frequency (Fs) of 102.4 Hz with
12 bits of resolution. Besides, this value enables capturing information with a resolution
good enough to model low-frequency patterns such as those related to the patient’s gait.
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(a)

(b)

Figure 2. (a) Interface of the eGait software, (b) Location of the eGait sensor in the shoe.

In this study, two tasks were considered:

i. 2 × 10 m task:

• The subject starts standing.
• The subject walks 10 m in a straight line.
• The subject stop.
• The subject turns right and returns to the starting point.

ii. 4 × 10 m task:

• The subject starts standing
• The subject walks 10 m straight.
• The subject turns right and returns to the starting point.
• The subject turns right walks 10 m.
• Finally, the subject turns right, again, and returns to the starting point.
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The dataset used in this study consists of 134 recordings where 45 are PD patients
and 89 HC subjects. The HC group is divided into two groups: 44 YHC subjects under 45
years old and 45 EHC subjects of people older than 45 years. In Table 1 the information
of the dataset is presented. The age of the EHC group is balanced with respect to the PD
participants.

Table 1. Details about the participants.

Group Gender # Subjects Age & Range MDS-UPDRS-III & Range

PD Male 17 65.0± 10 & [41–82] 37.6± 21 & [8–82]
Female 28 58.9± 11 & [29–75] 33.5± 21 & [9–106]

EHC Male 23 63.3± 11 & [49–85] -
Female 22 58.9± 10 & [45–83] -

YHC Male 26 25.3± 5 & [21–42] -
Female 18 22.9± 3 & [19–32] -

Age and MDS-UPDRS-III score are presented in terms of mean ± standard deviation. There are no significant
differences in the age of PD vs EHC (t-student test, p-value� 0.05). The last column includes the MDS-UPDRS-III
values associated to PD patients.

2.3. Convolutional Neural Network (CNN)

A CNN is a deep learning architecture typically used for image analysis where convolu-
tion and pooling layers are used with the aim to obtain relevant information of the input [29].
The main advantage of a CNN is that it requires minimal or sometimes no pre-processing
for the input to implement the architecture. Let’s define the input of a CNN as a tensor
as follows:

X ∈ Rp×q×r (1)

where p, q and r correspond to the number of vertical pixels, horizontal pixels and channels
of the image, respectively. The convolution process is performed between the input tensor
X and a convolutional filter, named kernel, represented as follow:

W ∈ Rn×n×d (2)

where n is the size of the kernel and d is the number of kernels in the convolutional
layer. The result of the convolution between X and W per channel produces a hidden
representation H as follows:

H = X ∗W (3)

where:
H ∈ R(p−n+1)×(q−n+1)×d (4)

Note that tensor H represents the extracted features obtained from the input X. A pooling
layer is implemented after each convolution step. The pooling layer reduces the size of the hid-
den representation H. One of the aims of the pooling layer is to reduce the computational
cost required to process the information, in addition, it is useful to remove some invariant
features [29]. Finally, a fully connected layer with h hidden units followed by an activation
function is implemented to obtain the final decision of the classification process.

It is important to note that different CNN architectures can be created depending
on the problem. Figure 3 presents an illustration of a CNN architecture with two convolu-
tional hidden layers.
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Convolutional and 

Pooling layer 1
Fully connected

layer

Convolutional and

Pooling layer 2

PD vs. HC

Input

Figure 3. Illustration of a CNN with two convolutional layers.

For the case of gait signals, the CNN architecture corresponds to a two-dimensional
(2D) CNN. The input to the CNN consists of r = 12 channels when the two feet are
considered. The channels have information of the accelerometer and gyroscope signals
in the x, y, and z-axes.

With the aim to guarantee at leas 3 quasi-periods in the gait signal, segments of 3 s
are considered. The Short Time Fourier Transform (STFT) is computed to create the input
to the CNN. Figure 4 shows four examples of STFT computed upon two PD patients (a and
b), one EHC subject (c), and one YHC subject (d). In the four cases images are extracted
from gyroscope signals (z-axis) of the left foot during the 2× 10 task.

(a)

(c) (d)

(b)

Figure 4. Resulting STFT computed to: (a) PD female patient, Lower limps score: 50, Age: 75; (b) PD
female patient, Lower limps score: 10, Age: 65; (c) EHC female patient, Age: 50; (d) YHC female
patient, Age: 20.

The CNN was trained using the stochastic gradient descent (SGD) algorithm. The loss
function is the cross-entropy between the label of the training data y and the prediction
ŷ. An Exponential Linear Unit (elu) is used as activation function for the convolutional
layer. Dropout is included to avoid over-fitting in the training process. The architecture
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of the CNN for this study includes two convolutional layers with max-pooling, dropout
for regularization, and five fully connected hidden layers. A sigmoid activation function is
used at the output. Figure 5 summarizes the details of the architecture.

Dense and 

Dropout layersSegments of 3s          Conv. 1 - Max. pool        Conv. 2 - Max. pool   

Figure 5. Architecture of the CNN implemented in this study.

2.4. Gate Recurrent Network, GRU

The paradigm of GRU was proposed in [30,31] as a variation to recurrent neural
networks (RNN). A GRU is composed of two gates: update and reset, whose objective is
to only pass relevant information through the network to improve the predictions. Among
the advantages of the GRU over other recurrent networks are the fact that they require less
memory, therefore their training process is faster. Figure 6 illustrates a single GRU unit.

X

+

+

X

X

tanh

Reset 

gate
Update 

gate

xt

ht-1

rt ht

ht'

+ +

1-ztzt

Figure 6. Single GRU unit.

The computation of a GRU starts with the calculation in the step time t for the update
gate zt, as follow:

zt = σ(W(z)xt + U(z)ht−1) (5)

xt is multiplied by W(z), which is its own weight. The same process is performed with
ht−1, which has information of the previous step time t − 1 and is multiplied by its
own weight U(z). A sigmoid activation function is applied to the sum of both products.
The aim of the update gate is to define the information to be considered in the future.
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The reset gate intends to find the information to be forgotten, in this case it is called rt,
defined as follows:

rt = σ(W(r)xt + U(r)ht−1) (6)

Which is similar to the equation of the update gate except for the weights. The current
memory content h′t is calculated as follow:

h′t = tanh(Wxt + rt �Uht−1) (7)

where � is the Hadamard matrix product. The final memory at the time step t is:

ht = zt � ht−1 + (1− zt)� ht (8)

A GRU architecture is able to process information of time series such as the one
existing in raw gait signals. In this work, the input to the GRU consists of 12 raw signals
captured with the IMU sensor. Figure 7 shows four examples of signals collected from two
PD patients (a and b), one EHC subject (c), and one YHC subject (d). The GRU architecture
implemented in this study is presented in Figure 8.

(a) (b)

(c) (d)

Figure 7. Comparison between the raw time series of: (a) PD female patient, Lower limps score: 50,
Age: 75; (b) PD female patient, Lower limps score: 10, Age: 65; (c) EHC female patient, Age: 50; (d)
YHC female patient, Age: 20.
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Dense and 

Dropout layers

X

+

+

X

X

tanh

xt

ht-1

ht+ +

X

+

+

X

X

tanh

xt

ht-1

ht+ +

. . . 

X

+

+

X

X

tanh

xt

ht-1

ht+ +

Segments of 3s                                     GRU     

Figure 8. Architecture of the GRU implemented in this study.

2.5. Training Process and Classification

A 5-fold cross-validation strategy was used to evaluate the proposed approach along
the experiments. Four folds were used for training and one-fold for testing. Each experi-
ment was repeated ten times and the reported results correspond to the average over those
repetitions. Adam optimizer [32] and binary cross-entropy were used in the classification stage
of all experiments.

The acquisition of the acceleration data performed in this work is by-default normal-
ized between −6 g and +6 g and the gyroscope signals between +500 °/s and −500 °/s.
Therefore, it is not necessary to perform any additional normalization. Besides, the architec-
ture of the Neural Network by itself performs an “internal batch” normalization according
to the patterns that it is observing during the training process. Further details of the batch
normalization can be found in [33].

3. Experiments and Results

Three different experiments were considered: only with the CNN, only with the GRU,
and with the combination of both architectures. Each experiment considers two scenar-
ios: PD vs. EHC and PD vs. YHC. The two gait tasks were considered independently.
Results are reported in terms of accuracy (Acc), sensitivity (Sen), specificity (Spe), and
Area Under ROC Curve (AUC) [34]. Two different accuracy values are reported in each
experiment, accuracy in development refers to the result obtained within the 4 folds con-
sidered during the training process and accuracy in test refers to the result obtained in the
external fold that did not participate in the optimization process. Standard deviation values
appear because the experiments were repeated ten times independently to perform a fair
evaluation of the proposed approach.

3.1. Classification with CNN

The general scheme of the proposed CNN architecture is presented in Figure 5.
This approach includes two convolutional layers and five fully connected hidden layers, be-
sides Max-pooling and dropout layers are included to avoid overfitting.
Details of the implemented architecture are presented in Appendix A, Table A1.
Figure 9 shows details of the pre-processing stages applied in this experiment before
feeding the CNN architecture. Notice that the raw input contains 12 channels, therefore
there is the same number of spectrograms before the segmentation step. The STFT is
computed upon segments of 3s per channel with an overlap of 80%.
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Input

(Raw data, dim = 12)
Spectrograms

dim = 12

Segmentation

(3 sec, overlaping 80%)

dim = 12 x N

CNN

PD

HC

Figure 9. Methodology for the classification based on CNNs.

Note that when both feet are considered the dimension of the input is r = 12 which
corresponds to three accelerometer signals and three gyroscope signals per foot. Table 2
shows the results obtained in the classification with the 2× 4 task. The highest accuracy
in test is 82.4% for the PD vs. EHC scenario, while 87.5% for PD vs. YHC. Table 3 presents
the results obtained with the 4× 10 task. Notice that in this case the results are higher
compared to those obtained in the previous task. In the PD vs. EHC scenario, the highest
accuracy in test is 82.7% while in PD vs. YHC it is 92.1%. This improvement could be
associated to the fact that this task is longer than the previous one, therefore there are more
chances to observe abnormal patterns in the gait signals. Also, a longer task likely produces
more fatigue in the participants, especially the patients.

Table 2. Results using CNN and 2× 10 m task.

Scenario Foot Acc. Dev.
[%]

Acc. Test
[%] Sen [%] Spe [%] AUC

Left 79.1± 3 81.3± 4 74.3± 4 84.3± 4 0.87
PD vs. EHC Right 79.5± 4 80.1± 4 79.3± 4 80.3± 4 0.88

Both 80.2± 3 82.4± 3 76.2± 3 87.3± 4 0.88

Left 83.9± 5 85.4± 5 87.2± 3 88.0± 4 0.90
PD vs. YHC Right 81.7± 4 83.8± 4 88.1± 3 85.0± 4 0.90

Both 84.3± 5 87.5± 4 88.7± 3 87.1± 4 0.91
Acc. Test: accuracy in test, Acc. Dev.: accuracy in development, Sen: Sensitivity, Spe: Specificity, AUC: Area under
the ROC curve.

Table 3. Results using CNN and 4× 10 m task.

Scenario Foot Acc. Dev.
[%]

Acc. Test
[%] Sen [%] Spe [%] AUC

Left 83.2± 5 85.3± 4 83.0± 6 91.3± 3 0.92
PD vs. EHC Right 83.3± 4 79.5± 6 83.3± 5 82.9± 6 0.91

Both 83.5± 6 82.7± 4 85.6± 2 87.9± 2 0.92

Left 87.4± 4 88.5± 4 88.3± 6 90.5± 5 0.95
PD vs. YHC Right 85.3± 6 86.5± 4 91.4± 4 87.9± 5 0.94

Both 88.5± 5 92.1± 5 91.2± 3 88.4± 5 0.95
Acc. Test: accuracy in test, Acc. Dev.: accuracy in development, Sen: Sensitivity, Spe: Specificity, AUC: Area under
the ROC curve.

3.2. Classification with GRU

The general scheme of the GRU architecture used in this work is presented in Figure 8.
In this case, the raw input with 12 channels is first segmented into windows of 3s with 80%
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overlap. Each window is segmented into N number of steps. Details of the implemented
architecture are presented in Appendix A, Table A2. Notice that since every person can
produce a different number of steps during the time window, the number of steps needs
to be variable in order to make it the method robust and flexible. This segmentation
procedure is shown in Figure 10. Table 4 shows results of the two classification scenarios:
PD vs. EHC and PD vs. YHC when the 2× 10 task is considered. Similarly, Table 5 includes
results obtained with the 4× 10 m task. Note that the GRU architecture yields better results
in most of the experiments, compared to those obtained with the CNN. Similar to what
we observed in the previous experiment, the 4× 10 task yields better results. In the case
of the classification between PD patients and EHC subjects the highest accuracy was 82.7%
and in the case of PD vs. YHC the best result was 92.5%. Signals of both feet provided the
best results in both scenarios, as it was also observed in the experiment with CNN.

Input

(Raw data, dim = 12)

Segmentation

(3 sec, overlaping 80%)

dim = 12 × N

GRU

PD

HC

X +

XX

1-

Figure 10. Methodology used for the classification with a GRU architecture and both feet.

Table 4. Results using GRU and 2× 10 m task.

Scenario Foot Acc. Dev.
[%]

Acc. Test
[%] Sen [%] Spe [%] AUC

Left 75.7± 4 75.2± 4 70.6± 6 74.3± 4 0.82
PD vs. EHC Right 74.9± 4 73.3± 5 75.7± 4 78.8± 6 0.81

Both 78.5± 6 78.7± 5 72.8± 3 83.3± 5 0.84

Left 84.7± 4 83.4± 5 88.4± 4 87.2± 5 0.89
PD vs. YHC Right 81.3± 6 82.6± 4 87.7± 5 84.4± 4 0.88

Both 86.7± 5 84.5± 4 89.1± 3 87.9± 5 0.90
Acc. Test: accuracy in test, Acc. Dev.: accuracy in development, Sen: Sensitivity, Spe: Specificity, AUC: Area
under the ROC curve

Table 5. Results using GRU and 4× 10 m task.

Scenario Foot Acc. Dev.
[%]

Acc. Test
[%] Sen [%] Spe [%] AUC

Left 77.5± 4 76.6± 3 75.1± 2 80.8± 3 0.88
PD vs. EHC Right 75.6± 4 74.5± 3 77.3± 5 82.1± 5 0.87

Both 84.1± 4 82.7± 6 83.8± 4 86.3± 6 0.92
Left 91.8± 6 90.3± 4 89.3± 6 90.1± 6 0.94

PD vs. YHC Right 89.5± 5 88.6± 6 90.4± 4 92.4± 5 0.94
Both 93.7± 4 92.5± 5 92.6± 3 94.1± 6 0.96

Acc. Test: accuracy in test, Acc. Dev.: accuracy in development, Sen: Sensitivity, Spe: Specificity,AUC: Area under
the ROC curve.

3.3. Classification with CNN + GRU

To consider temporal and frequency information of the gait signals simultaneously,
a novel strategy is proposed in this work. Details of the implemented architecture are
presented in Appendix A, Table A3. The input to the proposed architecture are the spec-
trograms and also the raw signals. Figure 11 shows how the two approaches can be
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considered simultaneously to perform the final decision of whether a subject belongs
to the PD or HC group.

Results presented in Tables 6 and 7 show that this methodology yields results slightly
better than those obtained with the GRU model. When observing the 4 × 10 m task,
the highest accuracy in the PD vs. EHC scenario was 83.7%, while in PD vs. YHC the result
was 92.7%.

Although the results of the CNN + GRU model are not much higher than those
obtained with the GRU architecture, we believe that this is due to the small amount of data
considered in this work. We are currently working on the collection of more data to validate
whether these kinds of architectures yield results significantly better than others where
only temporal or frequency information is considered separately.

Input

(Raw data, dim = 12)
Spectrograms

dim = 12

Segmentation

(3 sec, overlaping 80%)

dim = 12 × N

Convolutional
layer 1

Fu
lly con

n
ected

Convolutional
layer 2

Fu
lly con

n
ected

CNN

PD

HC

GRU

X +

XX

1-

Figure 11. Proposed methodology considering a CNN + GRU architecture

Table 6. Results using CNN + GRU and 2× 10 m task.

Scenario Foot Acc. Dev.
[%]

Acc. Test
[%] Sen [%] Spe [%] AUC

Left 76.7± 5 74.6± 6 71.3± 5 75.2± 4 0.83
PD vs. EHC Right 75.2± 3 73.6± 5 74.9± 6 79.3± 4 0.81

Both 80.4± 5 78.7± 4 73.3± 5 84.1± 5 0.85
Left 85.4± 5 83.7± 4 89.2± 5 86.9± 4 0.88

PD vs. YHC Right 83.5± 6 82.0± 6 88.4± 4 85.2± 6 0.87
Both 88.5± 4 85.7± 5 90.2± 3 86.5± 5 0.89

Acc. Test: accuracy in test, Acc. Dev.: accuracy in development, Sen: Sensitivity, Spe: Specificity, AUC: Area under
the ROC curve.
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Table 7. Results using CNN + GRU and 4× 10 m task.

Scenario Foot Acc. Dev.
[%]

Acc. Test
[%] Sen [%] Spe [%] AUC

Left 76.7± 6 74.7± 4 75.2± 5 77.8± 5 0.84
PD vs. EHC Right 74.2± 7 72.4± 6 74.2± 4 78.5± 5 0.82

Both 85.7± 3 83.7± 4 84.7± 5 85.9± 4 0.93
Left 90.9± 6 91.1± 3 89.5± 6 91.1± 5 0.94

PD vs. YHC Right 90.3± 5 87.9± 5 90.6± 3 92.2± 6 0.95
Both 93.3± 4 92.7± 4 91.9± 3 94.4± 5 0.96

Acc. Test: accuracy in test, Acc. Dev.: accuracy in development, Sen: Sensitivity, Spe: Specificity, AUC: Area under
the ROC curve.

Figure 12 presents the best results of the 4× 10 m task in the two scenarios and
the three experiments. The distribution of the scores/posteriors obtained in the classifica-
tion stage of each scenario (PD vs. EHC and PD vs. YHC) are included in Figures 12a,c.
Although both scenarios are clearly separable due to the robustness of the proposed ap-
proach based on a GRU+CNN architecture, it can be observed that there is more overlap
in the first scenario. Regarding Figures 12b,d, they include the ROC curves resulting
from the three experiments (CNN, GRU, and CNN + GRU) in each scenario. Notice that
in both cases the CNN + GRU architecture yields the highest AUC values, which confirms
its superiority compared to other approaches.

(a) (b)

(c) (d)

Figure 12. Comparison of the best results considering the 4× 10 m task and both feet. (a) Distribution
of the scores in PD vs. EHC using the GRU + CNN architecture. (b) Comparison of the ROC curves
in the PD vs. EHC scenario. (c) Distribution of the scores in PD vs. YHC using the GRU + CNN
architecture. (d) Comparison of the ROC curves in the PD vs. YHC scenario.
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Table 8 summarizes the results obtained with the different architectures with the 4× 10 task.

Table 8. Summary of the accuracy in test for the best results considering the 4× 10 m task.

Scenario Foot CNN GRU CNN + GRU

Left 85.3± 4 76.6± 3 74.7± 4
PD vs. EHC Right 79.5± 6 74.5± 3 72.4± 6

Both 82.7± 4 82.7± 6 83.7± 4
Left 88.5± 4 90.3± 4 91.1± 3

PD vs. YHC Right 86.5± 4 88.6± 6 87.9± 5
Both 92.1± 5 92.5± 5 92.7± 4

Data correspond to the accuracy in test by each architecture.

4. Discussion

Three different deep learning architectures were considered for the classification of PD
vs. HC subjects. Two subgroups of healthy healthy subjects were included, elderly (EHC) and
young (YHC). The architectures evaluated in this work correspond to the state of the art in
gait analysis and are based on CNNs and GRUs. Previous works suggest that CNN architec-
tures are a suitable approach when considering the STFT of gait signals [16,35]. In [16] the use
of a CNN is introduced to classify gait signals and the authors reported an accuracy of 88%.
We found comparable results in our present study, where the best accuracy obtained with
the CNN is 82.7% considering the YHC group and the best result with the EHC group is
82.4%. The algorithm performed better always when the 4× 10 m task was considered.
We believe that this is because a longer task allows to capture more information about pos-
sible abnormal gait patterns which provides better classification results and also improves
the generalization of the algorithms. The GRU model presented here allowed modelling
information of gait signals without any pre-processing. In [36] the authors explored the use
of RNNs to predict gait phases. They showed that these kinds of architectures are promis-
ing for the analysis of gait signals. In our experiments, we could observe that the GRU
architecture improved the accuracy in most of the experiments. Similar to the CNN case,
better results were obtained with the 4× 10 m task. The classification of PD vs. EHC
yields an accuracy of 82.7%, while with the YHC group, the accuracy is 92.5%. Besides
CNN and GRU architectures evaluated individually, in this paper we proposed a model
where CNN and GRU architectures are considered together. We hypothesized that re-
sults could improve when temporal and frequency information were combined in a single
model. We found that, in general, results were similar to those obtained with the GRU
architecture, with accuracies of 83.7% and 92.7% in the PD vs. EHC and PD vs. YHC
scenarios, respectively. We believe that the results of the CNN + GRU model were not
higher due to the small amount of data that we could consider here. Further research with
a larger group of participants is required to validate whether this could lead to better results.
We consider that this work is a step forward in the development of deep learning models
for the automatic classification of PD patients.

In addition, it is necessary to consider other deep learning architectures seeking
to improve the results, such as transfer learning, data argumentation and combinations
of classifiers. Perhaps the most realistic approach would be to do transfer learning based
on existing datasets, however, it is necessary to perform the experiments to raise strong
conclusions.

5. Conclusions

GRU architectures clearly yielded better results than the CNN ones and this is likely
due to the fact that temporal information is incorporated when the first approach is consid-
ered. Besides, we validated that the combination of CNN and GRU methods are suitable
and provide similar results to those observed with GRUs only. Although we expected
to find higher accuracies with the combination of methods, it was not possible to prove our
hypothesis. We believe that it was due to the small amount of data considered in this study.
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Regarding the comparison of gait tasks, we could validate that the 4× 10 m task is
more suitable and systematically yields better results than the 2× 10 m task. Very likely this
is because longer tasks allow us to collect more information and also give more chances
to observe abnormal patterns in the gait signals.

Besides the evaluation of state-of-the-art deep learning architectures, the results ob-
tained in this paper are comparable to others reported in the literature, so we believe that
this study is a contribution to the topic gait analysis in PD patients.

We are aware that one of the limitations of this study is the small amount of data. We
expect to perform experiments with more participants in the near future to make it possible
to validate further hypotheses.
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Appendix A

Details of the architectures used in the models.

Table A1. Details of the CNN architecture considering both feet (12 channels).

Layer Output Shape Number of Parameters

Input (12, 257, 12) 0

Convolution 2D (10, 255, 8) 872
Convolution 2D (8,253,16) 1168

Max pooling (4,126,16) 0
Flatten 2016 0
Dense 1 256 2,064,640
Dropout 256 0
Dense 2 128 32,896
Dropout 128 0
Dense 3 64 8256
Dropout 64 0
Dense 4 32 2080
Dropout 32 0
Dense 5 16 528
Dropout 16 0

Output 1 17
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Table A2. Details of the GRU architecture considering both feet (12 channels).

Layer Output Shape Number of Parameters

Input (12, 306) 0

GRU 128 148,608
Dense 1 256 8256
Dropout 256 0
Dense 2 128 1040
Dropout 128 0

Output 1 17

For the CNN + GRU architecture we combined the dense 5th layer of the CNN
architecture with the dense 2nd layer of the GRU architecture as follow:

Table A3. Details of the CNN + GRU architecture considering both feet (12 channels).

Layer Output Shape Number of Parameters

Input Dense 5th of CNN and dense
2nd of GRU 0

Dense 4 36

Output 1 5
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