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Abstract: The generative model and discriminative model are the two categories of statistical models
used in keystroke biometric areas. Generative models have the trait of handling missing or irregular
data, and perform well for limited training data. Discriminative models are fast in making predictions
for new data, resulting in faster classification of new data compared to the generative models. In an
attempt to build an efficient model for keystroke biometric user identification, this study proposes
a hybrid POHMM/SVM method taking advantage of both generative and discriminative models.
The partially observable hidden Markov model (POHMM) is an extension of the hidden Markov
model (HMM), which has shown promising performance in user verification and handling missing
or infrequent data. On the other hand, the support vector machine (SVM) has been a widely used
discriminative model in keystroke biometric systems for the last decade and achieved a higher
accuracy rate for large data sets. In the proposed model, features are extracted using the POHMM
model, and a one-class support vector machine is used as the anomaly detector. For user identification,
the study examines POHMM parameters using five different discriminative classifiers: support vector
machines, k-nearest neighbor, random forest, multilayer perceptron (MLP) neural network, and
logistic regression. The best accuracy of 91.3% (mean 0.868, SD 0.132) is achieved by the proposed
hybrid POHMM/SVM approach among all generative and discriminative models.

Keywords: generative model; discriminative model; keystroke biometrics; identification;
hybrid model

1. Introduction

In this modern age, all businesses, small or large, organizations, and even govern-
ments are heavily relying on computerized systems to process and store their important
and sensitive information. However, attackers are all around and trying to gain unau-
thorized access to individuals’ information as well as companies’ databases. This makes
cybersecurity a primary goal to safeguard sensitive information from any unauthorized
access. User authentication is the most important and crucial process to verify a person’s
or system’s identity during the access control step. There are three traditional modes
used for authentication of a person: possessions, knowledge, and biometrics. Possessions
include what we have, such as keys, passports, smartcards, etc., which can be shared, can
be duplicated, or even may be lost or stolen. Knowledge includes what we know such as
secret information (i.e., passwords) and is most widely used. However, many passwords
are easy to guess, might be shared, or may be forgotten. On the other hand, biometrics
includes what we are or what we do, i.e., metrics related to human characteristics and
traits. Biometric identifiers can be classified as physiological and behavioral characteristics.
Biometric identifiers are not possible to share, difficult to reproduce, and cannot be lost
or stolen [1]. Password-based authentication is the most common method used to protect
data from unauthorized users. Many people choose short and weak passwords, such as
birth date, social security number, some dictionary word, etc. Attackers can easily crack
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weak passwords using brute-force or dictionary attacks. Password best practices suggest
that users use strong and complex passwords that contain combinations of uppercase
letters, lowercase letters, special characters, and digits. Although complex passwords
are difficult to crack for the attackers, they are also difficult for the users to remember.
Therefore, additional mechanisms are needed to enhance the security of password-based
authentication. Keystroke biometrics is a type of behavioral biometrics that can add an
extra layer of security with password-based applications. It can also perform continuous
authentication of a user, such as continuously monitoring typing behavior of a user during
online examination [2]. The accomplishment of a keystroke biometric system is ascertained
by how well the system can distinguish authentic users from the impersonators. There are
two main functions of biometric systems—identification and verification. Identification,
also known as user recognition, is where the system classifies an unknown user from N
known users (1:N match). Verification, also known as authentication, is where the system
validates or proves the identity provided by the user during the identification process (1:1
match). Authentication can be static and/or a continuous authentication. Static authentica-
tion can be used with traditional username- and password-based authentication. Short and
fixed text is used in static authentication, while long and free text is used in continuous
authentication. This research focuses on keystroke biometric user identification and uses
short and fixed text.

Over the past few years, several machine-learning models have been used for biometric
applications. Some models have been proven to have good fit and excellent performance
with specific applications. The main goal of supervised machine learning is to develop
models that have the ability to learn and generalize from previously observed data, e.g.,
(a1,b1), . . . (an,bn), where a is the observation sequence and b is the corresponding class,
allowing predictions based on evidence in the presence of uncertainty. Statistical models
for classification broadly fall into two categories: the generative and discriminative models.
The generative models approximate the joint distribution, p(a,b), over the observation
sequences and make classification decisions by computing posterior probabilities based
on Bayes’s rule, P(b|a) = p(a|b)P(b)

p(a) where p(b) is the prior probability and p(a|b) is the
likelihood probability [3]. Popular generative models are Gaussians, naïve Bayes, mixture of
multinomial, mixture of Gaussians, hidden Markov model (HMM), Markov random fields,
probabilistic context-free grammar, averaged one-dependence estimators, latent dirichlet
allocation (LDA), restricted Boltzmann machine [4], generative adversarial network, and
sigmoidal belief networks.

Unlike generative models, discriminative models directly model the mapping from
observation sequences to label sequences as a posterior distribution P(b|a) or as a dis-
criminant function fb(a). Therefore, discriminative models do not need to maintain valid
likelihood or prior distributions [5]. For instance, logistic regression machines and condi-
tional random fields (CRF) directly model the posterior of the label sequence from the given
observations, while support vector machines directly model the discriminative function
or decision boundaries between classes [6]. Common discriminative models are logistic
regression, support vector machines, boosting, conditional random fields, linear regression,
neural networks, and random forest.

The hidden Markov model (HMM) and its extensions have been applied in speech
recognition, natural language processing, human activity recognition, handwriting recogni-
tion, shape recognition, face and gesture recognition, and many others. Although HMM
outperforms other models in speech, signature, and gesture recognition, its performance
is poor in keystroke biometric (KB) systems. Moreover, there seems to be limited re-
search [7–12] conducted using HMMs in KB systems. Monaco and Tappert [13] proposed
an extension of the hidden Markov model called the partially observable hidden Markov
model (POHMM), which shows significant improvement in performance when dealing
with different data sets. Support vector machines (SVMs) are one of the most popular
discriminative anomaly detectors of contemporary time and have been successfully applied
to a variety of physiological and behavioral biometrics. SVMs are considered excellent
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anomaly detectors with proficient speed. Various studies suggest that for the large data
sets in keystroke biometric systems, SVMs perform better than the neural network in terms
of accuracy and computational complexities, but exhibit poor performance in handling
missing or infrequent data. This research reviews different generative and discriminative
models used in KB systems and proposes a hybrid generative/discriminative model to
take advantage of both generative and discriminative models and to increase overall model
performance. In the experimental part of this work, the performance of a proposed gener-
ative/discriminative model has been evaluated using publicly available CMU [14] short
fixed-text keystroke data sets. The identification accuracy of the proposed model has been
compared with different generative and discriminative models. The contributions of this
research are presented below.

1. Keystroke dynamics has certain advantages over other biometrics. However, the
main disadvantage of keystroke dynamics is lower accuracy. By understanding the
performance and limitations of different existing systems, this study proposes a model
to obtain improved accuracy and performance in biometric systems.

2. This research evaluates the generative models POHMM and HMM and a discrimina-
tive model, SVM, along with the proposed model with keystroke short fixed-text data
set and follows the same evaluation procedure for objective comparison with other
novelty detectors.

3. For user identification, this study examined different POHMM parameters using five
different classifiers: support vector machines, k-nearest neighbors, random forest,
multilayer perceptron (MLP) neural network, and logistic regression, and compared
identification accuracy with other existing models.

This paper is organized as follows. Section 2 highlights the related work and contribu-
tion of this paper. Section 3 presents the proposed model descriptions, experimental setup,
and evaluation procedures. Section 4 discusses the experimental results and comparison
with other models to validate the proposed model. Section 5 summarizes the findings of
the experiment, and finally, Section 6 contains the conclusion and some possible directions
for future work.

2. Related Work

All applications of machine learning focus on one of two goals: prediction or interpre-
tation. There is a tradeoff between accurate prediction and interpretation. Generative and
discriminative models play a huge role in illuminating the tradeoff between interpretability
and performance. Generative models build a full model of the distribution of the features
for each of the two classes and then compare the differences. On the other hand, the
discriminative approach focuses on correctly modeling just the boundary between two
classes. Discriminative approaches follow modeling the conditional distribution of the
label on the input features, where generative approaches follow joint distribution of the
labels and features [2,3,13,14].

Generative models have several advantages over discriminative models. A generative
model of the data implies that model parameters have well-defined semantics in relation
to the generative process. Moreover, generative models are frequently stated in terms of
a probabilistic framework, which helps to handle missing data [15]. The most important
benefit in discriminative models is better performance with large or infinite training data [3].
For a small amount of training data, generative models usually perform better than the
discriminative models. However, for a large amount of labeled training data, discriminative
models outperform generative models.

Although keystroke biometrics is relatively new in the study of biometrics, there are
many research papers related to this topic. It is a very daunting task to compare most of
these studies, because different experiments have used different data sets, and some have
used their own unique data set [6,7,9,16,17]. Again, they also differ in terms of features,
classifiers, and evaluation methods. Most of the research conducted on keystroke biometrics
has focused on user verification (authentication) compared to user identification. This study
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has made a performance comparison of several popular generative and discriminative
models used in KB systems. Research on those that have achieved better performance than
others in the same area have been included in the comparison tables. Table 1 compares
research that achieved improved performance using different discriminative models in
keystroke biometrics for anomaly detection. Table 2 compares research that sought to show
promising performance using generative models in KB systems.

Table 1. Classification based on popular discriminative models.

Classifiers and References Number of Subjects Results

Random Forest [18] 10 FAR: 0.41, FRR: 0.63, EER: 0.53
Random Forests [19] 41 EER: 2.00
Random Forest [20] 21 FAR: 3.47, FRR: 0.00, EER: 1.73
Random Forest [21] 28 FAR: 0.03, FRR: 1.51, EER: 1.00

Neural Network [22] 100 FAR: 1.00, FRR: 8.00
Neural Network [23] 10 EER: 1.00
Neural Network [24] 20 FAR: 4.12, FRR: 5.55
Neural Network [25] 22 FAR: 2.00
Neural Network [26] 24 FAR: 8.00, FRR: 9.00
Neural Network [27] 30 FAR: 2.00
Neural Network [28] 151 FAR: 1.10, FRR: 0.00

Support Vector Machine [29] 24 EER: 2.00
Support Vector Machine [30] 24 Far: 0.76, FRR: 0.81, EER: 1.57
Support Vector Machine [31] 39 EER: 0–2.94
Support Vector Machine [32] 25 EER: 1.00

k-Nearest Neighbors [33] 63 Accuracy: 83.22–92.14
k-Nearest Neighbors [34] 30 EER: 0.50

Convolution neural network (CNN) [35] 148 Accuracy: 97.75
Random Forest [36] - Accuracy: 86

CNN [37] 148 Accuracy: 82

FAR: False Acceptance Rate, FRR: False Rejection Rate, EER: Equal Error Rate.

Table 2. Classification based on popular generative models.

Classifiers and References Number of Subjects Results

Naïve Bayesian [38] 26 FAR: 2.80, FRR: 8.10
Naïve Bayesian [39] 33 EER: 1.72
Naïve Bayesian [40] 16 EER: 4.28

Gaussian Mixture Model [41] 41 FAR: 4.3, FRR: 4.8, EER: 4.4
Gaussian Mixture Model [42] 10 FAR: 2.10, FRR: 2.40
Hidden Markov Model [10] 20 EER: 3.60
Hidden Markov Model [9] 58 EER: 2.54

Weighted mean, Standard deviation [33] 31 Accuracy: 90
Deep Neural Network [43] 51 EER: 0.35

Deep Learning [44] 51 Accuracy: 92.60

FAR: False Acceptance Rate, FRR: False Rejection Rate, EER: Equal Error Rate.

Most of the research has followed the static authentication mode, which attempts to
verify users at the initial interaction with the system. Only a few studies have focused
on dynamic authentication where the system continuously or periodically monitors the
keystroke behavior. A majority of the experiments had no input freedom, which means all
users shared the same password [2,11–15]. Researchers have used discriminative models
mainly for large samples, and for smaller samples, generative models were preferred.
It should be noted that neural networks were the preferred classifier for numeric input-
based research. Although neural networks are claimed to achieve better results than other
methods, they require both genuine and imposter samples during the training time, which
may be impractical at the initial enrolment stage of the systems [16]. In recent years, support
vector machines have become popular among researchers because of a perceived increase
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in accuracy rate. Several authors have claimed that SVMs have competitive performance
and less computational complexity than neural networks. However, Lee et al. [17] stated
that SVMs perform poorly when the feature set is too large. Different experiments show
that statistical models perform better for authentication (verification) tasks where machine-
learning approaches perform better for user identification.

Different hybrid discriminative–generative approaches have been used in biometric
systems, including speech recognition, object recognition, gait, human activity recognition,
and handwritten text recognition. However, very few hybrid or combined approaches have
been introduced so far in the area of keystroke biometrics. Table 3 shows the comparison of
different existing keystroke biometric studies using hybrid/mix approaches.

Table 3. Comparison of existing hybrid approach-based research in KB systems.

Reference Model Users Samples Results

GA-SVM [45] 21 3150–8400 FAR: 0.00, FRR: 3.54
GA-SVM [30] 24 4200 FAR: 0.43, FRR: 4.75
PSO-SVM [30] 24 4200 FAR: 0.41, FRR: 2.07
GA-BPNN [46] 27 2700 Accuracy: 88.90
PSO-BPNN [46] 27 2700 Accuracy: 86.60
ACO-BPNN [46] 27 2700 Accuracy: 92.80
GMM-UBM [43] 51 20,400 EER: 5.50

DNN [43] 51 20,400 EER: 3.50
CPANN-SVM-DT [47] 64 32,000 Accuracy: 89.70

CNN-SVM [48] - - Accuracy: 92.1
FAR: False Acceptance Rate, FRR: False Rejection Rate, EER: Equal Error Rate.

Yu and Cho [45] proposed a GA-SVM wrapper approach for keystroke dynamic
identity verification. A genetic algorithm was used for feature-subset selection and support
vector machines for novelty detection. The model automatically selects a relevant feature
subset and ignores the outliers. The best result was an average 3.54% FRR with the proposed
GA-SVM approach. Yu and Cho’s [49] further investigation on KB system research found
that their previous experiments in KB systems had some limitations, such as lengthy
training time for the model, the data preprocessing involving human interaction, and
requiring a large data set. To mitigate these limitations, they proposed a hybrid approach
using a genetic algorithm (GA) and SVM as a novelty detector and ensemble model-based
feature selection to alleviate the deficiency of a small training data set. The experiment
employed a GA paradigm for the randomized search and an SVM as a base learner in the
wrapper approach. The overall idea of their proposed model is to use subsets of features
that would evolve through the mechanism of the GA, to be evaluated through training
and testing of an SVM with the data set. The authors claimed that the proposed hybrid
approach has shown promising results in keystroke dynamics.

Azevedo et al. [30] presented the development of a hybrid system based on support-
vector machines and stochastic optimization techniques. Genetic algorithm (GA) and
particle swarm optimization (PSO) algorithms have been used for feature selection, and
support vector machines have been used as verifiers. Using a GA evolutionary algorithm,
the authors achieved a minimum error of 5.18% at a FAR of 0.43% and FRR of 4.75%.
Using PSO, FAR and FRR were 0.41% and 2.07%, respectively, with a minimum error rate
of 2.21%. The PSO evolutionary algorithm was suitable for the feature-selection task in
their experiment. The experiment also suggested that PSO has a shorter processing time
than GA. Karnan and Akila [46] proposed a personal authentication based on keystroke
dynamics. They proposed ant colony optimization (ACO) for feature-subset selection and
a backpropagation neural network (BPNN) for classification. The experiment compare
the results with particle swarm optimization (PSO) and a genetic algorithm (GA). The
experiment showed that ACO had better performance than PSO and GA in regard to
features’ reduction rates and classification accuracy.
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Deng et al. [43] experiments in keystroke dynamics with a deep neural network
(DNN) as a classifier performed better on a CMU data set. The research used negative
samples for training the model, which might be a factor in achieving better accuracy. Deep
neural networks are probabilistic generative models that consist of multiple hidden layers.
The first step of DBN training involves layer-wise unsupervised pretraining of restricted
Boltzmann machines (RBMs). One hidden layer can be trained at a time and the output
of the lower-level layer serves as input to the higher-level layer. Finally, these pretrained
two-layer generative models are collapsed into a single multilayer model, which serves as
an initialized ANN for further discriminative parameter fine-tuning. DNN requires training
with genuine and imposter data. The authors believe that the unsupervised generative
training step in DNN gives the model good generalization capabilities for unexpected test
data, and discriminative fine-tuning step gives better classification accuracy.

There are also some studies in KB areas that are combinations of various neural net-
works, statistical measures, and various pattern-recognition techniques. Dahalan et al. [50]
suggested that combining fuzzy logic with a neural network may enhance the system’s
capability to learn the user’s typing pattern. Teh et al. [51] proposed a fusion technique
combining direction similarity measure and Gaussian probability density function, which
enhanced the result with an EER of 9.96%. Raina et al. [52] proposed a hybrid approach
in which a high-dimensional subset of the parameters is trained to maximize generative
likelihood, and another small subset is discriminatively trained to maximize conditional
likelihood. Their experiment found that the hybrid model provided a lower error rate and
better accuracy than either purely generative or purely discriminative models.

3. Methodology

A literature survey on keystroke biometrics shows that discriminative models, es-
pecially artificial neural network (ANN) and support vector machine (SVM) classifiers,
performed well and achieved better accuracy for large samples. Support vector machines
have performed well for both user identification and verification [43]. Generative models
have performed well with smaller data sets. The generative model POHMM [13] has
performed better than the SVM and other models on the CMU benchmark short fixed-text
data sets.

Besides pure generative and discriminative models, many researchers have also used
hybrid or mixed approaches in biometric areas, especially in speech recognition [53],
human activity recognition [54], sentence recognition, digit recognition, text recognition,
cursive script recognition, signature recognition [55], and time-series prediction [56]. Lester
et al. [57] showed that the combination of discriminative and generative classifiers (HMM
with AdaBoost) was more effective than either of the classifiers on their own in modeling
human activities. Fco. Javier et al. [53] compared the hybrid approach of ANN/SVM
with HMM, and also found that the hybrid model achieved significantly better human
activity-recognition performance. Rynkiewicz et al. [56] applied a hybrid HMM/ANN
scheme to predict time-series data, which gave much better segmentation of the series. The
following section discusses some existing hybrid/mixed approaches used in KB systems.

3.1. Proposed Model

Several studies [30,44–50] suggest that generative models outperform discriminative
models for small data sets and can handle missing or irregular data. On the other hand,
discriminative models have better asymptotic performance and perform well for large
data sets and continuous authentication. A generative model, the partially observable
hidden Markov model (POHMM) is a suitable tool to extract a user’s typing features and is
capable of handling not only stochastic processes but can also handle missing or irregular
data. On the other hand, the discriminative model of the support vector machine (SVM)
has performed well in various biometric areas for large data sets. In an attempt to take
advantage of both generative models and discriminative models, this research proposes a
hybrid POHMM/SVM model.
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The architecture of the proposed hybrid POHMM/SVM model is presented in Figure 1.
The system begins with extracting features from the raw data. The generative model
POHMM is used to fit with the selected features. The POHMM model estimates and
extracts POHMM parameters. Marginal distribution properties of the POHMM handle
missing or novel data during likelihood calculation, while parameter smoothing handles
missing or infrequent data during parameter estimation. Finally, the extracted POHMM
parameters are used to train the SVM, build models, and compare with the test model. The
POHMM acts as an unsupervised feature extractor for the SVM.
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The five main elements of the system are described below.

3.1.1. Raw Keystroke Data Collection

There are many experiments that have been conducted in keystroke biometrics. How-
ever, different studies have used different data sets and different features. They also differ
in terms of evaluation procedures used. Some researchers have used benchmark data sets
and some have used their own data sets. Therefore, it is hard to make comparisons of
model performance with other work. To evaluate the proposed model, a CMU keystroke
dynamics benchmark data set [14] has been used.

The CMU data set was chosen for evaluation due to its ability to provide a data set and
analyze the performance of different existing keystroke dynamics algorithms for objective
comparisons. The authors have evaluated the data set with fourteen existing keystroke
dynamics classifiers, including Euclidean, Euclidean-normed, Manhattan-filtered, neural
network-standard, fuzzy logic, and SVM-one class.

Keystrokes are detected by a keylogger that records and stores the sequence of keys
typed by the users along with key-press and key-release timing information. Event times
are measured in milliseconds with roughly 16-millisecond precision [58]. There were
51 subjects (typists) in the CMU keystroke benchmark data set, each typing a static strong
password string: “.tie5Roanl”. The data set also considers the Enter key to be a part of
the password, making the 10-character password 11 keystrokes long. There were eight
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data-collection sessions for each subject with at least one day between each two-session
period. Fifty repetitions for the password string were collected in each session, resulting in
400 samples for each subject and a total of 20,400 samples for 51 users.

The CMU keystroke data set contains keystroke dynamics consisting of the dwell
time (hold time) for each key, as well as the flight time between two successive keys—key
press latency (KPL) and key interval (KI). Figure 2 shows the hold time of the keystrokes
“.tie5Roanl” and Enter for the first two subjects and their first two sessions from CMU
keystroke data sets. Each of the lines from each chart represents 50 samples per data-
collection session. The features are highly correlated with large-scale variations and some
are linearly dependent.
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3.1.2. Feature Selection

In the two-state POHMM, a user can be either in an active state or a passive state of
typing. The key names “.tie5Roanl Enter” are event types that partially reveal information
about the hidden state. The timing feature vector for the CMU keystroke data set is
formed by the 11-key hold (KH) time, 10 key-press latencies (KPL)/down-down, and 10 up-
down/key interval (KI) latencies of the 11-keystroke sample, create a total of 31 timing
features. Ten key-release latencies (KRL) and 10 release-press latency (RPL) features were
also extracted using KH, KI, and KPL features. Therefore, a total of 51 dimensional feature
vectors were extracted from the CMU keystroke benchmark data set.

For user identification and verification, the hybrid POHMM/SVM model uses hold
time and key-press latency features. Hold time and key-press latency for each of the
11 characters are modeled by a lognormal distribution conditioned on the hidden state
and the key name. Finally, they are multiplied by 1000 for normalization. Similar feature
selection and normalization were used in [13]. The other features were extracted for
comparison purposes in different experimental setups. Different studies have used different
features or combinations of features. Hold time is the most used feature in keystroke
biometrics. M.S. Obaidat [59] suggested that hold-time classification is superior to interkey
time-based classification, and a combined hold-time and interkey time-based approach
gave the least misclassification error. This research explores different features from the
CMU keystroke data set and compares identification accuracy using different classifiers.

From two consecutive keystroke events, five types of features were extracted using
the following formula:

KHn = tr
n − tp

n (1)
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KIn = tp
n − tr

n (2)

KPLn = tp
n − tp

n−1 (3)

KRLn = tr
n − tr

n−1 (4)

KPLn = tr
n − tp

n−1 (5)

where KHn denotes the key hold time, KIn is the key interval time, KPLn denotes the key
press latency, KRLn is the key release latency, and KPLn is the release press latency of the
nth keystroke. tr

n and tp
n are the release and press timestamps of the nth keystroke. Similarly

tr
n−1 and tp

n−1 are the release and press timestamps of the (n − 1)th keystroke.

3.1.3. Training POHMM and Extract POHMM Parameters

After feature extraction, the POHMM is trained and parameters are collected. The
POHMM was developed and implemented by Monaco et al. [13], and the Python code
can be downloaded from here [60]. The POHMM is an extension of the hidden Markov
model (HMM), and the structure of the model is shown in Figure 3. OT

1 = o1, o2, . . . oT
represents the sequence of observation vector (emission vectors), XT

1 = x1, x2, . . . xT is
the sequence of observed value (event type), ΘT

1 = θ1, θ2, . . . θT is the sequence of hidden
values (system state), and T denotes the total number of observations. In the POHMM, the
hidden state and emission depend on an observed independent Markov chain XT

1 . The
emission Ot+1 depends on event type Xt+1 in addition to Θt+1 and the hidden state Θt+1
depends on Xi and Xi+1 in addition to Θt+1 [13]. For each sample, the POHMM is trained
and parameters collected and stored in a file. The complete parameter estimation using
a modified Baum–Welch reestimation algorithm, marginal distributions, and parameter
smoothing is described as follows:

(a) Initialization: find initial parameters λ and let λ← λ́
(b) Expectation: compute forward variable αj|Xn(n), backward variable βj|Xn(t), posterior

probabilities γjXn(n) and ξijXn,Xn+1(n). Let P← P(O
∣∣λ, X) where O is the emission

sequence, λ is the model parameter and X is the event type.
(c) Maximization: using the reestimation formula presented in [2,13], update the model

parameters: initial state distribution π, state transition probability matrix A, and state
emission probability matrix B, and let λ←

(
π, A, B

)
.

(d) Marginal distributions: find marginal distributions.
(e) Parameter smoothing: find smoothing weights and smooth the parameters with

marginal distributions.

(f) Termination: if P
(
O
∣∣λ, X

)
− P < ε, then terminate and let

=
λ← λ , otherwise go to

step (b). ε is the convergence criterion threshold.

For each training sample, POHMM provides a total of 130 parameters: 104 emission
parameters and 26 transition parameters. POHMM provides 130 parameters for each
training sample, and these parameters create a parameter vector for each sample that is
used for identification and verification in hybrid models. For experimental purposes, three
sets of parameter-emission parameters, transition parameters, and combined emission–
transition parameters were collected.
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3.1.4. Classifier Selection and Building Models

To address the classification problem, a support vector machine classifier was used in
the proposed POHMM/SVM approach. The literature search revealed that the generative
models performed better than the discriminative models for a smaller data set. However,
for a larger data set, the discriminative models performed better than the generative models.
To make the trade-off between small and large data sets, this research proposes a unique
hybrid POHMM/SVM model. POHMM handles missing or irregular training data and
SVM provides faster and better classification accuracy. POHMM was trained using key-
press latency and key-hold time features for each sample from the CMU data set. After
that, POHMM parameters were collected for each sample. These parameters were used
for classification using the support vector machine, but for comparison purposes, we also
examined POHMM parameters using other popular discriminative classifiers, such as
k-NN, random forest, MLP NN, and logistic regression, in the experiment.

(a) Support Vector Machine:

The support vector machine is a well-known supervised machine-learning algorithm
generally used to solve two- or multiclass classification problems. However, for user
verification, only the genuine data are available to train the model and a model has to
be built for a genuine user only. Then, the model is used to detect an imposter user [50].
Schölkopf et al. [61] extended two- or multiclass SVM to one-class SVM to solve the
one-class classification problem. The Scikit-learn 0.18.1 Python package and sklearn.svm
module were used in the experiment [62]. We used the one-class SVM (svm.OneClassSVM)
classifier in the proposed model for user verification. OneClassSVM is an unsupervised
outlier detector that is based on the support vector machine library libsvm [63]. The
components used for this classifier are radial basis function (RBF) as kernel function,
0.5 tolerance of training error, which means half the samples will become support vectors,
and a kernel coefficient for “rbf” of 0.9 (gamma value). The CMU data set contains 51 unique
users. For identification tasks, the multiclass SVM (svm.SVC) with “linear” kernel function
was used. SVC is a C-support vector classifier based on the support vector machine library
libsvm [64].

(b) k-Nearest Neighbor

The k-nearest neighbor classifier is another frequently used classifier in biometrics.
The k-nearest neighbor (k-NN) is a nonparametric classification method where assignment
of a new class label to the input pattern is based on the nearest training samples in feature
space. The k-NN is a simple classifier that requires only reference data points for both
genuine and imposter classes. It uses data directly for classification without building a
model first and does not requires any specific training phase. For a given unknown sample
f and a distance measure, the nearest-neighbor rule for classifying f among N classes is
presented below [64]:
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1. Find k-nearest neighbors from M training vectors without considering class label.
Generally k in not multiple of N and chosen to be odd for a two-class problem.

2. Find the number of samples ki from k neighbors and belonging to class ni where
i ∈ N and ∑N

i=1 ki = k.
3. The unknown sample f will be assigned to the class label ni with maximum ki number

of samples.

The k-NN classifier was used for user identification using POHMM parameters. The
Python implementation for k-NN classifier (KNeighborsClassifier) from the sklearn.neighbors
module with all default parameters (number of neighbors = 5) was applied. The major
drawbacks for any kind of k-NN based classifier are that the computing time is still longer
than other classifiers and the performance is generally worse on high-dimensional data.

(c) Random forest

Random forest [65] or random-decision forest is an ensemble learning method for
classification. It is a class of ensemble method using decision-tree classifiers. Random forest
is a mixture of tree predictors where every tree depends on the values of a random sample
and with the equal distribution for all trees in the forest. Random forest has become popular
in keystroke dynamics in recent years. The time required for training and testing using
random forest is fast and achieves better accuracy in many applications. Random forest is
an effective tool in prediction, but has been observed to overfit for some data sets with noisy
classification. The RandomForestClassifier classifier and IsolationForest algorithm from the
sklearn.ensemble module were used for identification and verification, respectively, in this
experiment. We used default parameters for the RandomForestClassifier classifier, and the
default number of trees in the forest was 10.

Isolation Forest: Isolation forest [66] outlier detection uses a random forest of decision
trees for anomaly detection. Isolation forest or iForest builds an ensemble of iTrees for given
samples and then samples with short average path lengths on the iTrees are considered as
anomalies. The isolation forest algorithm isolates observations in two steps: (a) randomly
select a feature, and then (b) randomly select a split value between the maximum and the
minimum values of the selected feature. Isolation forest is ideal for large data sets because
it has a linear time complexity with low constant and low memory requirement [66]. It
also converges quickly with a small ensemble size, allowing high efficiency in anomaly
detection. We used all default parameters for the iForest classifier (IsolationForest) from
the sklearn.ensemble module.

Logistic regression: The logistic regression or the logit model [67] is a nonlinear transfor-
mation of the linear regression. The model is useful when dependent variables are limited
to two-class problems [68] and generally calculates the class-membership probability for
one of the two categories in the data set. The relationship between the predictor and the
dependent variables in logistic regression can be written as:

p =
1

1 + e−µ
, where µ = θ.x (6)

The prediction can be written in terms of µ, which is a linear function of x. p is used
to predict genuine and imposter users. The decision boundary for logistic regression is
also linear x.p = 0.5. If the value of p is less than the threshold for a claimant user, then
the user is genuine user; otherwise the user will be an imposter. Logistic regression is a
popular classifier in the areas of medicine and bioinformatics. Logistic regression performs
better than the decision trees and k-NN on continuous data sets [69]. This study used
the logistic regression classifier LogisticRegression (aka logit, MaxEnt) from the Python
sklearn.linear_model module for user identification.

(d) Multilayer perceptron neural networks (MLP NNs):

Multi-layer perceptron (MLP) neural networks are feed-forward ANNs used in pattern
recognition, classification, and prediction. The backpropagation (BP) algorithm is the most
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popular training technique used with MLP and has been applied in various fields, includ-
ing network security, visual pattern recognition, handwriting recognition, medicine [70],
intrusion detection, management, and finance. The performance of multilayer perceptron
neural networks (MLP NNs) depends on various elements, such as number of input layers,
number of neurons in each layer, the activation functions used by the neurons, and the
choice of initial weights.

MLP is a supervised learning algorithm that learns a function by training on a data
set. For a given set of features and a label, it can learn a nonlinear function estimator for
classification. The difference between MLP and logistic regression is that there can be one
or more hidden nonlinear layers between input and output layers. The most important
advantages of MLP are that it is capable of learning a nonlinear model and can learn in real
time. This experiment used the MLPClassifier class from [62] for identification. MLPClassi-
fier implements a multilayer perceptron algorithm that trains with the backpropagation
technique.

Besides the five discriminative models, the identification accuracy of the proposed
POHMM/HMM model was also compared with the generative models HMM, POHMM,
naïve Bayes, Gaussian mixture model (GMM), and Bayesian Gaussian mixture model
(BGMM). To train/test HMM and POHMM, the procedures described in [13] were fol-
lowed. For the naïve Bayes classifier, the GaussianNB class with default parameters was
used from scikit-learn. For GMM and BGMM, the GaussianMixture class and Bayesian-
GaussianMixture class were used, respectively, with a maximum of 100 iterations.

3.1.5. Model Training and Testing

A keystroke biometric system’s performance is evaluated by how correctly the model
can differentiate real users from attackers. The classification accuracy (ACC) is measured for
model testing and evaluation purposes. Identification of the POHMM/SVM, POHMM/k-
NN, POHMM/random forest, POHMM/MLP NN, and POHMM/logistic regression was
performed as follows: key-hold time and key-press latency (KPL)/down-down features
were extracted from the CMU data set. The POHMM model was trained with the 21 di-
mensional feature vector for each sample, and POHMM parameters were collected. There
are two types of parameters extracted from POHMM: emission parameters and transition
parameters.

The parameters are then split for training and testing data sets. Stratified k-fold
cross-validation (SCV) is used to split data that randomly selects training and testing data
sets. Stratified k-fold cross-validation provides training/testing indices to split data into
training/testing sets. In k-fold cross-validation, the data set is partitioned into k equal
subsets. Each datum of the k subset is used for the testing set, and the remaining (k − 1)
subsets are used for the training set. The cross-validation object StratifiedKFold is the
variation of KFold that returns stratified folds, i.e., the fold preserves the percentage of
samples for each class. The accuracy of each fold is determined and average accuracy of
k-fold determined for overall accuracy. An example of stratified fourfold cross-validation is
shown in Figure 4.

By training multiclass linear SVM with the training parameters, a system of N models
is created. For an unknown testing sample, the highest-likelihood class label is predicted.
Finally, the accuracy score is determined for testing labels and data. The same evaluation
procedure was followed for POHMM/k-NN, POHMM/random forest, POHMM/MLP
NN, and POHMM/logistic regression, where the POHMM’s parameters were used as
features, and k-NN, random forest, and logistic regression were used as classifiers. We also
evaluated the identification performance of k-NN, random forest, logistic regression, SVM
(kernel = linear), SVM (kernel = RBF), MLP NN, and naïve Bayes on the CMU keystroke
data set. Instead of POHMM’s parameters, dwell time and flight time were used as features
to train and test the models.
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4. Experimental Results

Experimental results were obtained in this study for the CMU keystroke fixed-text data
set using the evaluation criteria presented in Section 3.1. To train POHMM, first a 2-hidden
states POHMM model was generated using lognormal emissions and the frequency smooth-
ing technique described in [71]. Lognormal distributions are used for time interval features,
and other features are modeled by normal distribution. In the 2-state model, the user can
be in either an active state or passive state. The key names have been used as passive state
(p-state). The same procedure was followed for HMM, except there was no event type (key
name). Identification performance of the proposed POHMM/SVM model was obtained,
as presented in Section 3.1.5. A benchmark experiment compared the identification accu-
racy (ACC) of POHMM/SVM with the number of generative and discriminative models.
In addition to the proposed hybrid POHMM/SVM, identification results were obtained
from five benchmark anomaly detectors: naïve Bayes, k-nearest neighbors, random forest,
multiclass SVM with linear kernel and RBF kernel, and logistic regression. Identification
results were also obtained from hybrid POHMM/k-NN, POHMM/random forest, and
POHMM/logistic regression models.

Key-press latency/down-down time and key-hold time features were used to train
and test the models. The only difference in training/testing of hybrid models with purely
generative/discriminative models is that purely generative/discriminative models are
trained/tested with KPL and KH features, whereas in hybrid models, POHMM is trained
with KPL and KH features first. The POHMM parameters are then used to train/test
the classifiers. Identification results were obtained in this experiment using the stratified
k-fold cross-validation described in the previous section with number of splits = 10 for
all classifiers. Table 4 shows the identification results obtained from different generative,
discriminative and hybrid models using key-press latency and hold-time features extracted
from the CMU keystroke data set.
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Table 4. Identification-accuracy comparison of proposed model with other models.

Model Accuracy, Mean (SD) Max Accuracy

POHMM/SVM (kernel = linear) 0.868 (+/−0.132) 0.913
POHMM/Logistic Regression 0.827 (+/−0.135) 0.876

POHMM/MLP neural network 0.825 (+/−0.144) 0.879
SVM (kernel = linear) 0.809 (+/−0.106) 0.865

POHMM/k-NN 0.789 (+/−0.151) 0.854
Logistic Regression 0.777 (+/−0.152) 0.842

POHMM/SVM (kernel = RBF) 0.762 (+/−0.180) 0.822
POHMM/Random Forest 0.756 (+/−0.160) 0.813

MLP neural network 0.764 (+/−0.163) 0.849
POHMM [13] 0.748 (+/−0.151) -

k-NN 0.722 (+/−0.215) 0.819
Naïve Bayes 0.696 (+/−0.122) 0.777
HMM [13] 0.467 (+/−0.295) -

SVM (one-class) [13] 0.465 (+/−0.293) -
SVM (kernel = RBF) 0.216 (+/−0.134) 0.308

Bayesian Gaussian Mixture Model 0.029 (+/−0.024) 0.047
Gaussian Mixture Model 0.018 (+/−0.121) 0.037

Features: key-press latency (KPL) and dwell time (HT). Stratified k-Fold (n_split = 10). Using combination of
POHMM transition and emission parameters.

The identification comparison in Table 4 shows that POHMM/SVM (kernel = linear)
outperforms the other models. The proposed POHMM/SVM model achieved the highest
identification accuracy of 91.3% with average accuracy of 86.8% (standard deviation: 0.132)
using both transition and emission parameters of POHMM. Tables 5 and 6 show the
identification-accuracy comparison of different hybrid models on emission parameters and
transition parameters of POHMM, respectively. This study also compared identification
accuracy of different generative and discriminative models on the CMU short fixed-text
data set using different features. Table 7 shows identification-accuracy comparison of
different classifiers on different features extracted from the CMU benchmark keystroke
short fixed-text data set. Accuracy of different models was achieved using the same
stratified k-fold cross-validation with number of splits = 10. Standard deviations of the
accuracy are estimated from the performance of each fold.

Table 5. Different hybrid models’ accuracy on POHMM emission parameters.

Model Accuracy, Mean (SD) Min Accuracy Max Accuracy

POHMM/SVM (kernel = linear) 0.862 (+/−0.130) 0.685 0.913
POHMM/Logistic Regression 0.803 (+/−0.155) 0.597 0.867

POHMM/k-NN 0.797 (+/−0.156) 0.587 0.870
POHMM/SVM (kernel = RBF) 0.760 (+/−0.181) 0.523 0.828
POHMM/MLP neural network 0.770 (+/−0.164) 0.558 0.856

POHMM/Random Forest 0.750 (+/−0.161) 0.597 0.867
Features: key-press latency (KPL) and dwell time (HT). Stratified k-Fold (n_split = 10).

Table 4 shows that all the hybrid models except the random forest achieved better
accuracy than either of the purely generative or purely discriminative equivalents. Table 5
shows that POHMM/SVM (kernel = linear) achieved the highest accuracy of 91.3% (mean
86.2%) on POHMM emission parameters compared to other hybrid models. On the other
hand, Table 6 shows that POHMM/SVM with linear kernel also achieved the highest
identification accuracy of 74.5% (mean 68.9%) with the POHMM transition parameters
than other hybrid models.

Table 7 shows that the linear support vector machine with linear kernel achieved
better accuracy rate only for hold-time features. The random forest classifier achieved
better identification accuracy for all other features or combinations of different features.
For individual features, most of the classifiers achieved better accuracy for the key-hold
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(KH) time feature. Again, combinations of different features provide better accuracy for all
classifiers. A majority of the discriminative models achieved better identification-accuracy
rates than the generative models.

Table 6. Different hybrid models’ accuracy on POHMM transition parameters.

Model Accuracy, Mean (SD) Min Accuracy Max Accuracy

POHMM/SVM (kernel = linear) 0.689 (+/−0.152) 0.503 0.745
POHMM/Logistic Regression 0.616 (+/−0.149) 0.430 0.681

POHMM/k-NN 0.657 (+/−0.156) 0.461 0.731
POHMM/SVM (kernel = RBF) 0.612 (+/−0.168) 0.411 0.689
POHMM/MLP neural network 0.653 (+/−0.155) 0.458 0.718

POHMM/Random Forest 0.610 (+/−0.146) 0.428 0.671
Features: key-press latency (KPL) and dwell time (HT). Stratified k-Fold (n_split = 10).

Table 7. Identification accuracy of different models using different features.

Model
Accuracy, Mean (SD)

Features: HT Features: KPL Features: KI Features:
KPL, HT

Features:
KPL, HT, KI

Features: KPL, HT,
KI, KRL, RPL

SVM (kernel =
linear)

0.694
(+/−0.108)

0.548
(+/−0.154)

0.603
(+/−0.174)

0.810
(+/−0.106)

0.811
(+/−0.106) 0.811 (+/−0.104)

k-NN 0.682
(+/−0.118)

0.581
(+/−0.192)

0.640
(+/−0.204)

0.722
(+/−0.215)

0.722
(+/−0.221) 0.718 (+/−0.222)

Naïve Bayes 0.668
(+/−0.120)

0.268
(+/−0.087)

0.325
(+/−0.081)

0.696
(+/−0.122)

0.646
(+/−0.121) 0.578 (+/−0.101)

MLP NN 0.655
(+/−0.141)

0.445
(+/−0.153)

0.604
(+/−0.187)

0.764
(+/−0.163)

0.779
(+/−0.147) 0.750 (+/−0.158)

Random Forest 0.648
(+/−0.104)

0.646
(+/−0.163)

0.709
(+/−0.171)

0.827
(+/−0.135)

0.843
(+/−0.145) 0.841 (+/−0.151)

Logistic Regression 0.645
(+/−0.135)

0.458
(+/−0.130)

0.520
(+/−0.140)

0.777
(+/−0.152)

0.775
(+/−0.150) 0.768 (+/−0.150)

SVM (kernel = RBF) 0.033
(+/−0.009)

0.101
(+/−0.074)

0.066
(+/−0.051)

0.216
(+/−0.134)

0.207
(+/−0.146) 0.257 (+/−0.176)

Gaussian Mixture
Model

0.020
(+/−0.027)

0.017
(+/−0.011)

0.022
(+/−0.019)

0.018
(+/−0.021)

0.017
(+/−0.022) 0.023 (+/−0.016)

Bayesian Gaussian
Mixture Model

0.013
(+/−0.018)

0.031
(+/−0.015)

0.012
(+/−0.011)

0.029
(+/−0.024)

0.009
(+/−0.017) 0.017 (+/−0.021)

Stratified k-Fold (n_split = 10). Highest accuracy shown in bold. Using POHMM transition parameters.

5. Discussion

Keystroke biometric systems are still immature and less popular than other biometric
systems. Recently, keystroke biometric systems have become an interesting research area,
because they are cost-effective and relatively easy to integrate with existing security systems
without adding any extra hardware. Researchers have proposed several KB systems,
but they suffer from some shortcomings. Most of the studies have been conducted in a
laboratory setting with subjects who had either expert or moderate typing speeds [72,73].
There have been no studies to date that quantify the KB system’s performance for users
with low typing proficiency or aged users. The keystroke biometric system has a strong
psychological basis; therefore, a deeper understanding of typing behavior of people from
different ages, genders, and backgrounds may enhance the accuracy and usability of the
KB systems.

Many studies have collected data in fewer sessions with a short break in each session.
This raises the question of whether a user’s typing behavior changes with time. KB systems
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are subject to template aging, as the typing behavior of users may change due to age,
health conditions, and long-term behavioral changes. Most of the studies have utilized the
same device for enrollment and testing. In some studies, the justification for a particular
classification method remains low, with very little discussion on negative results. There are
limited numbers of benchmark data sets for KB systems, and they have several limitations.
One important limitation is that fewer users were involved in the data collection. This
reduces the statistical impact of the results and makes it difficult to establish clear differences
between the algorithms and the methods. Most of the data sets used the same password for
all users, which is impractical for real-world application [74]. Finally, different research has
used different performance measures, which makes it difficult to compare the performance
of one model with another. There is a strong need to develop standardized protocols for
evaluating and comparing KB system performance.

HMMs have shown greater success in biometric areas, especially in speech recognition.
However, their performance is poor in keystroke biometrics compared with the other
models. The POHMM, an extension of HMM, can capture better the underlying structure
of data than the HMM, because the underlying system state that remains hidden is partially
observable through the types of event in POHMM. For example, each individual key
name is the partially observed events in short fixed text-based KB systems. Its marginal
distribution property handles missing or novel data during likelihood calculation, and
the parameter-smoothing technique handles missing or infrequent data during parameter
estimation. On the other hand, SVM has been a popular model in several biometric areas
for better classification performance. The proposed POHMM/SVM model inherits the
benefits of both POHMM and SVM models and has shown promising performance in user
identification.

A numbers of generative models, discriminative models, and hybrid models have been
examined in this study for user identification purposes. The hybrid models POHMM/SVM,
POHMM/random forest, POHMM/MLP NN, PPOHMM/k-NN, and POHMM/logistic
regression were implemented and compared with different generative and discriminative
models for identifying users. Table 4 clearly shows that the proposed hybrid POHMM/SVM
model outperforms the purely generative and purely discriminative equivalents for user
recognition. The hybrid POHMM/SVM (kernel = linear) approach outperformed over all
generative and discriminative models, as discussed in the previous section, for identifying
users. The experimental results show that by using both POHMM transition and emission
parameters, hybrid models may achieve better identification accuracy than the purely
generative or purely discriminative models. The discriminative linear SVM model achieved
better accuracy for all different combinations of features than the SVM model with kernel
RBF. However, the running time for linear time SVM is much longer than the RBF SVM.

The identification-accuracy comparison tables discussed above suggest a few impor-
tant considerations:

(a) In most cases, hybrid models achieved better accuracy than either their purely genera-
tive or purely discriminative equivalents.

(b) POHMM emission parameters provided better accuracy than transition parameters.
Using both transition and emission parameters produced better identification accuracy.

(c) Discriminative models performed better than the generative models in user identifica-
tion in the CMU data set.

6. Conclusions and Future Work

This research was inspired by other biometrics, such as speech recognition, signature
recognition, and human activity recognition, where hybrid approaches have performed
well. The main contribution of this research is developing a model for keystroke biometrics
that will provide higher accuracy rates in accepting genuine users and rejecting imposters.
The proposed hybrid POHMM/SVM model achieved improved identification accuracy
compared to the other models for a short fixed-text data set. The proposed POHMM/SVM
model inherits the benefits of both POHMM and SVM models, and that is why it has shown
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improved identification performance. Besides KB systems, the POHMM/SVM model
can also be used in other biometric applications, such as speech recognition, signature
identification, modeling human activities, face and gesture recognition, and network
anomaly detection. This model is also projected to achieve better performance in free-text
data set, for continuous authentication.

One of the extended plans for this line of research will be to apply the proposed model
with free text-based large data sets for user identification and verification purposes. This
study used the same marginal distribution and parameter-smoothing technique used by
Monaco and Tappert [13]. There is also room for future research to apply and compare
with other parameter-smoothing techniques. A majority of the hybrid models in this study
achieved better identification accuracy than the purely generative or purely discriminative
models with the CMU short fixed-text data set. It will be interesting to examine the hybrid
models, different generative and discriminative models with long fixed-text, long free-text,
keypad, and mobile data sets. Future work might also examine the modification in the
proposed hybrid model. POHMM can be used to model the temporal characteristics of the
sequential data and the static classifier SVM that generates a posterior probability for each
label.

There are many hybrid or mixed models that have been used in various biometric
areas, including keystroke biometrics. However, to the extent of our knowledge, this is the
first study in keystroke biometric where the generative model POHMM has been used as
feature extractor and discriminative model SVM as classifier. Most of the existing hybrid
models in KB systems are based on SVM and stochastic optimization algorithms, such as
genetic algorithms and particle swarm optimization. Some studies have used a combination
of distance measure classifiers, and some have used combinations of neurofuzzy algorithms,
such as Fuzzy ARTMAP. The proposed POHMM/SVM approach uses a combination of
pattern recognition and machine-learning-based algorithms for user identification and has
shown promising performance. With increased privacy and security concerns, the proposed
model can still be improved considerably, and can be used in the areas of cybersecurity and
remote monitoring.
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