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Abstract: Diabetes is an acute disease that happens when the pancreas cannot produce enough
insulin. It can be fatal if undiagnosed and untreated. If diabetes is revealed early enough, it
is possible, with adequate treatment, to live a healthy life. Recently, researchers have applied
artificial intelligence techniques to the forecasting of diabetes. As a result, a new SMOTE-based
deep LSTM system was developed to detect diabetes early. This strategy handles class imbalance in
the diabetes dataset, and its prediction accuracy is measured. This article details investigations of
CNN, CNN-LSTM, ConvLSTM, and deep 1D-convolutional neural network (DCNN) techniques and
proposed a SMOTE-based deep LSTM method for diabetes prediction. Furthermore, the suggested
model is analyzed towards machine-learning, and deep-learning approaches. The proposed model’s
accuracy was measured against the diabetes dataset and the proposed method achieved the highest
prediction accuracy of 99.64%. These results suggest that, based on classification accuracy, this
method outperforms other methods. The recommendation is to use this classifier for diabetic patients’
clinical analysis.

Keywords: diabetes prediction; imbalanced learning; deep neural network; long short-term memory

1. Introduction

Diabetes is a chronic illness that occurs when blood sugar is not adequately processed.
Over time, it can affect many organs, causing long-term damage and malfunction. The
diabetic disease [1] can cause serious complications, such as nervous-system damage, heart
attacks, kidney failure, and stroke. Hyperglycemia is a condition in which the body’s
glucose levels are too high, resulting in anomalies in the cardiovascular system [2] and
major difficulties with the functioning of numerous human organs such as the eyes, kidneys,
and nerves. This research attempted to concentrate on the finding of diabetes [3] using
the Pima Indian Diabetes Dataset (PIDD) [4]. This is available in the UCI (the University
of California at Irvine) Repository. Class imbalance is a situation in which the number of
instances in all the classes is not equal. The classes with most instances are referred to as
the majority classes, and the classes with fewer instances are referred to as the minority
classes. The imbalance of any dataset can be easily measured by using the class-imbalance
ratio (CIR), which is defined as a ratio between the number of minority instances and the
number of majority instances. The class imbalance in the dataset degrades the performance
of the machine-learning algorithm. As the machine-learning model is trained with majority-
class-label instances, this leads to a lack of recognition of minority-class instances. This
problem is termed overfitting. The solution is to make the imbalanced dataset into a
balanced dataset before training starts. Data augmentation provides augmented data to
handle the imbalanced data before the training process. Random sampling is the most
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straightforward data augmentation technique. In this technique, the samples are generated
randomly from the minority-class instances. Undersampling and oversampling are the
two popular random sampling techniques. The undersampling method removes the
instances randomly from the majority-class instances. Hence the number of instances in
both majority- and minority-class labels become equal. The limitation of this approach is
data loss. The oversampling method duplicates the instances taken from the minority class
to make the minority class similar in size to the majority class. Since the same instances are
repeated, the classifier’s accuracy is improved compared to the performance of the classifier
trained with an imbalanced dataset. On the other hand, synthetic sample generation-
based oversampling is called the synthetic minority oversampling Technique (SMOTE). It
generates samples synthetically between each minority instance and its neighbors. Deep-
learning-based classifiers perform better than machine-learning classifiers. Long short-term
memory (LSTM) is a popular recurrent neural network (RNN) that can be trained with
many layers to improve model training accuracy.

For diabetes prognosis, the SMOTE sampling strategy is included in time series
forecasting for class imbalance. The two-class neural network employs Pima Indian data
for diabetes prediction [5]. The authors pre-processed the data, who normalized the
attribute using the standardization technique. They also used correlation to extract the
essential features. On the other hand, the authors did not mention these discriminatory
characteristics. Compared to the accuracy acquired from earlier studies, the model attained
the best accuracy of 83.3% after being divided into training data of 314 instances and test
data of 78 instances. Deep learning is a subset of machine learning and plays a promising
role in the field of time-series prediction. Class imbalance is a challenging issue in medical
data including the PIDD. A 1D-convolutional neural network (DCNN) method [6] handled
the class-imbalanced Pima Indian diabetic data set and classified the patient as diabetic
or non-diabetic, and its classification accuracy was 86.29%. Hence another deep-learning
model was built in this work with SMOTE to convert imbalance data into balanced data
before the classification of diabetes or not. The initial class-imbalanced data set was
processed with the synthetic minority oversampling technique (SMOTE) method [7]. The
proposed method, SMOTE-based deep LSTM, is a fusion of SMOTE and LSTM layers for
diabetes prediction. The novelty of this paper is class-imbalance learning and prediction
using SMOTE-based deep LSTM. Various comparative evaluations were conducted to
determine where our model performs better and where it performs worse. We also fine-
tuned many factors in our model to determine the best configuration when the model is
most accurate. We compared our model’s performance with various benchmark models.

The paper is comprised of the following sections: Section 1 presents the aims of
the work. Section 2 précises the existing works on diabetes prediction. The proposed
SMOTE-based deep-learning model is described in Section 3. The experimental setup,
performance indicators, and results and comparisons are described in Section 4. Finally,
Section 5 concludes the paper and presents future work.

2. Related Works

Many real-world applications of the class-imbalanced problem exist, including fraud
detection [8] and medical diagnostics [9–11]. In classification, unbalanced learning poses a
problem. The synthetic minority oversampling technique over-samples the minority class.
It is a type of data augmentation in which current samples are used to create new samples.
It establishes lines connecting similar samples in the minority class. On these lines, new
sample points are added. More specifically, a random sample is selected, and then the
K-nearest neighbor (KNN) algorithm is used to choose neighbors to whom lines are drawn.
With this procedure, many synthetic samples are created as needed, which means that
the SMOTE method is suitable for data sets of all sizes. Christobel et al. (2013) proposed
Class-wise k-Nearest Neighbor (CkNN) method for diabetes classification [12]. Polat et al.
(2008) developed a cascade learning system to mitigate the issues in identifying the diabetic
disease [13]. It consists of Generalized Discriminant Analysis and Least Square Support
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Vector Machine for classification. It provides a promising accuracy of 82.05%. Kahramanli
and Allahverdi (2008) proposed a hybrid neural network that combines Artificial Neural
Network (ANN) [14] and Fuzzy Neural Network (FNN) [15]. Kayaer et al. (2003) pro-
posed a general regression neural network for diabetic recognition using PIDD [16]. The
performance is compared by various training algorithms.

Deep learning mitigates many issues in learning the features from diabetic dataset and
makes the classification easier [17,18]. The performance of the hybrid model is measured by
Pima Indians diabetes and Cleveland heart disease datasets. The deep belief network [19]
was applied over a diabetes dataset for diabetic prediction and achieved a prediction
accuracy of 81.20%. Mohebbi et al. [20] applied logistic regression for MLP neural networks
and conventional neural networks. The goal was to use a continuous glucose monitoring
(CGM) signal-data set to identify diabetes patients. The data set contained nine individuals
of CGM data for 10,800 days and a total of 97,200 days was simulated. For cross-validation,
the data set was separated into training, validation, and testing data. Three patients were
chosen for testing, and six were chosen for training and validation and the accuracy was
77.5%. Caliskan et al. proposed a deep-learning stacked autoencoder with a deep neural
network that used L-BFGS [21]. This method performed optimization and its classification
accuracy over PIDD was 77.09%. Pham et al. [22] used three distinct DL algorithms on an
Australian hospital’s manually collected data. The data set consisted of 12,000 samples
(patients) with a male-to-female ratio of 55.5%. Some pre-processing techniques were used
to limit the observations to 7191. The data set was divided into two-thirds for training,
one-sixth for validation, and one-sixth for testing for validation. The performance of
models such as long short-term memory (LTSM), Markov, and recurrent neural networks
(RNN) was compared using the precision value. Long short-term memory achieved a
precision value of 59.6%. Ramesh et al. [23] also employed the recurrent neural network
that predicts the type of diabetes. According to their research, all eight attributes were the
most important attributes. The data set was divided into 80:20 for training and test sets
to validate the work. Type 1 diabetes was correctly predicted 78% of the time, whereas
type 2 diabetes was correctly predicted 81% of the time. A few researchers have proposed
a deep-learning-based big medical data analytics model using a deep-belief network for
diabetes classification from few factors selected from 50,000 diabetic data sets. The accuracy
was 81.20%. Temurtas et al. (2009) proposed a multilayer neural network (MLNN) for
diabetic prediction using PIDD which is trained by LM algorithm and probabilistic neural
network (PNN) [24]. This method is evaluated by 10-fold cross validation.

Naveena et al. (2022) developed a method named the moth-flame-based crow search
algorithm (MFCSA) for diabetes detection [25] and glucose-level prediction [17]. It is a
hybrid approach that selects optimal features followed by classification. The advantage
of this approach is avoiding redundant attributes. Pokharel et al. (2022) proposed an
ensemble classifier that uses a t-distributed stochastic neighbor-embedding technique for
type 2 diabetes prediction [18]. It also uses dimensionality reduction. This approach solves
the overfitting problem. Alade et al. (2017) designed a web application that uses a four-
layer feed-forward network for diabetes recognition [1]. It uses back-propagation and a
Bayesian regulation algorithm for training and has an accuracy of 92%. Mishra et al. (2020)
proposed an algorithm called the enhanced and adaptive-genetic algorithm-multilayer
perceptron (EAGA-MLP) [1]. It generates an optimized dataset by optimizing the attributes
followed by a classification process.

Long short-term memory is postulated for time-series prediction [26]. In time-series
forecasting, LSTM is a type of recurrent neural network. There are three layers called the
input, hidden, and output layers. Memory cells in the hidden layer have three gates that
update the state of the cell. Unlike RNNs, the vanishing gradient problem does not exist in
LSTM networks. This is essential for diabetes prediction since old information is handled
in the network [27]. In fact, three-dimensional input in the form of samples, time steps, and
features is supported by LSTM. One or more samples may be included in a batch. If we are
dealing with text at the sentence level (that is, one sentence at a time) in natural-language
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processing, our sample size will be one. The number of times the input is given to the
model can be thought of as the time step.

The limitations of previous work are class-imbalance problems, optimized dataset
generation, redundant attribute reduction and dimensionality reduction. The contributions
of the proposed method are given as follows:

• Designing a deep-learning classifier for diabetic recognition;
• Incorporating SMOTE to treat the class-imbalance problem and improve the accuracy

of the deep-learning classifier.

3. Diabetes Prediction

Deep-learning techniques were used in this work for predicting the diabetic illness.
The traditional machine-learning procedures do not need to be explicitly described in
DL networks. The main task of deep learning is self-learning the hidden patterns in the
data. This section describes the various deep-learning methods used in this work, such
as CNN [28], CNN-LSTM [29], ConvLSTM [30], and DCNN [6] for comparison with the
proposed method of SMOTE-based deep LSTM. The convolutional neural network is
popular in numerous applications [28] such as medical image analysis and object detection
and CNNs have demonstrated good performance. The convolutional neural network
takes local features that flow through lower layers for extracting complex features. The
convolutional layer comprises a set of kernels that are used to calculate a tensor of feature
mappings. The kernels use “stride(s)” to convolve an entire input so that the dimensions of
an output volume become integers [29]. After the convolutional layer is utilized to perform
the striding process, the dimensions of an input volume shrink. As a result, an input which
has undergone zero padding in order to hold the size of an input features zero padding [30]
is required. The convolutional layer operation is given in Equation (1):

F(i, j) = ∑ ∑ I(i + m, j + n)K(m, n) (1)

where I denotes input matrix, K represents a kernel with m× n size, and F denotes the
result of feature map. The convolution operation i ∗ K takes place in the convolutional layer.
The activation function rectified linear unit (ReLU) is used for generating nonlinearity in
feature maps and it is defined in Equation (2).

f (x) = max(0, x) (2)

The pooling layer [31] applies down-sampling on the input in order to reduce the
number of parameters. Max pooling selects the maximum value from the input. Finally,
the fully connected (FC) layer acts as a classifier [32].

Hochreiter and Schmidhuber [28] invented long short-term memory which can transfer
data between sequences. In LSTM, every computational step considers not just the current
input at time t, but also what has been learned from past inputs [33]. The Pima Indian
Diabetes Dataset was used to estimate diabetes using a combination of LSTM and CNN
methods. To match the three-dimensional input requirements of the Keras sequential model,
the data was first scaled, balanced, and reshaped. For a multivariate model, the input shape
would be 24 time steps with 9 features. Within the convolutional layer, the sequence is not
divided into multiple subsequences but the time steps are kept at 24 instead and the kernel
size is three. The dense layer is made up of 24 neurons that generate 24 output numbers.
The following Equation (3) shows how to extract features from the altered data using CNN.
The featured LSTM extracted are expressed in Equation (4).

CNN f eatures = CNN(Reshape(x(t)) (3)

LSTM f eatures = LSTM
(

CNN f eatures

)
(4)
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Another network structure is ConvLSTM. This hybrid network has convolution1D
and max-pooling layers. Equation (5) depicts the convolution process. The max-pooling
1D layer’s output is sent into the next LSTM layer.

yi = CNN(xi) (5)

where xi is the CNN network’s initial input vector with target label, yi is the network
outcome, which is given to the next LSTM module, and xi, the CNN’s max-pooling
process, produces a feature vector. It is fed into the LSTM which uses it to learn the
long-term temporal dependencies. The LSTM works in a following way: The length
of input x = (x1, x2, . . . xT−1, xT) is fed to LSTM structure and the output sequence
o = (o1, o2, . . . oT−1, oT). Its multiplicative units are found iteratively from t = 1 to T
in the LSTM architecture’s hidden layer. Equations (6) to (10) can be used to illustrate the
sequence of operations that occur in LSTMs at each time step xt, ht−1, clt−1 → ht, and clt .

int = σ(wxinxt + whinht−1 + wclinclt−1 + bin) (6)

f r1 = σ
(

wx f rxt + wh f rht−1 + wcl f rclt−1 + b f r

)
(7)

clt = f rt· clt−1 + int ·sigmoid(wxcl xt + whclht−1 + bcl) (8)

ott = σ(wxotxt + whotht−1 + wclotclt + bot) (9)

ht = ott·sigmoid(clt) (10)

The DCNN method accepts the preprocessed data from the Tukey method and SMOTE
which is given in Equation (11). In this work the Pima Indian Diabetes Dataset was focused
on diabetic prediction. The balanced data set is divided into training and testing data in
a 70:30 ratio. The series of deep 1D-CNN layers involved performs 1D convolution for
diabetic classification.

Balanced = SMOTE(Tukey(Dataset)) (11)

3.1. Data Set

The Pima Indian Data Set was chosen because of the top occurrence of type 2 diabetes
among Pima Native Americans living in southern Arizona. Because of a genetic propensity,
this group has, for years, had a low-carbohydrate diet [31]. There was an abrupt change
from traditional crops to managed foods, and the Pima population has developed a high
prevalence of diabetes in recent years. The Pima Indian Diabetes Dataset includes details
about 768 patients living in USA. This data set has eight numeric attributes and contains
details of female patients with a minimum age of 21 years. The target has the values to
indicate whether the patient is diabetic or not. The complete details of the data set are given
in Table 1. The data set is available on the Kaggle platform [4].

Table 1. Attributes of the PIDD.

Attribute Range Average

Age 21 to 81 33
Pregnancies 0 to 17 4
Glucose (2 h) 0 to 199 121

Blood pressure (mm Hg) 0 to 122 69
Skin thickness (mm) 0 to 99 21
Insulin (mu U/mL) 0 to 846 80

BMI (Kg/m2) 0 to 67.1 32
Diabetes pedigree function 0.078 to 2.42 0.47

Outcome either 0 or 1 -
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3.2. SMOTE-Based Deep LSTM for Diabetes Prediction

The challenge is to achieve diabetic classification, with good classifier performance,
from a class-imbalance problem. The proposed SMOTE-based deep LSTM architecture
overcomes these challenges.

3.2.1. Data Preprocessing

As a first step, the missing values are handled. Missing values are common in any
healthcare data set. Compared to other methods, the Tukey method is a popular outlier-
detection method which handles missing values in many applications. The normalization of
the data set is performed by using the min-max transformation method. This normalizes the
attributes from one range of values to a new range of values. The min-max normalization
formula is given in Equation (12).

x′ = (xmax − xmin)×
(xi − xmin)

(xmax − xmin)
+ xmin (12)

where xi represents each instance of input, x′ represents scaled input data and xmax, xmin
denotes maximum and minimum value in the input x. This preserves the relationship
between data.

3.2.2. Class-Imbalance Processing

The robustness and generalization performance of classifiers trained on imbalanced
data sets should be reduced. This is a key problem of machine learning. The SMOTE
method handles imbalanced data and as all the columns in the PIDD are numerical, it is
acceptable for SMOTE. SMOTE’s core idea is to insert new samples at random between
minority samples and their neighbors. The K-nearest neighbors is first examined from the
samples of minority-class samples. Assuming that the data set’s sampling magnification is
N, there are N samples from K-NN and K > N. The interpolation formula of SMOTE is in
Equation (13).

Si = X + rand(0, 1)× (yi − X) (13)

where X denotes a data sample in minority-class samples, rand(0, 1) denotes a random
number from the interval (0,1), yi represents the ith nearest neighbors, and Si is the interpo-
lated sample.

3.2.3. Reshaping

For LSTM, the input data needs to be time-series data. Hence, here the balanced
data set needs to be reshaped into 3D data. The input data set consists of nine attributes
represented as xi in Equation (14). Further, the raw balanced samples are reshaped into 3D
data as in Equation (15), which satisfies the input requirements for deep-learning model.

input =
8

∑
i=1

xi (14)

Tensorinput = reshape(xi) (15)

3.2.4. Deep LSTM

The novelty of the proposed work is its ability to handle unbalanced data in diabetes
prediction. SMOTE is a common oversampling strategy for dealing with class-imbalanced
data sets that produces new minority-class samples. After oversampling, the balanced data
is reshaped into 3D data. Then the data is divided into training and testing data. Figure 1
shows the architecture of SMOTE-based deep LSTM. SMOTE is based on selecting the
number of nearest neighbors, K = 5. LSTM accepts input data to be a 3D tensor such as
batch size, timesteps, and features. The proposed model includes four LSTM layers. The
overfitting problem is solved by using a dropout hyperparameter [5]. Adaptive moment
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estimation (Adam) is used for optimization. Table 2 shows the detailed layer-wise training
process of the SMOTE-based deep LSTM model.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 18 
 

 

data is reshaped into 3D data. Then the data is divided into training and testing data. 
Figure 1 shows the architecture of SMOTE-based deep LSTM. SMOTE is based on select-
ing the number of nearest neighbors, K = 5. LSTM accepts input data to be a 3D tensor 
such as batch size, timesteps, and features. The proposed model includes four LSTM lay-
ers. The overfitting problem is solved by using a dropout hyperparameter [5]. Adaptive 
moment estimation (Adam) is used for optimization. Table 2 shows the detailed layer-
wise training process of the SMOTE-based deep LSTM model. 

 
Figure 1. SMOTE-based deep LSTM for diabetic prediction. 

Table 2. Layer-wise training detail of SMOTE-based deep LSTM model. 

Layer Input Output Parameter 

SMOTE 
#Minority instances = 
268<break/># Majority in-
stances = 500 

# Minority instances = 
500<break/># Majority in-
stances = 500 

K = 5 

LSTM1 
# Training data = 
700<break/>[20 × 35] (20 × 30) 

Hidden units = 
96<break/>Learning rate 
= 0.005 Batch size = 
20<break/>Loss = 
MSE<break/>Optimizer = 
Adam<break/>Dropout = 
0.5<break/># Epochs = 
417<break/>Re-
turn<break/>Sequences = 
true 

LSTM2 # Training data = 
600<break/>(20 × 30) 

(20 × 25) 

Hidden units = 
96<break/>Learning rate 
= 0.005<break/>Batch size 
= 20<break/>Loss = 
MSE<break/>Optimizer = 
Adam<break/>Dropout = 
0.5<break/># Epochs = 

Figure 1. SMOTE-based deep LSTM for diabetic prediction.

Table 2. Layer-wise training detail of SMOTE-based deep LSTM model.

Layer Input Output Parameter

SMOTE #Minority instances = 268
# Majority instances = 500

# Minority instances = 500
# Majority instances = 500 K = 5

LSTM1 # Training data = 700
[20 × 35] (20 × 30)

Hidden units = 96
Learning rate = 0.005 Batch size = 20
Loss = MSE
Optimizer = Adam
Dropout = 0.5
# Epochs = 417
Return
Sequences = true

LSTM2 # Training data = 600
(20 × 30) (20 × 25)

Hidden units = 96
Learning rate = 0.005
Batch size = 20
Loss = MSE
Optimizer = Adam
Dropout = 0.5
# Epochs = 351
Return
Sequences = true

LSTM3 # Training data = 500
(20 × 25) (20 × 20)

Hidden units = 96
Learning rate = 0.005
Batch size = 20
Loss = MSE
Optimizer = Adam
Dropout = 0.5
# Epochs = 325
Return
Sequences = true

LSTM4 # Training data = 400
(20 × 20) (20 × 15)

Hidden units = 96
Learning rate = 0.005
Batch size = 20
Loss = MSE
Optimizer = Adam
Dropout = 0.5
# Epochs = 200
Return
Sequences = true

Flatten (20 × 15) 300 -

FC 300 - Number of neurons = 15
Activation = sigmoid

Output - - Activation = sigmoid
# Represents the count.
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3.2.5. Parameter Setting

The SMOTE-based deep LSTM is a deep-learning-inspired form of LSTM that uses
more than one LSTM layer to construct the neural network for the balanced data set. It
was used to scale, reshape, and split the Pima Indian Diabetes Dataset into training and
testing data sets. SMOTE was applied over the data to make balanced data before splitting.
With 96 neurons for the first, second, and third LSTM layers, and 200 epochs, deep LSTM
was used to predict type-2 diabetes from the PIDD. The model’s input comprises three
dimensions: the number of samples, the number of time steps, and the input dimension,
or the number of included predictors. Sequence to sequence is the first two layers, and
sequence to single output is the third layer. Then there is a dense layer that is entirely
connected. For the stochastic gradient descent, the adaptive movement estimation (Adam)
algorithm is utilized [34]. During training, the overfitting problem was solved by setting
the dropout rate of 0.5 in all the layers. Table 3 shows the values of the deep LSTM model’s
hyperparameter settings.

Table 3. Parameter settings for the SMOTE-based deep LSTM model.

Hyperparameter Range Value

Learning Rate [35] 0.1, 0.01, 0.005, 0.001, 0.0005 0.005
Optimizer [34] Adam, sgdm, rmsprop Adam
Number of LSTM layers [36] 1, 3, 5, 7 4

Hidden units per LSTM layer [37] 12, 24, 48, 96, 192 96
Number of epochs [30] 50, 100, 200, 300, 400, 500 200

Dropout rate [38] 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 0.5
Batch size [39] 1, 5, 10, 20 20
Number of neurons in fully
connected (FC) layer [40] 10, 12, 15, 20, 25, 30 15

Activation = sigmoid
Number of neurons in output
layer [41] - 1

Activation = sigmoid

4. Experimental Methods and Results
4.1. Experimental Setup

This experiment employed the Pima Indian Diabetes Dataset which was taken from
Kaggle [4]. The experiments were conducted on a Windows 10 computer with 8GB RAM.
The proposed method was implemented in Python and executed on the Jupyter Notebook
of the Anaconda3 edition. The experiments on our suggested model with the PIDD were
carried out to tweak hyperparameters and discover the best arrangement. The SMOTE-
based deep LSTM network achieves improved prediction accuracy, as demonstrated in our
experiments. This research conducted on various topologies including CNN, CNN-LSTM,
ConvLSTM, DCNN, and SMOTE-based deep LSTM networks to determine the ideal values
for the hyperparameters. Initially, a medium-sized CNN network with input, hidden, and
output layers was developed. A total of 1000 neurons make up the input layer. A CNN
with 32 filters, 3 kernel size, stride of 1 × 1, pooling size of 2, and max-pooling 1D, flatten,
and dropout with 0.5 was used. For the network parameter of filter size, three trails tests
were carried out, starting with 32, then 64, and lastly 128. The next goal was to determine
the best value for the CNN network’s learning rate parameter. Three setups were carried
out with varied learning rates ranging from 0.01 to 0.5. The CNN-4 layer worked better
than the 1-CNN, 2-CNN, or 3-CNN layers. Table 4 presents the complete configuration
details of various models used for experimentation.
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Table 4. Layer-wise configuration detail of CNN, CNN-LSTM, ConvLSTM, and DCNN.

Model Configuration Parameter Detail

1-CNN [42]

# Convolution layers = 1
# Max-pooling layer = 1
# Flatten layer = 1
# Fully connected layer = 1
# Output layer = 1

Input layer = 1000 neurons
# Filters = 32
Kernel size = 3 × 3
Stride = 1 × 1
Pooling size = 2
Dropout = 0.5

2-CNN [42]

# Convolution layers = 2
# Max-pooling layer = 2
# Flatten layer = 1
# Fully connected layer = 1
# Output layer = 1

Input layer = 1000 neurons
# Filters = 32
Kernel size = 3 × 3
Stride = 1 × 1
Pooling size = 2
Dropout = 0.5

3-CNN [28]

# Convolution layers = 3
# Max-pooling layer = 3
# Flatten layer = 1
# Fully connected layer = 1
# Output layer = 1

Input layer = 1000 neurons
# Filters = 32
kernel size = 3 × 3
Stride = 1 × 1
Pooling size = 2
Dropout = 0.5

4-CNN [28]

# Convolution layers = 4
# Max-pooling layer = 4
# Flatten layer = 1
# Fully connected layer = 1
# Output layer = 1

Input layer = 1000 neurons
# Filters = 32
Kernel size = 3 × 3
Stride = 1 × 1
Pooling size = 2
Dropout = 0.5

CNN-LSTM
[29]

# Convolution layers =
{1,2,3,4,5}
# LSTM layers = {1,2,3,4,5}
# Flatten layer = 1
# Fully connected layer = 1
# Output layer = 1

First convolution layer’s kernel size = 11 × 11
Second convolution layer’s kernel size = 5 × 5
Third convolution layer’s kernel size = 3 × 3
Fourth convolution layer’s kernel size = 2 × 2
Fifth convolution layer’s kernel size = 2 × 2
Stride = 2 × 2
Learning rate = 10−3

Epoch = 100

ConvLSTM
[30]

# ConvLSTM layers = 3
# Flatten layer = 1
# Fully connected layer = 2
# Output layer = 1

Learning rate = 0.05
Number of filters = 28
Kernel Size = 5
Dropout = 15%
Epoch = 100
Number of hidden units = 50

DCNN [6]

# 1D convolution layers = 4
# Max pooling layer = 1
# Flatten layer = 1
# Fully connected layer = 2
# Output layer = 1

Learning rate = 0.01
Number of filters = 32
Kernel size = 5
Dropout = 20%
Epoch = 200
Number of hidden units = 100

# Represents the count.

Another investigation was on CNN-LSTM with the result of adding LSTM layers, hid-
den neurons, and fully connected (FC) layers. A batch of data was fed into the convolution
layer. The first convolution layer’s kernel size was 11 × 11, the second convolution layer’s
kernel size was 5 × 5, and the third convolution layer’s filter size was 3 × 3. With two
strides, the kernel convolved with data. The effectiveness of different LSTM layers with
neurons 64, 128, and 248 was investigated. For diabetes prediction, the network model
with 128 LSTM states and three fully linked layers outperformed alternative setups. For
improved convergence, learning rate = 10−3 was chosen for the 100 epoch training. Three
CNN layers followed by three LSTM layers worked well than network topologies such
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as one CNN layer with one LSTM layer, two CNN layers with two LSTM layers, three
CNN layers with three LSTM layers, four CNN layers with four LSTM layers, and five
CNN layers with five LSTM layers. Convolutional LSTM was the next approach. It uses a
fully linked dense layer to represent the collected hidden structure and captures the un-
derlying features of data. To successfully capture the underlying features, the normalized
and reshaped data are first passed through three ConvLSTM layers, each of which has
hundreds of hidden units and handles the received input in two directions. The first of
three ConvLSTM layers is an input layer, with another two layers acting as hidden layers.
Four 1D-CNN layers, a single Max pooling and flatten layer, and two fully connected (FC)
layers make up the DCNN architecture. The DCNN uses 32 filters, with kernel size = 5 and
a learning rate = 0.01. Each layer has 100 neurons, with 12 neurons with sigmoid activation
functions in the fully connected (FC) layer. It processed the input of 32 samples per batch.

4.2. Performance Measures

The working of a proposed model can be assessed with diverse norms. The accuracy
of prediction is measured by the fraction of acceptably classified instances to the total
instances. The accuracy of prediction is given as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

where TP denotes true positive instances and TN represents true negative instances. Recall
is the percentage of positive instances that are correctly classified. It is presented as follows:

Recall =
TP

TP + TN
(17)

The ratio of accurately identified positive observations to all predicted positive in-
stances is known as precision.

Precision =
TP

TP + FP
(18)

Root mean square error (RMSE) is expressed as a standard deviation of the difference
between the predicted and actual values. It is the prediction error index that is most often
used in literature. MAE is an arithmetic average of the absolute errors.

RMSE =

√
1
n

n

∑
t=1

(xt − x̂t)
2 (19)

MAE =
∑n

t=1|xt − x̂t|
n

(20)

where xt represents current true value, x̂t is its predicted value, and n is the total number of
testing data. The Cohen’s kappa (K) is a statistic that indicates how well a prediction matches
the true class. According to the Kappa statistic, a value close to 1 indicates the best method.

K =
p0 − pe

1− pe
(21)

where p0 denotes relative observed agreement and pe represents the hypothetical probabil-
ity of chance agreement.

The AUC (area under the curve) is another performance metric with ranges from
0 to 1. The correct classification performance of the binary classifier is assessed by AUC.
The values of AUC are high when the classifier predicts the class labels of many instances
correctly. An AUC of 0.5 indicates that the model correctly classifies 50% of instances. An
AUC of 1 indicates that the model correctly classifies all the instances of dataset.



Electronics 2022, 11, 2737 11 of 17

4.3. Results Analysis

The proposed model had two parts: class imbalance handling using the SMOTE followed
by the deep LSTM classifier. The Pima Indian Diabetes Dataset was used to test proposed
model. This research employed CNN, CNN-LSTM, ConvLSTM, and DCNN for measuring the
classification performance. SMOTE was applied prior to these models and the performance
was monitored. The performance metrics were precision, recall, accuracy, and AUC. The
performance analysis of models such as CNN, CNN-LSTM, ConvLSTM, DCNN, and SMOTE-
based deep LSTM is shown in Table 5. The SMOTE-based deep LSTM model showed good
performance in diabetes prediction when compared to all the other models.

Table 5. Comparison of different deep-learning models.

Models Precision Recall Accuracy AUC

CNN 0.756 0.772 0.781 0.81
CNN-LSTM 0.783 0.797 0.813 0.836
ConvLSTM 0.802 0.833 0.846 0.858

DCNN 0.819 0.842 0.862 0.912
SMOTE-based Deep LSTM 0.954 0.946 0.996 0.983

Figure 2 depicts the performance obtained by various diabetes-prediction methods,
with the SMOTE-based deep LSTM model achieving the highest performance with a TP
rate of 0.983, an FP rate of 0.251, precision of 0.954, and recall of 0.946. Using SMOTE-based
deep LSTM and nine attributes from the PIDD, diabetes prediction was achieved with
99.64% accuracy.
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The AUC is a measure of a classifier’s ability to distinguish between classes. Figure 3
shows the AUC of several models such as convolutional neural network (CNN), convolu-
tional neural network-LSTM (CNN-LSTM), ConvLSTM, DCNN, and the proposed model,
SMOTE-based deep LSTM. The AUC of the proposed method was 0.983 which is better
than other deep-learning methods.
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The confusion matrix explains the details of the number of instances correctly classified
and number of instances incorrectly classified. Table 6 presents the confusion matrix of
CNN and it shows that CNN correctly classified 422 instances as “class label 1” or “diabetic”,
while 170 instances were correctly predicted as “class label 0” or “non-diabetic”.

Table 6. Confusion matrix of CNN.

Predicted Class

Actual Class
1 0

1 430 68
0 100 170

Table 7 shows the confusion matrix of CNN-LSTM. It shows that 445 instances were
true positive and 180 instances were true negative, with an accuracy of 81.3%.

Table 7. Confusion matrix of CNN-LSTM.

Predicted Class

Actual Class
1 0

1 445 43
0 100 180

Table 8 shows the confusion matrix of ConvLSTM. It shows that a greater number of
instances were correctly classified by ConvLSTM than by the CNN or CNN-LSTM networks.

Table 8. Confusion matrix of ConvLSTM.

Predicted Class

Actual Class
1 0

1 522 31
0 87 128

Table 9 shows the confusion matrix of DCNN. It shows that 522 instances were correctly
classified as “class label 1” and 80 instances were correctly classified as “class label 0” with
an accuracy of 86.2%.
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Table 9. Confusion matrix of DCNN.

Predicted Class

Actual Class
1 0

1 582 25

0 81 80

Table 10 shows the confusion matrix of SMOTE-based deep LSTM. This shows that
SMOTE-based deep LSTM is performed better than other models in classifying instances
correctly by reducing false positives and false negatives.

Table 10. Confusion matrix of SMOTE-based deep LSTM.

Predicted Class

Actual Class
1 0

1 665 2

0 1 100

Generally, the perfect likeliness value is of above 0.90 [40]. According to Figure 4,
DCNN had a Kappa coefficient [43] of 0.89 and SMOTE-based deep LSTM had a Kappa
coefficient of 0.94. Hence, SMOTE-based deep LSTM is a good classification model. The
error term RMSE was found by comparing the outputs corresponding to each input. The
RMSE of SMOTE-based deep LSTM was 0.051 less when compared to DCNN.
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The mean absolute error (MAE) of benchmark models such as CNN, CNN-LSTM,
ConvLSTM, DCNN, and the proposed model are presented in Table 11. It shows that the
MAE of SMOTE-based deep LSTM was less than that of other benchmark models.
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Table 11. MAE of different deep-learning models.

Models MAE

CNN 0.396
CNN-LSTM 0.239
ConvLSTM 0.082

DCNN 0.032
SMOTE-based Deep LSTM 0.013

The Figure 5a depicts the RMSE error for the epochs 50, 100, 150 and 200. The RMSE
of proposed method is reduced to 0.027 when it reached 200 epoch. The Figure 5b shows
accuracy of various deep-learning methods by varying the layers counted. These models
were tested with two, three, and four layers. The proposed method with four layers
achieved accuracy of 99.64% compared to other methods.
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This is the best level of accuracy yet achieved in automated diabetes prediction using
the PIDD. The advantages of our method are:

• The SMOTE-based deep LSTM model was introduced to diagnose type-2 diabetes
using the PIDD as input.

• Class imbalance learning is also handled by SMOTE-based deep LSTM.
• The accuracy of automated diabetes prediction method is higher than that of other

diabetes-prediction methods.

5. Conclusions

Using the Pima Indian Diabetes Dataset, the proposed technique predicted type-2
diabetes in females. Pregnancies, glucose, blood pressure, skin thickness, insulin, BMI,
diabetes pedigree function, age, and outcome were all evaluated while doing multivariate
time-series diabetes prediction. This paper applied deep-learning concepts to type-2
diabetic prediction modelling and attained the predicted results with the Pima Indian
Diabetes Dataset. The SMOTE-based deep LSTM used in this paper quickly completed
the characteristics of the whole process of class-imbalance handling and prediction. Using
SMOTE-based deep LSTM, we can uncover hidden threats early and take preventive steps
to improve the patient’s life and reduce diabetic risk. The proposed SMOTE-based deep
LSTM performed well on the basis of accuracy and will be extended to predict other
diseases from other medical data.

The limitations of the proposed methodology are as follows:

• The proposed method does not focus on treating intra-class imbalance;
• SMOTE-based Deep LSTM is not designed for the multiclass classification problem;
• The classification ability of the proposed method was evaluated only on the Pima

Indian Diabetes Dataset.

The implications of our study for the research field are as follows:

• Inter-class imbalance commonly exists in binary-class datasets. The proposed method
solves inter-class imbalance.

• In future, the proposed method can be extended to focus on intra-class imbalance.
The proposed method performed binary classification on the Pima Indian Diabetes
Dataset. It can be extended to work on multiclass datasets.

• SMOTE was used in this work as a data augmentation technique for class balancing.
In the future, a generative adversarial network can be used for data augmentation.
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