
Citation: Mohamed, H.; Al-Masri, E.;

Kotevska, O.; Souri, A. A

Multi-Objective Approach for

Optimizing Edge-Based Resource

Allocation Using TOPSIS. Electronics

2022, 11, 2888. https://doi.org/

10.3390/electronics11182888

Academic Editors: Juan M. Corchado,

Byung-Gyu Kim, Carlos A. Iglesias,

In Lee, Fuji Ren and

Rashid Mehmood

Received: 6 August 2022

Accepted: 8 September 2022

Published: 13 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Multi-Objective Approach for Optimizing Edge-Based
Resource Allocation Using TOPSIS
Habiba Mohamed 1, Eyhab Al-Masri 1,* , Olivera Kotevska 2 and Alireza Souri 3

1 School of Engineering and Technology, University of Washington, Tacoma, WA 98402, USA
2 Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
3 Department of Computer Engineering, Haliç University, Istanbul 34060, Turkey
* Correspondence: ealmasri@uw.edu

Abstract: Existing approaches for allocating resources on edge environments are inefficient and lack
the support of heterogeneous edge devices, which in turn fail to optimize the dependency on cloud
infrastructures or datacenters. To this extent, we propose in this paper OpERA, a multi-layered
edge-based resource allocation optimization framework that supports heterogeneous and seamless
execution of offloadable tasks across edge, fog, and cloud computing layers and architectures. By
capturing offloadable task requirements, OpERA is capable of identifying suitable resources within
nearby edge or fog layers, thus optimizing the execution process. Throughout the paper, we present
results which show the effectiveness of our proposed optimization strategy in terms of reducing
costs, minimizing energy consumption, and promoting other residual gains in terms of processing
computations, network bandwidth, and task execution time. We also demonstrate that by optimizing
resource allocation in computation offloading, it is then possible to increase the likelihood of successful
task offloading, particularly for computationally intensive tasks that are becoming integral as part
of many IoT applications such robotic surgery, autonomous driving, smart city monitoring device
grids, and deep learning tasks. The evaluation of our OpERA optimization algorithm reveals that the
TOPSIS MCDM technique effectively identifies optimal compute resources for processing offloadable
tasks, with a 96% success rate. Moreover, the results from our experiments with a diverse range of
use cases show that our OpERA optimization strategy can effectively reduce energy consumption by
up to 88%, and operational costs by 76%, by identifying relevant compute resources.

Keywords: computation offloading; resource allocation; edge computing; Internet of Things; IoT; fog
computing; edge; fog; IIoT; AI; offloading

1. Introduction

The Internet of Things (IoT) is an expansive network and interconnected service infras-
tructure consisting of heterogeneous devices that can be seamlessly incorporated into the
Internet [1]. As IoT systems become more integrated into our daily tasks, they also require
an increase in hardware sophistication and computational power. Because of the limitations
in terms of hardware capabilities of native IoT devices, there are many times when they
are incapable of fully executing all types of tasks [2,3]. Hence, some tasks or portions of
tasks are then offloaded to the cloud for additional processing [4,5]. Task offloading has
significantly contributed to the formation of multi-access edge computing to mitigate the
offloading problem, while reducing reliance on the cloud computing layer [6–8].

Further, the rapid growth and sophistication of IoT systems, which includes the
emergence of new applications such as edge AI, mobile gaming, virtual reality, healthcare,
and transportation, has increased the number of mission-critical tasks, or ones that must
function or execute properly in order to avoid service disruptions in terms of application
downtime [9]. In addition, executing computationally intensive IoT tasks often requires
low latency and energy consumption.

Electronics 2022, 11, 2888. https://doi.org/10.3390/electronics11182888 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11182888
https://doi.org/10.3390/electronics11182888
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5163-6792
https://doi.org/10.3390/electronics11182888
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11182888?type=check_update&version=1

Electronics 2022, 11, 2888 2 of 26

While IoT devices have increased in terms of hardware capabilities in recent years,
there exists many computational tasks such as deep learning tasks (e.g., NLP, visual recog-
nition, clustering, classification, transcription, synthesis, and sampling) that cannot easily
be performed locally on these devices, due to the computational intensively of these tasks
requiring excessive processing power and memory usage. Executing such tasks on resource-
constrained devices translates into longer execution times and high energy consumption.
Because many IoT devices depend on batteries for power, executing such tasks drains the
batteries very quickly, sometimes without even completing the tasks [10]. To this extent,
offloading becomes a natural solution that complements the processing on IoT devices
for task execution. However, allocating resources efficiently on the edge or fog layers
becomes a very complex task that often requires efficient optimization and decision making
strategies [11]. Figure 1 presents the various layers that exist across the IoT computing
paradigm.

Electronics 2022, 11, x FOR PEER REVIEW 2 of 27

function or execute properly in order to avoid service disruptions in terms of application
downtime [9]. In addition, executing computationally intensive IoT tasks often requires
low latency and energy consumption.

While IoT devices have increased in terms of hardware capabilities in recent years,
there exists many computational tasks such as deep learning tasks (e.g., NLP, visual recog-
nition, clustering, classification, transcription, synthesis, and sampling) that cannot easily
be performed locally on these devices, due to the computational intensively of these tasks
requiring excessive processing power and memory usage. Executing such tasks on re-
source-constrained devices translates into longer execution times and high energy con-
sumption. Because many IoT devices depend on batteries for power, executing such tasks
drains the batteries very quickly, sometimes without even completing the tasks [10]. To
this extent, offloading becomes a natural solution that complements the processing on IoT
devices for task execution. However, allocating resources efficiently on the edge or fog
layers becomes a very complex task that often requires efficient optimization and decision
making strategies [11]. Figure 1 presents the various layers that exist across the IoT com-
puting paradigm.

Figure 1. Offloading variations that exist across a multi-layered IoT architecture.

As demonstrated in Figure 1, from an IoT perspective, as we move away from the
cloud layer, the number and magnitude of devices increases significantly. However, as
we move toward the cloud, the sophistication of tasks increases. Hence, the edge compu-
ting layer is intended to process light tasks, whereas more intensive operations shift to the
fog layer and ultimately to that of the cloud. To this extent, optimizing tasks that can be
localized on the edge layer, and ones that can execute on the fog node prior to migrating
them to the cloud, becomes inevitable. Further, as we migrate to the fog layer and further
to the edge layer, there is more localization of both computations and nodes. This can help
in terms of providing contextualized services. However, this localization decreases as
tasks move away from edge and fog layers. Offloading therefore become an ideal solution
for solving these discrepancies that exist across the IoT paradigm. An offloadable task
represents parts or an entire program or process consisting of code instruction that require
migrating to a remote destination, to be executed on a compatible environment (e.g., OS).

Furthermore, variations among offloadable tasks make the resource allocation pro-
cess even more challenging [12]. Task offloading is not a novel concept and has been
widely used in areas such as TCP offloading, mainly used for reducing the CPU overhead
that often exist across fast networks [13]. This offloading type divides large volumes of
data into smaller units of data that are sent between source and destination. The challenge

Figure 1. Offloading variations that exist across a multi-layered IoT architecture.

As demonstrated in Figure 1, from an IoT perspective, as we move away from the
cloud layer, the number and magnitude of devices increases significantly. However, as we
move toward the cloud, the sophistication of tasks increases. Hence, the edge computing
layer is intended to process light tasks, whereas more intensive operations shift to the
fog layer and ultimately to that of the cloud. To this extent, optimizing tasks that can be
localized on the edge layer, and ones that can execute on the fog node prior to migrating
them to the cloud, becomes inevitable. Further, as we migrate to the fog layer and further
to the edge layer, there is more localization of both computations and nodes. This can
help in terms of providing contextualized services. However, this localization decreases as
tasks move away from edge and fog layers. Offloading therefore become an ideal solution
for solving these discrepancies that exist across the IoT paradigm. An offloadable task
represents parts or an entire program or process consisting of code instruction that require
migrating to a remote destination, to be executed on a compatible environment (e.g., OS).

Furthermore, variations among offloadable tasks make the resource allocation process
even more challenging [12]. Task offloading is not a novel concept and has been widely
used in areas such as TCP offloading, mainly used for reducing the CPU overhead that
often exist across fast networks [13]. This offloading type divides large volumes of data
into smaller units of data that are sent between source and destination. The challenge in
IoT offloadable tasks is quite different in the sense that offloadable tasks are not easily
partitioned and depend on program execution and compilation workflows. Nonetheless,
task offloading is similar to that of TCP/IP in terms of how the tasks are allocated across
the network. Hence, we assume in this paper that offloadable tasks have been defined and
the allocation of resources is the stage we focus on throughout the remainder of this paper.

Electronics 2022, 11, 2888 3 of 26

The emergence of the edge computing paradigm in recent years allows for data to
be processed in local nodes, or intermediary ones that exist nearby native IoT devices.
To this extent, the introduction of multi-access edge computing (MEC) is designed such
that it decreases the transfer latency [14]. However, as shown in Figure 2, MEC requires a
complex ecosystem of hardware, software, and networking. Further, using multi-access
edge computing presents data privacy and security concerns that are often neglected [14].
Further, using multi-access edge computing presents data privacy and security concerns
that are often neglected [14]. Further, the network of interconnected devices will then
need to apply uniform security policies. In addition, MEC network administrators will
need to define identity and access management rules for a large number of users spread
across the multi-access edge computing network. Even though MEC is promising for
latency reduction for offloadable tasks, there are major challenges associated with the
deployment of heterogeneous IoT devices and meeting application Quality of Service (QoS)
requirements.

Electronics 2022, 11, x FOR PEER REVIEW 3 of 27

in IoT offloadable tasks is quite different in the sense that offloadable tasks are not easily
partitioned and depend on program execution and compilation workflows. Nonetheless,
task offloading is similar to that of TCP/IP in terms of how the tasks are allocated across
the network. Hence, we assume in this paper that offloadable tasks have been defined and
the allocation of resources is the stage we focus on throughout the remainder of this paper.

The emergence of the edge computing paradigm in recent years allows for data to be
processed in local nodes, or intermediary ones that exist nearby native IoT devices. To this
extent, the introduction of multi-access edge computing (MEC) is designed such that it
decreases the transfer latency [14]. However, as shown in Figure 2, MEC requires a com-
plex ecosystem of hardware, software, and networking. Further, using multi-access edge
computing presents data privacy and security concerns that are often neglected [14]. Fur-
ther, using multi-access edge computing presents data privacy and security concerns that
are often neglected [14]. Further, the network of interconnected devices will then need to
apply uniform security policies. In addition, MEC network administrators will need to
define identity and access management rules for a large number of users spread across
the multi-access edge computing network. Even though MEC is promising for latency re-
duction for offloadable tasks, there are major challenges associated with the deployment
of heterogeneous IoT devices and meeting application Quality of Service (QoS) require-
ments.

Figure 2. Multi-access edge computing architecture.

Generally, computation offloading, or offloadable tasks, is performed by transferring
them to remote destinations (e.g., other edge, fog, or cloud resources) for execution, and
the outcomes or response deliverables are then returned to the native IoT device. In terms
of edge-to-cloud offloading, cloud service providers often provide access to a plethora of
computing resources in the areas of software applications, artificial intelligence, storage,
and processing power. Although computation offloading allows access to robust and het-
erogeneous processing cloud resources, it is often associated with some limitations. The
majority of the limitations are often associated with latency issues when relying on exter-
nal computing resources, as well as execution downtime and load balancing issues [15].

Downtime occurs with cloud computing services when there is a disruption due to
some power outage, network connection failures, or service or resource unavailability.
Additionally, the latency factor introduced when computing over the internet cannot be
tolerated by certain applications such as mission-critical IoT applications (e.g., autono-
mous driving, healthcare analytics, among others), which increase the demand for opti-
mizing the offloading of tasks across edge environments.

Figure 2. Multi-access edge computing architecture.

Generally, computation offloading, or offloadable tasks, is performed by transferring
them to remote destinations (e.g., other edge, fog, or cloud resources) for execution, and
the outcomes or response deliverables are then returned to the native IoT device. In terms
of edge-to-cloud offloading, cloud service providers often provide access to a plethora of
computing resources in the areas of software applications, artificial intelligence, storage,
and processing power. Although computation offloading allows access to robust and
heterogeneous processing cloud resources, it is often associated with some limitations. The
majority of the limitations are often associated with latency issues when relying on external
computing resources, as well as execution downtime and load balancing issues [15].

Downtime occurs with cloud computing services when there is a disruption due to
some power outage, network connection failures, or service or resource unavailability.
Additionally, the latency factor introduced when computing over the internet cannot be
tolerated by certain applications such as mission-critical IoT applications (e.g., autonomous
driving, healthcare analytics, among others), which increase the demand for optimizing
the offloading of tasks across edge environments.

Whether offloading occurs to a cloud service provider or a multi-access edge comput-
ing network, there are key challenges that need to be considered in an offloading strategy.
How to offload a task, for example, is a key challenge when considering the heterogeneous
connectivity methods that are supported by the IoT paradigm (e.g., wireless, cellular, WiFi,
WAN, etc.). Another challenge is associated with the ability to identify parts of the com-
putation that can be offloaded to the remote destination. That is, not all functionalities
are offloadable (e.g., mobile screen rendering). This makes the task of finding appropriate

Electronics 2022, 11, 2888 4 of 26

resources with the necessary hardware requirements to execute the computation more
challenging. Finally, when to begin offloading a task is another challenge that can be
impacted by signal to noise ratios, or service migration instances.

While there are many challenges associated with task offloading, we focus primarily
on optimizing the resource allocation process across this multi-layered IoT architecture.
A number of research efforts in the area of optimization of resource allocation have been
conducted which include algorithms that allocate resources on a predetermined schedule
or manual resource allocation [16–19]. Additionally, some work has been conducted on
calculating the resource requirements for a task and preemptively allocating resources.
While many of the existing methods are effective, they often require human intervention,
while failing to provide IoT devices to make their own offloading decisions [6–8]. Further,
many of the existing solutions do not consider the heterogeneity of devices that exist at the
edge of the network, and do not support hybrid offloading operations that may occur, as
shown in Figures 1 and 2.

Resource allocation optimization has been a focal point for improving the offloading
process across edge environments. The strategy of relying on only cloud computing or the
use of a multi-access edge computing network both have drawbacks. A hybrid approach
that is able to identify and allocate resources from all three computing layers (cloud, fog, and
edge) more efficiently is integral and is often neglected by existing research efforts. Hence,
an offloading strategy that is able to consider end-user or applications requirements when
performing offloading operations is very critical. We present some of the key offloading
task types that often exist across IoT environments in Table 1.

Table 1. Key offloading task strategy types.

Task Type Description Offloading Strategy Requirements

Surgical Robot
(Compute Centric) mission-critical, latency-sensitive Low execution time, high processor and

memory availability
Forest Monitoring

(Cost Centric)
moderate data processing,

latency insensitive
Moderate execution time

and operational cost
Digital inpainting using

deep neural network
(Memory Centric)

extensive data processing High processor and memory availability

To demonstrate the importance of associating task type when completing an offload-
able task, consider a mission critical scenario involving a task for deciding whether to stop
for a traffic light or change driving lanes as part of a self-driving vehicle, and a compounded
data collection from soil sensors within a smart city IoT system. Both of these scenarios
are associated with different types of offloadable tasks. For example, the self-driving car
is often associated with mission-critical and time sensitive tasks that require low runtime,
high memory availability, and high processing power to process operations, whereas the
smart city system is not as time-sensitive as that of the self-driving car and can tolerate
some short latency rates. Hence, associating the type of tasks during the offloading process
is critical and is often neglected in existing research efforts for resource allocation [11].

With these challenges and applications requirements in mind, the objective of our
research is to develop a reliable resource allocation offloading strategy that can be utilized
on both the edge and fog computing layers. In order to allocate resources across multiple
computing environments in an optimal manner, we first need to develop an optimization
framework that considers task requirements. In addition, this offloading framework needs
to be able to handle multiple criteria in order to maintain an acceptable degree of Quality
of Service (QoS) level that is part of a service level agreement. Further, the optimization
strategy needs to minimize task execution time, energy consumption, and cost spending.
Finally, the optimization framework needs to create a buffer for processing and memory
availability. To accomplish all of the above, we developed OpERA, a multi-objective
optimization approach for efficiently allocating edge-based resource during offloading

Electronics 2022, 11, 2888 5 of 26

operations. Table 2 presents a comparison of existing research approaches on resource
allocation for supporting offloading operations.

Table 2. A comparison of existing offloading research approaches.

Algorithm Offloading Decision Granularity Objective

convex optimization [20] what binary, partial delay, energy
game theory [21–23] what, when binary delay

latency minimization [24] when binary delay
deep learning [25,26] when partial delay

NSGA [27–30] what, when partial delay, energy
heuristic-based [26] when, where binary delay, energy

many-to-one [31] when binary cost
OpERA (MCDM method) what, when, where binary, partial cost, delay, energy

One of the primary objectives of OpERA is to identify available resources existing
across heterogeneous edge or fog environments to determine the usefulness of offloading
tasks. Our proposed approach supports multiple criteria for offloading decisions including
what code segments to offload, when to offload tasks, and where to offload them. Further,
OpERA considers the tradeoff that exists among existing resources and considering the
various layers that exist throughout the edge paradigm. In addition, offloading granularity
in terms of fully uploading an entire task (i.e., binary offloading) or partially offloading
code segments of a task (i.e., partial offloading) is critical for improving the execution
of tasks and allocating resources across edge environments. Unlike existing approaches,
which focus on multi-objective decisions, we employ a multi-criteria decision making
(MCDM) algorithm that is based on the Technique for Order of Preference by Similarity to
Idea Solution (TOPSIS) to improve the decision making when executing offloadable tasks.

TOPSIS is a MCDM method that is used across many real-world applications [32]. It
is widely used in areas such as supply chain management [33], logistics [34], design engi-
neering [35], manufacturing systems [36], software defined networks [37–39], and business
management [40]. In addition, TOPSIS is used in energy management and water resource
management. To the best of our knowledge, MCDM methods have not been employed in
the decision making for resource allocation and service provisioning [41–43]. To this extent,
we employ the TOPSIS method for improving the decision making of our OpERA approach.
Using TOPSIS, OpERA is capable of identifying localized resources that can execute tasks.
If local resources are non-optimal, OpERA recommends nearby intermediary nodes that
are suitable for executing tasks within upper layers in the multilayered IoT architecture.
Table 3 list the acronyms used frequently throughout this paper.

Table 3. List of acronyms frequently used in this paper.

Acronym Definition

MEC Multi-Access Edge Computing
IoT Internet of Things
VM Virtual Machine
QoS Quality of Service
DNN Deep Neural Network
PSO Particle Swarm Optimization
RL Reinforcement Learning
MCDM Multi-Criteria Decision Making
ELECTRE Elimination and Choice Expressing Reality
TOPSIS Technique for Order of Preference by Similarity to Idea Solution
PROMETHEE Preference Ranking Organization Method for Enrichment of Evaluations
VIKOR Multi-criteria Optimization and Compromise Solution
GWA Grid Workload Archives

Electronics 2022, 11, 2888 6 of 26

2. Related Work

Task offloading enables end users to maintain a level of QoS as the complexity of
device computations grows. This section explores existing research efforts in offloading,
resource allocation, and allocation optimization techniques. Offloading strategies can
be categorized into mainly two types: (a) local device offloading to MEC networks, and
(b) edge/fog to cloud offloading. We describe each of these categories in the next few
sections.

2.1. Offloading on Edge Layer, Fog Layer and Cloud Layer

Task offloading can be done by moving the task from the edge or fog layer to the cloud
layer. When a task is offloaded from the edge to the cloud layer it can be referred to as full-
offloading [44]. When a task is offloaded from the fog to the cloud layer it can be referred to
as partial-offloading [44]. The edge and fog layers are not as resource rich as the cloud layer.
Cloud computing is especially useful for computation heavy workloads but falls short on
low latency requirements [45]. In order to reduce the latency, pre-processing of data may
be done at the edge or fog layer before offloading the task to the cloud layer [46]. However,
this added step also increases the bandwidth due to the large data transfer that occurs as
a result of preprocessing [46]. Optimizations are needed in the space in order to reduce
latency, as well as to minimize bandwidth due to pre-processing. This research focuses on
optimizing task offloading by allocating the adequate resources that can complete a task in
less time than the native device, without a need for task preprocessing.

2.2. Offloading on Multi-Access Edge Computing (MEC) Network

Offloading strategies discussed in Section 2.1 are more suited to non-mobile devices
that are more focused on reduction in energy consumption and reduction of processing
resources. In order to avoid network traffic that mobile devices can encounter with the
offloading methods described in Section 2.1, a new computing paradigm, Multi-Access
Edge Computing (MEC), was introduced.

Many research efforts on task offloading focused on mathematical optimizations based
on greedy metaheuristics algorithms [47–50]. Unlike an iterative metaheuristic method,
greedy algorithms do not start with a possible optimal solution set. In order to deduce
the optimal alternative, the processing in [47–50] needs optimization parameters from the
surrounding MEC network, such as the current network delay. Offloading strategies that
focus on MEC offloading reduce the set of feasible solutions by not taking into account
edge to cloud and fog to cloud offloading.

2.3. Resource Allocation Optimization in Task Offloading

Various mathematical and computational algorithms and models have been developed
in frameworks to address optimization in task offloading and the impact of CPU/memory
management on the tasks’ execution. In [51,52], the authors integrate CPU/GPU memory
management for executing Deep Neural Network (DNN) workloads. In [53], the authors
identify that performance using various memory management methods can be influenced
by different application characteristics. In [52], the authors introduce a framework that
allows latency-aware data initialization modes on an integrated heterogeneous platform.
Through these modes, the platform is capable of identifying the best initialization mode
when executing tasks.

Various mathematical and computational algorithms and models have been developed
in frameworks to address optimization in task offloading. In [54], a heuristic algorithm
is used to optimize resource allocation in the computational fog layer for car-based ap-
plications. In [55], researchers utilize Reinforcement Learning (RL) to address resource
scheduling problems to minimize offloading delays. Particle swarm optimization (PSO)
has been utilized to find optimal offloading schemes for specific path scenarios [56]. All of
these optimization strategies have limitations, for example, heuristic algorithms can only
be used to find an approximate solution [55]. RL based resource allocation optimization

Electronics 2022, 11, 2888 7 of 26

requires extensive amounts of data and computation [57]. PSO has a very low convergence
rate, which increases its deduction time as well [56]. However, MCDM methods such as
TOPSIS provide the most optimal set of solutions to the end user, which allows priorities to
decision variables to be assigned.

3. OpERA: A Resource Allocation Optimization Model

We developed an optimization model that is based on MCDM, which allows us
to identify and analyze differences among choices or alternatives. What we mean by
alternatives is the available resources that can execute an offloadable task. Given a task, we
employ MCDM to determine which of the available resources is best optimized to run that
task. Further, MCDM approaches also employ the minimization or maximization of specific
attributes through linear objective functions [58]. Figure 3 illustrates the region containing
the possible solutions. Negative slopes represent objective functions whose qualities are
being minimized. Positive slopes represent objective functions whose attributes are being
maximized [58].

Electronics 2022, 11, x FOR PEER REVIEW 8 of 27

Figure 3. Bounded region of feasible solutions of multiple objective functions.

There exists a number of MCDM methods, such as Elimination and Choice Express-
ing Reality (ELECTRE) [20], Technique for Order Preference by Similarity to Ideal Solu-
tion (TOPSIS) [21], Preference Ranking Organization Method for Enrichment of Evalua-
tions (PROMETHEE) [22], and Multi-criteria Optimization and Compromise Solution (VI-
KOR) [23]. We employ the TOPSIS method, which extends our previous work on resource
allocation within edge environments [59], due to the ability to measure the geometric dis-
tance between every alternative and an ideal one. The ideal one is determined based on a
set of preferences, which are assigned to multiple criteria. Hence, TOPSIS allows us to
perform a multi-objective optimization without the need to use meta-heuristic methods,
which are time consuming and quite complex to develop.

TOPSIS is an MCDM method that selects the best alternative among a number of
alternatives having the shortest Euclidean distance to an ideal best solution, and the long-
est Euclidean distance to the ideal worst solution [60]. TOPSIS takes into consideration the
weighted preference attributes. That is, a preference for an attribute can be either advan-
tageous (need to be maximized) or detrimental (need to be minimized) [60]. The input
weights, which represent priority or importance of the attribute in the optimization pro-
cess, can be arbitrarily chosen, however, they must all add up to one.

The weights are used by TOPSIS to identify the preferences of the decision variables
used in the decision making process. Each decision variable, or criterion, can be either
non-beneficial or beneficial. Each criterion can be either beneficial or non-beneficial. A
beneficial criterion is one that needs to be minimized and a non-beneficial is one that needs
to be maximized. The list of decision variables or criteria used for our OpERA is presented
in Table 4. An end-user may assign various weights to the decision variables and the total
weights must sum to 1. The higher the weight, the more priority is given by TOPSIS to the
decision variable, or criterion, associated with the weight. For example, a memory-driven
offloading use case indicates more priority (i.e., higher weight) is assigned to memory
availability compared to other decision variables. A general offloading use case does not
specify any priority to a specific attribute and all decision variables are treated with the
same importance. Through weight assignment, an end-user or programmer can selec-
tively control the execution of offloadable tasks depending on the operation type. For ex-
ample, a mission-critical offloadable task may be assigned higher weight in terms of exe-
cution time, while having a lower cost (e.g., execute the offloadable task at any cost).

For our resource allocation optimization model, we consider memory availability,
CPU usage, runtime, execution cost, and energy consumption. OpERA constructs a nor-
malized matrix consisting of alternatives, represented by rows, and criteria, represented
by columns, respectively. Each cell in this matrix represents a normalized value corre-
sponding to a specific alternative for a particular criterion. Alternatives represent virtual
machine resources that are equipped with processor, memory, storage, and network re-
sources.

Figure 3. Bounded region of feasible solutions of multiple objective functions.

As illustrated in Figure 3, the ideal values within the bounded regions for objective
functions 1 and 2 are vertices C and D. For objective functions 3, 4, and 5, the optimal
solutions are located at vertices B, C, and A, respectively. The range of feasible alternatives
is inferred, but selecting the ideal solution requires more investigation. For our resource
allocation optimization, the feasible solutions region represents the set of discovered
compute resources (or alternatives) that are all capable of executing offloadable tasks. The
degree to which each alternative can complete the task varies. It is worth noting that
not all alternatives can meet the objectives defined for executing offloadable tasks. These
objectives include processor availability, memory availability, projected execution time,
cost, storage space requirements, and network bandwidth, among others. MCDM methods
help define the objectives and constraints and are capable of identifying the best or optimal
solution in the feasible region.

There exists a number of MCDM methods, such as Elimination and Choice Express-
ing Reality (ELECTRE) [20], Technique for Order Preference by Similarity to Ideal Solu-
tion (TOPSIS) [21], Preference Ranking Organization Method for Enrichment of Evalu-
ations (PROMETHEE) [22], and Multi-criteria Optimization and Compromise Solution
(VIKOR) [23]. We employ the TOPSIS method, which extends our previous work on re-
source allocation within edge environments [59], due to the ability to measure the geometric
distance between every alternative and an ideal one. The ideal one is determined based on
a set of preferences, which are assigned to multiple criteria. Hence, TOPSIS allows us to
perform a multi-objective optimization without the need to use meta-heuristic methods,
which are time consuming and quite complex to develop.

Electronics 2022, 11, 2888 8 of 26

TOPSIS is an MCDM method that selects the best alternative among a number of
alternatives having the shortest Euclidean distance to an ideal best solution, and the
longest Euclidean distance to the ideal worst solution [60]. TOPSIS takes into consideration
the weighted preference attributes. That is, a preference for an attribute can be either
advantageous (need to be maximized) or detrimental (need to be minimized) [60]. The
input weights, which represent priority or importance of the attribute in the optimization
process, can be arbitrarily chosen, however, they must all add up to one.

The weights are used by TOPSIS to identify the preferences of the decision variables
used in the decision making process. Each decision variable, or criterion, can be either
non-beneficial or beneficial. Each criterion can be either beneficial or non-beneficial. A
beneficial criterion is one that needs to be minimized and a non-beneficial is one that needs
to be maximized. The list of decision variables or criteria used for our OpERA is presented
in Table 4. An end-user may assign various weights to the decision variables and the total
weights must sum to 1. The higher the weight, the more priority is given by TOPSIS to the
decision variable, or criterion, associated with the weight. For example, a memory-driven
offloading use case indicates more priority (i.e., higher weight) is assigned to memory
availability compared to other decision variables. A general offloading use case does not
specify any priority to a specific attribute and all decision variables are treated with the
same importance. Through weight assignment, an end-user or programmer can selectively
control the execution of offloadable tasks depending on the operation type. For example, a
mission-critical offloadable task may be assigned higher weight in terms of execution time,
while having a lower cost (e.g., execute the offloadable task at any cost).

Table 4. OpERA criteria used for resource allocation.

Attribute Preference

Memory Availability Beneficial
CPU Usage Non-Beneficial

Execution Cost Non-Beneficial
Energy Consumption Non-Beneficial

Runtime Non-Beneficial

For our resource allocation optimization model, we consider memory availability, CPU
usage, runtime, execution cost, and energy consumption. OpERA constructs a normalized
matrix consisting of alternatives, represented by rows, and criteria, represented by columns,
respectively. Each cell in this matrix represents a normalized value corresponding to
a specific alternative for a particular criterion. Alternatives represent virtual machine
resources that are equipped with processor, memory, storage, and network resources.

For each criterion, a weight is associated to identify its priority or importance on the
overall optimization process. This makes our OpERA model user-centric such that end
users or IoT application developers can specific their own preferences of how they wish to
control the optimization outcomes. Further, a computational node in this model represents
a resource and an offloadable task represents a program or code segment that needs to
execute on this node. To this extent, a node can be a local IoT device, a virtual machine
(VM), or a container. A resource represents a computing node that exists on either edge, fog,
or cloud layers. Nodes are equipped with sufficient resources (e.g., processor, memory, etc.)
to execute offloadable tasks. OpERA identifies the optimal VM nodes that contain sufficient
compute, memory, storage, and network resources, for completing the task. We will present
our runtime prediction model in the following section.

3.1. Measuring Expected Execution Time

We developed an expected execution time model that is capable of projecting the
overall execution time of tasks on different computational nodes. We focus primarily on
virtual machines (VMs) as nodes which are available throughout the multi-layered IoT
architecture. To measure the expected execution time on a particular node for a specific

Electronics 2022, 11, 2888 9 of 26

task, we use Amdahl’s Law [61]. Amdahl’s Law [61] enables us to measure the theoretical
maximum speed-up in parallel computing runtime environment when a single processor is
used. To this extent, we use Amdahl’s law to find the maximum speedup of a system when
multiple processors are used. The speedup is defined as:

Speedup(n) =
1

(1− p) +
(p

n
) (1)

where n represents the number of cores, and p represents the portion of a program that is
parallelizable.

In order to use Amdahl’s law (Equation (1)), we need to determine the portion of
the program that is parallelizable. We assume that the execution time of the task on the
local device can be determined, for which we can then derive the execution time on the
destination computational node (e.g., VM). We also assume that the estimated execution
time on the local device, or ExecutionTimeobserved, is based on running the task on a single
core processor. Using Amdahl’s Law, we are able to estimate the execution time with
considering parallelization. Hence, we employ an execution time model based on the
performance gain on which the offloadable task can execute on the destination node by
considering the number of cores and a parallelization fraction that is determined in terms
of the speedup factor.

Through this model, it is then possible to account for more complex operations using
Amdahl’s Law that run on tasks on hardware that supports multiple cores. To this extent,
for a given task that requires execution, we randomly generate the p value within the
range of 0.2–0.99, while ensuring that all of the p values generated fit a Gaussian distri-
bution. Using Gaussian distribution, we simulate a real-world data center environment
that is equipped with heterogeneous hardware types that support multi-core execution of
programs. Further, this distribution helps in simulating executing offloadable tasks by ac-
counting for other factors such as resource contention, resource discovery, and scheduling,
among others. Through this approach, we consider various data and program profiling,
estimating possible errors that may occur during program execution more realistically. It
should be noted that generating the p values in a Gaussian distribution with a standard
deviation of 0.1 and mean, we use 0.6 which is ideal to reduce bias in the random number
generator.

The measured speedup factor can then be used to derive the predicted execution time,
as shown in Equation (2); we multiply the speedup factor by the observed execution time
for a job. The expected execution time is reflective of how long the job would take to run
an alternative resource:

ExecutionTimeestimated = ExecutionTimeobserved ∗
1

Speedup
(2)

where ExecutionTimeobserved represents the observed execution time on a local IoT device,
and speedup is the relative performance with the destination node that measures the
expected enhancement, and ExecutionTimeestimated is the expected execution time for the
offloadable task to execute on a destination node. We compute the ExecutionTimeestimated for
all of the alternatives that are considered for the decision matrix.

3.2. Measuring Energy Consumption

Because the amount of power needed to execute a program primarily depends on the
amount of time it takes for the processing hardware and resources employed to execute
the program (e.g., execution time), we can then estimate the amount of energy that will be
consumed for executing a task. That is, the energy consumption uses the expected execution
time computed in Equation (2) to derive the total energy consumption for completing an
offloadable task. To this extent, we employ the thermal design power (TDP), which is

Electronics 2022, 11, 2888 10 of 26

measured in Watts, to compute the overall energy consumption on the destination node as
follows:

Energy = TDP ∗ ExecutionTimeestimated (3)

where ExecutionTimeestimated is the expected execution time on the destination node com-
puted in Equation (2), and TDP represents the average power for a processor to complete
tasks. Using Equation (3), we can estimate the total amount of energy consumed by hard-
ware resources based on the total execution time it takes for a task to complete. That
is, the result is the estimated energy consumption on the destination node for a specific
task. We compute energy for all of the alternatives in the decision matrix and the energy
consumption metric is used as a criterion or an objective, which requires minimization (i.e.,
a beneficial attribute). Further, the TDP value is retrieved from the processor specifications.
That is, each VM is equipped with a processor for which we identify from its specifications
the TDP value and then use it in the decision matrix. This helps us conduct real-world
computations when employing datasets as discussed in the following section.

3.3. Measuring Utilization Cost

We derive cost based on the cloud service providers’ use of cloud resources. That is,
a cloud service provider generally charges a fee to utilize virtual machines. Hence, we
use existing cloud provider calculators and match the processor specifications with ones
associated with the alternatives in the decision matrix. We use this cost analysis to reflect
on the utilization cost for consuming resources on the cloud. In addition, we vary the cloud
utilization costs to derive ones for the fog and edge layers, respectively. To this extent, we
used the Azure Pricing Calculator [62] as a basis for generating the cost utilization model,
as shown in Table 5. To compute the overall cost associated with consuming the resource,
we employ the expected execution time from Equation (2).

Table 5. Cost basis of VM instances in edge, fog, and cloud computing layer.

Layer Monthly Cost Basis for 1 vCPU

Cloud $146.88
Fog $73.44

Edge $48.96

3.4. CPU and Memory Availability Measurements

We extend our earlier optimization model introduced in [59], to define the objective
functions for CPU usage and memory availability, as in Equations (4) and (5), respectively.
Using existing profiling tools, which can measure the performance of a program during
execution, we employ profiling tools (e.g., gperftools) that are supported by operating
systems to determine the CPU and memory availability on existing hardware. We assume
that this profiling data is accessible to OpERA during the decision making process. By
employing CPU and memory availability data, OpERA is capable of identifying suitable
resources that can execute offloadable tasks more efficiently. Hence, we use CPU and
memory availability data to optimally determine resources for task execution. To this
extent, CPU usage and memory availability are used as attributes in the decision matrix for
our OpERA TOPSIS-based algorithm. The CPU usage is measured as follows:

fCPU(x) =
CCPU(x)

Cmax
CPU

∗ PCPU(x) (4)

where CCPU(x) is the CPU capacity for the current device x, Cmax
CPU is the maximum CPU

capacity among all of the devices, and PCPU(x) is the percentage of the CPU used by the
current device. For the memory availability, it is measured as follows:

fMem(x) =
CMem(x)

Cmax
Mem

∗ (1− PMem(x)) (5)

Electronics 2022, 11, 2888 11 of 26

where CMem(x) is the memory availability for the current device x, Cmax
Mem is the maximum

memory availability among all of the devices, and PMem(x) is the percentage of the memory
used by the current device.

4. Evaluation and Assessment

To evaluate our OpERA resource allocation algorithm, we employ real-world data-
center job and workload traces datasets. To this extent, we evaluate our OpERA algorithm
based on the Materna [63] and the AuverGrid [64] from the Grid Workload Archives
(GWA) [65]. GWA provides traces from an actual datacenter, which includes a job traces
dataset representing tasks requirements, whereas the AuverGrid represents snapshots
of the VM states residing within the datacenter. We use these snapshots to identify the
resource states and use OpERA for optimizing the allocation process. We import the traces
from the datasets into a local repository using Big Query, and a summary of the datasets
schema are presented in Table 6.

Table 6. Materna and AuverGrid GWA dataset schema.

Dataset Metadata Key Metrics

Materna VM trace 1592 machines
13,940,000 traces

Number of CPU cores
CPU usage (MHz)

Memory usage (KB)

AuverGrid Job trace 405 users
404,176 jobs

Number of CPU cores
CPU runtime (s)

Memory usage (KB)

4.1. Dataset Preparation & Data Workflow

We randomly selected Materna VM dataset traces to represent available resources.
Similarly, we select at random traces from the AuverGrid that correspond to an IoT applica-
tion request. To simulate the resource availability within a datacenter, we employ a total of
1592 VM traces from the Materna dataset. Each resource has a number of CPU cores, CPU
utilization (MHz), and memory utilization, among others. This information is sufficient
for our OpERA algorithm to make resource allocation decisions. To simulate a real-world
heterogeneous IoT environment, our randomization method consisted of classifying the
resources into three distinct layers, representing edge, fog, and cloud layers. We followed
the analogy presented in Figure 1, such that as we migrate to the cloud layer, the number
and complexity (or capacity) of the resources increase. Thus, it is assumed that the cloud
layer has more powerful resources than the fog layer, while the fog layer has more powerful
resources than the edge layer. This reflects the current state of typical hybrid IoT environ-
ments in the real world. Randomly mapping the Materna traces dataset’s resources into
these layers, while ensuring that the most powerful resources are assigned to the higher
layers, we ensure that the Materna traces dataset’s resources are distributed as follows:
Figure 4 illustrates the random distribution of VM traces from the Materna dataset.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 27

We randomly selected Materna VM dataset traces to represent available resources.
Similarly, we select at random traces from the AuverGrid that correspond to an IoT ap-
plication request. To simulate the resource availability within a datacenter, we employ a
total of 1592 VM traces from the Materna dataset. Each resource has a number of CPU
cores, CPU utilization (MHz), and memory utilization, among others. This information is
sufficient for our OpERA algorithm to make resource allocation decisions. To simulate a
real-world heterogeneous IoT environment, our randomization method consisted of clas-
sifying the resources into three distinct layers, representing edge, fog, and cloud layers.
We followed the analogy presented in Figure 1, such that as we migrate to the cloud layer,
the number and complexity (or capacity) of the resources increase. Thus, it is assumed
that the cloud layer has more powerful resources than the fog layer, while the fog layer
has more powerful resources than the edge layer. This reflects the current state of typical
hybrid IoT environments in the real world. Randomly mapping the Materna traces da-
taset’s resources into these layers, while ensuring that the most powerful resources are
assigned to the higher layers, we ensure that the Materna traces dataset’s resources are
distributed as follows: Figure 4 illustrates the random distribution of VM traces from the
Materna dataset.

Figure 4. Placement of resources and nodes in computational layer.

Using the AuverGrid traces dataset, we simulate 404,176 workload requests received
by the OpERA algorithm, which uses request details and resource availability to deter-
mine how to effectively allocate resources. We observe that the average runtime duration
of the AuverGrid dataset tasks ranges from 900 s (or 15 min) to 345,600 s (or 4 days). These
runtime durations represent the execution of real-world jobs with variable workloads. In
other words, the dataset reflects the real-world environment by providing traces for both
simple (i.e., those that do not require complex computations) and advanced tasks (i.e.,
ones that re-quire complex compute operations such as ML, or AI). Furthermore, we ob-
serve that the memory usage for the tasks ranged from 1700 KB to 3,667,655 KB. About
15% of the AuverGrid workloads lacked data for key metrics, such as CPU runtime and
memory usage, requiring us to exclude these workloads from our experiments.

As described in Section 3, the AuverGrid and Materna datasets provide measured
values from which we derive computed values such as estimated runtime, energy con-
sumption, and cost. The derivations of these values are essential to our OpERA algorithm
in order to determine how an offload operation will perform on multiple available re-
sources on a given layer (e.g., edge, fog, or cloud). Figure 5 depicts all the steps involved
in the resource allocation process in order to illustrate the overall dataflow process for our
testing and evaluation.

Figure 5 illustrates how we retrieve the job traces from the AuverGrid and filter out
the job specifications. We simultaneously retrieve VM traces from the dataset of Materna

Figure 4. Placement of resources and nodes in computational layer.

Electronics 2022, 11, 2888 12 of 26

Using the AuverGrid traces dataset, we simulate 404,176 workload requests received
by the OpERA algorithm, which uses request details and resource availability to determine
how to effectively allocate resources. We observe that the average runtime duration of
the AuverGrid dataset tasks ranges from 900 s (or 15 min) to 345,600 s (or 4 days). These
runtime durations represent the execution of real-world jobs with variable workloads. In
other words, the dataset reflects the real-world environment by providing traces for both
simple (i.e., those that do not require complex computations) and advanced tasks (i.e., ones
that re-quire complex compute operations such as ML, or AI). Furthermore, we observe
that the memory usage for the tasks ranged from 1700 KB to 3,667,655 KB. About 15% of
the AuverGrid workloads lacked data for key metrics, such as CPU runtime and memory
usage, requiring us to exclude these workloads from our experiments.

As described in Section 3, the AuverGrid and Materna datasets provide measured
values from which we derive computed values such as estimated runtime, energy consump-
tion, and cost. The derivations of these values are essential to our OpERA algorithm in
order to determine how an offload operation will perform on multiple available resources
on a given layer (e.g., edge, fog, or cloud). Figure 5 depicts all the steps involved in the
resource allocation process in order to illustrate the overall dataflow process for our testing
and evaluation.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 27

VM traces. Every time our OpERA algorithm is used to initiate a simulation, this proce-
dure is rerun. Thus, each time we conduct an experiment utilizing our OpERA algorithm,
we randomly retrieve and identify new traces. This allows us to evaluate OpERA in a real-
world environment where the resources are dynamically changing, and as a result, we
have access to new VM traces at the beginning of each experiment we conduct.

Figure 5. Dataflow diagram of our proposed OpERA resource allocation strategy.

Given the task information randomly selected from the AuverGrid, OpERA begins
estimating the runtime on the identified VM traces selected from the 1592 Materna VM
traces dataset. Using runtime, we then derive the energy and cost which are then used by
our multi-criteria decision making algorithm to rank resources based on ideal best and
ideal worst, as described in Section 3. We describe the details of this decision making in
the following section.

4.2. Optimization Modeling and Simulation
Our optimization model’s inputs consist of the weight preferences for each decision

variable and the decision matrix reflecting the Materna traces dataset’s data. The values
for the decision matrix are queried from the resource table. Given a task’s properties, the
decision matrix is initialized with the resources that fulfill the minimal criterion for
memory availability. The decision matrix has dimensions of 𝑚 ൈ 𝑛, where n represents
the total number of decision variables and m represents the total number of discovered
VMs from the Materna dataset.

As shown in Table 4, we apply the following five decision variables or attributes:
memory availability (MA), execution cost (ExC), energy consumption (EnC), expected
runtime (R), and CPU utilization (CPU). The total number of virtual machines, or m, is
limited to a range between 0 and 1592, the maximum number of VMs available from the
Materna dataset. If M is zero, the algorithm terminates because there are no available
memory resources that fulfill the minimal requirement.

The preference for each decision variable or attribute is expressed by a plus sign (+)
or minus sign (−), signifying the type of beneficial or non-beneficial attribute. Memory

Figure 5. Dataflow diagram of our proposed OpERA resource allocation strategy.

Figure 5 illustrates how we retrieve the job traces from the AuverGrid and filter out
the job specifications. We simultaneously retrieve VM traces from the dataset of Materna
VM traces. Every time our OpERA algorithm is used to initiate a simulation, this procedure
is rerun. Thus, each time we conduct an experiment utilizing our OpERA algorithm, we
randomly retrieve and identify new traces. This allows us to evaluate OpERA in a real-
world environment where the resources are dynamically changing, and as a result, we have
access to new VM traces at the beginning of each experiment we conduct.

Given the task information randomly selected from the AuverGrid, OpERA begins
estimating the runtime on the identified VM traces selected from the 1592 Materna VM
traces dataset. Using runtime, we then derive the energy and cost which are then used

Electronics 2022, 11, 2888 13 of 26

by our multi-criteria decision making algorithm to rank resources based on ideal best and
ideal worst, as described in Section 3. We describe the details of this decision making in the
following section.

4.2. Optimization Modeling and Simulation

Our optimization model’s inputs consist of the weight preferences for each decision
variable and the decision matrix reflecting the Materna traces dataset’s data. The values
for the decision matrix are queried from the resource table. Given a task’s properties, the
decision matrix is initialized with the resources that fulfill the minimal criterion for memory
availability. The decision matrix has dimensions of m× n, where n represents the total
number of decision variables and m represents the total number of discovered VMs from
the Materna dataset.

As shown in Table 4, we apply the following five decision variables or attributes:
memory availability (MA), execution cost (ExC), energy consumption (EnC), expected
runtime (R), and CPU utilization (CPU). The total number of virtual machines, or m, is
limited to a range between 0 and 1592, the maximum number of VMs available from the
Materna dataset. If M is zero, the algorithm terminates because there are no available
memory resources that fulfill the minimal requirement.

The preference for each decision variable or attribute is expressed by a plus sign (+) or
minus sign (−), signifying the type of beneficial or non-beneficial attribute. Memory avail-
ability is the only beneficial attribute, as it is desirable to have more memory availability.
We would like to minimize execution cost, energy consumption, estimated runtime, and
CPU utilization, for the remaining four attributes.

W =
[
w−MA, w+

ExC, w−EnC, w−R , w−CPU
]

(6)

The assignments for the experimental test cases are detailed in Table 7. To observe the
outcomes of our OpERA resource allocation method, we begin by modeling a preference
using a single attribute, and then transition the dominance to other qualities. As shown in
Table 7, we design the weight assignment for four distinct test cases to simulate real-world
experience for our OpERA algorithm. Using each of the test cases given in Table 8, we
analyze OpERA and present the results along with a discussion in the following sections.

Table 7. Weight assignment outline for test cases explored in Sections 3.1–3.4.

Treatment Weight Dominance Transition

general even distribution among weights for all attributes
memory-driven memory availability→ execution cost
cost-driven execution cost→ CPU usage

compute-driven memory availability→ execution cost
CPU usage→ execution cost

Table 8. Task ID 108145 specifications.

Used Memory Cost Location Run Time Energy
Consumption

48,612 KB $0.002 cloud 33 s 2838 J

4.3. Experiment A: General Test Case

We analyze OpERA using general test scenarios in which resource allocation optimiza-
tion for a task with equally weighted attributes is considered. The weights are divided
evenly across all decision variables, with each variable receiving a weight of 0.2. We choose
at random a task from the AuverGrid (Task ID 108145), whose specifications are listed in
Table 8. Based on the real task information provided by the AuverGrid, this task is currently

Electronics 2022, 11, 2888 14 of 26

modelled as cloud-based, with a total runtime of 33 s and a total energy consumption of
2838 Joules. The actual cost for this endeavor is $0.002.

The task specifications in Table 8 are used by our OpERA algorithm to decide on the
suitability of resources discovered from the Materna VM traces such that these resources
are capable of completing the task much more efficiently. Therefore, we utilize OpERA to
optimize the placement of resources in order to improve or enhance the process of resource
allocation, while lowering runtime, cost, and overall energy consumption. In this regard,
we use the weights in this general use case to locate alternative resources that can run this
task more efficiently. The results from the top 10 alternatives recommended by our OpERA
algorithm are shown in Table 9.

Table 9. Optimization results Task 108145 with weights: w−MA = 0.2, w+
ExC = 0.2, w−EnC = 0.2,

w−R = 0.2, w−CPU = 0.2.

VM
Available
Memory

(KB)
Cost ($) CPU Usage

(MHz)

Energy
Consumption

(J)

Estimated
Execution
Time (s)

Location Rank

m1012 1,503,239 0.001 412 816.86 21.5 fog 1
m1062 1,778,804 0.001 504 859.85 21.5 cloud 0.9
m1079 1,255,775 0.001 245 1031.82 21.5 cloud 0.8
m1146 1,706,243 0.001 1568 739.98 15.74 cloud 0.7

m1 1,373,635 0.001 95 1254.00 33.00 fog 0.6
m1070 763,783 0.001 830 838.35 21.50 cloud 0.5
m1141 772,172 0.001 944 988.83 21.50 cloud 0.4
m1061 1,214,251 0.001 1929 859.85 21.50 cloud 0.3
m1072 1,716,309 0.002 1731 1419.00 33.00 cloud 0.2
m113 1,224,946 0.001 5078 945.83 21.50 cloud 0.1

As can be seen in Table 9, OpERA yields results having VM m1062 as an optimal
resource for completing the Task ID 108145. It is clear that VM m1062 completes this task
more optimally across all decision variables. For example, the actual energy consumption
from Table 9 for this task is 2838 Joules, whereas OpERA yields an alternative resource
that can complete the same task with 816.86 Joules, or 2021.84 Joules less (a 71% reduction
in terms of energy consumption). Similarly, the estimated runtime is 21.5 s, which is less
than the actual runtime of 33 s. This represents a runtime reduction or improvement of
35%. In terms of the cost, m1062 completes the task with a total cost of $0.001, which is a
50% improvement compared to $0.002 based on the original task specification. OpERA’s
average improvement across the three objectives: (a) runtime, (b) energy, and (c) cost, is
52% for Task 108145.

Furthermore, results shown in Table 9 indicate that m1146 has the lowest values for
energy usage and execution time. However, OpERA does not rank this alternative as the
best option because it has a significantly higher CPU availability than m1062. If dominance
is more desirable, OpERA would recommend m1146 as the optimal alternative. Likewise,
m1 is connected with the lowest CPU utilization. This is not true for the typical use case, as
there is a tradeoff between memory availability, CPU availability, execution time, energy
usage, and total cost. In subsequent test cases, we shall show the distinctions between
tradeoffs.

In addition, the data presented in Table 9 demonstrate that the ranking alternatives for
CPU utilization, energy consumption, and execution time, are not ranked from smallest
to largest. Memory availability ranking choices are not ordered from largest to smallest.
These results confirm that the general use case generates a non-dominant solution set and
that the weights are translated as expected within the optimization model.

It should be emphasized that OpERA optimal VM considers the placement or distance
measure of the compute node that is capable of performing the task when lowering exe-
cution time. In other words, although some computing nodes on the cloud layer may be

Electronics 2022, 11, 2888 15 of 26

more powerful, OpERA prioritizes allocating resources to edge devices that are physically
close. Consequently, m1012 is not only the best-recommended resource, but also a resource
on the fog layer and in the cloud. This eliminates any costs associated with transferring the
task to the cloud, which greatly minimizes network latency.

The values from energy consumption, cost and estimate execution time in Table 9 are
derived based on our proposed energy, cost and runtime prediction models presented in
Section 3. To derive the predicted runtime for m1012, for example, we use the number of
CPU cores that the virtual machine has and compare it to the number of CPU cores that the
Task 108145 was executed on. We note that all of the tasks in the AuverGrid dataset were
executed on single CPU machines as mentioned in Section 3.

To demonstrate how OpERA computes execution times for various VM options,
consider VM m1012, which comprises 2 CPU cores and yields a p-value (parallelizable
fraction) of 69.2% for Task 108145. Consequently, based on Equation (1), we compute the
acceleration factor to be 1.53. Using Equation (3), we calculate the estimated execution time
(21.5 s) based on the observed runtime (33 s) and the speedup factor (1.53). Similar to the
cost model, the energy consumption model is based on the expected runtime multiplied by
the basic TDP allocated to each CPU type in our model. In order to boost the heterogeneity
of our testing environment, VMs from the Materna VM dataset were randomly allocated
multiple CPU types, each of which is associated with a particular power consumption
number, TDP. This is illustrated by the differences in energy consumption values presented
in Table 9, which illustrate the variety of VM resources. We present in Figure 6 a column
chart representing the OpERA ranking of VM alternatives.

Electronics 2022, 11, x FOR PEER REVIEW 16 of 27

by the basic TDP allocated to each CPU type in our model. In order to boost the heteroge-
neity of our testing environment, VMs from the Materna VM dataset were randomly allo-
cated multiple CPU types, each of which is associated with a particular power consump-
tion number, TDP. This is illustrated by the differences in energy consumption values
presented in Table 9, which illustrate the variety of VM resources. We present in Figure 6
a column chart representing the OpERA ranking of VM alternatives.

Figure 6. OpERA ranking for top 10 VM resources selected for Task 108145.

As shown in Figure 6, OpERA identifies VM m1012 as the optimal option for com-
pleting the offloading of Task 108145 in this generic use scenario. Our investigation of all
returned VM options, in Figure 6, confirms that the performance score associated with
VM m1012, which represents the optimal resource, is accurate and that OpERA consist-
ently returns meaningful results throughout the top 10 VMs recommended for perform-
ing this work.

4.4. Experiment B: Memory-Driven Test Case
For this memory-driven test case, we explore three variations of weight preferences

to illustrate more clearly the usefulness of the OpERA algorithm in yielding consistent
and reliable VM alternatives. To this extent, we begin with full dominance on memory
availability, then transition into a much higher preference to energy consumption. That
is, we consider two decision variables in this experiment: (a) memory availability, and (b)
execution cost. Through this test case we demonstrate how the results are impacted by the
preference or priority assigned to the decision variables considered. Hence, we start with
the memory-driven use case, then slightly transition into a more dominant execution cost
use case, using these two decision variables only in order to observe the outcome of our
OpERA algorithm. The weight preference distribution we explore in this experiment are
described below.

a. 𝑤ିெ = 1, 𝑤ா௫ା = 0, 𝑤ாି = 0, 𝑤ோି = 0, 𝑤ି = 0
b. 𝑤ିெ = 0.7, 𝑤ா௫ା = 0.3, 𝑤ாି = 0, 𝑤ோି = 0, 𝑤ି = 0
c. 𝑤ିெ = 0.3, 𝑤ா௫ା = 0.7, 𝑤ாି = 0, 𝑤ோି = 0, 𝑤ି = 0

We randomly consider another task from the AuverGrid dataset, Task ID 224334,
whose characteristics are listed in Table 10. This task has been completed in the fog layer,
with a cost factor of $0.12, uses 187,222 Joules of energy, 1,494,608 KB of memory, and
requires 2177 s, or 36 min, to complete. Compared to the task in Experiment A, the task in
Experiment 2 is evidently more complex and demands more computing resources.

Table 10. Task ID 224,334 specifications.

Used Memory Cost Location Run Time Energy Consumption
1494608 KB $0.122 fog 2177 s 187222 J

Figure 6. OpERA ranking for top 10 VM resources selected for Task 108145.

As shown in Figure 6, OpERA identifies VM m1012 as the optimal option for com-
pleting the offloading of Task 108145 in this generic use scenario. Our investigation of all
returned VM options, in Figure 6, confirms that the performance score associated with VM
m1012, which represents the optimal resource, is accurate and that OpERA consistently
returns meaningful results throughout the top 10 VMs recommended for performing this
work.

4.4. Experiment B: Memory-Driven Test Case

For this memory-driven test case, we explore three variations of weight preferences
to illustrate more clearly the usefulness of the OpERA algorithm in yielding consistent
and reliable VM alternatives. To this extent, we begin with full dominance on memory
availability, then transition into a much higher preference to energy consumption. That
is, we consider two decision variables in this experiment: (a) memory availability, and
(b) execution cost. Through this test case we demonstrate how the results are impacted by
the preference or priority assigned to the decision variables considered. Hence, we start
with the memory-driven use case, then slightly transition into a more dominant execution
cost use case, using these two decision variables only in order to observe the outcome of

Electronics 2022, 11, 2888 16 of 26

our OpERA algorithm. The weight preference distribution we explore in this experiment
are described below.

a. w−MA = 1, w+
ExC = 0, w−EnC = 0, w−R = 0, w−CPU = 0

b. w−MA = 0.7, w+
ExC = 0.3, w−EnC = 0, w−R = 0, w−CPU = 0

c. w−MA = 0.3, w+
ExC = 0.7, w−EnC = 0, w−R = 0, w−CPU = 0

We randomly consider another task from the AuverGrid dataset, Task ID 224334,
whose characteristics are listed in Table 10. This task has been completed in the fog layer,
with a cost factor of $0.12, uses 187,222 Joules of energy, 1,494,608 KB of memory, and
requires 2177 s, or 36 min, to complete. Compared to the task in Experiment A, the task in
Experiment 2 is evidently more complex and demands more computing resources.

Table 10. Task ID 224334 specifications.

Used Memory Cost Location Run Time Energy
Consumption

1,494,608 KB $0.122 fog 2177 s 187,222 J

We will evaluate the outcomes of our OpERA approach as we transition from one test
case to the next, based on varying weighting factors. In Table 11, we present the results
of our OpERA algorithm processing VM resources for resource allocation for the clear
memory-driven use case. According to Table 11, OpERA recommends VM m1062 since
it has the most available memory among all other VM resources analyzed. Despite the
fact that m1062 is not the ideal resource in terms of execution time, it is evident that the
criterion used in this test scenario is memory-drive, regardless of whether the resource is
local, close to the edge device, or distant (e.g., on the cloud). Moreover, m1062 is not the
most cost-effective resource when compared to VMs m1143 and m1012. As we transition
the dominance away from memory availability, we should observe a change in the OpERA
ranking as different VMs are dynamically allocated for each test case.

Table 11. Optimization results Task 224334 for a memory-driven use case with weights: w−MA = 1,
w+

ExC = 0, w−EnC = 0, w−R = 0, w−CPU = 0.

VM
Available
Memory

(KB)
Cost ($) CPU Usage

(MHz)

Energy
Consumption

(J)

Estimated
Execution
Time (s)

Location Rank

m1062 1,778,804 0.091 504 65,505.93 1637.65 cloud 1
m113 1,775,868 0.091 3360 72,056.52 1637.65 cloud 0.9

m1143 1,717,148 0.061 16 87,080.00 2177.00 fog 0.8
m1072 1,716,309 0.122 1731 93,611.00 2177.00 cloud 0.7
m1146 1,706,243 0.076 1568 64,294.70 1367.97 cloud 0.6

m1 1,644,587 0.061 347 82,726.00 2177.00 fog 0.5
m1144 1,623,405 0.061 15 71,841.00 2177.00 fog 0.4
m1038 1,572,025 0.076 2289 56,086.87 1367.97 cloud 0.3
m1070 1,516,241 0.091 113 63,868.28 1637.65 cloud 0.2
m1012 1,503,239 0.046 412 62,230.63 1637.65 fog 0.1

In Table 11, we present the results of our OpERA algorithm for the second test case,
which slightly adjusts the emphasis from memory availability to execution cost. As shown
in Table 11, OpERA recommends m1143 VM as the best option, despite the fact that it is
not the optimal VM resource in terms of memory availability when compared to options 7,
8, and 10, respectively. In addition, despite the fact that resource m1143 does not have
the highest memory availability, its cost has lowered by 33 percent compared to the cost
utilization of the first alternative chosen from the first test case provided in Table 11,
which was $0.091 for resource m1062. This demonstrates that OpERA is reflective and
responds dynamically dependent on the weights of the decision variables. It should be

Electronics 2022, 11, 2888 17 of 26

noted that highly rated VM resources are not necessarily optimal for this test case in terms
of execution time. As we transition to a much higher cost-driven dominance over memory
availability, the optimal resources selected by OpERA, as indicated in Table 12, should
become increasingly apparent.

Table 12. Optimization results Task 224334 for a memory-driven and cost-driven use case with
weights: w−MA = 0.7, w+

ExC = 0.3, w−EnC = 0, w−R = 0, w−CPU = 0.

VM
Available
Memory

(KB)
Cost ($) CPU Usage

(MHz)

Energy
Consumption

(J)

Estimated
Execution
Time (s)

Location Rank

m1143 1,717,148 0.061 16 87,080.00 2177.00 fog 1
m1 1,644,587 0.061 347 82,726.00 2177.00 fog 0.9

m1144 1,623,405 0.061 15 71,841.00 2177.00 fog 0.8
m1012 1,503,239 0.046 412 62,230.63 1637.65 fog 0.7
m1146 1,706,243 0.076 1568 64,294.70 1367.97 cloud 0.6
m1038 1,572,025 0.076 2289 56,086.87 1367.97 cloud 0.5
m1062 1,778,804 0.091 504 65,505.93 1637.65 cloud 0.4
m113 1,775,868 0.091 3360 72,056.52 1637.65 cloud 0.3

m1070 1,516,241 0.091 113 63,868.28 1637.65 cloud 0.2
m1072 1,716,309 0.122 1731 93,611.00 2177.00 cloud 0.1

As can be observed from Table 13, as we transition the weight to execution cost, we
clearly see that m1012 is ranked first compared to m1143 since it has much lower execution
time (1637.65 compared to 2177 s). This also applies to the third alternative m1 when
compared to m1012, the first alternative. Further, m10162 has clearly transitioned from
being a memory-drive resource to a slightly more moderate. To this extent, results from
Table 13 clearly demonstrate that our OpERA algorithm is yielding relevant results given
the fine-tuning or adjusting the weights. In addition, OpERA is capable of yielding relevant
results, while considering a well-balanced strategy when recommended resources for
allocation. Figure 7 presents a column chart of the results obtained from this experiment.

Electronics 2022, 11, x FOR PEER REVIEW 18 of 27

m113 1,775,868 0.091 3360 72,056.52 1637.65 cloud 0.3
m1070 1,516,241 0.091 113 63,868.28 1637.65 cloud 0.2
m1072 1,716,309 0.122 1731 93,611.00 2177.00 cloud 0.1

As can be observed from Table 13, as we transition the weight to execution cost, we
clearly see that m1012 is ranked first compared to m1143 since it has much lower execution
time (1637.65 compared to 2177 s). This also applies to the third alternative m1 when com-
pared to m1012, the first alternative. Further, m10162 has clearly transitioned from being
a memory-drive resource to a slightly more moderate. To this extent, results from Table
13 clearly demonstrate that our OpERA algorithm is yielding relevant results given the
fine-tuning or adjusting the weights. In addition, OpERA is capable of yielding relevant
results, while considering a well-balanced strategy when recommended resources for al-
location. Figure 7 presents a column chart of the results obtained from this experiment.

Table 13. Optimization results Task 224334 for a cost-driven and memory-driven use case with
weights: 𝑤ିெ = 0.3, 𝑤ா௫ା = 0.7, 𝑤ாି = 0, 𝑤ோି = 0, 𝑤ି = 0.

VM Available
Memory (KB) Cost ($) CPU Usage

(MHz)
Energy Consump-

tion (J)
Estimated Exe-
cution Time(s) Location Rank

m1012 1,503,239 0.046 412 62,230.63 1637.65 fog 1
m1143 1,717,148 0.061 16 87,080.00 2177.00 fog 0.9

m1 1,644,587 0.061 347 82,726.00 2177.00 fog 0.8
m1144 1,623,405 0.061 15 71,841.00 2177.00 fog 0.7
m1146 1,706,243 0.076 1568 64,294.70 1367.97 cloud 0.6
m1038 1,572,025 0.076 2289 56,086.87 1367.97 cloud 0.5
m1062 1,778,804 0.091 504 65,505.93 1637.65 cloud 0.4
m113 1,775,868 0.091 3360 72,056.52 1637.65 cloud 0.3
m1070 1,516,241 0.091 113 63,868.28 1637.65 cloud 0.2
m1072 1,716,309 0.122 1731 93,611.00 2177.00 cloud 0.1

Figure 7. Ranking of top resources selected for Task 224334 with varying weight preferences.

Based on the results shown in Tables 11–13 and Figure 7, the recommended resources
to offload Task 224334 for test cases (a), (b), and (c), are m1062, m1143, and m1012, respec-
tively. Memory is possessed by all three of these resources, allowing them to execute Task
224334. According to Tables 11–13, delegating Task 224334 to any of the alternatives re-
duces cost, energy usage, and execution time. However, m1012 receives the greatest in-
creases across all three areas, resulting in a 25% increase in runtime (i.e., from 2177 s to
1637.65 s). In addition, as demonstrated in Tables 10 and 13, delegating Task 224334 to
m1012 reduces energy usage by 67 percent and costs by 62 percent, respectively. The per-
formance score analysis suggests that all of the top ten identified VM resources indicated
by OpERA, particularly m1062, m1143, and m1012, are ideal or appropriate resources for

Figure 7. Ranking of top resources selected for Task 224334 with varying weight preferences.

Electronics 2022, 11, 2888 18 of 26

Table 13. Optimization results Task 224334 for a cost-driven and memory-driven use case with
weights: w−MA = 0.3, w+

ExC = 0.7, w−EnC = 0, w−R = 0, w−CPU = 0.

VM
Available
Memory

(KB)
Cost ($) CPU Usage

(MHz)

Energy
Consumption

(J)

Estimated
Execution
Time (s)

Location Rank

m1012 1,503,239 0.046 412 62,230.63 1637.65 fog 1
m1143 1,717,148 0.061 16 87,080.00 2177.00 fog 0.9

m1 1,644,587 0.061 347 82,726.00 2177.00 fog 0.8
m1144 1,623,405 0.061 15 71,841.00 2177.00 fog 0.7
m1146 1,706,243 0.076 1568 64,294.70 1367.97 cloud 0.6
m1038 1,572,025 0.076 2289 56,086.87 1367.97 cloud 0.5
m1062 1,778,804 0.091 504 65,505.93 1637.65 cloud 0.4
m113 1,775,868 0.091 3360 72,056.52 1637.65 cloud 0.3

m1070 1,516,241 0.091 113 63,868.28 1637.65 cloud 0.2
m1072 1,716,309 0.122 1731 93,611.00 2177.00 cloud 0.1

Based on the results shown in Tables 11–13 and Figure 7, the recommended resources to
offload Task 224334 for test cases (a), (b), and (c), are m1062, m1143, and m1012, respectively.
Memory is possessed by all three of these resources, allowing them to execute Task 224334.
According to Tables 11–13, delegating Task 224334 to any of the alternatives reduces cost,
energy usage, and execution time. However, m1012 receives the greatest increases across all
three areas, resulting in a 25% increase in runtime (i.e., from 2177 s to 1637.65 s). In addition,
as demonstrated in Tables 10 and 13, delegating Task 224334 to m1012 reduces energy
usage by 67 percent and costs by 62 percent, respectively. The performance score analysis
suggests that all of the top ten identified VM resources indicated by OpERA, particularly
m1062, m1143, and m1012, are ideal or appropriate resources for executing the offloaded
tasks with an overall acceptable performance improvement. This demonstrates how well
our OpERA system can offer optimal resources for task allocation, which can enhance the
overall performance of offloading activities as the number of IoT devices increases.

4.5. Experiment C: Cost-Driven Test Case

We adjust the CPU’s weight relative to the energy cost component for the cost-driven
test case. The rationale for this is that there is a correlation between CPU usage and energy
consumption, such that the more complex the task, the more processing would be required.
Consequently, energy consumption increases. In the use case driven by cost savings, we
begin by assigning a weight of 1 to cost and a weight of 0 to all other attributes. We will
then change the weight dominance from cost to CPU consumption and observe the results.
The weight preference distribution we investigate in these tests is given in detail below.

a. w−MA = 0, w+
ExC = 1, w−EnC = 0, w−R = 0, w−CPU = 0

b. w−MA = 0, w+
ExC = 0.6, w−EnC = 0, w−R = 0, w−CPU = 0.4

c. w−MA = 0, w+
ExC = 0.3, w−EnC = 0, w−R = 0, w−CPU = 0.7

We examine a random task from the Materna dataset, Task ID 318037, whose specifica-
tions are given in Table 14. Task ID 318037 based on Materna traces was performed on a
cloud layer with a cost factor of $6.31, energy consumption of 7,717,828 Joules, memory
usage of 70,104 KB, and a duration of 112,998 s or 31.39 h. As can be seen, the complexity
of this experiment’s task is considerably greater than that of experiments A and B.

Table 14. Task ID 318037 specifications.

Used Memory Cost Location Run Time Energy
Consumption

70,104 KB $6.311 cloud 112,998 s 7,717,828 J

Electronics 2022, 11, 2888 19 of 26

First, we investigate the outcomes of the weight distribution that is weighted in
support of cost, as represented by test case (a) in Table 15. As presented in Table 15, our
OpERA algorithm recommends selecting VM resource m1015 at the top of the list because
it has the lowest cost ($1.55). The remaining options are ranked according to an ascending
cost factor. For test case (b), we begin to move our preference from cost to incorporate CPU
availability, as shown in Table 16.

Table 15. Optimization results Task 318037 for a cost-driven use case with weights: w−MA = 0,
w+

ExC = 1, w−EnC = 0, w−R = 0, w−CPU = 0.

VM
Available
Memory

(KB)
Cost ($) CPU Usage

(MHz)

Energy
Consumption

(J)

Estimated
Execution
Time (s)

Location Rank

m1015 1,089,470 1.555 340 1,188,106.17 74,256.64 edge 1
m1001 1,144,206 2.074 267 2,673,238.89 74,256.64 fog 0.7
m106 717,436 2.074 439 2,896,008.79 74,256.64 fog 0.7
m111 948,122 2.074 13 2,450,468.98 74,256.64 fog 0.7

m1007 1,684,013 2.074 634 2,673,238.89 74,256.64 fog 0.7
m1121 1,088,422 2.074 702 2,524,725.61 74,256.64 fog 0.7
m1061 1,409,706 4.147 124 2,970,265.43 74,256.64 cloud 0.3
m1033 1,560,700 4.147 1955 2,747,495.52 74,256.64 cloud 0.3
m113 1,426,273 4.147 3563 3,267,291.97 74,256.64 cloud 0.3

m1123 1,426,483 6.311 841 5,084,910.00 112,998.00 cloud 0.1

Table 16. Optimization results Task 318037 for a cost-driven and CPU utilization use case with
weights: w−MA = 0, w+

ExC = 0.6, w−EnC = 0, w−R = 0, w−CPU = 0.4.

VM
Available
Memory

(KB)
Cost ($) CPU Usage

(MHz)

Energy
Consumption

(J)

Estimated
Execution
Time (s)

Location Rank

m111 948,122 2.074 13 2,450,468.98 74,256.64 fog 1
m1015 1,089,470 1.555 340 1,188,106.17 74,256.64 edge 0.9
m1001 1,144,206 2.074 267 2,673,238.89 74,256.64 fog 0.8
m106 717,436 2.074 439 2,896,008.79 74,256.64 fog 0.7

m1007 1,684,013 2.074 634 2,673,238.89 74,256.64 fog 0.6
m1121 1,088,422 2.074 702 2,524,725.61 74,256.64 fog 0.5
m1061 1,409,706 4.147 124 2,970,265.43 74,256.64 cloud 0.4
m1123 1,426,483 6.311 841 5,084,910.00 112,998.00 cloud 0.3
m1033 1,560,700 4.147 1955 2,747,495.52 74,256.64 cloud 0.2
m113 1,426,273 4.147 3563 3,267,291.97 74,256.64 cloud 0.1

As we transition the weights dominance away from cost and towards CPU usage
minimization (test case (b)), the ordering of the alternatives in terms of ranking position
begins to change, with m111 being ranked as the optimal resource. The resource m111,
which was ranked fourth in case (c), is now ranked first due to its low CPU utilization
(13 MHz). The second choice recommended by OpERA is m1015, which is associated with
a lower cost but has a CPU utilization that is approximately 2600 times greater than that of
m111. The tradeoff in this situation is a loss of 25% in cost accumulation due to the best
recommended resource being m111.

As we transition further to CPU usage minimization for test scenario (c), where CPU
usage becomes a more dominating decision variable, it is evident from Table 17 that m111
maintains its optimal ranking because it is a resource associated with the lowest CPU usage
(13 MHz). However, m1001 is recommended as the second ideal option above m10155
since, as shown in Table 17, its CPU utilization is significantly lower (267 MHz vs. 340 MHz,
respectively).

Electronics 2022, 11, 2888 20 of 26

Table 17. Optimization results Task 318037 with CPU utilization use case and cost-driven use case
with weights: w−MA = 0, w+

ExC = 0.3, w−EnC = 0, w−R = 0, w−CPU = 0.7.

VM
Available
Memory

(KB)
Cost ($) CPU Usage

(MHz)

Energy
Consumption

(J)

Estimated
Execution
Time (s)

Location Rank

m111 948,122 2.074 13 2,450,468.98 74,256.64 fog 1
m1001 1,144,206 2.074 267 2,673,238.89 74,256.64 fog 0.9
m1015 1,089,470 1.555 340 1,188,106.17 74,256.64 edge 0.8
m1061 1,409,706 4.147 124 2,970,265.43 74,256.64 cloud 0.7
m106 717,436 2.074 439 2,896,008.79 74,256.64 fog 0.6

m1007 1,684,013 2.074 634 2,673,238.89 74,256.64 fog 0.5
m1121 1,088,422 2.074 702 2,524,725.61 74,256.64 fog 0.4
m1123 1,426,483 6.311 841 5,084,910.00 112,998.00 cloud 0.3
m1033 1,560,700 4.147 1955 2,747,495.52 74,256.64 cloud 0.2
m113 1,426,273 4.147 3563 3,267,291.97 74,256.64 cloud 0.1

Based on the results shown in Tables 15–17 and Figure 8, OpERA recommends VM
m1015 for test case (a), but VM m111 for test cases (b) and (c), respectively. Further, we can
see that VM m1061 was among the lowest-ranked VMs in test cases (a) and (b), although it
is clear that it is one of the top four VM resources recommended by OpERA. In addition, as
demonstrated in Tables 15–17, delegating Task 318037 to m1015 reduces energy usage by
85% and costs by 75%, from $6.31 to $1.55. Our analysis of the performance score indicates
that all 10 resources selected for all of the weight assignments, particularly m1015, are
optimal for performing the offloaded task with performance gains. This demonstrates that
OpERA is able to recommend optimal solutions with varying degrees of optimality.

Electronics 2022, 11, x FOR PEER REVIEW 21 of 27

demonstrates that OpERA is able to recommend optimal solutions with varying degrees
of optimality.

Figure 8. Rank of top resources selected for Task 318037 with varying weight preferences.

4.4. Experiment D: Compute-Driven Test Case
We broaden our decision variable selection for the compute-driven experiment to

include memory availability, CPU utilization, and energy consumption attributes. For use
case (a), we first assign a weight of 0.495% to memory availability, 0.495% to CPU usage,
and 0.015% to energy consumption, while assigning a weight of 0 to all other variables.
The specified weights reflect a workload that demands extensive CPU and memory to
complete its operations. Then, in use cases (b) and (c), we see the impacts of switching the
weight dominance between memory availability, CPU usage, and energy consumption.
The weight preference distribution analyzed in these tests is described in full below.
a. 𝑤ିெ = 0.495, 𝑤ா௫ା = 0, 𝑤ாି = 0.01, 𝑤ோି = 0, 𝑤ି = 0.495
b. 𝑤ିெ = 0.495, 𝑤ா௫ା = 0, 𝑤ாି = 0.495, 𝑤ோି = 0, 𝑤ି = 0.01
c. 𝑤ିெ = 0.01, 𝑤ா௫ା = 0, 𝑤ாି = 0.495, 𝑤ோି = 0, 𝑤ି = 0.495

Task ID 334016, whose specifications are provided in Table 18, is randomly selected
from the AuverGrid dataset. This work was assessed to have been finished in 3419 s (or
56 min), with energy use of 294,034 Joules, memory usage of 732,832 KB, and a cost factor
of $0.19.

Table 18. Task ID 334,016 specifications.

Used Memory Cost Location Run Time Energy Consumption
732,832 KB $0.191 cloud 3419 s 294,034 J

We begin by analyzing the results of the weight distribution for memory and CPU
use. As shown in Table 19, our OpERA algorithm ranks resource m106 as the optimal
resource to be allocated due to its higher memory availability, and lower CPU utilization
when compared to other alternatives in the list. Table 19 demonstrates that the weight
associated with energy consumption does not play a significant role in the decision, as
highly ranked resources are not energy-ware.

Table 19. Optimization results Task 334016 for a memory availability and CPU utilization use case
with weights: 𝑤ିெ = 0.495, 𝑤ா௫ା = 0, 𝑤ாି = 0.01, 𝑤ோି = 0, 𝑤ି = 0.495.

VM
Available

Memory (KB) Cost ($)
CPU Usage

(MHz)
Energy Consumption

(J)
Estimated Execu-

tion Time(s) Location Rank

m106 1,773,142 0.063 40 88,078.40 2258.42 fog 1
m1084 1,363,358 0.063 377 74,527.87 2258.42 fog 0.9
m1001 1,144,206 0.063 267 81,303.14 2258.42 fog 0.8

Figure 8. Rank of top resources selected for Task 318037 with varying weight preferences.

4.6. Experiment D: Compute-Driven Test Case

We broaden our decision variable selection for the compute-driven experiment to
include memory availability, CPU utilization, and energy consumption attributes. For use
case (a), we first assign a weight of 0.495% to memory availability, 0.495% to CPU usage,
and 0.015% to energy consumption, while assigning a weight of 0 to all other variables.
The specified weights reflect a workload that demands extensive CPU and memory to
complete its operations. Then, in use cases (b) and (c), we see the impacts of switching
the weight dominance between memory availability, CPU usage, and energy consumption.
The weight preference distribution analyzed in these tests is described in full below.

a. w−MA = 0.495, w+
ExC = 0, w−EnC = 0.01, w−R = 0, w−CPU = 0.495

b. w−MA = 0.495, w+
ExC = 0, w−EnC = 0.495, w−R = 0, w−CPU = 0.01

c. w−MA = 0.01, w+
ExC = 0, w−EnC = 0.495, w−R = 0, w−CPU = 0.495

Electronics 2022, 11, 2888 21 of 26

Task ID 334016, whose specifications are provided in Table 18, is randomly selected
from the AuverGrid dataset. This work was assessed to have been finished in 3419 s (or
56 min), with energy use of 294,034 Joules, memory usage of 732,832 KB, and a cost factor
of $0.19.

Table 18. Task ID 334016 specifications.

Used Memory Cost Location Run Time Energy
Consumption

732,832 KB $0.191 cloud 3419 s 294,034 J

We begin by analyzing the results of the weight distribution for memory and CPU use.
As shown in Table 19, our OpERA algorithm ranks resource m106 as the optimal resource
to be allocated due to its higher memory availability, and lower CPU utilization when
compared to other alternatives in the list. Table 19 demonstrates that the weight associated
with energy consumption does not play a significant role in the decision, as highly ranked
resources are not energy-ware.

Table 19. Optimization results Task 334016 for a memory availability and CPU utilization use case
with weights: w−MA = 0.495, w+

ExC = 0, w−EnC = 0.01, w−R = 0, w−CPU = 0.495.

VM
Available
Memory

(KB)
Cost ($) CPU Usage

(MHz)

Energy
Consumption

(J)

Estimated
Execution
Time (s)

Location Rank

m106 1,773,142 0.063 40 88,078.40 2258.42 fog 1
m1084 1,363,358 0.063 377 74,527.87 2258.42 fog 0.9
m1001 1,144,206 0.063 267 81,303.14 2258.42 fog 0.8
m1007 1,684,013 0.063 634 81,303.14 2258.42 fog 0.7
m111 948,122 0.063 13 74,527.87 2258.42 fog 0.6

m1015 1,089,470 0.047 340 36,134.73 2258.42 edge 0.5
m1123 1,426,483 0.191 841 153,855.00 3419.00 cloud 0.4
m1121 1,088,422 0.063 702 76,786.30 2258.42 fog 0.3
m1033 1,560,700 0.126 1955 83,561.56 2258.42 cloud 0.2
m113 1,426,273 0.126 3563 99,370.50 2258.42 cloud 0.1

In test case (b), we shift the weights’ dominance away from CPU usage and toward
minimizing energy consumption; the resulting values are shown in Table 20. As seen in
Table 10, OpERA recommends VM resource m1015 as the ideal solution due to its lower
energy consumption of 3614.73 Joules in comparison to other VMs in the list. However,
the 0.495-weighted energy consumption dominance is reflected in CPU usage, such that
the highly rated VM resources in Table 20 are not always ideal in terms of CPU usage. VM
resource m1015, for instance, has a CPU consumption of 340. However, this VM resource’s
CPU use is not the worst. In fact, it is evident that this sorted list of OpERA’s suggestions
exemplifies the organization’s balanced approach to selecting recommended resources
for allocation. In addition, even though m1015 does not have the maximum memory
availability, its memory availability is approximately 36 percent lower than the second
option. As indicated in Table 20, the energy savings represent a reduction of more than
56 percent compared to the second-best option, m1007.

Electronics 2022, 11, 2888 22 of 26

Table 20. Optimization results Task 334016 for a memory availability and energy consumption use
case with weights: w−MA = 0.495, w+

ExC = 0, w−EnC = 0.495, w−R = 0, w−CPU = 0.01.

VM
Available
Memory

(KB)
Cost ($) CPU Usage

(MHz)

Energy
Consumption

(J)

Estimated
Execution
Time (s)

Location Rank

m1015 1,089,470 0.047 340 36,134.73 2258.42 edge 1
m1007 1,684,013 0.063 634 81,303.14 2258.42 fog 0.9
m1084 1,363,358 0.063 377 74,527.87 2258.42 fog 0.8
m106 1,773,142 0.063 40 88,078.40 2258.42 fog 0.7

m1033 1,560,700 0.126 1955 83,561.56 2258.42 cloud 0.6
m1121 1,088,422 0.063 702 76,786.30 2258.42 fog 0.5
m1001 1,144,206 0.063 267 81,303.14 2258.42 fog 0.4
m111 948,122 0.063 13 74,527.87 2258.42 fog 0.3
m113 1,426,273 0.126 3563 99,370.50 2258.42 cloud 0.2

m1123 1,426,483 0.191 841 153,855.00 3419.00 cloud 0.1

In use case (c), we restore to CPU usage dominance, but we reduce the weight for
memory availability, while energy consumption remains the same (0.495) as in use case (b).
The resulting values are displayed in Table 21. As seen in Table 21, OpERA continues to
recommend the VM resource m1015 as the ideal resource since it strikes a balance between
CPU utilization and energy consumption. Nonetheless, it is evident that the adjustments
have affected m1007, which has been demoted to sixth place in the ranking list due to its
higher CPU utilization of 634 than the top five VM resources revealed in this list. Moreover,
it is evident from the results in Table 21 that the energy consumption is the most important
component in the ranking, with the slight exception of VM resources m1121 and m123,
which are ranked higher despite having higher energy consumption values. However,
both of these VM resources have significantly lower CPU utilization than the lowest VM
resources on the list, m1033 and m113, which have CPU usage that is three to four times
higher, respectively.

Table 21. Optimization results Task 334016 with energy consumption and CPU utilization use case
with weights: w−MA = 0.01, w+

ExC = 0, w−EnC = 0.495, w−R = 0, w−CPU = 0.495.

VM
Available
Memory

(KB)
Cost ($) CPU Usage

(MHz)

Energy
Consumption

(J)

Estimated
Execution
Time (s)

Location Rank

m1015 1,089,470 0.047 340 36,134.73 2258.42 edge 1
m111 948,122 0.063 13 74,527.87 2258.42 fog 0.9

m1084 1,363,358 0.063 377 74,527.87 2258.42 fog 0.8
m1001 1,144,206 0.063 267 81,303.14 2258.42 fog 0.7
m106 1,773,142 0.063 40 88,078.40 2258.42 fog 0.6

m1007 1,684,013 0.063 634 81,303.14 2258.42 fog 0.5
m1121 1,088,422 0.063 702 76,786.30 2258.42 fog 0.4
m1123 1,426,483 0.191 841 153,855.00 3419.00 cloud 0.3
m1033 1,560,700 0.126 1955 83,561.56 2258.42 cloud 0.2
m113 1,426,273 0.126 3563 99,370.50 2258.42 cloud 0.1

By applying OpERA on a range of edge-based operation types, we have proved that
our optimization technique yields at least a 30% gain in terms of overall performance.
Additionally, results shown in Figure 9 demonstrate how well OpERA is able to produce
optimal results related to the utilized weight preferences. For instance, Figure 9 depicts
m1015 as the best resource for executing offloadable Task 334016 in use cases (b) and (c).
However, it is not a particularly suitable test scenario (a). This is because in use cases
(b) and (c), the emphasis was on CPU usage and memory availability, whereas energy
consumption played no role in the ranking. Nonetheless, as this technique shifts in use

Electronics 2022, 11, 2888 23 of 26

cases (b) and (c), it is evident that this VM becomes the most recommended since it has the
lowest energy consumption value among all VM detected with 36134.73 Joules.

Electronics 2022, 11, x FOR PEER REVIEW 23 of 27

VM Available Memory
(KB)

Cost ($) CPU Usage
(MHz)

Energy Consumption
(J)

Estimated Exe-
cution Time(s)

Location Rank

m1015 1,089,470 0.047 340 36,134.73 2258.42 edge 1
m111 948,122 0.063 13 74,527.87 2258.42 fog 0.9
m1084 1,363,358 0.063 377 74,527.87 2258.42 fog 0.8
m1001 1,144,206 0.063 267 81,303.14 2258.42 fog 0.7
m106 1,773,142 0.063 40 88,078.40 2258.42 fog 0.6
m1007 1,684,013 0.063 634 81,303.14 2258.42 fog 0.5
m1121 1,088,422 0.063 702 76,786.30 2258.42 fog 0.4
m1123 1,426,483 0.191 841 153,855.00 3419.00 cloud 0.3
m1033 1,560,700 0.126 1955 83,561.56 2258.42 cloud 0.2
m113 1,426,273 0.126 3563 99,370.50 2258.42 cloud 0.1

By applying OpERA on a range of edge-based operation types, we have proved that
our optimization technique yields at least a 30% gain in terms of overall performance.
Additionally, results shown in Figure 9 demonstrate how well OpERA is able to produce
optimal results related to the utilized weight preferences. For instance, Figure 9 depicts
m1015 as the best resource for executing offloadable Task 334016 in use cases (b) and (c).
However, it is not a particularly suitable test scenario (a). This is because in use cases (b)
and (c), the emphasis was on CPU usage and memory availability, whereas energy con-
sumption played no role in the ranking. Nonetheless, as this technique shifts in use cases
(b) and (c), it is evident that this VM becomes the most recommended since it has the
lowest energy consumption value among all VM detected with 36134.73 Joules.

In addition, a comparison of Table 19 and Table 21 reveals that offloading Task
334016 to m1015 (use cases (b) and (c)) reduces energy consumption by 88 percent, from
294,034 Joules to 36,134 Joules, and cost by a factor of 76 percent, when compared to m106
in use case (a). Despite the fact that the top alternatives in each category are ideal resources
for executing the offloaded task, m1015 and m106 are the most performant resources with
the greatest performance increases. In this way, we demonstrate that OpERA is able to
provide relevant insights with a high success rate of 96% in identifying suitable resources
for offloadable task.

Figure 9. Rank of top resources selected for Task 334016 with varying weight preferences.

5. Conclusions and Future Work
OpERA is a resource allocation optimization strategy that facilitates offloading of op-

erations across diverse IoT environments. We developed an approach for optimizing task
offloading across IoT contexts based on edge-based resource allocation optimization. In
addition, we utilized datasets from actual datacenters to evaluate our proposed optimiza-
tion technique for resource allocation. To assess the efficacy of our suggested resource
allocation technique, we conducted a series of experiments. As per the results of our eval-
uations, OpERA is capable of enhancing the resource allocation process and can be used

Figure 9. Rank of top resources selected for Task 334016 with varying weight preferences.

In addition, a comparison of Tables 19 and 21 reveals that offloading Task 334016 to
m1015 (use cases (b) and (c)) reduces energy consumption by 88 percent, from 294,034
Joules to 36,134 Joules, and cost by a factor of 76 percent, when compared to m106 in use
case (a). Despite the fact that the top alternatives in each category are ideal resources for
executing the offloaded task, m1015 and m106 are the most performant resources with
the greatest performance increases. In this way, we demonstrate that OpERA is able to
provide relevant insights with a high success rate of 96% in identifying suitable resources
for offloadable task.

5. Conclusions and Future Work

OpERA is a resource allocation optimization strategy that facilitates offloading of op-
erations across diverse IoT environments. We developed an approach for optimizing task
offloading across IoT contexts based on edge-based resource allocation optimization. In ad-
dition, we utilized datasets from actual datacenters to evaluate our proposed optimization
technique for resource allocation. To assess the efficacy of our suggested resource allocation
technique, we conducted a series of experiments. As per the results of our evaluations,
OpERA is capable of enhancing the resource allocation process and can be used to identify
resources that can execute offloadable tasks. We demonstrate that OpERA may reduce
energy usage by distributing appropriate VM resources with a performance improvement
of up to 88 percent. In addition, we have demonstrated how OpERA can effectively iden-
tify VM resources that can reduce execution time and operational costs. In addition, we
conducted a series of experiments to demonstrate how well OpERA can be utilized as
a resource allocation technique that offers a balanced approach for offloadable jobs. For
future work, we intend to expand OpERA to incorporate more complex GPU offloading
workloads, such as deep neural network (DNN) workloads. In addition, we intend to
expand the use of multi-criteria decision making methods to incorporate Fuzzy TOPSIS in
order to eliminate any subjectivity or bias induced during the process of assigning weights
to decision variables.

Author Contributions: Conceptualization, H.M. and E.A.-M.; methodology, H.M.; software, H.M.;
validation, H.M. and E.A.-M.; writing—original draft preparation, H.M.; writing—review and
editing, H.M., E.A.-M., O.K. and A.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Acknowledgments: This manuscript has been co-authored by UT-Battelle, LLC, under contract
DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the
publisher, by accepting the article for publication, acknowledges that the US government retains a
nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form

Electronics 2022, 11, 2888 24 of 26

of this manuscript, or allow others to do so, for US government purposes. DOE will provide public
access to these results of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan (accessed on 8 September 2022)).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Balamurugan, N.M.; Mohan, S.; Adimoolam, M.; John, A.; Wang, W. DOA tracking for seamless connectivity in beamformed

IoT-based drones. Comput. Stand. Interfaces 2022, 79, 103564. [CrossRef]
2. Wang, J.; Pan, J.; Esposito, F.; Calyam, P.; Yang, Z.; Mohapatra, P. Edge cloud offloading algorithms: Issues, methods, and

perspectives. ACM Comput. Surv. (CSUR) 2019, 52, 1–23. [CrossRef]
3. Shakarami, A.; Ghobaei-Arani, M.; Masdari, M.; Hosseinzadeh, M. A survey on the computation offloading approaches in mobile

edge/cloud computing environment: A stochastic-based perspective. J. Grid Comput. 2020, 18, 639–671. [CrossRef]
4. Wang, B.; Wang, C.; Huang, W.; Song, Y.; Qin, X. A Survey and Taxonomy on Task Offloading for Edge-Cloud Computing. IEEE

Access 2020, 8, 186080–186101. [CrossRef]
5. Du, M.; Wang, Y.; Ye, K.; Xu, C.-Z. Algorithmics of Cost-Driven Computation Offloading in the Edge-Cloud Environment. IEEE

Trans. Comput. 2020, 69, 1519–1532. [CrossRef]
6. Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans.

Netw. 2015, 24, 2795–2808. [CrossRef]
7. Ding, Z.; Xu, J.; Dobre, O.A.; Poor, H.V. Joint Power and Time Allocation for NOMA–MEC Offloading. IEEE Trans. Veh. Technol.

2019, 68, 6207–6211. [CrossRef]
8. Huang, M.; Liu, W.; Wang, T.; Liu, A.; Zhang, S. A Cloud–MEC Collaborative Task Offloading Scheme with Service Orchestration.

IEEE Internet Things J. 2019, 7, 5792–5805. [CrossRef]
9. Zhang, Q.; Fitzek, F.H. Mission critical IoT communication in 5G. In Future Access Enablers of Ubiquitous and Intelligent Infrastructures;

Springer: Cham, Switzerland, 2015; pp. 35–41.
10. Dhanya, N.M.; Kousalya, G.; Balarksihnan, P.; Raj, P. Fuzzy-logic-based decision engine for offloading iot application using fog

computing. In Handbook of Research on Cloud and Fog Computing Infrastructures for Data Science; IGI Global: Hershey, PA, USA,
2018; pp. 175–194.

11. Wu, H.; Sun, Y.; Wolter, K. Energy-Efficient Decision Making for Mobile Cloud Offloading. IEEE Trans. Cloud Comput. 2018, 8,
570–584. [CrossRef]

12. Kosta, S.; Aucinas, A.; Hui, P.; Mortier, R.; Zhang, X. ThinkAir: Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading. In Proceedings of the 2012 Proceedings IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012;
pp. 945–953. [CrossRef]

13. Al-Masri, E. An Edge-Based Resource Allocation Optimization for the Internet of Medical Things (IoMT). In Proceedings of the
2021 IEEE 3rd Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS), Taiwan, China, 28–30
May 2021; pp. 143–147.

14. Zhao, Z.; Zhao, R.; Xia, J.; Lei, X.; Li, D.; Yuen, C.; Fan, L. A Novel Framework of Three-Hierarchical Offloading Optimization for
MEC in Industrial IoT Networks. IEEE Trans. Ind. Inform. 2019, 16, 5424–5434. [CrossRef]

15. Janakiraman, S.; Priya, M.D. Improved Artificial Bee Colony Using Monarchy Butterfly Optimization Algorithm for Load
Balancing (IABC-MBOA-LB) in Cloud Environments. J. Netw. Syst. Manag. 2021, 29, 39. [CrossRef]

16. Jiang, C.; Cheng, X.; Gao, H.; Zhou, X.; Wan, J. Toward Computation Offloading in Edge Computing: A Survey. IEEE Access 2019,
7, 131543–131558. [CrossRef]

17. Majumder, D.; Kumar, S.M.; Ashoka, D.V.; Nargunam, A.S. Resource Allocation Techniques in Edge/Fog Computing. In
Proceedings of the 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable
Technologies (ICAECT), Bhilai, India, 19–20 February 2021.

18. Nguyen, Q.H.; Pham, T.A. Studying and developing a resource allocation algorithm in Fog computing. In Proceedings of the 2018
International Conference on Advanced Computing and Applications (ACOMP), Ho Chi Minh City, Vietnam, 27–29 November
2018.

19. Hong, C.H.; Varghese, B. Resource Management in Fog/Edge Computing: A Survey on Architectures, Infrastructure, and
Algorithms. ACM Comput. Surv. 2019, 52, 1–37. [CrossRef]

20. Mesran, M.; Ginting, G.; Suginam, S.; Rahim, R. Implementation of Elimination and Choice Expressing Reality (ELECTRE)
Method in Selecting the Best Lecturer (Case Study STMIK BUDI DARMA). Int. J. Eng. Res. Technol. 2017, 6. [CrossRef]

21. Tong, L.-I.; Wang, C.-H.; Chen, H.-C. Optimization of multiple responses using principal component analysis and technique for
order preference by similarity to ideal solution. Int. J. Adv. Manuf. Technol. 2004, 27, 407–414. [CrossRef]

22. Deshmukh, S.C. Preference ranking organization method of enrichment evaluation (PROMETHEE). Int. J. Eng. Sci. Invent. 2013,
2, 28–34.

23. Opricovic, S.; Tzeng, G.-H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J.
Oper. Res. 2004, 156, 445–455. [CrossRef]

http://energy.gov/downloads/doe-public-access-plan
http://doi.org/10.1016/j.csi.2021.103564
http://doi.org/10.1145/3284387
http://doi.org/10.1007/s10723-020-09530-2
http://doi.org/10.1109/ACCESS.2020.3029649
http://doi.org/10.1109/TC.2020.2976996
http://doi.org/10.1109/TNET.2015.2487344
http://doi.org/10.1109/TVT.2019.2907253
http://doi.org/10.1109/JIOT.2019.2952767
http://doi.org/10.1109/TCC.2018.2789446
http://doi.org/10.1109/infcom.2012.6195845
http://doi.org/10.1109/TII.2019.2949348
http://doi.org/10.1007/s10922-021-09602-y
http://doi.org/10.1109/ACCESS.2019.2938660
http://doi.org/10.1145/3326066
http://doi.org/10.17577/IJERTV6IS020074
http://doi.org/10.1007/s00170-004-2157-9
http://doi.org/10.1016/S0377-2217(03)00020-1

Electronics 2022, 11, 2888 25 of 26

24. Wang, P.; Zheng, Z.; Di, B.; Song, L. HetMEC: Latency-Optimal Task Assignment and Resource Allocation for Heterogeneous
Multi-Layer Mobile Edge Computing. IEEE Trans. Wirel. Commun. 2019, 18, 4942–4956. [CrossRef]

25. Miao, Y.; Wu, G.; Li, M.; Ghoneim, A.; Al-Rakhami, M.; Hossain, M.S. Intelligent task prediction and computation offloading
based on mobile-edge cloud computing. Future Gener. Comput. Syst. 2020, 102, 925–931. [CrossRef]

26. Liu, Y.; Yu, H.; Xie, S.; Zhang, Y. Deep Reinforcement Learning for Offloading and Resource Allocation in Vehicle Edge Computing
and Networks. IEEE Trans. Veh. Technol. 2019, 68, 11158–11168. [CrossRef]

27. Xu, X.; Fu, S.; Yuan, Y.; Luo, Y.; Qi, L.; Lin, W.; Dou, W. Multiobjective computation offloading for workflow management in
cloudlet-based mobile cloud using NSGA-II. Comput. Intell. 2018, 35, 476–495. [CrossRef]

28. Ma, Y.; Li, X.; Li, J. An Edge Computing Offload Method Based on NSGA-II for Power Internet of Things. Internet Things Cloud
Comput. 2021, 9, 1–9. [CrossRef]

29. Chaari, R.; Cheikhrouhou, O.; Koubaa, A.; Youssef, H.; Hamam, H. Multi-objective Computation Offloading for Cloud Robotics
using NSGA-II. In Proceedings of the 2021 17th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), Bologna, Italy, 11–13 October 2021; pp. 206–211.

30. Jafari, V.; Rezvani, M.H. Joint optimization of energy consumption and time delay in IoT-fog-cloud computing environments
using NSGA-II Metaheuristic algorithm. J. Ambient. Intell. Humaniz. Comput. 2021, 1–24. [CrossRef]

31. Wang, Y.; Tao, X.; Hou, Y.T.; Zhang, P. Effective Capacity-Based Resource Allocation in Mobile Edge Computing with Two-Stage
Tandem Queues. IEEE Trans. Commun. 2019, 67, 6221–6233. [CrossRef]

32. Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012,
39, 13051–13069. [CrossRef]

33. Chen, C.-T.; Lin, C.-T.; Huang, S.-F. A fuzzy approach for supplier evaluation and selection in supply chain management. Int. J.
Prod. Econ. 2006, 102, 289–301. [CrossRef]

34. Yong, D. Plant location selection based on fuzzy TOPSIS. Int. J. Adv. Manuf. Technol. 2006, 28, 839–844. [CrossRef]
35. Lin, M.C.; Wang, C.C.; Chen, M.S.; Chang, C.A. Using AHP and TOPSIS approaches in customer-driven product design process.

Comput. Ind. 2008, 59, 17–31. [CrossRef]
36. Wang, W.-P. Toward developing agility evaluation of mass customization systems using 2-tuple linguistic computing. Expert Syst.

Appl. 2009, 36, 3439–3447. [CrossRef]
37. Ali, J.; Roh, B.-H. An Effective Hierarchical Control Plane for Software-Defined Networks Leveraging TOPSIS for End-to-End

QoS Class-Mapping. IEEE Access 2020, 8, 88990–89006. [CrossRef]
38. Shirmarz, A.; Ghaffari, A. Automatic Software Defined Network (SDN) Performance Management Using TOPSIS Decision-

Making Algorithm. J. Grid Comput. 2021, 19, 16. [CrossRef]
39. Ali, J.; Roh, B.-H. A framework for QoS-aware class mapping in multi-domain SDN. In Proceedings of the 2019 IEEE 10th Annual

Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 17–19 October
2019; pp. 602–606.

40. Peng, Y.; Wang, G.; Kou, G.; Shi, Y. An empirical study of classification algorithm evaluation for financial risk prediction. Appl.
Soft Comput. 2011, 11, 2906–2915. [CrossRef]

41. Pathak, P.; Al-Masri, E. Using TOPSIS for enhancing service provisioning across Fog environments. In Proceedings of the 2020
IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, 23–25 October 2020; pp. 272–275.

42. Patil, D.; Al-Masri, E. Seamless Service Migration across Multi-access Edge Computing (MEC) Environments. In Proceedings of
the 2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, 29–31 October 2021;
pp. 369–375.

43. Joshi, T.; Al-Masri, E. A User-Centric Approach for Ranking NFV Services. In Proceedings of the 2020 3rd IEEE International
Conference on Knowledge Innovation and Invention (ICKII), Kaohsiung, Taiwan, 21–23 August 2020; pp. 14–17.

44. Rodriguez, M.A.; Buyya, R. A taxonomy and survey on scheduling algorithms for scientific workflows in IaaS cloud computing
environments. Concurr. Comput. Pract. Exp. 2016, 29, e4041. [CrossRef]

45. Zhang, W.Z.; Elgendy, I.A.; Hammad, M.; Iliyasu, A.M.; Du, X.; Guizani, M.; Abd El-Latif, A.A. Secure and Optimized Load
Balancing for Multitier IoT and Edge-Cloud Computing Systems. IEEE Internet Things J. 2020, 8, 8119–8132. [CrossRef]

46. Sun, Z.; Nakhai, M.R. An Online Learning Algorithm for Distributed Task Offloading in Multi-Access Edge Computing. IEEE
Trans. Signal Process. 2020, 68, 3090–3102. [CrossRef]

47. Guo, H.; Liu, J.; Zhang, J. Computation Offloading for Multi-Access Mobile Edge Computing in Ultra-Dense Networks. IEEE
Commun. Mag. 2018, 56, 14–19. [CrossRef]

48. Tran, T.X.; Pompili, D. Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks. IEEE
Trans. Veh. Technol. 2018, 68, 856–868. [CrossRef]

49. Wei, F.; Chen, S.; Zou, W. A greedy algorithm for task offloading in mobile edge computing system. China Commun. 2018, 15,
149–157. [CrossRef]

50. Islam, A.; Debnath, A.; Ghose, M.; Chakraborty, S. A survey on task offloading in Multi-access Edge Computing. J. Syst. Arch.
2021, 118, 102225. [CrossRef]

51. Bateni, S.; Wang, Z.; Zhu, Y.; Hu, Y.; Liu, C. Co-optimizing performance and memory footprint via integrated cpu/gpu memory
management, an implementation on autonomous driving platform. In Proceedings of the 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), Sydney, NSW, Australia, 21–24 April 2020; pp. 310–323.

http://doi.org/10.1109/TWC.2019.2931315
http://doi.org/10.1016/j.future.2019.09.035
http://doi.org/10.1109/TVT.2019.2935450
http://doi.org/10.1111/coin.12197
http://doi.org/10.11648/j.iotcc.20210901.11
https://doi.org/10.1007/s12652-021-03388-2
http://doi.org/10.1109/TCOMM.2019.2920835
http://doi.org/10.1016/j.eswa.2012.05.056
http://doi.org/10.1016/j.ijpe.2005.03.009
http://doi.org/10.1007/s00170-004-2436-5
http://doi.org/10.1016/j.compind.2007.05.013
http://doi.org/10.1016/j.eswa.2008.02.015
http://doi.org/10.1109/ACCESS.2020.2993556
http://doi.org/10.1007/s10723-021-09557-z
http://doi.org/10.1016/j.asoc.2010.11.028
http://doi.org/10.1002/cpe.4041
http://doi.org/10.1109/JIOT.2020.3042433
http://doi.org/10.1109/TSP.2020.2991383
http://doi.org/10.1109/MCOM.2018.1701069
http://doi.org/10.1109/TVT.2018.2881191
http://doi.org/10.1109/CC.2018.8543056
http://doi.org/10.1016/j.sysarc.2021.102225

Electronics 2022, 11, 2888 26 of 26

52. Wang, Z.; Jiang, Z.; Wang, Z.; Tang, X.; Liu, C.; Yin, S.; Hu, Y. Enabling Latency-Aware Data Initialization for Integrated CPU/GPU
Heterogeneous Platform. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2020, 39, 3433–3444. [CrossRef]

53. Qian, L.P.; Shi, B.; Wu, Y.; Sun, B.; Tsang, D.H.K. NOMA-Enabled Mobile Edge Computing for Internet of Things via Joint
Communication and Computation Resource Allocations. IEEE Internet Things J. 2019, 7, 718–733. [CrossRef]

54. Lin, F.; Zhou, Y.; Pau, G.; Collotta, M. Optimization-Oriented Resource Allocation Management for Vehicular Fog Computing.
IEEE Access 2018, 6, 69294–69303. [CrossRef]

55. Ealiyas, A.; Lovesum, S.J. Resource Allocation and Scheduling Methods in Cloud-A Survey. In Proceedings of the 2018 Second
International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 15–16 February 2018.

56. Khayyat, M.; Elgendy, I.A.; Muthanna, A.; Alshahrani, A.S.; Alharbi, S.; Koucheryavy, A. Advanced Deep Learning-Based
Computational Offloading for Multilevel Vehicular Edge-Cloud Computing Networks. IEEE Access 2020, 8, 137052–137062.
[CrossRef]

57. Lee, S.-S.; Lee, S. Resource Allocation for Vehicular Fog Computing Using Reinforcement Learning Combined with Heuristic
Information. IEEE Internet Things J. 2020, 7, 10450–10464. [CrossRef]

58. Hwang, C.-L.; Lai, Y.-J.; Liu, T.-Y. A new approach for multiple objective decision making. Comput. Oper. Res. 1993, 20, 889–899.
[CrossRef]

59. Olmsted, J.; Al-Masri, E. FogWeaver: Task Allocation Optimization Strategy across Hybrid Fog Environments. In Proceedings of
the 2020 3rd IEEE International Conference on Knowledge Innovation and Invention (ICKII), Kaohsiung, Taiwan, 21–23 August
2020.

60. Şahin, M. A comprehensive analysis of weighting and multicriteria methods in the context of sustainable energy. Int. J. Environ.
Sci. Technol. 2021, 18, 1591–1616. [CrossRef]

61. Mathematical Optimization for Business Problems. Available online: https://cognitiveclass.ai/courses/mathematical-
optimization-for-business-problems (accessed on 8 September 2022).

62. Pricing Calculator: Microsoft Azure. Available online: https://azure.microsoft.com/en-us/pricing/calculator/ (accessed on
8 September 2022).

63. Materna Workload. Available online: http://gwa.ewi.tudelft.nl/datasets/gwa-t-13-materna (accessed on 8 September 2022).
64. AuverGrid Workload. Available online: http://gwa.ewi.tudelft.nl/datasets/gwa-t-4-auvergrid (accessed on 8 September 2022).
65. Grid Workload Archive. Available online: www.st.ewi.tudelft.nl/~{}iosup/project_grid_gwa.html (accessed on 8 September 2022).

http://doi.org/10.1109/TCAD.2020.3013047
http://doi.org/10.1109/JIOT.2019.2952647
http://doi.org/10.1109/ACCESS.2018.2879988
http://doi.org/10.1109/ACCESS.2020.3011705
http://doi.org/10.1109/JIOT.2020.2996213
http://doi.org/10.1016/0305-0548(93)90109-V
http://doi.org/10.1007/s13762-020-02922-7
https://cognitiveclass.ai/courses/mathematical-optimization-for-business-problems
https://cognitiveclass.ai/courses/mathematical-optimization-for-business-problems
https://azure.microsoft.com/en-us/pricing/calculator/
http://gwa.ewi.tudelft.nl/datasets/gwa-t-13-materna
http://gwa.ewi.tudelft.nl/datasets/gwa-t-4-auvergrid
www.st.ewi.tudelft.nl/~{}iosup/project_grid_gwa.html

	Introduction
	Related Work
	Offloading on Edge Layer, Fog Layer and Cloud Layer
	Offloading on Multi-Access Edge Computing (MEC) Network
	Resource Allocation Optimization in Task Offloading

	OpERA: A Resource Allocation Optimization Model
	Measuring Expected Execution Time
	Measuring Energy Consumption
	Measuring Utilization Cost
	CPU and Memory Availability Measurements

	Evaluation and Assessment
	Dataset Preparation & Data Workflow
	Optimization Modeling and Simulation
	Experiment A: General Test Case
	Experiment B: Memory-Driven Test Case
	Experiment C: Cost-Driven Test Case
	Experiment D: Compute-Driven Test Case

	Conclusions and Future Work
	References

