
Citation: Rizal, A.; Hadiyoso, S.;

Ramdani, A.Z. FPGA-Based

Implementation for Real-Time

Epileptic EEG Classification Using

Hjorth Descriptor and KNN.

Electronics 2022, 11, 3026.

https://doi.org/10.3390/

electronics11193026

Academic Editor: Jichai Jeong

Received: 4 August 2022

Accepted: 21 September 2022

Published: 23 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

FPGA-Based Implementation for Real-Time Epileptic EEG
Classification Using Hjorth Descriptor and KNN
Achmad Rizal 1,* , Sugondo Hadiyoso 2 and Ahmad Zaky Ramdani 2

1 School of Electrical Engineering, Telkom University, Bandung 40257, Indonesia
2 School of Applied Science, Telkom University, Bandung 40257, Indonesia
* Correspondence: achmadrizal@telkomuniversity.ac.id

Abstract: The EEG is one of the main medical instruments used by clinicians in the analysis and
diagnosis of epilepsy through visual observations or computers. Visual inspection is difficult, time-
consuming, and cannot be conducted in real time. Therefore, we propose a digital system for
the classification of epileptic EEG in real time on a Field Programmable Gate Array (FPGA). The
implemented digital system comprised a communication interface, feature extraction, and classifier
model functions. The Hjorth descriptor method was used for feature extraction of activity, mobility,
and complexity, with KNN was utilized as a predictor in the classification stage. The proposed system,
run on a The Zynq-7000 FPGA device, can generate up to 90.74% accuracy in normal, inter-ictal,
and ictal EEG classifications. FPGA devices provided classification results within 0.015 s. The total
memory LUT resource used was less than 10%. This system is expected to tackle problems in visual
inspection and computer processing to help detect epileptic EEG using low-cost resources while
retaining high performance and real-time implementation.

Keywords: EEG; epileptic; digital system; FPGA; real-time

1. Introduction

Epilepsy is a common brain illness caused by aberrant cell activity. It typically af-
fects more than 50 million people worldwide, most of whom live in underdeveloped
nations [1]. The electroencephalography (EEG) signal is one of the tools used by doctors
and neurologists to assess brain nerve activity, documented as spikes for the medical team
to visualize [2]. However, the prolonged visualization of EEG records by medical teams
in detecting the existence of epileptic attacks is tedious, time-consuming, and prone to
human error.

Over the years, several methods have been developed to detect and classify seizures
on the EEG to address the mentioned problem. From a signal domain perspective, EEG
signal analysis can be divided into time, frequency, and time–frequency domains. The
EEG signal does not require a transformation process in time domain signal analysis [3,4].
The characteristics often used in the time domain are statistical, such as mean, variance,
skewness, kurtosis, entropy, and energy. Fourier transform is widely used to convert
EEG signals from the time to the frequency domain by determining characteristics such
as square frequency, mean frequency, etc. [5]. Another tool often used is Hilbert marginal
spectrum analysis [6,7]. Short-time Fourier transform (STFT) has become the most popular
method for transforming signals from the time domain to the time–frequency domain [8,9].
Another study simulated epilepsy detection on long-term EEG using multimodal feature
extraction in the time domain including signal complexity and first and second-order
statistics [10]. Feature extraction in the time domain using a signal complexity approach
is also often performed on multiscale signals, as reported in the literature [11–13]. Most
studies related to the simulation of classification or detection of epileptic EEG yield high
accuracy. However, the various techniques developed have only been realized in the form
of software.

Electronics 2022, 11, 3026. https://doi.org/10.3390/electronics11193026 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11193026
https://doi.org/10.3390/electronics11193026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9712-965X
https://doi.org/10.3390/electronics11193026
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11193026?type=check_update&version=1

Electronics 2022, 11, 3026 2 of 15

Several studies were conducted to build a real-time EEG processing system, and one
uses a field-programmable gate array (FPGA) [14]. Sundaram et al. developed median
and moving average filters for pre-processing EEG signals on FPGAs (Virtex-5). The
test results showed that the median filter provided the best performance regarding area,
power, and delay. Wöhrle et al. used Xilinx Zynq to process EEG and EMG signals for
movement prediction [15]. The research accuracy obtained from fixed-point computation
is not significantly different from a PC comprising double-precision floating-point. The
advantages of using FPGA are cost-effectiveness, low power, and the possibility to build
an embedded system [16]. There are still many developments in implementing EEG signal
processing methods on FPGA.

One application of real-time EEG signal processing is for the detection of epilepsy.
Saric et al. used continuous wavelet transform (CWT) and MLP-ANN to detect epilepsy
based on EEG signals [17]. The method was implemented using FFGA and tested using
the Temple University Hospital Seizure Detection Corpus (TUH EEG Corpus) database.
The highest accuracy reached 95.14% using the configuration (5-12-3) on the MLP-ANN.
Jose et al. used an FPGA implementation of EEG epileptic detection using extreme learning
(ELM) [18]. The EEG signal was separated into several bands, namely gamma, beta,
alpha, theta, and delta brain rhythms, and modeled by linear prediction theory. Another
method to implement epilepsy detection using FPGA is variational mode decomposition
(VMD) [19]. This study used reduced deep convolutional neural networks (RDCNN) and
multi-kernel random vector functional link networks (MKRVFLN) as classifiers. In the
studies mentioned above, the focus of the research tends to be on classification methods
with advanced feature extraction methods. Simple methods without signal transformation
have not been thoroughly explored.

In this research, a real-time EEG epilepsy classification system was realized using an
FPGA and a simple method known as the Hjorth descriptor, which measures the complexity
of the signal in the time domain [20]. This method does not require a signal transformation
process, indicating that the computational load can be reduced. For classification, we
used KNN because no training process is needed to build the model as in other classifiers.
KNN only requires training data to calculate the distance from the test data. Thus, the
implementation process becomes more straightforward. With the implementation of the
system in hardware, it is possible to realize a portable device for classifying EEG epilepsy
signals in the future. The designed system is expected to have high accuracy with acceptable
processing delay.

2. Material and Methods
2.1. Dataset Description

The proposed method was tested using the well-known Bonn University EEG database,
which was downloaded for free at https://www.upf.edu/web/ntsa/downloads/ (ac-
cessed on 20 April 2022) [21]. This database is divided into five sections, namely A, B, C, D,
and E, with each subset containing 100 EEG signals saved as a text document (.txt). Each
EEG signal is 23.6 s long and comprises 4097 samples collected at a rate of 173.61 Hz. The A
and B subsets represent five healthy subjects with their eyes open and closed, respectively.
The C and D subsets are made up of five individuals who had fully recovered from seizure
control following epileptic surgery. The EEG signals with epileptic seizure events detected
in the epileptogenic zone make up subset E. The signals are normal in the A and B subsets,
interictal in C and D, and ictal in E.

2.2. Feature Extraction

The Hjorth descriptor was proposed for measuring the time domain EEG signal’s
dynamic [22]. It has also been used as a marker in another biological signal, such as
electromyogram (EMG), electrocardiogram (ECG) [23], and lung sound processing [24].
This method has important parameters, namely activity, mobility, and complexity. The
activity measures the signal’s strength, as well as the irregularity of the time function

https://www.upf.edu/web/ntsa/downloads/

Electronics 2022, 11, 3026 3 of 15

theoretically. The activity is defined as the variance of time function σx
2, which can be

described as the square of the average distance from each sample to its mean.
The mobility parameter represents the proportion of standard deviation of the power

spectrum. This is defined as the division result of variance of the first derivative of the
signal x(n) and the variance of the signal x(n). Lastly, the complexity parameter represents
the change in frequency calculated by dividing the standard deviation comparison between
the second and first derivative, and the first derivative and the original signal.

The Hjorth parameter equation is shown in Equations (1)–(3) [20].

Activity = σx
2 =

∑N−1
n=1 (x(n)− x)2

N
(1)

Mobility =
σ′2x
σx2 (2)

Complexity =
σx′′/σx′

σx′/σx
(3)

2.3. KNN Classifier

K-Nearest Neighbor (KNN) is a classification method that uses the distance of test and
training data to determine the K values [25]. The value of K is usually odd to avoid the same
number of labels in the case of binary classification [26]. One of the essential components of
the KNN method is distance calculation, which often uses include Euclidean, Manhattan,
and Mahalanobis [27]. In this research, we implemented this calculation method using the
Euclidean method.

2.4. System Model

This research focuses on the real-time implementation of the EEG classification system
according to the algorithm described earlier. The EEG epileptic classification system is
implemented on FPGA using VHDL code, which was selected based on the need for high
parallel computation for the KNN classifier process, specifically for many comparison sam-
ples. Hardware architecture design has become crucial to determining system performance,
specifically in supporting larger-scale development in the future, which will increase the
number of calculations required. Therefore, the proposed architecture is a scalable and
source-efficient system capable of accommodating further development using more com-
parative datasets in the KNN process. With relatively slow data, the FPGA’s flexibility and
parallel computation capability will play an important role in accommodating the entire
process in real time.

Figure 1 shows the workflow of the designed system, which indicates the gradual pro-
cess used by EEG signals to receive data digitally. The data collected will be accommodated
in a series called frames, which is also determined according to the dataset size. Further-
more, the calculation process for each Hjorth parameter comprising activity, mobility, and
complexity is conducted in the frame. These three features are used in the classification stage
to determine query labels, categorized in three classes, namely normal, ictal, and interictal.

The implemented system is divided into two main processing parts, namely signal for
feature extraction and KNN core as a classifier. The input from the system is integrated
with the serial UART as the input port during the experiment verification process. The
EEG signal received through the UART is then de-serialized into signed fixed-point data
with a width of 16 bits. These sampling data are processed directly to the feature extraction
process to obtain the Hjorth parameters, with each extracting process cycle carried out
in real time for every 4096 samples. The process of controlling the speed of processed
data is dependent on the sender, such as the EEG sensor or the PC. There is no control
on the hardware that limits data reception according to the frequency received. However,
this is not a problem, because the feature extraction performed by calculating the Hjorth

Electronics 2022, 11, 3026 4 of 15

parameter is not a function related to the frequency response. Figure 2 shows the training
phase on the PC and the system implementation on FPGA.

Electronics 2022, 11, x FOR PEER REVIEW 4 of 15

Figure 1. The complete system flowchart for the proposed real-time epileptic EEG classification.

The implemented system is divided into two main processing parts, namely signal
for feature extraction and KNN core as a classifier. The input from the system is integrated
with the serial UART as the input port during the experiment verification process. The
EEG signal received through the UART is then de-serialized into signed fixed-point data
with a width of 16 bits. These sampling data are processed directly to the feature
extraction process to obtain the Hjorth parameters, with each extracting process cycle
carried out in real time for every 4096 samples. The process of controlling the speed of
processed data is dependent on the sender, such as the EEG sensor or the PC. There is no
control on the hardware that limits data reception according to the frequency received.
However, this is not a problem, because the feature extraction performed by calculating
the Hjorth parameter is not a function related to the frequency response. Figure 2 shows
the training phase on the PC and the system implementation on FPGA.

Figure 2. System blocks consist of three main parts: PC for the training stage, digital EEG as the
alternative input provider, and FPGA as the platform for the algorithm implementation.

The three Hjorth parameters that have been described previously are the output of
this feature extraction block. Furthermore, the extracted features are input from the KNN
core and then compared with 192 samples from preliminary training, divided into 3
categories with 64 each. This implementation compares the results of using different K
values to determine the level of accuracy of this system. The output is the classification of
the system categorized into 3 kinds. Training data are stored as pre-synthesis memory.
For each classification cycle, extracted features obtained from the 4096 points are

Figure 1. The complete system flowchart for the proposed real-time epileptic EEG classification.

Electronics 2022, 11, x FOR PEER REVIEW 4 of 15

Figure 1. The complete system flowchart for the proposed real-time epileptic EEG classification.

The implemented system is divided into two main processing parts, namely signal
for feature extraction and KNN core as a classifier. The input from the system is integrated
with the serial UART as the input port during the experiment verification process. The
EEG signal received through the UART is then de-serialized into signed fixed-point data
with a width of 16 bits. These sampling data are processed directly to the feature
extraction process to obtain the Hjorth parameters, with each extracting process cycle
carried out in real time for every 4096 samples. The process of controlling the speed of
processed data is dependent on the sender, such as the EEG sensor or the PC. There is no
control on the hardware that limits data reception according to the frequency received.
However, this is not a problem, because the feature extraction performed by calculating
the Hjorth parameter is not a function related to the frequency response. Figure 2 shows
the training phase on the PC and the system implementation on FPGA.

Figure 2. System blocks consist of three main parts: PC for the training stage, digital EEG as the
alternative input provider, and FPGA as the platform for the algorithm implementation.

The three Hjorth parameters that have been described previously are the output of
this feature extraction block. Furthermore, the extracted features are input from the KNN
core and then compared with 192 samples from preliminary training, divided into 3
categories with 64 each. This implementation compares the results of using different K
values to determine the level of accuracy of this system. The output is the classification of
the system categorized into 3 kinds. Training data are stored as pre-synthesis memory.
For each classification cycle, extracted features obtained from the 4096 points are

Figure 2. System blocks consist of three main parts: PC for the training stage, digital EEG as the
alternative input provider, and FPGA as the platform for the algorithm implementation.

The three Hjorth parameters that have been described previously are the output of this
feature extraction block. Furthermore, the extracted features are input from the KNN core
and then compared with 192 samples from preliminary training, divided into 3 categories
with 64 each. This implementation compares the results of using different K values to
determine the level of accuracy of this system. The output is the classification of the system
categorized into 3 kinds. Training data are stored as pre-synthesis memory. For each
classification cycle, extracted features obtained from the 4096 points are compared to the
stored training data using a brute force scheme. This is carried out by considering the
very slow sampling frequency compared to the system clock speed and the small number
of samples.

3. FPGA Hardware Architecture
3.1. Feature Extraction Datapath Architecture

The Hjorth parameter consists of activity, mobility, and complexity, calculating signal
power, average signal frequency, and change in frequency, respectively. In calculating

Electronics 2022, 11, 3026 5 of 15

the three parameters, Hjorth uses the variance parameter to ensure the computational
complexity is low and still obtains the frequency spectrum information contained in the
EEG signal. The complete equation is shown in Equations (1)–(3), and its transformation
into hardware architecture is presented in Figure 3.

Electronics 2022, 11, x FOR PEER REVIEW 5 of 15

compared to the stored training data using a brute force scheme. This is carried out by
considering the very slow sampling frequency compared to the system clock speed and
the small number of samples.

3. FPGA Hardware Architecture
3.1. Feature Extraction Datapath Architecture

The Hjorth parameter consists of activity, mobility, and complexity, calculating
signal power, average signal frequency, and change in frequency, respectively. In
calculating the three parameters, Hjorth uses the variance parameter to ensure the
computational complexity is low and still obtains the frequency spectrum information
contained in the EEG signal. The complete equation is shown in Equations (1)–(3), and its
transformation into hardware architecture is presented in Figure 3.

Figure 3. Feature extraction top level architecture to process EEG data input into three Hjorth
parameters.

The equations illustrate that the main parameters of this algorithm are extracting the
variance and mean values, followed by an additional division operation. Furthermore,
these two parameters can be calculated by performing iterative addition of received value,
followed by division operation to determine the mean. Iterative addition is also again
performed for the distance of each value by squaring the subtraction of each value with
the previously calculated mean. Although this approach is mathematically
straightforward, it is impractical to implement in real-time systems where data run
continuously and calculations can only be performed after the stream ends. It is even more
complicated to implement in an FPGA because it requires memory implementation to
buffer all the data after calculating the mean and re-reading to determine the variance.
Therefore, to implement the algorithm, the statistical parameters need to be calculated as
running mean and variance using Equation (4). 𝜎௫ଶ = ∑ 𝑥(𝑛)ଶ ேିଵ௡ୀଵ𝑁 − (∑ 𝑥(𝑛)ேିଵ௡ୀଵ)ଶ𝑁 (4)

Signal processing applied to EEG for the feature extraction is not in the form of a filter
with a certain frequency response, but it comprises differential and mean calculation;
hence, no specific clock frequency is required in the implementation system. The
calculation of the required parameters will focus on the amount of the incoming value for
each sample, according to the sampling rate received by the system.

Logic devices such as FPGA implement the system square root using a separate
algorithm developed by Putra [28]. Incoming sampling data will be given a delay in the
form of a shift register to calculate the first and second data differential. Furthermore, the
mean is calculated in a separate component using a total of 4096 data, divided to obtain
the mean value, selected to minimize the complexity of the division process. Figure 4
shows an FPGA implementation for calculating variance.

Figure 3. Feature extraction top level architecture to process EEG data input into three Hjorth
parameters.

The equations illustrate that the main parameters of this algorithm are extracting the
variance and mean values, followed by an additional division operation. Furthermore,
these two parameters can be calculated by performing iterative addition of received value,
followed by division operation to determine the mean. Iterative addition is also again
performed for the distance of each value by squaring the subtraction of each value with the
previously calculated mean. Although this approach is mathematically straightforward,
it is impractical to implement in real-time systems where data run continuously and
calculations can only be performed after the stream ends. It is even more complicated
to implement in an FPGA because it requires memory implementation to buffer all the
data after calculating the mean and re-reading to determine the variance. Therefore, to
implement the algorithm, the statistical parameters need to be calculated as running mean
and variance using Equation (4).

σx
2 =

∑N−1
n=1 x(n)2

N
−

(
∑N−1

n=1 x(n)
)2

N
(4)

Signal processing applied to EEG for the feature extraction is not in the form of a filter
with a certain frequency response, but it comprises differential and mean calculation; hence,
no specific clock frequency is required in the implementation system. The calculation of
the required parameters will focus on the amount of the incoming value for each sample,
according to the sampling rate received by the system.

Logic devices such as FPGA implement the system square root using a separate
algorithm developed by Putra [28]. Incoming sampling data will be given a delay in the
form of a shift register to calculate the first and second data differential. Furthermore, the
mean is calculated in a separate component using a total of 4096 data, divided to obtain the
mean value, selected to minimize the complexity of the division process. Figure 4 shows an
FPGA implementation for calculating variance.

Electronics 2022, 11, 3026 6 of 15
Electronics 2022, 11, x FOR PEER REVIEW 6 of 15

Figure 4. Variance calculation block implemented on the proposed system, designed to be able run
on the real-time application.

3.2. KNN Processor Architecture
The KNN algorithm calculates the distances between the query and all the

predefined labeled samples. It continues with selecting the specified number of closest
examples, then labels the query to determine the most frequent label. The sample data
have four defined objects, identity, activity, complexity, and mobility values, as well as
classification. The first three are used for the Euclidean distance calculation, while the last
is for class determination. By labeling the Hjorth parameter as x, y, and z, the Euclidean
distance between the input signal and all training data is calculated using Equation (5).
The subindex t indicates training data, while i is the training set array index. 𝑑(𝑖) = ඥ(𝑥 − 𝑥௧(𝑖))ଶ + (𝑦 − 𝑦௧(𝑖))ଶ + (𝑧 − 𝑧௧(𝑖))ଶ (5)

The simplest version to implement the KNN algorithm is based on the brute force
mechanism, with other techniques applied to improve performance efficiency using K-D
Tree [29]. This implementation is carried out using a small dataset and an FPGA which
allows parallel calculations. However, for flexibility and calculation of source
optimization on performance, the KNN core is still designed to be configurable,
specifically for the number of PEs that work in parallel. The implementation of the
distance calculation is presented in Figure 5.

Figure 5. Distance calculation block used to calculate distance in KNN process; all the blocks are
implemented using primitive logic to support further development on different KNN
configurations.

Figure 4. Variance calculation block implemented on the proposed system, designed to be able run
on the real-time application.

3.2. KNN Processor Architecture

The KNN algorithm calculates the distances between the query and all the predefined
labeled samples. It continues with selecting the specified number of closest examples,
then labels the query to determine the most frequent label. The sample data have four
defined objects, identity, activity, complexity, and mobility values, as well as classification.
The first three are used for the Euclidean distance calculation, while the last is for class
determination. By labeling the Hjorth parameter as x, y, and z, the Euclidean distance
between the input signal and all training data is calculated using Equation (5). The subindex
t indicates training data, while i is the training set array index.

d(i) =
√
(x− xt(i))

2 + (y− yt(i))
2 + (z− zt(i))

2 (5)

The simplest version to implement the KNN algorithm is based on the brute force
mechanism, with other techniques applied to improve performance efficiency using K-D
Tree [29]. This implementation is carried out using a small dataset and an FPGA which
allows parallel calculations. However, for flexibility and calculation of source optimization
on performance, the KNN core is still designed to be configurable, specifically for the
number of PEs that work in parallel. The implementation of the distance calculation is
presented in Figure 5.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 15

Figure 4. Variance calculation block implemented on the proposed system, designed to be able run
on the real-time application.

3.2. KNN Processor Architecture
The KNN algorithm calculates the distances between the query and all the

predefined labeled samples. It continues with selecting the specified number of closest
examples, then labels the query to determine the most frequent label. The sample data
have four defined objects, identity, activity, complexity, and mobility values, as well as
classification. The first three are used for the Euclidean distance calculation, while the last
is for class determination. By labeling the Hjorth parameter as x, y, and z, the Euclidean
distance between the input signal and all training data is calculated using Equation (5).
The subindex t indicates training data, while i is the training set array index. 𝑑(𝑖) = ඥ(𝑥 − 𝑥௧(𝑖))ଶ + (𝑦 − 𝑦௧(𝑖))ଶ + (𝑧 − 𝑧௧(𝑖))ଶ (5)

The simplest version to implement the KNN algorithm is based on the brute force
mechanism, with other techniques applied to improve performance efficiency using K-D
Tree [29]. This implementation is carried out using a small dataset and an FPGA which
allows parallel calculations. However, for flexibility and calculation of source
optimization on performance, the KNN core is still designed to be configurable,
specifically for the number of PEs that work in parallel. The implementation of the
distance calculation is presented in Figure 5.

Figure 5. Distance calculation block used to calculate distance in KNN process; all the blocks are
implemented using primitive logic to support further development on different KNN
configurations.

Figure 5. Distance calculation block used to calculate distance in KNN process; all the blocks are
implemented using primitive logic to support further development on different KNN configurations.

Electronics 2022, 11, 3026 7 of 15

Furthermore, after the entire distance calculation process is completed, the samples
are sorted based on the closest distance. During this KNN process, each sample is seen as
an object with a class identity. Sorting is applied only to nine samples, with the minimum
distance sorted by identifying its class. The closest samples in the experiment session also
act as a determinant according to the number of K of the KNN to be used, such as 1, 3, 5,
7, or 9. On the hardware side, the sorting process is carried out on nine samples with a
minimum distance, with a difference in the samples involved for decision making. Figure 6
shows the KNN architecture implemented in FPGA.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 15

Furthermore, after the entire distance calculation process is completed, the samples
are sorted based on the closest distance. During this KNN process, each sample is seen as
an object with a class identity. Sorting is applied only to nine samples, with the minimum
distance sorted by identifying its class. The closest samples in the experiment session also
act as a determinant according to the number of K of the KNN to be used, such as 1, 3, 5,
7, or 9. On the hardware side, the sorting process is carried out on nine samples with a
minimum distance, with a difference in the samples involved for decision making. Figure
6 shows the KNN architecture implemented in FPGA.

Figure 6. KNN top-level architecture implemented on the proposed system where the Hjorth
parameters from EEG input are compared to saved data models and sorted for the maximum
likelihood class.

In KNN, one factor determining the length of the process is the number of pre-
calculated samples used in the distance calculator, which equals 192. This means that 192
distance calculations are needed. The more processing elements used, the less time needed
to complete the function of the KNN with more logic cells. In Figure 6, an alternative
implementation comprising a single processing element was used to process all 192
operations. A counter will act as a scheduler in this implementation scheme by
sequentially providing an address to RAM used to calculate the sample. After calculating
the distance, the process moves to the sorter stages, where the results are compared and
sorted.

3.3. Simulation and Verification
After the described hardware architecture was translated into VHDL, the simulation

was conducted using Modelsim software. This was followed by manually verifying the
calculation results of each feature obtained. After each verified function implementation,
simulations were conducted to perform timing analysis to determine the number of clock
cycles required for each process.

A snippet of the simulation results with a clock frequency of 100 MHz is shown in
Figure 7. The feature extraction process starts from the entire EEG data stream. As many
as 4096 points are obtained and marked with the first cursor line. It ends at the second
cursor, which requires 960 ns or 96 clock cycles. The next process is calculating the
distance from all samples, completed after 10,505 cycles marked with the third cursor.
This is the longest processing phase, where 192 distances were calculated, averaging 55
clock cycles to obtain distance results for each sample. After all the distances were
calculated, the sorting process continued until the system produced a valid decision at 383
clock cycles. From the waveform shown in Figure 7, it can be seen that nine signals with
different colors are the result of sorting from the calculated distance. This set is the nearest
neighbor, which has two value components, namely the distance and the origin of the
EEG class. These nine values are options used in determining the results of KNN based
on the configuration of the number of K selected.

Figure 6. KNN top-level architecture implemented on the proposed system where the Hjorth
parameters from EEG input are compared to saved data models and sorted for the maximum
likelihood class.

In KNN, one factor determining the length of the process is the number of pre-
calculated samples used in the distance calculator, which equals 192. This means that
192 distance calculations are needed. The more processing elements used, the less time
needed to complete the function of the KNN with more logic cells. In Figure 6, an alter-
native implementation comprising a single processing element was used to process all
192 operations. A counter will act as a scheduler in this implementation scheme by sequen-
tially providing an address to RAM used to calculate the sample. After calculating the
distance, the process moves to the sorter stages, where the results are compared and sorted.

3.3. Simulation and Verification

After the described hardware architecture was translated into VHDL, the simulation
was conducted using Modelsim software. This was followed by manually verifying the
calculation results of each feature obtained. After each verified function implementation,
simulations were conducted to perform timing analysis to determine the number of clock
cycles required for each process.

A snippet of the simulation results with a clock frequency of 100 MHz is shown in
Figure 7. The feature extraction process starts from the entire EEG data stream. As many
as 4096 points are obtained and marked with the first cursor line. It ends at the second
cursor, which requires 960 ns or 96 clock cycles. The next process is calculating the distance
from all samples, completed after 10,505 cycles marked with the third cursor. This is the
longest processing phase, where 192 distances were calculated, averaging 55 clock cycles to
obtain distance results for each sample. After all the distances were calculated, the sorting
process continued until the system produced a valid decision at 383 clock cycles. From the
waveform shown in Figure 7, it can be seen that nine signals with different colors are the
result of sorting from the calculated distance. This set is the nearest neighbor, which has
two value components, namely the distance and the origin of the EEG class. These nine
values are options used in determining the results of KNN based on the configuration of
the number of K selected.

Electronics 2022, 11, 3026 8 of 15Electronics 2022, 11, x FOR PEER REVIEW 8 of 15

Figure 7. Waveform simulation results for one of the ictal samples; the rainbow waveforms show
the closest saved models to the input signal where its values are distance and class (4 = ictal, 2 =
normal).

4. FPGA Implementation
4.1. Experimental Setup

After defining the hardware architecture, the design was translated into VHDL code
and synthesized using Xilinx Vivado 2018.2. Xilinx Zynq XC7Z030SBG485 was selected as
the implementation device target. The Zynq-7000 series is a low-cost All-Programmable
System-on-Chip device from Xilinx comprising two main parts, programmable logic (PL)
and programmable system (PS), which are equipped ARM Cortex-A9 cores. This
algorithm was implemented in the PL section, where the PS was only used to simplify the
real-time testing experiment process. PS functions as an interface between the system and
external devices that transmit EEG signal data, which in this experiment is a PC run
periodically by a simple Python script via UART. Figure 8 shows the final block design
where the experiment runs.

Figure 7. Waveform simulation results for one of the ictal samples; the rainbow waveforms show the
closest saved models to the input signal where its values are distance and class (4 = ictal, 2 = normal).

4. FPGA Implementation
4.1. Experimental Setup

After defining the hardware architecture, the design was translated into VHDL code
and synthesized using Xilinx Vivado 2018.2. Xilinx Zynq XC7Z030SBG485 was selected as
the implementation device target. The Zynq-7000 series is a low-cost All-Programmable
System-on-Chip device from Xilinx comprising two main parts, programmable logic (PL)
and programmable system (PS), which are equipped ARM Cortex-A9 cores. This algorithm
was implemented in the PL section, where the PS was only used to simplify the real-time
testing experiment process. PS functions as an interface between the system and external
devices that transmit EEG signal data, which in this experiment is a PC run periodically
by a simple Python script via UART. Figure 8 shows the final block design where the
experiment runs.

The initial part of this system is an interface in the form of a UART, and then the data
are forwarded to the deserialization mechanism and collected with a width of 16 bits. This
means that it takes two 8-bit data transfer processes through the UART to obtain one data
sample. The use of UART was selected because the data from EEG are relatively very slow,
and capable of providing the flexibility of data sources. In writing this paper, verification
was carried out using offline data from a PC; hence, UART is considered to be an easy
communication process.

Electronics 2022, 11, 3026 9 of 15Electronics 2022, 11, x FOR PEER REVIEW 9 of 15

Figure 8. Top-level system in Vivado implementation; the proposed algorithm is integrated with
other blocks such as ROM and the Zynq processor for further development.

The initial part of this system is an interface in the form of a UART, and then the data
are forwarded to the deserialization mechanism and collected with a width of 16 bits. This
means that it takes two 8-bit data transfer processes through the UART to obtain one data
sample. The use of UART was selected because the data from EEG are relatively very
slow, and capable of providing the flexibility of data sources. In writing this paper,
verification was carried out using offline data from a PC; hence, UART is considered to
be an easy communication process.

4.2. Resource Consumption
In this experiment, the EEG sample data used were quantized into 12 bits with a

range of −2048 to 2048. The data received by PS through UART were combined for every
two incoming 16 signed fixed-point bits. Furthermore, PS was used to de-serialize and
issue the data to the implemented design in the PL section through GPIO, with another 1
bit as a valid data signal. For each operation performed on this proposed design, a 32-bit
fixed-point system was also implemented. For comparison, in the KNN section, several
variations of the number of cores used were conducted, resulting in the use of different
logic resources, as shown in Figure 9.

Figure 9. Logic source used for the proposed system implementation on Xilinx Zynq
XC7Z030SBG485.

Figure 8. Top-level system in Vivado implementation; the proposed algorithm is integrated with
other blocks such as ROM and the Zynq processor for further development.

4.2. Resource Consumption

In this experiment, the EEG sample data used were quantized into 12 bits with a range
of −2048 to 2048. The data received by PS through UART were combined for every two
incoming 16 signed fixed-point bits. Furthermore, PS was used to de-serialize and issue
the data to the implemented design in the PL section through GPIO, with another 1 bit
as a valid data signal. For each operation performed on this proposed design, a 32-bit
fixed-point system was also implemented. For comparison, in the KNN section, several
variations of the number of cores used were conducted, resulting in the use of different
logic resources, as shown in Figure 9.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 15

Figure 8. Top-level system in Vivado implementation; the proposed algorithm is integrated with
other blocks such as ROM and the Zynq processor for further development.

The initial part of this system is an interface in the form of a UART, and then the data
are forwarded to the deserialization mechanism and collected with a width of 16 bits. This
means that it takes two 8-bit data transfer processes through the UART to obtain one data
sample. The use of UART was selected because the data from EEG are relatively very
slow, and capable of providing the flexibility of data sources. In writing this paper,
verification was carried out using offline data from a PC; hence, UART is considered to
be an easy communication process.

4.2. Resource Consumption
In this experiment, the EEG sample data used were quantized into 12 bits with a

range of −2048 to 2048. The data received by PS through UART were combined for every
two incoming 16 signed fixed-point bits. Furthermore, PS was used to de-serialize and
issue the data to the implemented design in the PL section through GPIO, with another 1
bit as a valid data signal. For each operation performed on this proposed design, a 32-bit
fixed-point system was also implemented. For comparison, in the KNN section, several
variations of the number of cores used were conducted, resulting in the use of different
logic resources, as shown in Figure 9.

Figure 9. Logic source used for the proposed system implementation on Xilinx Zynq
XC7Z030SBG485.

Figure 9. Logic source used for the proposed system implementation on Xilinx Zynq XC7Z030SBG485.

The system discussed is focused on the entity named eeg_classification, which is
separated again into two main parts named EXTR for the feature extraction and KNN1 for
the KNN core. The total logic source required for the main block is less than 10% of the
total slice and registers available, where the KNN part takes the majority of components.

Electronics 2022, 11, 3026 10 of 15

5. Results and Discussion
5.1. Dataset

The dataset used to conduct this research consists of 300 signals of normal, ictal,
and interictal categories, with 100 signals for each class. Furthermore, each category was
randomly divided into 64 KNN train and 36 test data. There are three features extracted
from each part of the sample in the form of activity, complexity, and mobility, which are
calculated first through the Python script. Figure 10 shows a comparison of the calculation
results between two EEGs with varying values for each feature. Samples with file names
starting with S, N, and O are EEGs belonging to the interictal, ictal, and normal categories,
respectively.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 15

The system discussed is focused on the entity named eeg_classification, which is
separated again into two main parts named EXTR for the feature extraction and KNN1
for the KNN core. The total logic source required for the main block is less than 10% of
the total slice and registers available, where the KNN part takes the majority of
components.

5. Results and Discussion
5.1. Dataset

The dataset used to conduct this research consists of 300 signals of normal, ictal, and
interictal categories, with 100 signals for each class. Furthermore, each category was
randomly divided into 64 KNN train and 36 test data. There are three features extracted
from each part of the sample in the form of activity, complexity, and mobility, which are
calculated first through the Python script. Figure 10 shows a comparison of the calculation
results between two EEGs with varying values for each feature. Samples with file names
starting with S, N, and O are EEGs belonging to the interictal, ictal, and normal categories,
respectively.

Figure 10. Comparison results for two sample files from two different classes, ictal and interictal.
Interictal signals normally have lower mobility but higher complexity values compared to ictal.

Within Bonn University’s EEG database, there are generally three data classes:
normal, interictal, and ictal. In more detail, there are two measurement conditions for the
normal dataset: the eyes are open (dataset Z), and the eyes are closed (dataset O).
Meanwhile, in the interictal dataset, there are also two measurement methods:
measurements using an intracranial electrode (dataset N) and measurements in the
epileptogenic zone (set F). There is only one dataset for the ictal condition (dataset S).
Because in principle, there are only three conditions, we used only three classes of data in
this study. Empirically, classification results using five data classes will produce lower
accuracy compared to using three data classes [30].

Figure 11 shows how the distribution of the calculation results for each feature was
used to group each category. It can be seen that complexity has the most extensive range
of values, around 0–1.4, while mobility and complexity have relatively more minor ranges
of 0–0.6 and 0–0.1, respectively. Based on the consideration of the value range, the feature
sample data are stored on RAM in a 32-bit fixed point format with a resolution of 1/1024.

Figure 10. Comparison results for two sample files from two different classes, ictal and interictal.
Interictal signals normally have lower mobility but higher complexity values compared to ictal.

Within Bonn University’s EEG database, there are generally three data classes: normal,
interictal, and ictal. In more detail, there are two measurement conditions for the normal
dataset: the eyes are open (dataset Z), and the eyes are closed (dataset O). Meanwhile, in
the interictal dataset, there are also two measurement methods: measurements using an
intracranial electrode (dataset N) and measurements in the epileptogenic zone (set F). There
is only one dataset for the ictal condition (dataset S). Because in principle, there are only
three conditions, we used only three classes of data in this study. Empirically, classification
results using five data classes will produce lower accuracy compared to using three data
classes [30].

Figure 11 shows how the distribution of the calculation results for each feature was
used to group each category. It can be seen that complexity has the most extensive range of
values, around 0–1.4, while mobility and complexity have relatively more minor ranges
of 0–0.6 and 0–0.1, respectively. Based on the consideration of the value range, the feature
sample data are stored on RAM in a 32-bit fixed point format with a resolution of 1/1024.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 15

Figure 11. Distribution of each feature calculation result shows the different characteristics from
each EEG signal class.

Performance evaluation is also conducted by comparing activity, mobility, and
complexity calculation results in VHDL and Python. Table 1 shows a sample comparison
of Hjorth parameters on several EEG signals.

Table 1. Classification results for each K.

Configuration
Correct Result

Accuracy
Ictal Interictal Normal Total

K = 1 30 33 29 92 85.18%
K = 3 30 34 32 96 88.89%
K = 5 31 34 31 96 88.89%
K = 7 31 35 31 97 89.81%
K = 9 31 35 32 98 90.74%

5.2. Comparison of Hjorth Parameter Calculations between VHDL and Python
The difference in calculation results between the Python model and algorithm

implementation on VHDL is shown in Figure 12. The horizontal axis shows the error
distribution values calculated using the Python model calculation as presented in
Equation (6): 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = |𝑉𝐻𝐷𝐿 𝑟𝑒𝑠𝑢𝑙𝑡 − 𝑃𝑦𝑡ℎ𝑜𝑛 𝑀𝑜𝑑𝑒𝑙|𝑃𝑦𝑡ℎ𝑜𝑛 𝑀𝑜𝑑𝑒𝑙 × 100% (6)

Figure 12. Distribution of calculation error of Hjorth parameter between VHDL and Python.
Complexity value has the longest calculation path, resulting in a higher error calculation rate.

This calculation error is caused by the use of fixed points in the implementation,
which has a limited range of fractional values rounded off from division and square root

Figure 11. Distribution of each feature calculation result shows the different characteristics from each
EEG signal class.

Electronics 2022, 11, 3026 11 of 15

Performance evaluation is also conducted by comparing activity, mobility, and com-
plexity calculation results in VHDL and Python. Table 1 shows a sample comparison of
Hjorth parameters on several EEG signals.

Table 1. Classification results for each K.

Configuration
Correct Result

Accuracy
Ictal Interictal Normal Total

K = 1 30 33 29 92 85.18%

K = 3 30 34 32 96 88.89%

K = 5 31 34 31 96 88.89%

K = 7 31 35 31 97 89.81%

K = 9 31 35 32 98 90.74%

5.2. Comparison of Hjorth Parameter Calculations between VHDL and Python

The difference in calculation results between the Python model and algorithm imple-
mentation on VHDL is shown in Figure 12. The horizontal axis shows the error distribution
values calculated using the Python model calculation as presented in Equation (6):

Error Rate =
|VHDL result− Python Model|

Python Model
× 100% (6)

Electronics 2022, 11, x FOR PEER REVIEW 11 of 15

Figure 11. Distribution of each feature calculation result shows the different characteristics from
each EEG signal class.

Performance evaluation is also conducted by comparing activity, mobility, and
complexity calculation results in VHDL and Python. Table 1 shows a sample comparison
of Hjorth parameters on several EEG signals.

Table 1. Classification results for each K.

Configuration
Correct Result

Accuracy
Ictal Interictal Normal Total

K = 1 30 33 29 92 85.18%
K = 3 30 34 32 96 88.89%
K = 5 31 34 31 96 88.89%
K = 7 31 35 31 97 89.81%
K = 9 31 35 32 98 90.74%

5.2. Comparison of Hjorth Parameter Calculations between VHDL and Python
The difference in calculation results between the Python model and algorithm

implementation on VHDL is shown in Figure 12. The horizontal axis shows the error
distribution values calculated using the Python model calculation as presented in
Equation (6): 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = |𝑉𝐻𝐷𝐿 𝑟𝑒𝑠𝑢𝑙𝑡 − 𝑃𝑦𝑡ℎ𝑜𝑛 𝑀𝑜𝑑𝑒𝑙|𝑃𝑦𝑡ℎ𝑜𝑛 𝑀𝑜𝑑𝑒𝑙 × 100% (6)

Figure 12. Distribution of calculation error of Hjorth parameter between VHDL and Python.
Complexity value has the longest calculation path, resulting in a higher error calculation rate.

This calculation error is caused by the use of fixed points in the implementation,
which has a limited range of fractional values rounded off from division and square root

Figure 12. Distribution of calculation error of Hjorth parameter between VHDL and Python. Com-
plexity value has the longest calculation path, resulting in a higher error calculation rate.

This calculation error is caused by the use of fixed points in the implementation,
which has a limited range of fractional values rounded off from division and square
root calculation. The activity value has the shortest calculation formula; hence, the error
percentage is minimal compared to the other Hjorth parameters with an average close to
0%. This is different from the complexity, which has the longest operation, with an average
calculation error of around 3%. Overall, from the three calculated features, the error value
that is generated is relatively small and consistent for all features, so it is hoped that the
designed system will still produce high classification accuracy.

5.3. Classification Accuracy

KNN is used for the classification of normal, interictal, and ictal EEG using K variations
of 1, 3, 5, 7, and 9. The output length of 3 bits defined as “001”, “010”, and “100” represents
interictal, normal, and ictal with hexadecimal values of 1, 2, and 4, respectively. Figure 13
shows a classification simulation with a normal EEG input signal. In this simulation, the
number of neighbors is 5, with the final decision based on the most predicted results.

Electronics 2022, 11, 3026 12 of 15

The yellow box in Figure 12 indicates misclassification, with normal detected as interictal.
In the proposed system, the classification process will depend on the Hjorth parameter
calculation results. In the example of the misclassification shown in Figure 13, both samples
have a relatively greater complexity value compared to other samples from the normal
category. The complexity parameter has the largest value range compared to the other two
parameters; thus, it can be considered the most decisive parameter due to no additional
parameter weight in KNN distance calculation. As the result, the samples have more
neighbors coming from the interictal class rather than the normal class. Thus, the results of
the pooling of the five closest neighbors show that the majority of classes are 1, interictal.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 15

calculation. The activity value has the shortest calculation formula; hence, the error
percentage is minimal compared to the other Hjorth parameters with an average close to
0%. This is different from the complexity, which has the longest operation, with an
average calculation error of around 3%. Overall, from the three calculated features, the
error value that is generated is relatively small and consistent for all features, so it is hoped
that the designed system will still produce high classification accuracy.

5.3. Classification Accuracy
KNN is used for the classification of normal, interictal, and ictal EEG using K

variations of 1, 3, 5, 7, and 9. The output length of 3 bits defined as “001”, “010”, and “100”
represents interictal, normal, and ictal with hexadecimal values of 1, 2, and 4, respectively.
Figure 13 shows a classification simulation with a normal EEG input signal. In this
simulation, the number of neighbors is 5, with the final decision based on the most
predicted results. The yellow box in Figure 12 indicates misclassification, with normal
detected as interictal. In the proposed system, the classification process will depend on
the Hjorth parameter calculation results. In the example of the misclassification shown in
Figure 13, both samples have a relatively greater complexity value compared to other
samples from the normal category. The complexity parameter has the largest value range
compared to the other two parameters; thus, it can be considered the most decisive
parameter due to no additional parameter weight in KNN distance calculation. As the
result, the samples have more neighbors coming from the interictal class rather than the
normal class. Thus, the results of the pooling of the five closest neighbors show that the
majority of classes are 1, interictal.

Figure 13. Classification simulation with normal class as input. The yellow boxes show that the
inputs are wrongly classified because the closest neighbor comes from the interictal (1) class.

The overall performance evaluation of the system is carried out by dividing the test
and training data with a ratio of 36:64. The total test data are 108, with 36 signals for each
class. The FPGA board receives an EEG signal randomly sent over the serial interface. The
classification accuracy for each K value is presented in Table 1. The number of K is linear
with increasing accuracy, where the highest accuracy of 90.74% is achieved at a value of
9. Accuracy increased significantly at K > 1 compared to K = 1, but this did not occur at
larger K. From the previous study, K is linear to accuracy but has an optimal value [31].
In other words, a larger K does not necessarily increase accuracy [32].

Figure 13. Classification simulation with normal class as input. The yellow boxes show that the
inputs are wrongly classified because the closest neighbor comes from the interictal (1) class.

The overall performance evaluation of the system is carried out by dividing the test
and training data with a ratio of 36:64. The total test data are 108, with 36 signals for each
class. The FPGA board receives an EEG signal randomly sent over the serial interface. The
classification accuracy for each K value is presented in Table 1. The number of K is linear
with increasing accuracy, where the highest accuracy of 90.74% is achieved at a value of 9.
Accuracy increased significantly at K > 1 compared to K = 1, but this did not occur at larger
K. From the previous study, K is linear to accuracy but has an optimal value [31]. In other
words, a larger K does not necessarily increase accuracy [32].

The value of K can be increased to find the optimal performance, but in this proposed
system, the value of K is limited to 9. At K = 5, 7, and 9, the increase in accuracy is not
higher than 1%. An enormous K value will give a lower variance but increased bias [32].
Another reason is limited memory resources with the use of a larger K.

5.4. Comparison with Previous Research

Table 2 presents several studies using FPGAs for the detection of epilepsy. Most
research in Table 2, used datasets were from Bonn University [17–19,33] while others used
datasets from Temple University Hospital [34]. For signal processing, all previous studies
used a decomposition process, starting from DWT, CWT, and VMD, and the decomposition
of EEG signals into the delta, theta, alpha, beta, and gamma signals. Previous research
used various classifiers from SVM and ELM for deep learning. The proposed method
generally produces lower accuracy compared to earlier studies listed in Table 2. However,
the method used in this study is relatively simple and does not require decomposition or

Electronics 2022, 11, 3026 13 of 15

signal transformation, with a classifier that does not require a separate training process.
It is hoped that the results of this study can be used for real-time detection of epilepsy in
research on EEG signals.

Table 2. Comparison with previous research.

Reference Method Classifier Dataset Result

Meddah et al., 2020 [33] DWT, PCA SVM Bonn University, 2 classes
(O+ Z, S) 98.67%

Jose et al., 2020 [18]
Energy, PSD, spectral

entropy of EEG
sub-band

ELM Bonn University, 2 classes
(S, Z) 98.5%

Sarić et al., 2020 [17] Time–frequency
features of CWT MLP-ANN TUH EEG Corpus, 3

classes (FNS, GNSZ, NS) 95.14%

Sahani et al., 2021 [19] Optimized VMD Semi-supervised reduced
deep CNN (RDCNN)

Bonn University, 2 classes
(S, Z) 99.37%

6. Conclusions

We implemented an epileptic classification system based on the EEG signal using an
FPGA. The system was built using the Hjorth descriptor as a feature extraction method
and KNN as a classifier. The main digital system architecture to calculate the Hjorth
parameter consists of variance, subtractor, divider, and square root. The Hjorth parameter
will generate activity, mobility, and complexity for each EEG signal, compiling a set of
features. This set becomes the input for the KNN block to be classified as normal, interictal,
or ictal. The implemented KNN configuration includes distance calculations using the
Euclidean approach and variations in the values of K = 1, 3, 5, 7, and 9. This system is
implemented on a Zynq-7000 FPGA device where the EEG signal is sent serially using the
UART protocol.

Performance evaluation of the proposed system was carried out on 300 EEG signals
with a ratio of training and test data of 64:36, respectively. The constructed system generates
the highest accuracy of 90.74% at a K value of 9. From the calculations, the total memory
LUT used is below 10%, indicating that the system built is efficient. The processing time
used to obtain accurate measurement is only 0.015 s; hence, the proposed method is effective
in real time. This study is the basis for designing a system-on-chip (SoC) to detect seizures
based on EEG signals by adding a wearable digital EEG device. In the future, this device
may be installed in epilepsy patients to provide an alarm when detecting the onset of
seizures even before the onset of a seizure. Future research will entail the synthesis of logic
circuits that have been designed to become a chip. Another issue with more sophisticated
signal processing techniques is the next exciting topic that needs to be investigated to
improve accuracy.

Author Contributions: Conceptualization, A.R. and S.H.; research methodology, A.R. and S.H.; logic
design, A.Z.R.; test bench VHDL and FPGA implementation, A.Z.R. and S.H.; data curation, A.R.
and S.H.; writing—original draft preparation, A.R., S.H. and A.Z.R.; writing—review and editing,
S.H; visualization, A.R. All authors have read and agreed to the published version of the manuscript.

Funding: The APC was funded by Telkom University.

Data Availability Statement: Epileptic EEG data were sourced from an open dataset which can be
downloaded at https://www.upf.edu/web/ntsa/downloads/ (accessed on 20 April 2022).

Acknowledgments: The authors are grateful to the mechatronic workshop and electronic laboratory
at Telkom University for supporting this research.

Conflicts of Interest: The authors declared no conflict of interest.

https://www.upf.edu/web/ntsa/downloads/

Electronics 2022, 11, 3026 14 of 15

References
1. Sharma, R.; Pachori, R.B.; Acharya, U.R. Application of Entropy Measures on Intrinsic Mode Functions for the Automated

Identification of Focal Electroencephalogram Signals. Entropy 2015, 17, 669–691. [CrossRef]
2. Acharya, U.R.; Sree, S.V.; Ang, P.C.A.; Yanti, R.; Suri, J.S. Application of Non-Linear and Wavelet Based Features for the Automated

Identification of Epileptic Eeg Signals. Int. J. Neural Syst. 2012, 22, 1250002. [CrossRef] [PubMed]
3. Diykh, M.; Li, Y.; Wen, P. EEG Sleep Stages Classification Based on Time Domain Features and Structural Graph Similarity. IEEE

Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1159–1168. [CrossRef] [PubMed]
4. B (Venkat), V.P.; Chinara, S. Automatic Classification Methods for Detecting Drowsiness Using Wavelet Packet Transform

Extracted Time-Domain Features from Single-Channel EEG Signal. J. Neurosci. Methods 2021, 347, 1–22. [CrossRef] [PubMed]
5. Singh, P.; Pachori, R.B. Classification of Focal and Nonfocal EEG Signals Using Features Derived from Fourier-Based Rhythms. J.

Mech. Med. Biol. 2017, 17, 1740002. [CrossRef]
6. Bhattacharyya, A.; Gupta, V.; Pachori, R.B. Automated Identification of Epileptic Seizure EEG Signals Using Empirical Wavelet

Transform Based Hilbert Marginal Spectrum. In Proceedings of the International Conference on Digital Signal Processing, DSP,
London, UK, 23–25 August 2017; pp. 1–5.

7. Fu, K.; Qu, J.; Chai, Y.; Zou, T. Hilbert Marginal Spectrum Analysis for Automatic Seizure Detection in EEG Signals. Biomed.
Signal Process. Control 2015, 18, 179–185. [CrossRef]

8. Kiymik, M.K.; Güler, I.; Dizibüyük, A.; Akin, M. Comparison of STFT and Wavelet Transform Methods in Determining Epileptic
Seizure Activity in EEG Signals for Real-Time Application. Comput. Biol. Med. 2005, 35, 603–616. [CrossRef]

9. Lu, Y.; Jiang, H.; Liu, W. Classification of EEG Signal by STFT-CNN Framework: Identification of Right-/Left-Hand Motor
Imagination in BCI Systems. In Proceedings of the 7th International Conference on Computer Engineering and Networks,
Shanghai, China, 22–23 July 2017; pp. 1–8.

10. Ambati, R.; Raja, S.; Al-Hameed, M.; John, T.; Arjoune, Y.; Shekhar, R. Neuromorphic Architecture Accelerated Automated
Seizure Detection in Multi-Channel Scalp EEG. Sensors 2022, 22, 1852. [CrossRef]

11. Hussain, L.; Saeed, S.; Awan, I.A.; Idris, A. Multiscaled Complexity Analysis of EEG Epileptic Seizure Using Entropy-Based
Techniques. Arch. Neurosci. 2018, 5, e61161. [CrossRef]

12. Wijayanto, I.; Hartanto, R.; Nugroho, H.A. Comparison of Empirical Mode Decomposition and Coarse-Grained Procedure for
Detecting Pre-Ictal and Ictal Condition in Electroencephalography Signal. Inform. Med. Unlocked 2020, 19, 100325. [CrossRef]

13. Silalahi, D.K.; Rizal, A.; Rahmawati, D.; Sri, B. Epileptic Seizure Detection Using Multidistance Signal Level Difference Fractal
Dimension and Support Vector Machine. J. Theor. Appl. Inf. Technol. 2021, 99, 909–920.

14. Sundaram, K.; Marichamy; Pradeepa. FPGA Based Filters for EEG Pre-Processing. In Proceedings of the 2016 2nd International
Conference on Science Technology Engineering and Management, ICONSTEM 2016, Chennai, India, 30–31 March 2016; pp.
572–576.

15. Wöhrle, H.; Tabie, M.; Kim, S.K.; Kirchner, F.; Kirchner, E.A. A Hybrid FPGA-Based System for EEG- and EMG-Based Online
Movement Prediction. Sensors 2017, 17, 1552. [CrossRef]

16. Mahabub, A. Design and Implementation of Cost-Effective IIR Filter for EEG Signal on FPGA. Aust. J. Electr. Electron. Eng. 2020,
17, 83–91. [CrossRef]

17. Sarić, R.; Jokić, D.; Beganović, N.; Pokvić, L.G.; Badnjević, A. FPGA-Based Real-Time Epileptic Seizure Classification Using
Artificial Neural Network. Biomed. Signal Process. Control 2020, 62, 102106. [CrossRef]

18. Jose, J.P.; Sundaram, M.; Jaffino, G. FPGA Implementation of Epileptic Seizure Detection Using ELM Classifier. In Proceedings of
the Sixth International Conference on Bio Signals, Images, and Instrumentation (ICBSII), Chennai, India, 27–28 February 2020; pp.
1–5.

19. Sahani, M.; Rout, S.K.; Dash, P.K. FPGA Implementation of Epileptic Seizure Detection Using Semisupervised Reduced Deep
Convolutional Neural Network. Appl. Soft Comput. 2021, 110, 107639. [CrossRef]

20. Hjorth, B. EEG Analysis Based on Time Domain Properties. Clin. Neurophysiol. 1970, 29, 306–310. [CrossRef]
21. Andrzejak, R.G.; Lehnertz, K.; Mormann, F.; Rieke, C.; David, P.; Elger, C.E. Indications of Nonlinear Deterministic and Finite-

Dimensional Structures in Time Series of Brain Electrical Activity: Dependence on Recording Region and Brain State. Phys. Rev. E
2001, 64, 061907. [CrossRef]

22. Hjorth, B. The Technical Significance of Time Domain Descriptors in EEG Analysis. Clin. Neurophysiol. 1973, 34, 321–325.
[CrossRef]

23. Rizal, A.; Hadiyoso, S. ECG Signal Classification Using Hjorth Descriptor. In Proceedings of the 2015 International Conference on
Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT), Bandung,
Indonesia, 29–30 October 2015; pp. 3–6.

24. Rizal, A.; Hidayat, R.; Nugroho, H.A. Lung Sound Classification Using Hjorth Descriptor Measurement on Wavelet Sub-Bands. J.
Inf. Process. Syst. 2019, 15, 1068–1081. [CrossRef]

25. Mohebbanaaz; Rajani Kumari, L.V.; Padma Sai, Y. Classification of Arrhythmia Beats Using Optimized K-Nearest Neighbor
Classifier. In Intelligent Systems; Springer: Singapore, 2021; pp. 349–359. ISBN 9789813360815.

26. Chen, C.H.; Huang, W.T.; Tan, T.H.; Chang, C.C.; Chang, Y.J. Using K-Nearest Neighbor Classification to Diagnose Abnormal
Lung Sounds. Sensors 2015, 15, 13132–13158. [CrossRef]

http://doi.org/10.3390/e17020669
http://doi.org/10.1142/S0129065712500025
http://www.ncbi.nlm.nih.gov/pubmed/23627588
http://doi.org/10.1109/TNSRE.2016.2552539
http://www.ncbi.nlm.nih.gov/pubmed/27101613
http://doi.org/10.1016/j.jneumeth.2020.108927
http://www.ncbi.nlm.nih.gov/pubmed/32941920
http://doi.org/10.1142/S0219519417400024
http://doi.org/10.1016/j.bspc.2015.01.002
http://doi.org/10.1016/j.compbiomed.2004.05.001
http://doi.org/10.3390/s22051852
http://doi.org/10.5812/archneurosci.61161
http://doi.org/10.1016/j.imu.2020.100325
http://doi.org/10.3390/s17071552
http://doi.org/10.1080/1448837X.2020.1771662
http://doi.org/10.1016/j.bspc.2020.102106
http://doi.org/10.1016/j.asoc.2021.107639
http://doi.org/10.1016/0013-4694(70)90143-4
http://doi.org/10.1103/PhysRevE.64.061907
http://doi.org/10.1016/0013-4694(73)90260-5
http://doi.org/10.3745/JIPS.02.0116
http://doi.org/10.3390/s150613132

Electronics 2022, 11, 3026 15 of 15

27. Ekaputri, C.; Fu’adah, Y.N.; Pratiwi, N.K.; Caecar; Rizal, A.; Sularso, A.N. Drowsiness Detection Based on EEG Signal Using
Discrete Wavelet Transform (DWT) and K- Nearest Neighbors (K-NN) Methods. In Proceedings of the 1st International Conference
on Electronics, Biomedical Engineering, and Health Informatics, Surabaya, Indonesia, 3–4 November 2021; pp. 487–498, ISBN
9789813369269.

28. Putra, R.V.W. A Novel Fixed-Point Square Root Algorithm and Its Digital Hardware Design. In Proceedings of the International
Conference on ICT for Smart Society, Jakarta, Indoensia, 13–14 June 2013; pp. 7–10.

29. Verma, D.; Kakkar, N.; Mehan, N. Comparison of Brute-Force and K-D Tree Algorithm. Int. J. Adv. Res. Comput. Commun. Eng.
2014, 3, 5291–5297.

30. Wijayanto, I.; Rizal, A. Epileptic Seizure Detection in EEG Signal Using EMD and Entropy. J. Electron. Syst. 2019, 9, 44. [CrossRef]
31. Hidayati, N.; Hermawan, A. K-Nearest Neighbor (K-NN) Algorithm with Euclidean and Manhattan in Classification of Student

Graduation. J. Eng. Appl. Technol. 2021, 2, 86–91. [CrossRef]
32. Yusuf, S.A.A.; Hidayat, R. MFCC Feature Extraction and KNN Classification in ECG Signals. In Proceedings of the 2019 6th

International Conference on Information Technology, Computer and Electrical Engineering, ICITACEE 2019, Semarang, Indonesia,
26–27 September 2019; pp. 1–5.

33. Meddah, K.; Zairi, H.; Bessekri, B.; Cherrih, H.; Kedir-Talha, M. FPGA Implementation of Epileptic Seizure Detection Based on
DWT, PCA and Support Vector Machine. In Proceedings of the 2020 2nd International Conference on Embedded and Distributed
Systems, EDiS 2020, Oran, Algeria, 3 November 2020; pp. 141–146.

34. Shah, V.; von Weltin, E.; Lopez, S.; McHugh, J.R.; Veloso, L.; Golmohammadi, M.; Obeid, I.; Picone, J. The Temple University
Hospital Seizure Detection Corpus. Front. Neuroinform. 2018, 12, 83. [CrossRef]

http://doi.org/10.6025/jes/2019/9/2/44-54
http://doi.org/10.21831/jeatech.v2i2.42777
http://doi.org/10.3389/fninf.2018.00083

	Introduction
	Material and Methods
	Dataset Description
	Feature Extraction
	KNN Classifier
	System Model

	FPGA Hardware Architecture
	Feature Extraction Datapath Architecture
	KNN Processor Architecture
	Simulation and Verification

	FPGA Implementation
	Experimental Setup
	Resource Consumption

	Results and Discussion
	Dataset
	Comparison of Hjorth Parameter Calculations between VHDL and Python
	Classification Accuracy
	Comparison with Previous Research

	Conclusions
	References

