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Abstract: In this paper a novel low-power approximate floating-point multiplier is presented. Since
the mantissa computation is responsible for the largest part of the power consumption, we apply
a novel approximation technique to mantissa multiplication, based on static segmentation. In
our approach, the inputs of the mantissa multiplier are properly segmented so that a small inner
multiplier can be used to calculate the output, with beneficial impact on power and area. To further
improve performance, we introduce a novel segmentation-and-truncation approach which allows
us to eliminate the shifter normally present at the output of the segmented multiplier. In addition,
a simple compensation term for reducing approximation error is employed. The accuracy of the
circuit can be tailored at the design time, by acting on a single parameter. The proposed approximate
floating-point multiplier is compared with the state-of-the-art, showing good performance in terms of
both precision and hardware saving. For single-precision floating-point format, the obtained NMED
is in the range 10−5–7 × 10−7, while MRED is in the range 3 × 10−3–1.7 × 10−4. Synthesis results in
28 nm CMOS show area and power saving of up to 82% and 85%, respectively, compared to the exact
floating-point multiplier. Image processing applications confirm the expectations, with results very
close to the exact case.

Keywords: floating-point multiplier; approximate computing; static segment method (SSM); low power

1. Introduction

Multipliers are the most-used arithmetic blocks in many digital signal processing
applications, being the basic elements for operations as filtering, correlation, de-noising,
and domain transformation. Thanks to the favorable hardware features, fixed-point im-
plementation is extensively exploited in a wide range of electronic systems including
transceivers [1,2], FPGA accelerators [3,4], digital phase locked loops and spread spectrum
clock generators [5–7]. The fixed-point arithmetic employs a fixed number of bits for
representing the integer and the fractional parts of the signals. The bit-length of the integer
part is related to the range of representable numbers, while the bit-length of the fractional
part affects the accuracy of the operations. Therefore, the designer must properly choose
the signal bit-widths and resolutions to manage numerical range and precision.

Floating-point (FP) arithmetic, while complex from the point of view of hardware
implementation, offers a flexible way of performing numerical computations, providing
at the same time a large range of representable values and high precision. It is therefore
routinely used in applications such as scientific computing, digital signal processing, and
computer graphics. The standardized IEEE 754 format [8] is ubiquitous in most computing
platforms, from CPUs to GPUs and microcontrollers. According to this standard, a FP
number consists of sign S, exponent E and mantissa M. The value encoded in the FP format
is given by: A = (−1)S·(1 + M)·2E-bias, with the mantissa M in the range [0, 1).

A FP multiplication involves a fixed-point adder to sum up the exponents, a fixed-
point multiplier for the mantissa processing, and a normalization logic for the result. It
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follows that in most applications the FP multiplication dissipates the largest part of the
overall power consumption [9]. In recent years, approximate computing techniques have
been introduced in FP multipliers to save power and area, at the cost of introducing some
(small) errors in the result. Approximate computing is a general paradigm that aims at
improving the hardware performance by intentionally introducing approximations into the
design [10,11]. The authors of [12] devise a piecewise linear approximation for the mantissa
multiplication and introduce a tunable error compensation technique. The work [13]
involves gate-level pruning and inexact carry propagate adder (CPA) for the computation of
the product, whereas [14] skips the multiplication and transfers one of the input mantissas
to the output. In [15], the mantissa multiplier is substituted by an adder, and an adaptive
control logic is introduced for alleviating the approximation error. The paper [16] scales
the accuracy of the multiplier, freezing some of its partial products, whereas in [17] an
approximate addition performs the product in the logarithmic number system.

While only a few papers deal with approximate FP multipliers, approximate fixed-
point multipliers have been extensively studied by using several techniques. In [18–21],
the partial products generation stage is approximated by truncating some of the less-
significant partial products and mitigating the truncation error with a suitable correction
function. The papers [22–29] approximate the compression of partial product matrix:
the papers [22,23] use simple OR gates for the compression, whereas [24–29] use more
complex approximate compressors. The works [30–35] design low-power multipliers
by assembling small elementary approximate multipliers in a hierarchical fashion. The
use of logarithmic number system is investigated in [36–39]. The static and the dynamic
segment methods reduce the size of the multiplier by selecting portions of the inputs
for the product [40–43]. While the dynamic segmentation allows a finer selection at the
cost of introduction of additive logic (as leading one detectors and barrel shifters), the
static segmentation alleviates the hardware burden by choosing between fixed portions of
the inputs.

In this paper, we propose the design of a novel approximate static segmented floating-
point multiplier (SSFPM) with static segmentation applied to the mantissa product. The
proposed circuit is designed for single precision floating-point arithmetic.

In the proposed approach, the inputs of the mantissa multiplier are properly seg-
mented so that a small inner multiplier can be used to calculate the output. To further
improve performance, we introduce a novel segmentation-and-truncation approach which
allows us to eliminate the shifter normally present at the output of the segmented multiplier.
In addition, as in [41], a simple compensation term for reducing the approximation error
is employed. The accuracy of the SSFPM can be accurately tailored at the design time, by
acting on a single parameter.

Analysis of the error metrics shows that the proposed SSFPM is competitive with the
state-of-the-art. The power consumption and the area occupation, obtained by synthesis
in TSMC 28 nm CMOS technology, demonstrate remarkable performance. Finally, the
results of signal processing applications such as JPEG compression, image filtering, and
tone mapping of high dynamic range (HDR) images [44] show the effectiveness of the
proposed SSFPM.

The paper is organized as follows: in Section 2 we recall the steps used to perform
the standard floating-point multiplication. In this section we also describe the optimized
normalization logic, the proposed static segment method, and the correction technique.
Section 3 shows the results in terms of error metrics and hardware performances, as well as
discusses the behavior of the SSFPM in image processing applications. Section 4 compares
the results with the state-of-the-art, while Section 5 concludes the paper.

2. Floating-Point Multiplication
2.1. Single Precision Floating-Point Multiplier

In the following we consider the IEEE 754 single precision standard. According to this
standard, a FP number consists of sign S, exponent E and mantissa M.



Electronics 2022, 11, 3005 3 of 23

The value encoded in the FP format, in the case of normalized representations,
is given by: X = (−1)S·(1 + M)·2E-bias (for the sake of simplicity, we do not consider
de-normalized representations).

The mantissa M is in the range [0, 1). The ‘1’ bit added to M is the so-called implicit bit.
The mantissa M is represented with 23 bits (with MSB and LSB of weights 2−1 and 2−23,
respectively). The exponent E is an 8-bit integer, while the exponent bias is 127. Thus, the
exponent value E–bias is in the range [–127, 128].

The Figure 1 shows an example, where the decimal number −13.140625 is represented
according to the IEEE 754 single precision standard. This number can be written as:
−23 × (1 + 1/2 + 1/8 + 1/64 + 1/512). Thus: the sign bit is S = 1; the exponent value is
E = 3 + bias = 130, corresponding to binary 10000010; the mantissa is M = 1/2 + 1/8 + 1/64 + 1/512,
corresponding to binary 10100100100000000000000.
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Figure 2 shows the block diagram of the single precision floating-point multiplier.
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As detailed above, the input a is expressed on 32 bits, with ne = 8 bits dedicated to the
exponent and nm = 23 bits dedicated to the mantissa. More precisely, the most significant
bit (MSB) of a, a[31], is the sign Sa, while the portions Ea = a[30:23] and Ma = a[22:0] are the
exponent and the mantissa, respectively. The same scheme applies also to the input b, with
sign Sb = b[31], exponent Eb = b[30:23], and mantissa Mb = b[22:0]. Therefore, the signals a
and b are represented as follows:

a = (−1)Sa·2Ea−127·(1 + Ma)
b = (−1)Sb·2Eb−127·(1 + Mb)

(1)

Similarly, the product c = a·b is expressed in the form:

c = (−1)Sc·2Ec−127·(1 + Mc) (2)

where Sc, Ec, and Mc are the sign, exponent and mantissa of c, respectively.
The mantissas Ma, Mb, and Mc are in the range [0, 1) with MSB and LSB of weights

2−1 and 2−23, respectively. Therefore, they constitute the fractional part of the quanti-
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ties (1 + Ma), (1 + Mb), and (1 + Mc) (also indicated with (1.Ma), (1.Mb) and (1.Mc) in
the following).

The arithmetic stage of Figure 2 computes Sc, Ec, and the mantissa product P. As
shown, the XOR between Sa and Sb allows us to obtain the sign Sc. The sum between Ea
and Eb computes the exponent Ec, while the subtraction by 127 considers the exponent
bias. In the mantissa multiplier, a bit ‘1’ is explicitly concatenated to Ma and Mb at the most
significant position (see (1.Ma) = (1 + Ma) and (1.Mb) = (1 + Mb) in the figure)), to compute:

P = (1 + Ma)·(1 + Mb) (3)

It is worth noting that (1 + Ma) lays in the range [1, 2). As consequence, P is in the
range [1, 4), that means that 2 MSBs are involved for representing its integer part (namely
p[47] and p[46]). We also underline that P is expressed on 48 bits.

The normalization logic extracts the mantissa Mc from P and consequently adjusts the
exponent Ec. If P < 2 (i.e., if p[47] is low), the product P is in the form (1.Mc). Therefore, the
extraction of Mc simply requires to select the fractional part of P, that is p[45:0]. Actually,
only 24 bits of P (that is p[45:22]) are sent to the next rounding stage.

In the case P ≥ 2 (i.e., if p[47] is high), we need to right-shift P of one position in
order to express the product in the form (1.Mc) before to apply the rounding. Therefore,
the segment p[46:23] is sent to the rounding stage. In this case, moreover, the exponent is
incremented by one to compensate for the shift on P, as shown in exponent update block
in Figure 2.

The mantissa rounding block, finally, rounds the mantissa to 23 bits, as required by
the standard, with the help of a 24-bit adder.

2.2. Proposed Optimization for the Mantissa Computation

In the proposed approach, instead of computing P as in (3), we compute:

P′ = P− 1 (4)

as follows:
P′ = (1 + Ma)·(1 + Mb)− 1 = Ma·Mb + Ma + Mb (5)

Please note that (3) requires a 24 bit × 24 bit multiplier, due to the bit ‘1’ explicitly
concatenated to Ma and Mb. On the other hand, the calculation of P′ in (5) requires a
smaller 23 bit × 23 bit multiplier. Equation (5) opens the way to a static segmentation of
the multiplication: in fact in the multiplication operation described by (3) the bit ‘1’ does
not allow to segment the multiplier inputs, while, on the other hand, the multiplicands
contained in (5) does not include any stuck at ‘1’ bit. Figure 3a shows the structure of
the proposed floating-point multiplier and highlights in the dashed red rectangle the
multiply-and-add unit (MAA) that implements Equation (5).

As shown in the figure, since the LSBs of the mantissas and of the product Ma·Mb
have weights 2−23 and 2−46, respectively, both Ma and Mb are added with a hard-wired
left-shift of 23 positions, to properly align their LSBs to Ma·Mb.

In this implementation, the two MSBs of P’ are exploited to manage the normalization
process. Before to proceed with the discussion, let us observe that the maximum value of
P’, named P’max, can easily be calculated since the maximum value of Ma and Mb is equal
to (1–2−23). We have: P’max = (1–2−23)2 + 2·(1–2−23), therefore P’max is slightly less than
3. Thus, 0 ≤ P’ < 3 and, in binary representation, the two MSBs of P’, which constitute its
integer part, can vary between ‘00’, ‘01’, and ‘10’. This observation helps the calculation of
P = P’ + 1. In fact, the fractional bits of P coincide with the fractional bits of P’ and only
the two MSBs of P (the integer part) should be computed from the two MSBs of P’. To this
purpose, let us consider the various cases reported in the truth table of Figure 3b. When
p’[47:46] = ‘00’, the two MSBs of P are p[47:46] = ‘01’. In this case, the normalization is
not required since P < 2. Conversely, when p’[47:46] = ‘01’ or ‘10’, the two MSBs of P are



Electronics 2022, 11, 3005 5 of 23

p[47:46] = ‘10’ or ‘11’. These cases demand for the normalization since P ≥ 2. Following the
truth table, we can define the signal sel as the OR between p’[47] and p’[46], and normalize
the mantissa when sel = 1 (see also Figure 3a). The truth table also shows that p[46] is
inverted with respect to p’[46]. Therefore, the output of the mantissa multiplier is given by
{~p’[46], p[45:0]}, where ‘~’ is used to represent the complement operation.
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After mantissa multiplier, mantissa normalization and rounding follow, as in Figure 2.
The main difference is the use of signal sel (instead of p[47]) to perform normalization. Note
also that exponent update is implemented without multiplexer, by using sel to increment
the exponent.

2.3. Static Segmentation Method

The static segmentation [40,41] reduces the size of the multiplier by segmenting the
multiplicands before the product. Each segment comprises m bits, with nm/2 < m < nm.
Therefore, an m × m multiplier is employed for computing the result instead of a nm × nm
multiplier. Synthesizable HDL descriptions of fixed-point static-segmented multipliers are
available in [45].

Figure 4 shows the segmentation for the mantissa Ma, where, for the sake of simplicity,
we assume nm = 8 bits with m = 5. The mantissa Ma is divided in a lower portion (LPa),
given by its m LSBs, and in an upper portion (UPa), given by its m MSBs. The (nm-m) MSBs
constitutes the control segment CSa, used to decide between LPa and UPa. When the bits
of CSa are low, the segment LPa is selected for the multiplication. Conversely, if at least
one of the bits of CS is high, the segment UPa is chosen. A similar mechanism is applied
also to input Mb. Therefore, defining the selection flags αMa and αMb as the OR of bits of
the control segments CSa and CSb, respectively, and naming Massm, Mbssm the segmented
signals, the following relations hold:

Massm =

{
Ma[m− 1 : 0]

Ma[nm − 1 : nm −m]
i f αMa = 0
i f αMa = 1

(6)

Mbssm =

{
Mb[m− 1 : 0]

Mb[nm − 1 : nm −m]
i f αMb = 0
i f αMb = 1

(7)
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Please note that an approximation error is introduced when the upper portion of the
mantissa is multiplied (i.e., when the selection flag is high) since the less significant part is
discarded (namely εMa in the figure). On the contrary, no approximation is introduced if
the lower portion is selected.

After the multiplication, a left-shift is required to extend the result from 2·m bits to
2·nm bits. Then, the approximate product Kssm is computed as follows:

Kssm = (Massm·2LSHa)·(Mbssm·2LSHb) = (Massm·Mbssm)·2LSH (8)

with LSHa and LSHb defined as

LSHa =

{
0

nm −m
i f αMa = 0
i f αMa = 1

LSHb =

{
0

nm −m
i f αMb = 0
i f αMb = 1

(9)

The term LSH in (8) is given by: LSH = LSHa + LSHb and is the number of positions
for the overall left-shift:

LSH =


0

nm −m
2·(nm −m)

i f αMa = 0, αMb = 0
i f αMa = 0, αMb = 1 or αMa = 1, αMb = 0

i f αMa = 1, αMb = 1
(10)

2.4. Static Segmentation Applied to the Mantissa Product

In this paragraph, we apply the segmentation to the inputs of the MAA unit to employ
an m × m multiplier and an m-bits adder for the mantissa computation. By assuming
that Massm and Mbssm have LSB of weight 20, we write the approximate product P’apprx
as follows:

P′apprx = (Massm·Mbssm)·2−2·nm+LSH + Massm·2−nm+LSHa + Mbssm·2−nm+LSHb (11)

Figure 5 depicts the circuit that implements Equation (11).
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The multiplexer mux LSH, used for the left-shift of the multiplier output, does not
allow to merge the multiplier and the adder in a fused PPM, and leads to the usage of
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two cascaded CPAs, one for computing the product Massm·Mbssm 2−2nm+LSH and one for
computing P’apprx. Furthermore, Massm· 2−nm+LSHa and Mbssm· 2−nm+LSHb involve up to
2·nm bits when αMa = 1 and αMb = 1, thus degrading the performances of the adder.

In order to optimize the MAA unit, we analyze Equation (11) considering all the
possible combinations for αMa and αMb. Figure 6 shows the alignments of the signals
reporting the exact MAA for reference (Figure 6a), and the alignments with segmentation
in the case nm = 8 and m = 6 (Figure 6b–d).
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segmented cases with (b) αMa = 0, αMb = 0, (c) αMa = 1, αMb = 0, and (d) αMa = 1, αMb = 1. In this
example, we consider nm = 8 bits and m = 6 bit.

IfαMa = 0 andαMb = 0, the shifts LSH, LSHa and LSHb are zero, and Equation (11) becomes:

P′apprx =
[
(Massm·Mbssm)·2−nm + Massm + Mbssm

]
·2−nm (12)

As shown in Figure 6b, the product is on 2·m bits, whereas the shifted mantissas imply
the usage of an adder on (nm + m) bits. To employ an m-bit adder, we truncate the product
Massm·Mbssm·2−nm discarding the gray LSBs in the figure. Therefore, we approximate
Equation (12) as follows:

P′apprx =
[⌊

Massm·Mbssm·2−nm⌋+ Massm + Mbssm
]
·2−nm (13)

where b·c is used to represent the floor operator.
In order to implement the calculations in (13) with a fused PPM and an unique CPA,

we rearrange (13) as follows:

P′apprx = [Massm,mult·Mbssm,mult + Massm,add + Mbssm,add]·2−nm (14)
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where:
Massm,mult =

⌊
Massm·2−dnm/2e

⌋
Mbssm,mult =

⌊
Mbssm·2−bnm/2c

⌋
Massm,add = Massm

Mbssm,add = Mbssm

(15)

and d·e is the ceiling operator.
For the sake of simplicity, let us consider the case in which nm is even. The final floor

operation on Massm,mult and Mbssm,mult of (15) results in truncating nm/2 bits from m bit operands
and, therefore, the computation of (14) requires a (m − nm/2) × (m − nm/2) multiplier.

As observable from the formula, we can first compute Massm,mult, Mbssm,mult, that are
truncated versions of Massm, Mbssm, and then execute the multiply-and-add operation. In
this way, we remove the shift between the multiplier and the adder and design the MAA
unit with a fused PPM and a unique CPA.

When αMa = 1 and αMb = 0, we have LSH = LSHa = nm−m (refer also to (9),(10)).
Therefore, the (11) becomes

P′apprx =
[
(Massm·Mbssm)·2−nm + Massm + Mbssm·2−LSH

]
·2−nm+LSH (16)

Applying the same reasoning, we need to discard the gray LSBs of Massm·Mbssm·2−nm

and of Mbssm·2−LSH (see Figure 6c) in order to involve again an m-bit addition. Furthermore,
we need also to remove the shift at the output of the multiplier.

The above considerations lead to the following approximation for (16):

P′apprx = [Massm,mult·Mbssm,mult + Massm,add + Mbssm,add]·2−nm+LSH (17)

with Massm,mult, Mbssm,mult, and Massm,add defined as in (15), and Mbssm,add that is

Mbssm,add =
⌊

Mbssm·2−LSH
⌋

(18)

Here, the addend Mbssm is also truncated along with the multiplier inputs. Since the
expression of Massm,mult and Mbssm,mult remains the same, also in this case the computation
of (17) requires a (m − nm/2) × (m − nm/2) multiplier.

A similar reasoning applies also for the case αMa = 1 and αMb = 0, with Massm,mult,
Mbssm,mult, and Mbssm,add defined as in (15) and Massm,add =

⌊
Massm·2−LSH⌋.

Finally, when αMa = 1 and αMb = 1, we have LSH = 2·(nm−m) and LSHa = LSHb = nm−m.
Therefore, the (11) becomes

P′apprx =
[
(Massm·Mbssm)·2−nm+LSHa + Massm + Mbssm

]
·2−nm+LSHa (19)

As shown in Figure 6d, we need to truncate (Massm·Mbssm)·2−nm+LSHa for employing
an m-bit adder, and to shift the inputs of the multiplier for employing a unique CPA.
Therefore, the (19) is approximated as follows

P′apprx = [Massm,mult·Mbssm,mult + Massm,add + Mbssm,add]·2−nm+LSHa (20)

With
Massm,mult =

⌊
Massm·2d(−nm+LSHa)/2e

⌋
Mbssm,mult =

⌊
Mbssm·2b(−nm+LSHa)/2c

⌋ (21)

and Massm,add, Mbssm,add defined as in (15). If for the sake of simplicity we consider the
case in which nm and m are even, the final floor operation on Massm,mult and Mbssm,mult of
(21) results in truncating (nm − LSHa)/2 = m/2 bits from m bit operands, therefore the
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computation of (20) requires a (m/2) × (m/2) multiplier. Since m − nm/2 < m/2, overall,
the computation of P’apprx requires a (m/2) × (m/2) multiplier.

Figure 7a shows the circuit that implements the static segmented multiply-and-add
unit (SSMAA), whereas Table 1 collects the segments of Massm, Mbssm obtained with the
segment-and-truncate approach. The multiplexers on Ma and Mb perform the segmentation
of Table 1 at the input of both the multiplier and the adder. Then, a further multiplexer
applies the final shift on P’ssm in order to express the result P’apprx on (2·nm + 2) = 48 bits.
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Table 1. Segmentation scheme applied to Ma, Mb at the inputs of both the multiplier and the adder.

αMa, αMb Massm,mult Mbssm,mult Massm,add Mb ssm,add Final Shift

00 Ma[m− 1 : dnm/2e ] Mb[m− 1 : bnm/2c ] Ma[m−1:0] Mb[m−1:0] nm−nq
01 Ma[m− 1 : dnm/2e ] Mb[nm − 1 : nm −m + bnm/2c ] Ma[m−1:nm−m] Mb[nm−1:nm−m] 2nm−m−nq
10 Ma[nm − 1 : nm −m + dnm/2e ] Mb[m− 1 : bnm/2c ] Ma[nm−1:nm−m] Mb[m−1:nm−m] 2nm−m−nq
11 Ma[nm − 1 : nm −m + dm/2e ] Mb[nm − 1 : nm −m + bm/2c ] Ma[nm−1:nm−m] Mb[nm−1:nm−m] 2nm−m−nq

It is worth mentioning that the P’apprx is subsequently quantized in the normalization
process. It follows that the rounding allows us to reduce the size of the final multiplexer,
since the result can be expressed on (2·nm + 2 − nq) bits, nq being the number of discarded
LSBs (nq = 22 for the single precision FPM).

2.5. Error Analysis and Correction

The approximation errors that affect the proposed SSMAA are due to the discarding of
the least significant parts of Ma and Mb (when the segmentation selects the upper segments),
and due to the truncations used to employ the m-bit adder and a unique CPA. It follows
that the largest error arises when αMa = 1, αMb = 1.

Estimating the error E = P’− P’apprx can help in improving the accuracy of the SSMAA
unit. The idea is to compute the SSMAA result as P’apprx,c = P’apprx + E*, where E* is a term
which approximates E.

To study the error, by considering Table 1, let us write the inputs of the SSMAA as:

Massm,mult = UPamult =
nm−1

∑
k=nm−m′

mak2k Mbssm,mult = UPbmult =
nm−1

∑
k=nm−m′

mbk2k

Massm,add = UPaadd =
nm−1

∑
k=nm−m

mak2k Mbssm,add = UPbadd =
nm−1

∑
k=nm−m

mbk2k
(22)

where UPamult, UPbmult, UPaadd, and UPbadd are the quantities selected for the SSMAA, and
m’ = m − m/2 = m/2. In this discussion we consider an even value of m for the sake of
simplicity in order to have the same truncation for both Massm,mult and Mbssm,mult.
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Additionally, the quantities pruned for the segmentation are:

εMa,mult =
nm−m′−1

∑
k=0

mak2k εMb,mult =
nm−m′−1

∑
k=0

mbk2k

εMa,add =
nm−m−1

∑
k=0

mak2k εMb,add =
nm−m−1

∑
k=0

mbk2k
(23)

By writing Ma and Mb as follows for the product:

Ma = (UPamult + εMa,mult)·2−nm

Mb = (UPbmult + εMb,mult)·2−nm (24)

and as follows for the addition:

Ma = (UPaadd + εMa,add)·2−nm

Mb = (UPbadd + εMb,add)·2−nm (25)

we obtain the exact result of MAA:

P′ = (UPamultUPbmult + UPamultεMb,mult + UPbmultεMa,mult + εMa,multεMb,mult)·2−2nm+
(UPaadd + εMa,add)·2−nm + (UPbadd + εMb,add)·2−nm (26)

Therefore, being P’apprx given by:

P′apprx = UPamultUPbmult·2−2nm + UPaadd·2−nm + UPbadd·2−nm (27)

the error E is:

E = (UPamultεMb,mult + UPbmultεMa,mult + εMa,multεMb,mult)·2−2nm+
+εMba,add·2−nm + εMb,add·2−nm (28)

In order to simplify the discussion, let us focus on the most significant term E*:

E∗ = (UPamultεMb,mult + UPbmultεMa,mult)·2−2nm (29)

Following the approach of [41], we approximate εMa,mult with:

εMa,mult ≈ (2manm−m′−1 + 1)·2nm−m′−2 (30)

and write UPamult as:

UPamult = 2nm−m′
m′−1

∑
k=0

mak+nm−m′2
k (31)

A similar expression holds for εMb,mult and for UPbmult.
Then, substituting (30) and (31) in (29), the error becomes:

E∗ =

[
22nm−2m′−2

m′−1

∑
k=0

ek+nm−m′2
k

]
·2−2nm (32)

with:
ek+nm−m′ = 2·(mak+nm−m′mbnm−m′−1 + mbk+nm−m′manm−m′−1)+

+mak+nm−m′ + mbk+nm−m′
(33)

Approximating ek+nm-m’ with:

e∗k+nm−m′ = 4·(mak+nm−m′mbnm−m′−1 OR mbk+nm−m′manm−m′−1) (34)
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for further simplification, we obtain:

E∗ ≈
[

22nm−2m′−2
m′−1

∑
k=0

e∗k+nm−m′2
k

]
·2−2nm (35)

In the case of m odd, we consider the following approximate expression for e*k+nm-m’:

e∗k+nm−m′ = 4·(mak+nm−dm′embnm−bm′c−1 OR mbk+nm−bm′cmanm−dm′e−1) (36)

Approximating the summation in (35) with two or three terms allows us to sufficiently
reduce the approximation error in the SSMAA.

Figure 7b depicts the scheme of the proposed corrected SSMAA (cSSMAA in the
following). The correction term E*, highlighted in red, can be directly fused in the PPM,
thus implying a minimum impact on the hardware performances.

3. Results
3.1. Error Metrics Analysis

We exploit some of the common error metrics to verify the performances of the pro-
posed SSFPM. Let us define the exact and the approximate result of the floating-point multi-
plier as C and Capprx, respectively. The approximation error is given by: EFMP = C − C’apprx
while the error distance is ED = |EFMP|. The normalized mean error and the normalized
mean error distance are NM = mean(EFMP)/Cmax and NMED = mean(ED)/Cmax, respectively,
where mean(·) is the average operator and Cmax = 2128 is the maximum value of C. The mean
relative error distance is MRED = mean(ED/C), whereas the normalized maximum error
distance is defined as NmaxED= EDmax/Cmax, EDmax being the maximum value of ED.

We compute the error metrics by simulating the SSFPM with 107 couples of random
inputs laying in the whole range of representation (that is about [−2128, 2128]).

Figure 8 represents the behavior of NMED and MRED as function of the parameter
m, used to define the accuracy of the segmentation. In the corrected version of the SSFPM,
two terms are used to approximate the (35).
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As expected, increasing m allows us to improve both NMED and MRED, which lowers
from 1.32 × 10−5 to 3.16 × 10−7 and from 3.41 × 10−3 to 7.96 × 10−5, respectively. The
figure also highlights the beneficial effects of the correction technique, since NMED and
MRED are about halved in the corrected case.

Table 2 collects the error metrics of the proposed SSFPM and cSSFPM in the cases
m = 12, 14, 16, and 18. For the sake of comparison, we show also the accuracy of the
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approximate FPMs obtained by exploiting the techniques of [22,42,43] for the computation
of the product Ma·Mb in (5), and by implementing the proposal of [17].

Table 2. Error metrics of the approximate FPMs.

Approximate FPM NM NMED MRED NmaxED

TOSAM [42], h = 2 8.13 × 10−9 7.79 × 10−6 1.99 × 10−3 1.48 × 10−2

TOSAM [42], h = 3 −1.93 × 10−8 3.91 × 10−6 1.00 × 10−3 7.27 × 10−3

DRUM [43], k = 4 −3.99 × 10−8 2.08 × 10−5 5.39 × 10−3 2.85 × 10−2

DRUM [43], k = 6 −7.30 × 10−9 5.20 × 10−6 1.35 × 10−3 7.31 × 10−3

AFMB [17], t = 14 3.65 × 10−7 9.01 × 10−5 2.50 × 10−2 4.72 × 10−2

AFMB [17], t = 16 3.28 × 10−7 9.10 × 10−5 2.53 × 10−2 5.30 × 10−2

AFMB [17], t = 18 −2.81 × 10−6 1.02 × 10−3 2.91 × 10−1 4.85 × 10−1

DATE17 [22], L = 2 2.63 × 10−10 5.30 × 10−8 1.35 × 10−5 1.82 × 10−4

DATE17 [22], L = 4 −7.94 × 10−8 1.03 × 10−5 2.68 × 10−3 2.03 × 10−2

DATE17 [22], L = 6 −1.93 × 10−7 5.28 × 10−5 1.34 × 10−2 8.70 × 10−2

SSFPM m = 12 4.06 × 10−8 1.32 × 10−5 3.41 × 10−3 7.55 × 10−3

cSSFPM m = 12 3.46 × 10−9 5.67 × 10−6 1.45 × 10−3 4.62 × 10−3

SSFPM m = 14 1.69 × 10−8 6.52 × 10−6 1.68 × 10−3 3.80 × 10−3

cSSFPM m = 14 5.23 × 10−9 2.78 × 10−6 7.08 × 10−4 2.28 × 10−3

SSFPM m = 16 1.06 × 10−8 3.20 × 10−6 8.28 × 10−4 1.85 × 10−3

cSSFPM m = 16 8.91 × 10−9 1.37 × 10−6 3.48 × 10−4 1.12 × 10−3

SSFPM m = 18 6.98 × 10−9 1.57 × 10−6 4.05 × 10−4 9.03 × 10−4

cSSFPM m = 18 2.42 × 10−9 6.79 × 10−7 1.73 × 10−4 5.37 × 10−4

In [42] (referred as TOSAM in the table), the authors devise the usage of a dynamic
segmentation to perform multiplication with good precision and optimized power and area.
Here, the multiplication is revisited as multiply-and-add operation, with the multiplicands
truncated on h bits after the leading one. The addends are also truncated since h + 4
LSBs are discarded. The work [43] (referred as DRUM in the table) explores the dynamic
segmentation selecting a segment of k bits (comprising the leading one bit and a correction
bit at the least significant position) for the multiplication. Then, a barrel shifter allows
us to extend the result on the desired number of bits. The HDL description of DRUM
multiplier [43] is available in [46]. The technique of [22] (referred as DATE17 in the table)
organizes the PPM in groups of L rows. Then, the rows of each group are compressed by
means of L-input OR gates. In [17] (referred as AFMB in the table), a modified version of the
Mitchell algorithm is employed to compute the product of (3), with the input signals that
are truncated on t bits. Here, since the leading one bit always corresponds to the implicit
bit, no leading one detectors and barrel shifters are used, with beneficial improvements on
power and area.

As shown in the table, the proposed SSFPM and cSSFPM are competitive with the
state-of-the-art. The implementations cSSFPM perform better than [22] with L = 4, L = 6 and
slightly overcome [42,43], exhibiting NMED and MRED up to 1.37 × 10−6 and 3.48 × 10−4

(m = 16), and 6.79× 10−7 and 1.73× 10−4 (m = 18). In the case m = 18, also SSFPM performs
better than [42,43], with NMED = 1.57 × 10−6 and MRED = 4.05 × 10−4. The FPM [22]
with L = 2 shows best accuracy with NMED = 5.30 × 10−8 and MRED = 1.35 × 10−5. On
the other hand, the implementations [17] exhibits worst performances, with NMED around
10−4/10−3 and MRED that ranges between 2.5 × 10−2 and 2.9 × 10−1.

It is also worth noting that the correction technique allows us to reduce the NmaxED
since it lowers the maximum error of the segmented multiplier.

3.2. Electrical Performances

We synthesize the proposed segmented floating-point multipliers and the state-of-the-
art with a physical flow in TSMC 28 nm CMOS technology using Cadence Genus, with
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clock period Tclk of 500 ps and using standard threshold voltage cell library. Furthermore,
the exact FPM described in Section 2.2. is implemented for reference. In the implementation
of FPMs, pipeline levels are often inserted, to shorten the critical. In our case, we employ
a single pipeline level between the arithmetic stage and the normalization logic in all
investigated FPMs.

The power and area are obtained from post-synthesis analyses, with power consump-
tion computed by simulating the synthesized netlist at 1 GHz. To this aim, SDF and TCF
format files are employed to annotate the path delays and the toggle activity of the sig-
nals. In addition, we also study the minimum clock period employable for each FPMs,
corresponding to the minimum clock period that ensures positive slack.

As shown in Table 3, the proposed SSFPM and cSSFPM are also competitive from a
hardware point of view, exhibiting remarkable results with area and power reductions up
to −82.3% and −85.5% with SSFPM and m = 12. The corrected circuits exhibit only a slight
worsening of the performances with respect to the uncorrected ones, with degradations of
area and power in the range of 1–3%.

Table 3. Hardware performances of the proposed SSFPM and cSSFPM, and the state-of-the-art.

FPM Min Tclk [ps] Area [µm2] [Power µW@1 GHz]

Exact 374 1753.8 2874.3

TOSAM [42], h = 2 430 (15.0%) 922.7 (−47.4%) 1290.1 (−55.1%)
TOSAM [42], h = 3 468 (25.1%) 1226.6 (−30.1%) 1710.6 (−40.5%)

DRUM [43], k = 4 447 (19.5%) 873.9 (−50.2%) 1411.5 (−50.9%)
DRUM [43], k = 6 503 (34.5%) 1320.2 (−24.7%) 2361.0 (−17.9%)

AFMB [17], t = 14 144 (−61.5%) 112.4 (−93.6%) 179.7 (−93.7%)
AFMB [17], t = 16 134 (−64.2%) 99.4 (−94.3%) 157.9 (−94.5%)
AFMB [17], t = 18 110 (−70.6%) 85.2 (−95.1%) 124.5 (−95.7%)

DATE17 [22], L = 2 333 (−11.0%) 1136.3 (−35.2%) 1508.5 (−47.5%)
DATE17 [22], L = 4 299 (−20.1%) 815.2 (−53.5%) 1199.1 (−58.3%)
DATE17 [22], L = 6 261 (−30.2%) 707.0 (−59.7%) 1005.2 (−65.0%)

SSFPM m = 12 289 (−22.7%) 310.5 (−82.3%) 417.1 (−85.5%)
cSSFPM m = 12 286 (−23.5%) 364.8 (−79.2%) 454.8 (−84.2%)
SSFPM m = 14 323 (−13.6%) 392.7 (−77.6%) 504.1 (−82.5%)
cSSFPM m = 14 314 (−16.0%) 437.9 (−75.0%) 532.4 (−81.5%)
SSFPM m = 16 333 (−11.0%) 484.9 (−72.4%) 594.5 (−79.3%)
cSSFPM m = 16 337 (−9.9%) 477.5 (−72.8%) 603.6 (−79.0%)
SSFPM m = 18 355 (−5.1%) 524.7 (−70.1%) 683.6 (−76.2%)
cSSFPM m = 18 360 (−3.7%) 611.4 (−65.2%) 787.9 (−72.6%)

The minimum Tclk improves with respect to the exact implementation, with the
multiplier m = 12 that exhibits the best speed.

The FPMs with [22,42,43] show poorer performances, with area improvement limited
to 47.4%, 50.2%, and 60%, respectively, and power saving up to 55.1%, 50.9% and 65%.
In particular [22], L = 2, which offers best accuracy, exhibits limited improvements, with
area and power reductions of 35.2% and 47.5%. The minimum Tclk worsens with [42,43],
increasing up to 25% and 35%, respectively. On the contrary, the minimum Tclk improves
up to 30% in the case of [22]. The work [17] shows best hardware performances with area
reduction around −94% and power saving up to −95.7%. Moreover, the minimum Tclk
exhibits best improvement (up to 70% with t = 18). These performances are due to the
realization of the multiplication by means of a truncated adder in the logarithmic number
system. However, by looking to the data of Table 2, we can conclude that these electrical
features are achieved at the price of an accuracy loss.
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3.3. Image Processing Applications
3.3.1. Image Filtering

We verify the validity of our proposal exploring the performances of the segmented
FPMs in an image filtering application. The image filtering performs the following opera-
tion on the input image I

I f iltered(i, j) =
d

∑
p=−d

d

∑
q=−d

I(i + p, j + q)·h(i + d + 1, j + d + 1) (37)

where h is the kernel matrix of the filter, with size (2d + 1) × (2d + 1).
In this example, we consider a smoothing application with gaussian kernel of size

5 × 5 and standard deviation 2, whose coefficients are floating-point numbers with values
normalized to 1. The Matlab command fspecial(‘gaussian’, 5, 2) allows us to obtain the filter
mask. Then, the products in (37) are realized by means of our approximate FPMs and the
state-of-the-art.

As a second example, we analyze the performances in edge detection. In this case, the
gradient G of the original image is computed to highlight its edges. To this aim, the Sobel
kernel hSobel and its transpose hT

Sobel are used to compute the x and the y component of G
(named Gx and Gy respectively). Then, the gradient G is computed as follows:

G =
√

G2
x + G2

y (38)

In our trial, we use the following Sobel kernel:

hSobel =

−1 −2 −1
0 0 0
1 2 1

 (39)

and used investigated FPMs to implement the multiplications in (38), (39). Table 4 collects
the results in terms of structural similarity index measure (SSIM) and peak signal-to-noise-
ratio (PSNR, in dB), obtained by filtering three images (Lena, Cameraman, and Lady). For
each example, we average the SSIM and the PSNR obtained by processing the test images,
as well as we indicate the overall average SSIM and PSNR as synthetic parameter in the
last column of the table.

As shown in Table 4, the segmented FPMs achieve SSIM very close to 1 and PSNR
up to 70 dB with gaussian filtering and produce the exact result with m > 12 in the edge
detection. The correction technique allows us to improve the PSNR, with a maximum
increment of 5.4 dB in the case m = 14, smoothing application.

Moreover, the implementations with [22,42,43] L = 4, 6 achieve good results, with
SSIM very close to 1 and a PSNR values up to 63.1 dB in the gaussian case. Similarly,
the PSNR overcomes 60 dB with [42,43] k = 6, and [22] L = 4 in the edge detection. The
design [22] L = 2 offers best results on average, whereas the implementation [17] shows
worst performances due to the stronger approximation, with a PSNR up to 37.6 dB on
average (case t = 14).



Electronics 2022, 11, 3005 15 of 23

Table 4. Accuracy of the proposed segmented FPMs and of the state-of-the-art in image
filtering application.

Approximate
FPM

Gaussian Filter Edge Detector Average

SSIM PSNR [dB] SSIM PSNR [dB] SSIM PSNR [dB]

TOSAM [42], h = 2 1.000 61.7 1.000 62.4 1.000 62.1
TOSAM [42], h = 3 1.000 63.1 1.000 64.4 1.000 63.7

DRUM [43], k = 4 0.999 54.7 1.000 55.4 0.999 55.1
DRUM [43], k = 6 0.999 56.7 1.000 61.2 0.999 58.9

AFMB [17], t = 14 0.996 41.5 0.988 33.7 0.993 37.6
AFMB [17], t = 16 0.996 40.9 0.969 32.7 0.986 36.8
AFMB [17], t = 18 0.998 39.8 0.810 27.8 0.929 33.8

DATE17 [22], L = 2 1.000 91.3 1.000 ∞ 1.000 ∞
DATE17 [22], L = 4 0.999 56.4 1.000 63.9 0.999 60.1
DATE17 [22], L = 6 0.998 47.3 0.999 50.4 0.999 48.9

SSFPM m = 12 0.999 55.5 1.000 71.9 0.999 63.7
cSSFPM m = 12 1.000 60.4 1.000 76.4 1.000 68.4
SSFPM m = 14 0.999 59.0 1.000 ∞ 1.000 ∞
cSSFPM m = 14 1.000 64.4 1.000 ∞ 1.000 ∞
SSFPM m = 16 1.000 62.6 1.000 ∞ 1.000 ∞
cSSFPM m = 16 1.000 67.0 1.000 ∞ 1.000 ∞
SSFPM m = 18 1.000 66.1 1.000 ∞ 1.000 ∞
cSSFPM m = 18 1.000 70.0 1.000 ∞ 1.000 ∞

Figure 9 shows the results of the edge detection using our SSFPMs with m = 12, 18
and the implementations from [17]. We report the negative of G for better highlighting
the computed edges. The images obtained with the proposed multipliers are practically
unchanged with respect to the exact one (as also expected from the high values of SSIM
and PSNR). The results from [17] depend on the truncation t, with a sensible degradation of
the detection in the background with t = 18 (again confirmed by the lower values of SSIM
and PSNR).
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3.3.2. JPEG Compression

The JPEG compression leverages the limit of human senses to reduce the bit-volume
of images. The compression algorithm exploits the discrete cosine transformation (DCT),
applied to disjoined blocks of size 8 × 8 pixels, and performs a quantization to the trans-
formed image with a variable resolution. The lower frequency components, more visible
to human eyes, are approximated with a finer quantization step, whereas the high fre-
quency component, less appreciable to human eyes, are approximated with a rougher
quantization step.

In addition, a quality factor Q, defined in the range [0, 100], allows us to further
modify the quantization accuracy and, as consequence, the compression, with Q = 0 that
implies hardest compression and Q = 100 that implies lightest compression. Then, the
quantized transformed image is reported in the original domain by means of the inverse
discrete cosine transformation (iDCT). In the algorithm, the DCT and the iDCT require the
multiplication between real numbers and are suitable to verify the validity of our proposal
in a concrete scenario.

For the performances assessment, we approximate the DCT and the iDCT by using the
proposed segmented FPMs and the state-of-the-art, considering the cases Q = 40, Q = 70,
and Q = 100.

Table 5 collects the results, again expressed in terms of SSIM and PSNR, obtained by
compressing three grayscale images: Lena, Cameraman, and Peppers (SSIM and PSNR are
computed relative to image compression performed with exact multiplier). In this case, we
also report the mean SSIM and the mean PSNR for each Q, obtained by processing the three
images, and indicate the overall average SSIM and PSNR in the last column of the table.
Figure 10 reports Peppers compressed images in case of segmented multipliers, Q = 40.
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Figure 10. JPEG compressed images with multiplications realized by means of proposed SSFPMs.
The quality factor is Q = 40.

As observable, our segmented multipliers ensure again a SSIM very close to 1 in all the
cases, and a PSNR that ranges between 47 dB and 63 dB on average. Increasing m allows
us to improve the quality of results, while the correction technique leads to a remarkable
PSNR increment especially for small values of m (up to +8 dB in the case m = 12, Q = 100).
In addition, performances are almost constant with respect to the quality factor Q. The
designs with [22,42,43] L = 4, 6 exhibit lower accuracy, with the average PSNR limited to
53 dB, whereas [22] L = 2 allows best compression with PSNR of 71.4 dB on average.
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Table 5. Performances of the proposed SSFPM, cSSFPM and the state-of-the-art in the JPEG compression.

Approximate
FPM

Q = 40 Q = 70 Q = 100 Average

SSIM PSNR [dB] SSIM PSNR [dB] SSIM PSNR [dB] SSIM PSNR [dB]

TOSAM [42], h = 2 0.997 48.9 0.997 49.5 0.999 53.9 0.998 50.8
TOSAM [42], h = 3 0.998 50.8 0.998 51.5 0.999 56.1 0.999 52.8

DRUM [43], k = 4 0.992 44.8 0.993 45.6 0.997 49.2 0.994 46.5
DRUM [43], k = 6 0.998 50.0 0.998 50.9 0.999 56.1 0.998 52.3

AFMB [17], t = 14 0.973 34.5 0.980 35.0 0.986 35.7 0.980 35.1
AFMB [17], t = 16 0.972 34.4 0.979 34.9 0.985 35.6 0.979 34.9
AFMB [17], t = 18 0.960 32.7 0.968 33.0 0.974 33.6 0.967 33.1

DATE17 [22], L = 2 1.000 63.9 1.000 75.5 1.000 74.7 1.000 71.4
DATE17 [22], L = 4 0.993 43.9 0.995 44.8 0.998 47.6 0.995 45.4
DATE17 [22], L = 6 0.970 34.2 0.975 34.6 0.982 35.5 0.976 34.7

SSFPM m = 12 0.995 45.6 0.997 46.9 0.999 49.7 0.997 47.4
cSSFPM m = 12 0.999 52.9 0.999 53.0 1.000 57.8 0.999 54.6
SSFPM m = 14 0.999 51.7 0.999 52.4 1.000 56.9 0.999 53.7
cSSFPM m = 14 0.999 55.4 0.999 56.7 1.000 60.2 1.000 57.4
SSFPM m = 16 0.999 54.9 0.999 56.3 1.000 60.1 1.000 57.1
cSSFPM m = 16 1.000 58.1 1.000 59.3 1.000 62.5 1.000 60.0
SSFPM m = 18 1.000 58.3 1.000 59.4 1.000 62.6 1.000 60.1
cSSFPM m = 18 1.000 62.0 1.000 62.9 1.000 64.8 1.000 63.2

3.3.3. Tone Mapping of HDR Images

As a last example, we employ the investigated multipliers for a tone mapping ap-
plication on HDR images. An HDR image exploits floating-point pixels to represent a
high dynamic range of luminance. A mapping operation is needed to properly adapt
the high dynamic range of luminance to a lower range of values, whenever requested by
the application. The algorithm devised in [44] exploits the following formula to perform
tone mapping:

Lmapped(i, j) =
L(i, j)

1 + L(i, j)
(40)

The L(i,j) is a pixel of the luminance matrix of the image, obtained by executing the
following steps:

Ltmp(i, j) = 0.27·R(i, j) + 0.67·G(i, j) + 0.06·B(i, j)
Lm = exp

(
1
N ∑ log(Ltmp(i, j))

)
L(i, j) = β

Lm
·Ltmp(i, j)

(41)

where R, G, B are the three channels of the input HDR image, N is the number of pixels in a
channel, Lm is the geometric mean of Ltmp, and β is a value in the range [0, 1].

Applying (40) allows us to properly scale the luminance since large values of L(i,j)
are normalized to 1, whereas small values of L(i,j) are practically unmodified. Then, the
channels of the original image are weighted for L(i,j) as follows:

Rout(i, j) = [L(i, j)·R(i, j)]/Lm
Gout(i, j) = [L(i, j)·G(i, j)]/Lm
Bout(i, j) = [L(i, j)·B(i, j)]/Lm

(42)

and quantized to integer values in the range [0, 255].
As in the previous demonstrations, the approximate tone mapping is obtained using

the approximate FPMs in the multiplications in (41) and (42). In our trials, we pose β = 0.5.
Table 6 collects the results of the comparison between the exact the approximate

algorithm, again expressed in terms of SSIM and PSNR, with the processed HDR images



Electronics 2022, 11, 3005 18 of 23

that are Oxford Church, Office and Bottles_small. Figure 11 depicts the result for the
Bottles_small image.

Table 6. Results for tone mapping of HDR images.

Approximate
FPM

Bottle_Small Oxford Church Office Average

SSIM PSNR [dB] SSIM PSNR [dB] SSIM PSNR [dB] SSIM PSNR [dB]

TOSAM [42], h = 2 1.000 51.4 0.999 50.4 0.999 48.4 0.999 50.1
TOSAM [42], h = 3 1.000 53.5 0.999 55.4 1.000 55.4 1.000 54.8

DRUM [43], k = 4 0.999 43.9 0.996 43.5 0.998 42.1 0.998 43.1
DRUM [43], k = 6 1.000 55.3 0.999 55.5 1.000 54.3 1.000 55.0

AFMB [17], t = 14 1.000 33.6 0.962 26.2 0.988 35.3 0.981 31.7
AFMB [17], t = 16 1.000 34.4 0.962 26.3 0.988 35.4 0.982 32.1
AFMB [17], t = 18 1.000 33.3 0.949 26.5 0.976 30.2 0.972 30.0

DATE17 [22], L = 2 1.000 73.6 1.000 72.7 1.000 72.7 1.000 73.0
DATE17 [22], L = 4 1.000 45.1 0.998 45.9 0.999 45.5 0.999 45.5
DATE17 [22], L = 6 0.995 33.0 0.981 33.0 0.987 31.9 0.988 32.6

SSFPM m = 12 1.000 47.5 0.999 45.2 0.999 46.0 0.999 46.2
cSSFPM m = 12 1.000 56.1 0.999 54.2 0.999 51.3 1.000 53.9
SSFPM m = 14 1.000 52.4 0.999 51.4 0.999 52.0 0.999 52.0
cSSFPM m = 14 1.000 58.1 1.000 60.7 1.000 56.9 1.000 58.6
SSFPM m = 16 1.000 54.8 1.000 57.2 1.000 54.6 1.000 55.6
cSSFPM m = 16 1.000 60.6 1.000 60.5 1.000 60.1 1.000 60.4
SSFPM m = 18 1.000 59.3 1.000 60.2 1.000 57.8 1.000 59.1
cSSFPM m = 18 1.000 67.1 1.000 62.5 1.000 62.9 1.000 64.2
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state-of-the-art.

In this case, the SSIM achieved with the segmented multipliers is also very close to 1,
and the PSNR ranges between 46 dB and 64 dB on average. The results are comparable
with [42,43], whereas the implementation [17,22] L = 6 exhibits lower performances (with
PSNR up to 32.6 dB on average).
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4. Discussion

The static segmentation applied to the MAA operation of (5) allows us to reduce
power, delay, and area of the FPM while preserving remarkable accuracy performances.
This is mainly due to the reduction in the input bit-width in the MAA unit. In addition, the
proposed shift-and-truncate technique allows us to realize a fused PPM for the MAA unit
with a unique CPA, with beneficial effects on the hardware performances.

At the same time, the SSFPM exhibits very good accuracy since (i) the approximation
is applied only to the mantissa computation and (ii) the employed approximation, based on
static segmentation of the fixed-point multiplier needed in mantissa computation, provides
a small relative error. Indeed, the SSM approach introduces an error only when large values
are represented, whereas small values are not approximated. This leads to good error
performances that are suitable for the implementation of a floating-point multiplier.

The multipliers that exploit [42,43] benefit from the dynamic segmentation to approxi-
mate the product Ma·Mb in (5). These solutions achieve satisfactory error performances, as
also demonstrated in the image processing applications. The error metrics are comparable
with the SSFPM, as well as the SSIM and PSNR values demonstrate the high capabilities of
these solutions. On the other hand, shifters are required between the multiplier and the
adder of the MAA, thus implying the usage of two CPAs. This leads to a worsening of the
hardware performances with respect to the SSFPM, as demonstrated by the lower power
and area savings, limited to 55% and 50%, respectively. Furthermore, the minimum Tclk is
larger due to the shifters placed between the multiplier and the adder of the MAA unit.

The FPMs with the approximation of [22] exhibit performances that strongly depend
on L, with the accuracy that worsens as L increases. Power and area reductions are limited
in the case L = 2 (35.2% and 47.5%, respectively), whereas an improvement is registered
with L = 4, 6 (up to 59.7% and 65.0%, respectively) at the cost of precision.

The proposal of [17] exhibits best hardware performances, with area and power saving
that overcome 90% in both cases. These improvements are due to the usage of an adder in
place of a multiplier for the realization of the mantissa product. In addition, leading one
detectors and barrel shifters are not used in this case since the position of the implicit bit is
always known. In any way, approximating the product with a logarithmic sum leads to a
larger error, due to logarithm approximation. In addition, the adder is also truncated for
further optimization, with a consequent accuracy loss.

As part of a joint assessment between hardware performances and accuracy, we show
the power and the area saving versus the NMED and MRED of each FPM in Figure 12.
The black dotted line indicates the Pareto Front. For NMED < 10−5 the proposed SSFPMs
overcomes [22,42,43] with L = 4, 6, exhibiting a power saving greater than 70% and an area
improvement larger than 60%. The cSSFPMs also define the Pareto front in that region of
the graph. Similar observations also apply to the case MRED < 10−2. The figures show
again that [17] performs better from a hardware point of view, but at the cost of a loss of
accuracy (NMED > 8 × 10−5 and MRED > 2 × 10−2). Similarly, [22] L = 2 has the best
accuracy, but at the cost of a degradation of power and area.

Therefore, we can conclude that our proposal offers the best trade-off between hard-
ware improvement and accuracy of results.
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5. Conclusions

In this paper we propose a novel low-power approximate floating-point multiplier,
based on static segmentation. To optimize hardware performances, the mantissa product is
first revisited as a multiply-and-add operation. In this way the implicit bit is excluded from
the computation to reduce the complexity of the multiplier, and additive logic is introduced
to recover the exact result.

Then, a segmentation scheme is applied to the mantissas, to reduce the size of the mul-
tiplier. The proposed technique leverages a segment-and-truncate approach to eliminate the
left-shift operation at the output of the multiplier. In this way, we can realize the mantissa
multiplier by means of a fused partial product matrix and a unique carry-propagate adder,
with beneficial effects on the hardware performances. In addition, a correction term is
introduced, to reduce the approximation error due to the segmentation. The accuracy of
the circuit can be accurately tailored at the design time, by acting on a single parameter, m.

Analysis of error metrics show that proposed floating-point multiplier is competitive
with the state-of-the-art for values of m in the range 12–18 (in the considered case of single-
precision floating-point format). Syntheses in 28 nm CMOS reveal a remarkable reduction
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in the power consumption and area, with best results achieved with m = 12 (up to 85% of
power saving and up to 82% of area reduction compared to exact floating-point multiplier).

Implementations of several image processing algorithms (JPEG compression, image
filtering, tone mapping of HDR images) show the effectiveness of the proposed architecture
in real applications.

By a joint analysis of electrical performances and error metrics, the proposed approxi-
mate floating-point multiplier overcomes the state-of-the-art, exhibiting the best trade-off
between hardware improvements and quality of results.
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