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Abstract: The prediction of PV output represents an important task for PV farm operators as it enables
them to forecast the energy they will produce and sell on the energy market. Existing approaches rely
on a combination of satellite/all-sky images and numerical methods which for high spatial resolutions
require considerable processing time and resources. In this paper, we propose a hybrid egde–cloud
platform that leverages the performance of edge devices to perform time-critical computations
locally, while delegating the rest to the remote cloud infrastructure. The proposed platform relies on
novel metaheuristics algorithms for cloud dynamics detection and proposes to forecast irradiance
by analyzing pixel values taken with various filters/bands. The results demonstrate the scalability
improvement when using GPU-enabled devices and the potential of using pixel information instead
of cloud types to infer irradiance.

Keywords: solar irradiance; cloud dynamics, cloud type; metaheuristics; cloud–edge platform;
smart grid

1. Introduction

In 2020, the world’s energy derived from photovoltaic sources (PVs) exceeded 3.1%
of the total world energy generation with a 23% growth compared to 2019. It is cur-
rently the third major source of renewable energy behind hydropower and off-shore wind
generation [1].

Renewable energy sources are subject to volatile weather conditions, thus presenting
a major challenge. For instance, the energy drop in actual PV energy generation compared
to forecast energy can be as high as 20% [2] while the associated costs with errors in wind
power forecasts can be as high as 10% as estimated in [3] for the Spanish market.

Cloud dynamics play an important role in predicting PV energy output which in turn
is directly linked to the solar radiation reaching the farm. According to [4] it has been
estimated that if all clouds were to be removed, the absorbed solar radiation would increase
by about 50 W m−2. In fact, it has been shown that clouds represent the most significant
source of error in the extraction of earth surface energy and water balance parameters out
of meteorological satellite data, with other measurable factors such as the concentration of
aerosols having a secondary impact [5].

Forecast horizons ranging from 24 h to 72 h ahead are important for power grids par-
tially fed by PV parks. However, three categories of short-time forecasts for PV energy
production are of major interest [6]: intra-hour: time horizons ranging from minutes to
one hour; nowcasting (up to two-hours ahead) of high-frequency variability in electricity
production targeting real-time control of the grid equilibrium, technical constraints re-
lated to start-up times of conventional power sources connected to the grid as balancing
instruments; intra-day: hourly sampling with a maximum look-ahead time of six hours,
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targeted to follow the forecast demand, such forecasts also being useful for hourly trading
market; day ahead: at hourly sampling, aiming to meet needs in planning the production
of controlled fossil fuel plants and also useful for PV owners for accessing the Day Ahead
Market (DAM) of electricity.

Depending on the spatio-temporal scale of the application, irradiance can be predicted
up to 30 min ahead at a single site using all-sky imagers, up to six h ahead using satellite
images or satellite-derived irradiance, or several days ahead using numerical weather
prediction (NWP) [7,8]. In fact, research has shown that for nowcasting, image-based
methods outperform numerical methods [9].

However, accessing high-quality forecasts is not easy, as evidenced by PV farm op-
erators who change forecast supplies regularly in an attempt to reduce their profit losses.
In Romania for instance, operators have changed on average 20 suppliers over the last
five years, according to the Romanian Sustainable Energy Cluster. This drives the need for
personalized on-demand forecasts accessible to regular PV farm operators. The problem is
that running NWP simulations in addition to high-frequency multi-spectral image analysis
requires resources and time [10], rendering these tasks unfeasible on commodity machines.
In addition, these custom-tailored solutions require specialized IT knowledge which incurs
additional costs to PV operators. However, the increased accessibility of multicore and
manycore solutions with faster processing times enable PV operators to run these models
closer to their PV infrastructure by Software as a Service (SaaS) solutions (1) employing
low latency edge computing for vital real-time tasks such as intra-hour or nowcasting
forecasting with less constrained operations, and (2) higher latency remote clouds for
intra-day or day ahead planning. Combined with simpler yet accurate models for cloud
dynamics and irradiance these methods can enable PV operators access to fast and reliable
PV energy output forecasts.

In this paper, we propose an SaaS container-based solar platform capable of automati-
cally deciding the optimal location to perform the forecast, on edge (near the PV farm) or
remotely in the cloud. We show that two important components in the PV output forecast,
namely cloud dynamics prediction and irradiance levels can be accurately determined for
nowcasting using simple methods. Specifically, our objectives are:

1. A novel scalable forecast of cloud dynamics based on satellite and all-sky imagery
by employing a nature-inspired algorithm suitable for now-casting and intra-day
predictions [11,12] using openly available datasets;

2. Investigation on the real-life feasibility of determining cloud type based on several
sources such as multispectral information extracted from weather satellites (e.g.,
GOES, Meteosat); and

3. A new method based on statistics and machine learning to forecast solar irradiance for
a given site based on historical correlation between cloudy pixel value and measured
irradiance (performed a priori by a nearby solar monitoring station).

The paper extends our previous work on the cloud dynamics forecast [11–13]. Specifi-
cally, in this article we introduce the edge–cloud continuum platform and the irradiance
forecast method.

The rest of the paper is structured as follows: Section 2 gives an overview on existing
cloud- and edge-based solutions for PV monitoring and analysis as well as on algorithms
for cloud dynamics and irradiance forecast. Section 3 introduces the proposed cloud–edge
architecture and proof-of-concept component-based platform, including the modules for
cloud dynamics, cloud type, and irradiance forecast. Section 4 presents some experimental
results in terms of scalability and accuracy. Finally, Section 5 outlines the main conclusions
and future work.

2. Related Work

We present next some related work addressing the main topics of our research. We
focus our attention on cloud platforms for PV output modelling/forecasting, algorithms
for cloud dynamics and cloud type inference, and solutions for determining the irradiance
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from the cloud cover. Each section ends with a summary of our proposed alternative and
its advantages.

2.1. Solar Irradiance Prediction Solutions

Several cloud-enabled solutions for predicting solar irradiance have appeared in the
recent years. For instance, Solcast [14] offers a worldwide service based on Amazon Web
Services. It relies on geostationary weather satellites to produce 1 km2 resolution predictions
every hour by using a probabilistic ensemble and capturing a range of outcomes for the
near-term availability of cloud cover (up to four-hours ahead for intra-day planning). For
instance, it can predict cloud cover and power output (MW) from satellite images with a
5 min to 15 min frequency. The service offers both free and paid subscriptions. Through
cloud analysis, the company is capable of generating 600-million forecasts every hour.

In the UK, the National Grid ESO relies on machine learning algorithms based on
random forests to improve its predictions by 33% [15].

Furthermore, in the UK, Map Solar [16] uses AI and a Block Matching and Relaxation
algorithm to the latest satellite imagery (from the SEVIRI instrument on the Meteosat
Second Generation 0-degree satellite) to predict the path of clouds at 15 min intervals for
the next 2.5 h at 1 km2 resolution.

Our solution tries to simplify the solar irradiance by analyzing information stored in
the image pixels without having to determine the cloud type (a rather difficult process cf.
Sections 2.3 and 3.4). This would enable PV farm operators to infer the irradiance value
from either satellite or all-sky images without requiring access to multispectral images
which are usually not freely available at the frequency needed by PV operators. We analyze
both global (GI) and diffuse (DI) irradiance, both measured in W/m2.

2.2. Cloud Dynamics

The previously presented solutions rely on short-term cloud coverage estimates. Sev-
eral solutions to model cloud dynamics exist.

In 1993, Hamill and Nehrkorn [17] set to forecast short-term cloud dynamics by
analyzing and estimating their motion in satellite images. Their method was based on lag
cross-correlations [18] which output displacement vectors for subsets of pixels between two
images, and through an objective analysis would expand these vectors to all the pixels. A
two-frame motion estimation algorithm based on polynomial expansion was presented
by Farnebäck in 2003 [19]. The algorithm is an optical flow technique that generates a
continuous flow of vectors for an entire image by determining a motion vector for every
single pixel. The method managed to identify both large- and small-scale motion and
did not rely on recognizable features to identify displacements. It was able to follow
pixels as the shape they formed changed and evolved across multiple images. Chow et al.
(2015), took the optical flow approach further [20] and applied it to cloud dynamics. The
Variational Optical Flow technique could identify cloud deformations as they occurred and
quantify the stability of cloud formations using a variable tracker that initialized points and
followed their trajectories and lifespan. Espinosa-Gavira et al., (2020) [21] implemented
a computationally simple algorithm to detect cloud shadow movement and assign it a
displacement vector using ground irradiance sensors. The method is similar to the Linear
Cloud Edge (LCE) method [22], but it essentially treats the ground sensor network as an
irradiance snapshot and applies the image-oriented Cross-Correlation Method [23] to the
gridded network. The method lacks applicability in the case of a non-gridded network but
could be managed by interpolating to a grid using the Kriging method [24].

We have also proposed an efficient short-term method for nowcasting and intra-day
forecasts of cloud dynamics based on the optical flow and Boids Flocking algorithm [12]
(Section 3.3).
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2.3. Cloud Type Inference

Since irradiance depends not only on whether there is a cloud or not covering the Sun
but also on its type—which directly impacts the level of radiation penetrating its layers—it is
important to review some of the existing methods as our proposed approach refines the pre-
diction by considering cloud type besides their presence in the image (Sections 3.4and 3.5).

Martínez et al. (2011) [25], classified sky conditions by computing the ratio of di-
rect solar radiation incident in the surface to extraterrestrial radiation. The method was
a departure from the typical use of global radiation and clearness index to characterize
clouds, meaning that instead of classifying clouds by their base height, they were grouped
into attenuation levels derived from the ranges of the computed ratio. The method suc-
cessfully discerned types of clouds by clearly revealing specific cloud features for each
attenuation group. Traditionally, clouds were grouped by altitude [23,26–28], but in 2013,
Mecikalski et al. [29] employed the use of cloud characteristics to identify a specific type
of cloud. They addressed the problem of detecting cumulus clouds that were growing
underneath cirrus clouds in pre-convective environments (i.e., before thunderstorms). A
range of cloud-derived parameters was categorized into visible optical depth bins which
then revealed under what conditions can growing cumulus be detected and in what per-
centage. In 2015, Cheng and Yu [28] identified cloud types present in the scene by using
three local pattern descriptors: Local Binary Pattern, Local Ternary Pattern, and Local
Derivative Pattern. A trained Support Vector Machine (SVM) classifier identified using
these descriptors, besides the clear sky condition, five cloud types: cirrus, cirrostratus,
scattered cumulus or altocumulus, cumulus or cumulonimbus, and stratus clouds.

In Section 3.4, we present a generic algorithm for extracting cloud types. However, its
applicability is limited to multispectral images and cannot be employed for all-sky cameras
typically used for nowcasting. As a solution, we investigate the efficiency of using pixel
information directly to infer the solar irradiance (Section 3.5).

2.4. Solar Irradiance Prediction

After classifying cloud types into attenuation groups, Martínez-Chico et al. [25] were
able to track how long each sky condition lasted and how frequently they occurred be-
tween August 2009 and July 2010. These measurements revealed the most predominant
conditions and the irradiance values during their presence. The study was conducted
so that prospective solar power plants could better estimate irradiance levels for dif-
ferent geographic regions and choose the best location for a new solar farm. In 2014,
Kim et al. [30] compared two methods for estimating irradiance in Texas, USA: a modified
Cloud-cover Radiation Model (CRM) [31] and the Zhang–Huang Model [32]. Both models
were tested across hourly solar radiation data from 16 solar stations covering three climate
zones. Comparisons with measured data showed that the Zhang–Huang model better-
estimated irradiance for the hotter and more humid regions of Texas, and the CRM method
produced better estimations for the other regions. CRM had a divergent underestimation
of irradiance, which was most pronounced during summer, but the inclusion of a season-
ality parameter for each specific month of forecast alleviated the difference. Cheng [28]
managed to raise irradiance forecasting accuracy compared to other methods such as
persistence, neural networks [33], the uni-model [34], and the bi-model [35] by considering
cloud types and running different regression models based on them. Recently, Alzahrami
et al. (2017) [36] proposed a Deep Neural Network approach to predict irradiance by
considering only historical measurements. Their results produced a 0.086 RMSE error for
the proposed method for a dataset spanning four days.

Our solution is to directly use the pixel values and test several scenarios including
multispectral and RGB images (cf. Section 3.5).

3. Proposed Architecture

The last decade has seen a surge in the computational capabilities of devices lying at
the edge of the network. Previously, the computational power was concentrated in big data
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centres, possessing high bandwidth and inter-connectivity. With the advent of IoT and the
prospect of smart technologies, research and industry alike are investing money and effort
in designing more capable edge devices, high bandwidth connections, and platforms that
will handle the data processing workflows on the cloud–edge continuum. Figure 1 shows
our vision of such a layered architecture targeting solar irradiance predictions.

Figure 1. Our vision of a layered architecture spanning the cloud–edge continuum.

Kubernetes [37] is a popular resource management platform, allowing users to scale
and automate container applications. The majority of Cloud providers offering container
deployments also offer the possibility to create Kubernetes clusters to manage application
elasticity. Recently, a lightweight (https://k3s.io/, accessed on 22 August 2022) version
of the Kubernetes platform was designed for IoT devices. A preliminary study [38] has
shown it has a great advantage with respect to disk, memory, and CPU utilization, as well
as time required for different procedures (e.g., add worker, start deployment).

Our proposed architecture enabling hybrid cloud–edge deployment is presented in
Figure 2 and consists of several components. The end-user interested in solar radiation
prediction will interact with our SaaS solution through a web user interface. Similarly,
programmers can access the platform through a REST API. Users will select a geographical
region of interest, a prediction window, and the type of data to use. The core of our platform
consists of two components: service and data orchestrators. The Service Orchestrator
interprets the user request and identifies a set of operations to be carried out. The platform
maintains descriptions for the offered services. A service (deployed as a container) is
described by some requirements (CPU, memory, GPU), the input/output data types, and a
Docker Image (initially stored on Docker Hub, but cached by nodes running the images).
Examples of services include our core modules: Cloud Dynamics forecast CPU/GPU
enabled, Cloud Detection, and Irradiance prediction.

The Data Orchestrator component maintains a record of data locations. In the begin-
ning, the data locations are initiated with public data servers containing satellite images
and irradiance historical data. As services run and data are transferred, the system will
prefer to run subsequent applications near the new location for the data.

The Service Orchestrator uses the data location information to select a set of services
that need to be run to achieve the desired result. For example, if cloud masks have been
generated by a previous user request and have been stored in a storage bucket or FTP
server, then the Cloud Detection/Dynamics services do not need to be executed again.
Moreover, if cloud masks have already been predicted for a region and they are still valid
(i.e., the interval where the accuracy of the model is under a predetermined threshold) they
can be reused by the irradiance prediction service. In general, this component will create a
workflow consisting of a Directed Acyclic Graph (DAG) where nodes represent the services
and edges represent data dependencies between services.

https://k3s.io/
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Figure 2. Detailed architecture of the proposed platform.

The Service Orchestrator will ask one or more Cloud and Edge Scheduling components
to find resources for running the services, providing back a solution. For the Cloud
Dynamics service, our platform offers two implementations: a CPU and a GPU version. In
this case, the GPU version will be preferred. If there are no free GPUs for the scheduler,
then a workflow with the CPU version is requested.

A Cloud Scheduler manages a Kubernetes cluster within a cloud region. A Regional
Scheduler manages one or more Kubernetes clusters that are close from a network point of
view. The Service Orchestrator has knowledge of multiple Regional and Cloud schedulers
from which it can choose the best deployment for a workflow.

3.1. Example Workflow

In this example, we consider the system in its initial state, with no service or data
transfer history. When the first user requests an irradiance prediction for a geographical
region, the workflow presented in Figure 3 will be generated by the Service Orchestrator
service. First, satellite images need to be made available to the Cloud Detection service
using a storage service. This service will generate cloud masks from the recent satellite
images. The cloud masks will be used by the Cloud Dynamics service to compute the
optical flow and predict the motion of the identified clouds. This will create new cloud
masks representing where the clouds will appear in the future. Finally, the Irradiance
Prediction service will use the predicted cloud masks and historical irradiance data to
forecast the new values.

The cloud mask data will be persisted in Cloud Storage buckets to be reused by
subsequent runs of the Cloud Dynamics Service. Predicted cloud masks are also cached
given that they are valid; when the satellite image database is updated, a new mask has to
be generated to replace the predicted one. Finally, predicted irradiance will also be stored
short-term, similar to predicted cloud masks.

We assume that generic users are interested in small regions under 100 m2. While the
Irradiance Prediction service can work with data relevant for this small region, the Cloud
Dynamics service requires a larger area to increase the accuracy of the predicted motion.
Therefore, cloud masks can be generated for larger areas (i.e., countries, continents) and
used by multiple irradiance prediction services, each interested in a smaller area contained
within the cloud mask.
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Figure 3. Full workflow for a prediction.

In order to provide the functionalities described in Section 3, the scheduler needs to
be aware not only of the state of the data, but also of the hardware features and availability
of each node. A service may depend on or prefer several features such as number of cores,
amount of memory, disk space, or GPU cards.

Computing nodes must be selected so as to minimize data movement for the entire
workflow of the application. In our approach we deploy the services as close to the data as
possible. However, nodes in a Kubernetes cluster will use data from a location which may
be external to the node, mounted using a network file system. Therefore, all nodes being
part of the same cluster are equal from the data locality point of view.

A prediction job involves the setting of several parameters, defined in Table 1. Cloud
movement predictions work best for GOES-R images which are captured twice per hour.
Using at least 100, 000 particles the predictions for cloud movement show an F1-score in
the interval of [0.75, 0.4] for the first 5 h. More details on the impact of these parameters are
presented in [11].

Table 1. Parameters for a Prediction Job.

Parameter Description

dtype type satellite data to be used for prediction

frames number of frames-ahead to be predicted

boids number of boid-objects to be used for the simulation of cloud
movement

3.2. Datasets

Given the different properties and availability of free data sources the proposed
platform supports different formats (e.g., satellite, all-sky camera). Traditional cloud-type
inference algorithms rely on multispectral images from satellites, but short-term forecasts
usually employ all-sky RGB cameras as multispectral images at such a frequency are usually
not freely available. In Table 2 we have listed the characteristics of each Sentinel 2 band and
the closest wavelength-wise correspondents from Meteosat SEVIRI and NOAA GOES-R.
Ideally, each module will process the same dataset, but some data benefit a module more
than the other.

The Cloud Dynamics module was tested and works best on images from geostationary
satellites because they are locked to the rotation of the Earth and capture images every
15 min to 30 min. The images from these satellites are especially suitable for detecting
cloud movement and forecasting cloud position. The downside, however, is that rotation-
locked satellites operate at very high altitudes and the produced images have low spatial
resolutions, negatively impacting the forecast precision in terms of extent. Results are
good for large regions, but they are not granular enough to be useful on lower scales such



Electronics 2022, 11, 2756 8 of 20

as street- or neighborhood-wide forecasts. In addition, freely available datasets are not
multispectral rendering them unsuitable for inferring cloud types (Section 3.4).

Table 2. Sentinel 2 vs. Meteosat SEVIRI vs. NOAA GOES (closest correspondence bands).

Sentinel Meteosat NOAA

Band Resolution Wavelength Purpose SEVIRI GOES-R

1 60 m 443 nm Aerosol
detection n/a n/a

2 10 m 490 nm Color Blue n/a Band 1

3 10 m 560 nm Color Green n/a n/a

4 10 m 665 nm Color Red Band 1
VIS0.6 Band 2

5 20 m 705 nm Vegetation n/a n/a

6 20 m 740 nm Vegetation n/a n/a

7 20 m 783 nm Vegetation Band 2
VIS0.8 n/a

8 10 m 842 nm Near
Infrared

Band 2
VIS0.8 Band 3

8A 20 m 865 nm Vegetation n/a Band 3

9 60 m 945 nm Water Vapor n/a n/a

10 60 m 1375 nm Cirrus Cloud n/a Band 4

11 20 m 1610 nm Snow-Ice-
Cloud

Band 3
NIR1.6 Band 5

12 20 m 2190 nm Snow-Ice-
Cloud n/a Band 6

The Cloud (type) Detection module was tested on images from the orbiting Sentinel 2
satellite. Its onboard sensors have a higher spatial resolution (approx. 10 m/pixel) enabling
precise isolation of cloudy pixels from land and water. Clouds can be separated by type
and ground-measured irradiance data can be correlated with clouds that are directly on top
of the irradiance sensor. Not being locked to the rotation of the Earth means that Sentinel
has its orbit and is much closer to the ground than geostationary satellites. The downside
is that it takes 2–3 days for the satellite to pass over the same geographic region, so there is
a trade-off between higher resolution images and higher frequency captures: one is good
for precise detection of cloud types and correlating with irradiance at large intervals, the
other is better for forecasting cloud dynamics.

For testing this module we used the following datasets:

• Imagery from NOAA Goes satellite. The color composite images from this geosta-
tionary satellite include North America and are captured at 30 min intervals. The
dynamics module was tested on 1920 × 1080 pixel images from 2017 onward.

• Imagery from Sentinel 2. The orbiting satellites provide imagery in 13 reflectivity
bands (see Table 2) at 10, 20, and 60 m spatial resolutions. We used imagery that
captured western Romania, which includes the city of Timisoara where the solar
platform providing our irradiance data is installed. Images were retrieved for the
years 2020 and 2021. Sentinel images are squares with a width of 10,980 pixels.

• Irradiance from a solar platform. The West University of Timisoara (UVT) has a solar
radiation station that measures irradiance among other metrics. We retrieved GI and
DI in days where Sentinel imagery was also available.

The modules were tested on different datasets due to the trade-off between time
and spatial resolutions. Geostationary satellites have dense temporal resolution, but lack
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the spatial resolution of low orbit satellites. Next, we detail each module (since they are
exposed as services we will use the terms interchangeably).

3.3. Cloud Dynamics Module

The module responsible for detecting and forecasting motion uses the optical flow
technique proposed by Farnebäck [19] and a modified version of the flocking behavior
meta-heuristics developed by Reynolds [39] to simulate the synchronous movement of
animal groups. Figure 4 illustrates the three main stages of the cloud motion forecast.

1. Construct a wind map. 2. Initialize cloud particles. 3. Forecast wind / cloud.

Aggregate flows into a master
flow.

Save motion as optical flows.

Detect motion in sequential
image pairs.

Overlap layer of cloud particles
over the wind map.

Filter cloud pixels and isolate
them from scene’ background.

Update the cloud particles’
positions according to the new
wind map.

Update the wind map using set
of behavioral rules.

Figure 4. Processing workflow of the Dynamics Module.

The module requires a series of sequential satellite images. It then proceeds by
analyzing all sequential pairs using optical flow and generates a master flow from the
resulting set of displacement fields [13]. The master flow is an average of the movement
detected in the scene, so we consider it to be similar to a wind map of the scene as cloud
motion is driven by windand clouds are the only moving object in the scene. Changes
caused by humans are not visible. For instance, geostationary weather satellites capture
images of the same geographical regions every 15 min to 30 min and surface land or water
features are constant. Events such as urbanization or deforestation are visible in larger time
scales, so they do not impact the movement detection of clouds.

After the wind map is generated, the service overlaps a layer of “cloud particles”
arranged according to a mask of the last known clouds’ position. The mask is initially
inferred from the displacement field of the last motion detection, based on the above-
mentioned movement arguments. However, the Cloud Detection module can also be
used to generate a mask for this step. A benefit of doing so is that we obtain opacity
data alongside cloud position. This, in turn, helps for better forecast and cloud form
visualization. The cloud particle layer exists in the same space as the wind map, i.e., each
particle is positioned directly on top of a motion vector.

Finally, the module applies the modified version of the flocking algorithm on the wind
map to simulate movement and forecast cloud position. The algorithm uses rules that
update each motion vector in the wind map according to its surroundings and takes into
consideration real-world wind behavior. A detailed explanation as well as a discussion
on its accuracy is provided in [12]. A motion vector is affected by neighbors that move
towards it and will change the direction of motion to match its neighbors’. To mimic wind,
motion vectors forming a curved path will be nudged outwards by lessening the turning
degree magnitude. The application of the rules to the entire wind map generates a new
wind map which then affects the layer of cloud particles by essentially carrying each “cloud
particle” according to its corresponding motion vector. The updated cloud particle layer
represents the forecast cloud position. Repeated and continuous application of the rules on
the wind map and updating of the cloud layer output multiple forecasts that follow each
other. The time interval between the forecasts is equal to the image frequency, i.e., 15 min
to 30 min.

The proposed model can be applied in the real world with medium to high precision for
the first 5 h of forecast (Sections 3.1 and 4.1, and [11]). Our proposed model is advantageous
because it can simulate non-linear cloud particle dynamics. The drawbacks of this model
are related to condensation and evaporation, which are not taken into account in the
current version.
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3.4. Cloud Detection Module

Clouds can be detected and their types determined from multispectral images [29].
These are openly available (to a varying degree) both from Earth Observation (EO) satellites
(e.g., Sentinel 2) and from geostationary weather satellites (e.g., Meteosat, NOAA GOES).
Usually a combination of red, vegetation, and (near) infrared images is used [40], but some
satellites have special bands for high-altitude cirrus clouds. The advantage of EO satellites
is spatial resolution (reaching as low as a few meters); however, the frequency of images
over a given area is unsuited for PV energy output forecast.

For instance, Sentinel 2 captures images of Earth using 13 bands that were built specif-
ically for different types of remote sensing (Table 2), Meteosat SEVIRI has 12 bands [41],
and NOAA GOES-R has 16 bands [42].

In what follows we rely on Sentinel 2 naming from Table 2 for clarity. Since it has been
shown that thresholding values depend on the region (e.g., water, land, ice) [43] we present
next an algorithm working over land as PV farms which interest us are placed on soil.

To identify the types of cloud in an image, we use a thresholding method that combines
information from four Sentinel 2 bands: the red band (B04), the near-infrared band (B08),
the water vapor band (B09), and the cirrus band (B10). It can be seen that not all these
bands are present in geostationary satellites with some offering close approximations. This
makes it challenging in using these images to extract cloud types but they can be used
for cloud masks as shown in Section 3.3. Before proceeding we note that some cloud
types (e.g., cirrus, low stratus, roll cumulus) are difficult to detect because of insufficient
contrast with the surface radiance [43]. Our aim is to detect three types of clouds: thick
convective clouds (cumulonimbus), low clouds (fog, stratus), and thin high clouds (cirrus).
The choice of cloud types is motivated by the published work of Menzel [44], in which
he details best practices to identify clouds using multiple wavelength tests. A general
algorithm for extracting clouds (from Landsat images) is given in [45] (and adapted by us
to Sentinel 2 bands):

B04 > 0.15 and B11 > 0.12 and B04 > 0.65 · B011⇒ cloud (1)

where the values for the B* bands indicate the top-of-atmosphere reflectance.
The module first isolates most clouds by performing a reflectance ratio test [43] involving

the red (660 nm band—B04) and near-infrared (870 nm band—B08) bands. For each pixel,
it computes the ratio between the two bands and tests that it is between 0.9 and 1.1 but
could be lowered to as much as 0.8 or 0.75 in some cases:

ratio = B08ij/B04ij, (2)

0.9 ≤ ratio ≤ 1.1

{
true, allCloudMask = B08ij;
false, allCloudMask = 0,

(3)

where i and j are the pixel’s coordinates, and allCloudMask represents the cloud mask. It
is common to use the 865 nm vegetation band (B8A) instead of the 842 nm near infrared
band (B08), but the latter has a wider bandwidth of 115 nm versus the former’s 20 nm.
This means that the two bands overlap and the near infrared band (B08) captures a wider
spectrum than the vegetation band (B8A) which can be considered a subset.

Convective as well as stratiform clouds are detected using the near-infrared (B08) and
water vapor (B09) bands (the brightness temperature in the water vapor absorption channel
is warmer than that in the atmospheric infrared window [46]):

B08ij − B09ij < 0

{
true, convCloudMask = B08ij;
false, convCloudMask = 0,

(4)

where convCloudMask represents the convective cloud mask. Difference tests such as
this one are often named split windows techniques and usually involve using 11.000 nm
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wavelengths and over, but Sentinel 2 has its largest band centered around 2190 nm thus we
use different wavelengths to perform the tests.

Recently, an algorithm relying on red and infrared bands was proposed [47].
Low altitude clouds (fog, stratus) are identified by removing convective clouds from

the initial cloud mask:

di f f erence = allCloudMaskij − convCloudMaskij, (5)

di f f erence > 0

{
true, lowCloudMaskij = di f f erence;
false, lowCloudMaskij = 0,

(6)

where convCloudMask represents the convective cloud mask.
Another approach is to use B11 band which discriminates low clouds from snow [48].
The cirrus band (B10) in near infrared is specifically designed for detecting high-thin

cirrus so the resulting image is directly used as a mask for cirrus clouds.
Masking is performed for all available images in the time series.

3.5. Irradiance Prediction Module

Finally, the irradiance prediction module computes the correlation between the GI and
DI, and the values of the masked cloud types. Since determining the cloud type is a rather
challenging and inaccurate (Sections 2 and 3.4) process due to the required parametrization,
we also correlate irradiance levels directly with RGB information to verify the predictability
of irradiance without a priori knowledge of cloud types as inferring them requires, in most
cases, multispectral images not easily accessible by the general public (Section 3.4. Despite
having 13 bands, only some of the wavelengths are sensitive to or interfere in any way with
clouds. Therefore, we compute correlations only for specific bands (Table 2).

The module receives geographic coordinates for the location of the nearby solar
platform (for which we have irradiance data) and then retrieves the pixel values for the
point of interest (i.e., the pixel directly above the PV farm and solar station) corresponding
to bands 1 through 4, 8 through 12, TCI (True Color Image – auto-generated composite by
the Sentinel processing system), and the allCloudMask values identified by the formula
at Equation (3). TCI contain all data available in the visible spectrum, not just cloud
information. This includes land and water surfaces, buildings, roads, forests, and open
fields. For all-sky cameras, TCI can be replaced by RGB/gray images while the individual
R, G, B channels can be used instead of the corresponding multispectral bands from
EO satellites.

The resulting series of pixel values are appended to the timestamped irradiance levels
according to the time of image acquisition (Table 3). The purpose is to have separate
columns for irradiance levels and pixel values of each of the studied wavelengths. Each
row represents the exact time at which spectral data were captured by the satellite and
irradiance levels recorded by the solar platform. Each retrieved cloud mask and band series
is correlated with the two irradiance measures for the entire time series. For our dataset,
the cloud detection module detected convective and low clouds in the scene, but not over
the solar platform’s location (Figure 5).

Therefore, the respective masks were not used in our experiments. A moving window
of different time spans (rolling correlation) is also employed to observe the correlation
coefficient evolution over time. We utilized 7-, 14-, 30-, and 60-day window widths to
obtain weekly, bi-weekly, monthly, and bi-monthly trends. Given the 2- to 3-day capture
interval of Sentinel 2, these window sizes typically include 2 to 3, 5 to 6, 11 to 13, and 22
to 25 data-points. The chosen sizes are not themselves significant in terms of the number
of snapshots, but are rather intended to provide a way of observing trends at various
time intervals. Shortening to sub-weekly size would result in windows with a single data
point, and increasing the widths would result in correlations approaching closer to the
entire dataset.
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Table 3. Examples of retrieved pixel values for different bands and cloud type values. mask1 stands
for allCloudMask. GI and DI unit: W/m2.

Date GI DI TCI B01 B02 B03 B04 B08 B09 B10 B11 B12 mask1

1 April 2022 517 312 189 3783 3749 3548 3645 4120 2740 1932 3162 2679 -

4 April 2022 651 270 188 3725 3438 3336 3625 4169 3001 1078 4786 4221 -

6 April 2022 785 83 255 2893 3847 4098 4778 4917 1873 1013 4467 3007 4917

9 April 2022 337 324 255 8261 7866 7344 7937 8232 5618 1628 6243 5220 8232

11 April 2022 940 222 79 2529 2515 2286 2108 2098 1347 1014 1719 1422 2098

14 April 2022 849 118 255 2870 3915 3973 4611 5042 2252 1029 4585 3631 5042

16 April 2022 452 399 234 5216 4651 4182 4279 4860 2971 1033 4697 3978 -

19 April 2022 198 184 255 6587 6725 6314 6902 7452 5179 1273 7096 6187 7452

21 April 2022 854 433 128 2955 2882 2705 2797 3257 2123 1460 2389 2000 -

24 April 2022 832 298 216 2916 3489 3594 4022 4544 1897 1031 4311 3444 -

26 April 2022 821 125 255 2947 3833 4102 4673 5070 1903 1023 4616 3314 5070

29 April 2022 976 165 186 4223 3725 3561 3610 4405 2554 1022 4335 3737 -

1 May 2022 874 110 255 2997 3762 4058 4636 5005 2091 1021 4473 3385 5005

4 May 2022 882 140 255 2935 3885 4133 4766 5252 1829 1015 5027 4021 -

6 May 2022 687 494 191 4113 3881 3700 3669 4817 3353 2467 3182 2853 -

14 May 2022 1013 249 255 3180 4542 4907 5545 6088 1942 1017 5538 4300 6088

16 May 2022 845 172 245 3023 3677 3792 4443 4954 1905 1046 4813 3347 -

19 May 2022 940 98 255 3012 4134 4505 5155 5516 2605 1019 5252 4069 5516

21 May 2022 857 453 255 5237 4986 4727 4753 5764 4041 2324 2927 2711 -

Figure 5. Example of a mask of low clouds detected on 1st January 2022 near Timisoara (marked
with a circle.

After computing the Pearson correlation coefficient, the strongest correlated cloud
types—bands pairs are then used to determine irradiance.

We trained an ordinary least-squares linear regression model on the time-series. The
model was trained using 75% randomly chosen rows from the dataset and tested on the rest.
We assessed performance by computing the coefficient of determination of the prediction,
the Mean Absolute Error (MAE), and the Root Mean Squared Error (RMSE). These are the
most widely utilized performance metrics in the field of irradiance prediction [49] and are
defined as:

MAE =
1
n

n

∑
i=1
|pi − ti|

RMSE =
1
n

n

∑
i=1

(pi − ti)



Electronics 2022, 11, 2756 13 of 20

where n is the test data size, p is the predicted irradiance of the regression model, and t is
the expected true value, both for each image i.

4. Results

In this section, we present results for the key modules. In particular, we are interested
in the scalability of the cloud dynamics module which is computationally expensive and the
irradiance prediction module which enables the forecast of the PV output that is related to
the received irradiance.

4.1. Scalability and Accuracy of the Cloud Dynamics Module

The particle update function has been implemented to take advantage of GPUs and
multicore architectures. We have implemented an OpenMP and CUDA version. The
execution time was measured during an experiment with 100 steps, varying the number of
particles. For OpenMP, we varied the particle number from 1000 to 10,000 while for the
CUDA implementation it varied between 100,000 and 10 million.

Figure 6 accounts for the time spent on copying buffers from and to the device, as
well as executing host code that updates particle positions based on the new velocity
buffer copied from the GPU. It takes around 0.25 seconds to update the positions for
100,000 particles. We compare this with the time required to simulate the update of
1000 particles using one CPU thread. The speed-up can be computed as 100 · 1

0.25 = 400.
The same comparison can be made for 1 million particles achieving a speed-up of 1000.
When increasing the size to 10 million particles the performance is degraded due to the
amount of single-core host code that updates the particles’ positions, leading to a decrease
in speed-up to about 650.
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Figure 6. Execution time for predicting one step of cloud movement.

The OpenMP implementation scales well with increasing number of threads, due to
the high parallelism of the problem. However, increasing the amount of particles 10-fold
causes the processing time to increase 16-fold due to the higher chance of particles being in
the neighborhood of other particles.

We compare our approach with the solution presented in [50]. Our solution is tested
for millions of particles, while their simulation only reaches 32,768. Their solution is limited
by the shared memory size, while our solution uses global memory. In terms of execution
time we reach similar results, yet our solution scales to millions of particles due to the
data-parallel modelling of the problem.

The output of the Cloud Dynamics module is of two types: binary cloud masks and
cloud density maps. Binary cloud masks predict whether a pixel will be covered by clouds
or not. In cloud density maps, each pixel encodes the density of the cloud on the area
contained by the pixel (0 representing no cloud and 255 representing full opacity). We
have created heatmaps that represent the accuracy of the predicted cloud masks when
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compared with historical data. The accuracy heatmaps are not required for predicting the
solar irradiance, but prove useful when testing adaptations to the cloud motion prediction
algorithm. Such a heatmap is presented in Figure 7 and shows the accuracy of predicting
the motion of the cloud one hour ahead. False positives can appear if the motion of the
cloud is wrongly predicted, but also if the cloud has condensed. False negatives can also
represent wrong motion prediction, but they can also represent clouds that have just formed
due to evaporation. Experiments have shown that in the first hour the F1-score is around
0.75 dropping to 0.2 after 10 h.

Figure 7. Cloud masks for 1-hour ahead. Heatmap : true positives (green), true negatives (black),
false positives (magenta) and false negatives (yellow).

4.2. Correlation Results

We tested for correlation using the Pearson coefficient for DI and GI from the solar
platform at the West University of Timisoara, and the retrieved pixel values in Table 2.

The overall correlation of the bands values and the irradiance data is presented in
Figure 8. Bands 1, 2, and 3 are most correlated with GI (−0.6283 , −0.5078 and −0.4041 ),
and B10 with DI (0.4188 ). The Aerosol band has the strongest coefficient at −0.6283 for GI.

Figure 8. Overall correlation between GI, DI, and the Sentinel 2 sensor bands. Opacity and size of
the squares reflect correlation intensity: large opaque squares denote strong correlations, and small
translucent squares are attributed to weak or not correlated pairs.

Similar tests on smaller dataset windows resulted in stronger coefficients, so we
performed rolling correlations to observe short-time relationships over time using non-
overlapping fixed window widths. This approach can demonstrate how the bands correlate
with the irradiance data chronologically over the weeks and months encompassed by
the dataset.

The seven-day window rolling correlation (e.g., Figure 9) resulted in numerous fully
correlated weekly windows because, as previously mentioned, a week has either two or
three satellite snapshots. Correlations for two data-points result in perfect positive or
negative relationships. The side-effect is that although each interval is fully correlated, the
coefficients do not reflect longer-term relationships.
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Figure 9. Example of 7-day window correlations.

Figures 10–12 show sections of rolling correlations for 14-, 30-, and 60-day windows.
It is observed that GI is correlated stronger with the spectral bands than DI. This can be
intuitively expected as DI represents irradiance reaching the sensor after it has scattered in
the atmosphere and not in a direct trajectory from the sun [51]. GI consists of DI components
and direct irradiance from above. The most promising values are those from the color bands
(2, 3, and 4), WV, and the mask of all clouds (which is stronger than the NIR correlation).
The color bands have coefficients between ±0.4 and ±0.85 most of the time, but return
towards 0 in situations where the image is overcast.

Figure 10. Example of 14-day window correlations.

Figure 11. Example of 30-day window correlations.
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Figure 12. Example of 60-day window correlations.

The correlation coefficients approach close to 0 in certain time periods when the
satellite snapshots are overcast with numerous bright clouds. Figure 13 shows information
for band 4 (red) and the TCI composite for an overcast snapshot captured on 27 December 2021.

Figure 13. Example of a bright overcast scene over Timisoara on 27 December 2021. Band 4 (left) and
TCI (right). The TCI image is almost completely white with some spots of darker pixels in the upper
left and bottom of the scene.

The entire scene is covered by bright opaque clouds leading to disproportionately
increased pixel values (saturated) and weaker correlation coefficients.

Tables 4 and 5 show the computed error scores of the linear regression model for TCI,
each spectral band, and mask1. The best R2 Coefficient for GI prediction was 0.18979 for
B04, and the best MAE and RMSE scores were 206.041 35 W m−2 and 243.336 84 W m−2

for B10. The best R2 Coefficient for DI prediction was 0.03297 for B12, and the best MAE
and RMSE scores were 66.965 41 W m−2 and 91.832 42 W m−2 for mask1. The obtained
scores are better than naive persistence’s 173.83 W m−2 MAE [49] and comparable to other
solar irradiance prediction methods [51,52] reaching between 58.75 W m−2 to 395.12 W m−2

MAE, and between 84.86 W m−2 to 462.93 W m−2 RMSE.
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Table 4. R2 Coefficient, MAE, and RMSE for predicting GI. Best scores are highlighted in bold.

R2 Coefficient MAE RMSE

TCI 0.03644642678338772 242.42154794617383 274.7408497562563

B01 0.0820348043032918 230.80298574638536 262.10447565483634

B02 −0.21622423375748578 226.0133833016301 266.59864257524436

B03 0.16484461491503566 258.6680008229855 289.54645358512585

B04 0.18979026867512105 242.25312734146155 278.8299007436962

B08 −0.004685782814821238 263.14349948394886 297.98935481964486

B09 0.1666511708442644 213.59486036305327 243.97853837735866

B10 −0.014280286109260798 206.04134647422316 243.33683919725743

B11 −0.09136205237619488 213.875380476756 253.2442376883533

B12 −0.015120462726200268 275.1958711048938 311.08537403125933

mask1 −0.03157307096771955 261.67319967290194 317.8092308395099

Table 5. R2 Coefficient, MAE, and RMSE for predicting DI. Best scores are highlighted in bold.

R2 Coefficient MAE RMSE

TCI −0.0994881915821475 109.1422687328849 139.87949383832782

B01 −0.04660898451208051 91.47501179095161 125.09773057981627

B02 −0.006483852227510134 87.28399557078228 112.28440557826498

B03 −0.03451064554614436 90.44762037974252 107.51985827433974

B04 −0.019033305619853502 81.80569395778589 101.4159979735758

B08 −0.024606201009772732 75.72686996307678 97.97877522070938
B09 −0.11615994107608651 100.78955376918246 134.09884693197583

B10 0.017187645831838072 81.23618926107555 114.61636948767924

B11 −0.05413538201239265 96.29763294968915 126.01369289709537

B12 0.03296695291836593 82.92904576107716 108.01263505006585

mask1 −0.04226888637819548 66.96540604389577 91.83241938981622

5. Conclusions

Predicting PV output is a challenging task due to the complexity of numerical models
and access to near real-time satellite images. In this paper, we propose a hybrid edge–
cloud platform that leverages the new multi- and many-core commodity platforms near
the PV farm (edge) with the high availability and processing power of cloud systems. In
addition to assessing the efficiency of processing data near the edge via scalability tests, we
investigated the possibility of inferring irradiance directly from the pixel values, bypassing
in the process the non-trivial cloud type identification step. Despite access to a large open
database and irradiance values from the UVT solar station, we could identify only one cloud
type over the location of the solar platform further supporting our alternative solution.
Other types (e.g., low and convective) were detected but not at the solar platform position.
Results showed that individual bands such as the aerosol, blue and green bands, and the
mask of all clouds are strongly correlated with GI most of the time. The overall correlations
for bands 1 through 4 with GI are −0.6283 , −0.5098 , −0.4055 , and −0.3492. The strongest
correlated with DI is band 10 at 0.4304. Rolling correlations show that coefficients are
stronger for window widths that do not include bright overcast images. These results
indicate that for GI it is possible to use the negative correlation to infer values from the
pixel value. Further experiments with a larger dataset are needed in the case of DI.
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Future work will investigate the suitability of using powerful near edge devices such
as NVIDIA Jetson boards to group resources at the aggregated fog level, grouping the
processing of nearby PV farms’ data together. It will also focus on analyzing the suitability
of all-sky camera imagery to be used instead of satellite images.

In addition, we plan to investigate whether the correlation between DI and the same
spectral information based on an average value of pixel data around the solar station region
is improved compared to the current approach of using just the pixel over it.

Finally, since images and data can contain noise we will further investigate its impact
on the accuracy of our results.
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