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Abstract: The weapon target allocation (WTA) problem is a crucial issue in anti-missile command 

decisions. However, the current anti-missile weapon target allocation models ignore the dynamic 

complexity, cooperation, and uncertainty in the actual combat process, which results in the misclas-

sification and omission of targets. Therefore, we propose a bi-level dynamic anti-missile weapon 

target allocation model based on rolling horizon optimization and marginal benefit reprogramming 

to achieve rapid impact on static and dynamic uncertainties in the battlefield environment. Further, 

we also propose an improved bi-level recursive BBO algorithm based on hybrid migration and var-

iation to perform fast and efficient optimization of the model objective function. A simulation anal-

ysis demonstrate that the model is suitable for larger-scale, complex, dynamic anti-missile opera-

tions in uncertain environments, while the algorithm achievesbetter solution efficiency and solution 

time compared with the same type of heuristic algorithm, which meet the requirements of solution 

accuracy and timeliness. In addition, we obtain better rolling horizon parameters to further optimize 

its performance. 

Keywords: weapon target allocation; bi-level programming; biogeography-based optimization  

algorithm; marginal benefit 

 

1. Introduction 

With the advent of the information warfare era, battlefield information is transferred 

and exchanged among multiple weapon platforms. As a result, anti-missile allocation is 

subjected to disruption by various factors, such as enemy electronic interference and cyber 

attacks, as well as environmental noise and the limitations of combat platforms. Ulti-

mately, the acquisition of battlefield information is constrained. In these circumstances, it 

is impossible to achieve an operational objective all at once, which requires full consider-

ation of target allocation, scheduling, and synergy effectiveness. Therefore, a dynamic 

anti-missile weapon target allocation problem is modeled in this paper considering the 

above operational characteristics. 

There are two key components in carrying out dynamic weapon target allocation: the 

weapon target allocation (WTA) problem and the firepower-scheduling problem (FSP). 

In addition, it is necessary to carefully consider the cooperative effects of different weapon 

platforms, which is significant to achieving a synergistic effect among multiple combat 

units and maximizing the overall effectiveness. In this paper, a weapon is taken as a 

weapon platform for anti-missile warfare, a firepower is considered as an interceptor, and 

a target is treated as an incoming enemy missile target. 

In the following section, a brief review is conducted on relevant studies to modeling 

construction and algorithm solving in the context of WTA and FSP. 

First introduced into the combat field by Manne [1], weapon target allocation (WTA) 

is purposed to maximize combat utility by effectively allocating weapons to targets with 

the probability of killing considered. With the diversification of combat forms and the 
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expansion of combat scale, the WTA problem has been further studied to solve the original 

problem from more different perspectives, mainly including static weapon target alloca-

tion (SWTA) and dynamic weapon target allocation (DWTA). Classical SWTA models in-

clude (1) asset-based SWTA [2]; (2) sensor-based SWTA [3]; (3) effects-based SWTA [4]; 

(4) constraint-based SWTA [5]; (5) multitarget SWTA [6]; and (6) constrained multitarget 

SWTA [7]. Since SWTA performs poorly in adapting to the needs of an ever-changing 

battlefield, DWTA was subsequently proposed. With time as a dimension, DWTA takes 

into account the state of a weapon target at different times and then performs multiple 

dynamic and continuous optimization analyses based on SWTA. Classical DWTA models 

include a DWTA with “time window” optimization, as proposed by Khosla [8]; a Markov 

decision process model WTA established by Davis et al. [9], who proposed an approxi-

mate dynamic-planning method to solve the problem; and a DWTA constructed by Fan 

[10] for fuzzy chance-constrained two-level planning. The above analysis shows that 

DWTA has been developed mainly based on two-phase models and “shoot-observe-

shoot” models. However, all of these depend on static data of the current phase and the 

prediction of future phase for offline distribution, which is not as significant to the dy-

namic analysis of the battlefield. 

Currently, there are still few studies on FSP. Ojeong Kwon [11] analyzed the problem 

of how to adjust a firing sequence for a minimum time span in the field artillery domain, 

i.e., the fire-scheduling problem (FSP). Young-Ho Cha [12] paid attention to firepower 

scheduling that minimized the total threat to the target or an adversary that survived the 

firing attack for single-weapon targets, as well as for multiweapon targets. However, it 

was easy to find out that the above scheduling minimized the time taken to complete the 

shot and the threat to the incoming target but ignored resource consumption. Therefore, 

the high cost of interceptor resources must be carefully considered in the target allocation 

and scheduling process. 

In addition, it is necessary to consider the uncertainties of a battlefield and the impact 

of synergistic effectiveness between different weapons in anti-missile fire synergy. The 

commonly used approaches for the quantitative analysis of uncertainties in the anti-mis-

sile weapon target problem include the interval gray number [13], fuzzy multi-objective-

planning model [14], variable fuzzy clustering preference theory system [15], game model 

[16], robust model [17], and CvaR conditional value-at-risk model [18]. In addition, fuzzy 

systems are an effective way to deal with uncertainties [19]. However, most of the above-

mentioned models can only deal with one or two static uncertainties in the battlefield, 

which requires more consideration given to the effects of multiple uncertainties. In addi-

tion, the common weapon target allocation models pay less attention to the impact from 

the synergistic effectiveness of weapon platforms. 

In terms of model solving, since the dynamic weapon target allocation in the anti-

missile field is NP-complete, heuristic algorithms are highly adaptive and more capable 

of obtaining near-optimal solutions. Currently, the commonly used heuristic algorithms 

include genetic algorithms (GAs) [20], bee colony algorithms (ABCs) [21], particle swarm 

algorithms (PSOs) [22], and more. In addition, some hybrid algorithms based on combi-

nations of exact and heuristic algorithms have also been proposed to address the anti-

missile problem. Feng [23] proposed an improved quantum-immune cloning multi-objec-

tive optimization algorithm. Chu [24] put forward an LAMGC algorithm characterized by 

forward-looking marginal greedy construction. Wu [25] adopted a stochastic neighbor-

hood variation strategy to optimize the difference variation algorithm. Xin [26] combined 

Monte Carlo simulations and proposed a constructive heuristic algorithm based on the 

concept of marginal back-off to solve the target-sensor-weapon allocation problem based 

on marginal gains. This method facilitated quick adjustments to the solution. Our paper 

further presents the concept of marginal benefit, which effectively measures the benefit 

ratio from marginal firepower and, thus, allows for rapid adjustment to dynamic uncer-

tainty factors. Moreover, there is still much space to improve the efficiency and accuracy 

of solutions for heuristic algorithms. 
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First proposed by Simon in 2008, the biogeography-based optimization (BBO) algo-

rithm [27] is a heuristic algorithm that has been demonstrated as superior to most heuris-

tics because of its capability to enhance the exchange and sharing of information through 

migration rate and the efficiency and accuracy of solution. Proposed by Rifai AP [28] on 

the basis of the BBO algorithm combined with non-dominated ranking, the NSBBO algo-

rithm is significantly advantageous in scheduling multi-objective problems. However, the 

model is also disadvantaged by such issues as the single form of migration and variation, 

as well as a long solution time, which requires further improvement. 

Based on the above literature review, this study is aimed to effectively solve the anti-

missile weapon target problem, as well as its dynamic complexity, cooperativity, and un-

certainty from the following perspectives. 

1. An analysis of uncertainty factors is performed. The disruptions caused by multiple 

uncertainties, such as combat environment, interference from enemy targets, and 

limited detection equipment, affect the final results of weapon target allocation to 

varying extents. In this paper, the following uncertainties are mainly considered: the 

uncertainty of target-type identification results and the destruction probabilities of 

our weapons are taken as fuzzy variables. Then, the fuzzy expectation model is 

adopted to construct an uncertainty model, and the reprogramming strategy of mar-

ginal benefits is used to solve dynamic uncertainties, such as the emergence of new 

targets and the disappearance of old targets. 

2. A bi-level dynamic weapon target allocation model is proposed. We propose a bi-

level dynamic weapon target allocation model in this paper under a rolling horizon 

framework. For the upper-level objectives, the weapon target allocation problem 

(WTA) is considered on the basis of synergistic effectiveness, while for the lower-

level objectives, the firepower-scheduling problem (FSP) is considered. This reflects 

the coupling and constraint relationships between multiple combat targets, which 

makes the model more closely related to combat needs. 

3. An improved bi-level recursive BBO algorithm is proposed on the basis of hybrid 

migration and variation for solving the model. Given a certain degree of complexity 

of the bi-level model, it is necessary to develop new intelligent algorithms for the 

corresponding solution. In this paper, the BBO algorithm is adapted for the multi-

objective bi-level programming model. In addition, an improved BBO algorithm is 

proposed separately to solve the multi-objective bi-level programming model in an 

efficient way. 

2. Problem and Model 

In this section, we firstly analyze the uncertainty factors for anti-missile operations; 

secondly, we introduce the optimization strategy of rolling horizon; and finally, we pro-

pose a bi-level dynamic weapon target allocation model. 

2.1. Uncertainty Factor Analysis 

Anti-missile warfare is an information game process under uncertain conditions, and 

most of the existing anti-missile weapon target allocation model are deterministic models, 

which seldom consider the influence of uncertainties in warfare. Due to the complexity of 

the actual battlefield environment and the existence of uncertainties, such as sensor errors 

and interference effects on tracking and detection equipment, the models and parameters 

constructed in decision making often have uncertainty characteristics. For the character-

istics of static and dynamic uncertainties, we performed the analysis shown in Figure 1, 

categorized as follows: 

1. Static uncertainty: This type of uncertainty does not vary with time, which can be 

caused by the limitations of the sensor detection capability and the penetration char-

acteristics of incoming targets so that the measured data and the acquired battlefield 

information are uncertain, and the degree of uncertainty is difficult to measure. 
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Since this uncertainty is characterized by ambiguity and mainly affects the relevant 

parameters in the model, the following two static uncertainties were considered. 

(1) Target threat degree: The target threat degree is affected by kinematic infor-

mation, such as the speed and altitude of missiles, and is related to the degree 

of real-time and the accuracy of information obtained. If a target has a higher 

threat level to our target, priority is given to shoot it in order to obtain a greater 

effect of destruction and protection of our assets. The target threat level under 

information-based conditions requires not only state information, such as the 

target’s speed, altitude, and heading angle, but also tactical information, such as 

target type, maneuver behavior, and game strategy, and thus has a strong un-

certainty characteristic. 

(2) Damage probability: Due to the high cost of weapons and equipment, the prob-

ability of destruction can only be derived from simulation and historical data, 

which has obvious uncertainty characteristics in the complex anti-missile envi-

ronment. 

2. Dynamic uncertainties: Dynamic uncertainties change with time, and their changes 

often have a great impact on the overall anti-missile process model by changing the 

characteristic and structure, such as the type and model of the targets, the trajectory 

of the motion state, the results of true and false identification, the sudden change in 

the target information, etc. The time and scale of their occurrence are unknown rela-

tive to the decision-making moments. In this paper, we considered two cases of dy-

namic uncertainties, i.e., the emergence of new targets and the disappearance of old 

targets.  

In this paper, the target threat degree and damage probability were depicted as fuzzy 

variables and represented by triangular fuzzy variables. In order to avoid blind consump-

tion and destruction, we established the fuzzy expectation objective function F1. For the 

dynamic uncertainties generated in this case, we applied a rescheduling strategy to re-

spond to dynamic events in a timely manner when dynamic uncertainties that reached 

the trigger conditions were generated, and rescheduling was performed based on the orig-

inal allocation scheduling scheme. 

uncertainty 
factors

static 

dynamic 

target threat 
degree

 damage 
probability

new targets 
emerge

 old targets 
disappear

fuzzy 
expectation 

programming

rescheduling 

 

Figure 1. Uncertainty factor classification diagram. 

To approximate a battlefield situation, the additional assumptions were made as fol-

lows: 

1. The enemy maneuvering situation was not considered. 

2. The time consumption of wave transfer and ammunition replenishment was not con-

sidered. 

3. We assumed that the target ballistic prediction and the predicted target time window 

were accurate enough. 
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4. Each incoming target was assigned at least one firepower. 

5. Each weapon was equipped with multiple firepowers, with a maximum of one fire 

at a time against each target, and the total number of fires assigned could not exceed 

the limit on the number of fires for that weapon. 

6. A target was considered to be successfully intercepted when the cumulative proba-

bility of firepower damage to the target reached the lower limit of severe damage. 

7. There were several different interception strategies for intercepting incoming targets, 

including firing a single interceptor; firing multiple interceptors in unison; “shoot-

observe-shoot” and other various strategies; and a combination of different intercep-

tion strategies. 

In order to save firepower and avoid missed interceptions, the “shoot-observe-shoot” 

strategy was considered in this paper [29]. 

2.2. Bi-Level Dynamic Weapon Target Allocation Model Construction 

The symbols of the parameters used in this paper are shown in Table 1. 

Table 1. Parameter descriptions. 

Symbol Description 

Parameter Meaning 

s the index of rolling horizons,   1,2, ,s r  

m  the number of available weapons of rolling horizon s 

n  the number of targets of rolling horizon s 

   



1

i
m

s fM  the weapons collection of rolling horizon s;   1,2, ,i m  

   



1

s j
n

s tN  
the incoming target collection of rolling horizon s;

  1,2, ,j n  

   


 ij
m n

s pP  

the destruction probability of rolling horizon s; ijp  denotes the 

destruction probability of weapon I 

against target j of rolling horizon s 

   



1

j
n

s vV  the target threat degree of rolling horizon s; jv
 denotes the 

threat degree of target j of rolling horizon s 

   


 s
ij

m n
s txTX  

the moment when weapon i strikes target j of rolling horizon s;

 est s lst
j ij jt tx t  

   


 s
ij

m n
s dxDX  

   ,0s s
ij ij idx dx dx C

; 
 1s

ijtx
 denotes weapon i allocated to 

target j of rolling horizon s 
est
jt  the earliest interceptable moment of target j 

lst
jt  the latest interceptable moment of target j 

W  the maximum number of targets contained in rolling horizon s; 

K  number of elite solutions obtained after iteration 

iC  the maximum number of firepower of weapon i 

maxD  the boundary value of severe destruction probability 

 ,  ,  the penalty factors, respectively, are large positive integers 

SW  
the time interval between the first and second flushes in the 

same firepower lane 

DW  
the time intervals needing to be met between firepower from 

different weapons 
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2.2.1. Rolling Horizon Optimization Strategy 

The idea of rolling horizon optimization could decompose the global optimization 

problem into subproblems according to the time domain. The application of the rolling 

horizon strategy helped reduce the complexity of the counter-guided dynamic weapon 

target allocation problem, which is a large-scale, complex NP problem considering time 

scheduling. 

This strategy could divide the whole generation process of the anti-missile weapon 

target allocation solution into several local decision processes according to time domain 

and, finally, form a global decision solution. 

Definition 1: Local decision scheme. The scheduling decision matrix  TX s  and the allocation 

decision matrix  DX s  formed in rolling horizon s constitute the local decision scheme. 

Definition 2: Global decision scheme. The scheduling decision matrix  TX s  and the allocation 

decision matrix  DX s  of rolling horizon s correspond to form the scheme    ( , )DX s TX s , and 

the final global decision scheme              ( 1 , 1 ),( 2 , 2 ), ,( ,JX DX TX DX TX DX s TX s  is 

formed in succession according to the sequence of the time domain. 

The rolling horizon optimization strategy proposed in this paper used the number of 

assigned and scheduled targets as the basis for dividing the time domain cycles rather 

than intervals in time. In this optimization process, the solution obtained in each time 

domain was used as the input of the next time domain so that the objectives in each time 

domain could be solved optimally. Each rolling task window could generate one local 

decision solution, and eventually, multiple local decision solutions formed the global de-

cision solution. 

The steps of rolling time domain optimization were as follows. 

Step1: Target initialization. Sort the targets according to the earliest interceptable window 

time and select the top W  into the rolling task window. 

Step2: Take the W  targets entering the task window as input, run the upper-level 

weapon target allocation algorithm, and keep the top K  elite solutions after iterative loop 

merit search. 

Step3: Take the first K  elite solutions as input, run the lower-level firepower scheduling 

algorithm, and obtain the final optimized scheduling result by iterative merit seeking. 

Step4: At the end of a rolling task window, evaluate the targets that have been assigned 

and scheduled, and update the set of decision variables. If the constraint is satisfied, i.e., 

the maximum probability of destruction is reached, the target is considered to be de-

stroyed, and the allocation and scheduling results of the target are frozen and added to 

the frozen task sequence; if the constraint is not satisfied, the target enters the next rolling 

horizon, and so on. Roll forward until all targets are scheduled and assigned, and the 

constraints are met. Then, the rolling horizon ends. 

The specific process is shown in Figure 2. In scenario1, if the constraints are met, 

freeze the completed target. In scenario2, if the constraint conditions are not met, the tar-

get that does not meet the conditions enters the next rolling window and, at the same time, 

freeze the target conforming to the constraints, and make the target not conforming to the 

constraints continue to enter the next rolling window for allocation and scheduling, as-

suming that the target at the current position 3 is not conforming to the constraint (the red 

target is the target not conforming to the constraint condition, and the red window repre-

sents the frozen window). 



Electronics 2022, 11, 3035 7 of 24 
 

 

Initial
sequence

N1
* N2 N4 N5N3 N6 N7 N8 N9 N10 N11 N13N12

FCFS
sequence

M1
*

M2

M3

M1

M2

M3

Weapon 
target

allocation

Firepower
scheduling

Scenario1

Scenario2

M1

M2

M3

M1

M2

M3

Weapon 
target

allocation

Continue to rolling forward

M1

M2

M3

Get the final allocation and scheduling scheme.

rolling task window(W)

 

Figure 2. Flowchart of rolling horizon scheduling strategy. * iM  in the figure denotes weapon i, 

and jN
 denotes incoming target j. 

2.2.2. Upper-Level Multi-Objective Weapon Target Allocation Function 

1. Objective function F1  

1

max ( ( , ))
max ( , )

min ( , )

E N dx tx
F dx tx

G dx tx
 

(1)

The objective function is based on the traditional WTA model [30], and the objective 

is to maximize the expected damage probability and minimize the interceptor consump-

tion. The fuzzy damage probability matrix 


   
  ij

m n
pP  and fuzzy target threat degree 

vector   
   1 2= , , jv v vV  are designed to establish the following fuzzy expectation value 

objective function to maximize the cost efficiency ratio. 
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 
  

    
1 1 1

max ( , ) (1 (1 ( )) )
s
ij

r mn
dxs

j ij ij

j s i

E N dx tx v p tx  (2)

  

 
1 1 1

min ( , )
T n m

ij

s j i

G dx tx dx

 
(3)

where 
 max ( , )E N dx tx

 is to maximize the expected damage probability, and 

min ( , )G dx tx
 is to minimize the interceptor consumption. 

2. Objective function F2:  

We considered both the vertical master–slave collaboration between the upper com-

mand and decision layer and the lower fire interdiction implementation layer, as well as 

the horizontal autonomous collaboration relationships between different weapons in the 

firepower interdiction implementation layer. In order to achieve the above objectives and 

to make the functions between different weapons complement each other to achieve the 

goal of maximizing the collaboration effect, the following three aspects of collaboration 

effect indicators needed to be considered.  

Definition3: Firepower collaboration effectiveness indicators. This indicator needed to take into 

account the uniformity of weapon target allocation; that is, for a specific fire weapon, it needed to 

be allocated to as many targets as possible, thus avoiding the concentration of a few weapons and 

reducing the overall efficiency. In addition, it needed to consider the consistency of weapon target 

allocation; that is, the firepower of the same weapon needed to be allocated to the same target as 

much as possible in permitting conditions.  

Definition 4: Information collaboration effectiveness indicators. The level of information interac-

tion between different weapons affected the realization of collaboration. 

Definition 5: Command capability collaboration effectiveness indicators. We considered the col-

laborative capability of the operational command and decision layer for the firepower interdiction 

implementation layer, and this indicator was related to the collaborative command capability. 

    2 1 1 2 2 3 3max ( , )F dx tx I I I  (4)

        

     1 1 2

1 1 1 1 1 1 1 1 1

= ( ) ( )
n r m m r n r m n

ij ij ij ij

sum sumj s i i s j s i j

m m
I m dx m dx dx b

n n
 (5)

  

  2

1 1 1

r m n

ij ij

s i j

I dx z  (6)

  

  3

1 1 1

r m n

ij ij

s i j

I dx o  (7)

where 1I  is firepower collaboration effectiveness; 2I  is information collaboration effec-

tiveness; 3I  is command capability collaboration effectiveness; ijb  is the basic firepower 

collaboration effectiveness matrix; ijz  is the information collaboration effectiveness ma-

trix; ijo  is the command collaboration effectiveness matrix generated by expert assess-

ment scoring;   ， ，1 2 3  are weighting coefficients; 1 2,m m  are scaling factors, which 

should be determined according to actual battlefield conditions; and sumn  m is the sum 

of the incoming targets in all rolling horizons. 

3. The constraints. 
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 


1 1

. .
r n

ij i

s j

s t x C  (8)

 

    max

1 1

1 (1 ( )) )
s
ij

r m
dxs

ij ij

s i

p tx D  (9)




1

1
m

ij

i

dx  (10)

  

 
1 1 1

r n m m

ij i

s j i i

dx C  (11)

where Equation (8) indicates that the total number of firepower allocated to targets did 

not exceed the maximum number of firepower for that weapon. Equation (9) indicates 

that the cumulative probability of killing each target needed to reach or exceed the severe 

destruction boundary value maxD  for that target (then the target was considered de-

stroyed). Equation (10) indicates that, in rolling horizon s, each target was assigned at least 

one firepower. Equation (11) indicates that the total number of firepower allocated could 

not exceed the sum of the number of firepower of all the weapons. 

2.2.3. Lower-Level Firepower Collaborative Scheduling Function 

For each interceptable target, in its ballistic trajectory prediction, an earliest predicted 

interception point and a latest predicted interception point could be obtained, thus form-

ing an interceptable time window, where est
jt  is the earliest interceptable moment and 

lst
jt  is the latest interceptable moment. Since earlier (later) than the earliest (latest) inter-

ceptable moment leads to the missed interception of a target, to meet the purpose of avoid-

ing missed interception and early coordinated interception, the following objective func-

tion could be set. 

  
 

 

      3
,

1 1

min ( , ) min( ( max(0, ) max(0, )) max )
r n

est s s lst s
j ij ij j ij

i M j N
s j

F dx tx t tx tx t tx

 
(12)

         s. . (1 )s s
q j jq jq jq jq qjt tx tx SW DW z  (13)

where  ,j q  is a pair of targets scheduled in pre-post order,  ,j q N ;  jq  indicates 

whether target j  and target q  are assigned to the same weapon if  jq  = 1, otherwise 

 jq  = 0;    1qj jq ; and jqz  is whether target j  intercepts and dispatches before tar-

get q  if jqz  = 1, otherwise, jqz  = 0;   1jq qjz z . 

In Equation (12),    , are set as the penalty factors, which are large positive inte-

gers, and the penalty is applied when the scheduling moment 
s
ijtx  of target j  exceeds 

its time window _ _( , )j est j lstt t .  
 ,
max s

ij
i M j N

tx  indicates that the moment of the latest target to 

be intercepted among the current targets to be scheduled is selected, and minimizing the 

 
 ,
max s

ij
i M j N

tx  achieves target interception as early as possible. 

In Equation (13), we considered the single flak firepower channel occupancy time 

and ballistic crossover problem. When  jq  = 1, the firepower channel occupancy time 

before and after the flak is jqSW ; when  jq  = 0, the time interval jqDW  between fire-

powers of different weapons needs to be satisfied so that no ballistic crossover occurs 

during the flight of the interceptor.   is a penalty factor, and the inequality holds only 

when qjz  = 0, i.e., when target q  intercepts before target j  do not hold. 
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The schematic diagram of the bi-level model is shown in Figure 3. The left side of the 

image shows the overall global decision process for the weapon target allocation, and the 

right side shows the local decision process in one of the rolling horizons. The upper level 

in the local decision makes weapon target allocation and outputs the solution to the lower 

level, and then the lower level makes fire dispatch and outputs the solution to the upper 

level for feedback correction to obtain the final local decision solution. Finally, the local 

decision solution returns to the global process on the left side to form the global decision 

solution. 

 

Figure 3. Bi–level multi–objective programming model. 

2.2.4. Reprogramming Strategy Based on Marginal Benefits 

When dynamic uncertainties occurred, elements in the weapon–target set of the so-

lutions for weapon target allocation changed, and the solution needed to be adjusted in 

time to accommodate the requirements of the sudden change uncertainties. Dynamic un-

certainties, which included the emergence of new targets and the disappearance of old 

targets, could be discussed as follows. 

When new targets appeared, the existing weapon–target allocation scheme corre-

sponded to the original set of observed weapons and targets, and the new targets needed 

to be inserted into the appropriate rolling window, and the target assignment scheme al-

ready generated in that rolling window needed to be adjusted for reprogramming, which 

included weapon–target reallocation and fire rescheduling. There were two main types of 
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cases when old targets disappeared. The first type was that, after a flush fire, the firepower 

achieved a heavy damage effect on the target, and then the target was considered de-

stroyed and entered the frozen window. The second type was that, after a flush fire, the 

firepower did not achieve a heavy damage effect on the target, and then the target needed 

to enter the next rolling window, and the weapon and target collection was updated ac-

cordingly. 

There were differences in the timing of reallocation and rescheduling solutions under 

the above two uncertainties. For the disappearance of old targets, the cases that needed to 

be considered for reallocation and rescheduling were mainly in the second category, 

which required the reallocation and rescheduling modification of solutions already gen-

erated in the next rolling time domain; for the emergence of new targets, it was necessary 

to determine whether the currently existing weapon–target allocation and firepower-

scheduling solutions reached the maximum output moment, i.e., the time when the 

weapon was to fire according to the solution. If it was reached, the existing solution was 

output, and the new target was included in the new rolling window, with an operation 

procedure that was the same as the disappearance of the second type of old targets; if it 

was not reached, the reprogramming strategy was executed. 

For each old and new target to be reallocated and rescheduled, we applied the con-

cept of marginal benefit, i.e., firepower was allocated to any one target based on the orig-

inal weapon–target solutions so that the increment of the probability of expected damage 

probability   ( , )E N dx tx , the increment of the collaboration effect  2 ( , )F dx tx , and the 

negative increment of interceptor consumption  ( , )G dx tx  could be obtained for that fire-

power. The increment of expected destruction probability   ( , )E N dx tx  and the incre-

ment of collaboration effect  2 ( , )F dx tx  could be used as the increment of change in ben-

efit to measure the marginal benefit of weapon allocation and firepower scheduling. The 

negative increment of interceptor consumption  ( , )G dx tx  could be used as the increment 

of change in cost to measure the marginal benefit of firepower allocation and scheduling, 

thus obtaining the formula for the marginal benefit of interceptor allocation. 

 
 



  




2( ( , ) ( , ))
,

( , )ij

E N dx tx F dx tx
Me dx tx

G dx tx
 (14)

where   and   are weight coefficients, which satisfy the equation 

        1(0 1,0 1) , to measure the decision maker’s degree of preference among 

the increment of expected damage probability, the increment of collaborative effect, and 

the increment of interceptor consumption. 

The specific steps were as follows: 

Step1: Initialize the set of weapons and targets in the current rolling window. Let the set 

of weapons that is already assigned be M , the set of targets that is already assigned be 

N , and the set of new targets to be reassigned be 'N . We assumed that the probability 

of destruction of different firepower in any weapon for a particular target was the same. 

Step2: Calculate the marginal benefit brought by one weapon allocated to each target set 

'N in the set M , obtaining the set of marginal benefits   ,
ij

Me dx tx . 

Step3: Select a target with minimal marginal benefits (for the case where there are multiple 

weapons assigned to the same target j, the largest   ,
ij

Me dx tx  among them is selected 

for comparison). According to Step2, replace the new target in the set 'N , forming the 

new target set as 'newN . According to the marginal benefit of the initialize set M  and 

N , the superior weapons are selected, reallocated, and rescheduled with priority. 

Step4: Obtain the new reallocation and rescheduling scheme. 

The flow chart of the reallocation and rescheduling strategy is shown in Figure 4. 
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Figure 4. Flowchart of reallocation and rescheduling strategy based on marginal benefits. 

3. Improved Bi-Level Recursive BBO Algorithm Based on Hybrid Migration and Vari-

ation 

The biogeographic optimization algorithm simulates a migration model of species in 

nature. The solution of the algorithm is described as “Habitat”, and habitats that are con-

sidered suitable for species have a high habitat suitability index (HSI), with factors related 

to this index described as suitability index variables (SIVs). A SIV can be considered as 

the independent variable of a habitat, and the HSI can be considered as the dependent 

variable. The algorithm achieves solution diversity through migration and variation op-

erations. Compared with other optimization algorithms, the BBO algorithm has some ob-

vious advantages: in a BBO, the original population does not disappear after each gener-

ation but is modified by migration, and its attributes are shared directly between different 

solution solutions, thus allowing a better information flow; at the same time, the BBO al-

gorithm has good mining ability and global search ability for candidate solutions, and the 

retention mechanism for elite solutions allows good solutions to be preserved and not 

modified in the iterations. These advantages are superior for solving NP-hard problems. 

3.1. Upper-Level INSBBO Algorithm 

The upper problem objective function was a multi-objective optimization problem 

(MOP), and an NSBBO algorithm is an intelligent algorithm based on the BBO algorithm 

after combination with a non-dominated sorting method, which extends from solving sin-

gle-objective problems to solving MOPs and was proved by the original authors for its 

speed and accuracy in solving. However, there are still some problems in this algorithm: 

there is poor ability to explore solution diversity and the migration method is relatively 

single and time-consuming. For solving this problem, the hybrid migrator and variational 

operator proposed were improved adaptively in this paper, and the improvement process 

was as follows.  
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3.1.1. Upper-Level Algorithm Coding 

Bi-level coding was used, where the upper level was coded for the specific firepower 

allocation of weapons, and the lower level was coded for the correspondence between 

firepower and targets. The specific process is shown in Figure 5 if there are two weapons, 

W1 and W2, each equipped with a firepower quantity of two, and three incoming targets, 

T1, T2, andT3. Each element in the first level of coding was randomly assigned a value of 

0 (or 1), indicating whether the firepower of weapon i was assigned to the corresponding 

target; the elements in the second-level code were randomly assigned values of  1,2,3  

to indicate which firepower was assigned to the corresponding target. 

1 2 3 2

1st

2rd

1 10 0

W1W1 W2 W2

T1 T2 T3 T2

 

Figure 5. Upper-level algorithm coding schematic. 

3.1.2. Hybrid Migration Operator 

As the migration operator in NSBBO is relatively single and complex to operate, this 

paper proposed several new migration operators to form a hybrid migration operator 

whose operation process is reflected in Figure 6, and the specific operation process was as 

follows.  

1 0 1 0

1 2 3 1

0 1 0 1

2 3 1 2

Habitatnew

Habitatselect

Habitate

P1 P2

1 0 1 0

1 2 3 1

1 0 1 0

1 2 3 1

0 1 0 1

2 3 1 2

0

2

1

2

0 1

2 3

1 0 1 0

1 2 3 1

P3 P4

0

2

1

2

1

3

0

1

0 1 0 1

2 3 1 2

0 1 0 1

2 3 1 2

S1 S2 S3 S4
 

Figure 6. Schematic diagram of the hybrid migration operator. 

Step1: Supposing there are popsize habitats (solution scheme) and the current habitat is 

Habitate, the Habitatselect is randomly selected from all habitats by roulette; then, the migra-

tion operation is completed by the hybrid operator formed by the four migration opera-

tors S1, S2, S3, and S4. 
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Step2: The migration condition in the S1 case is with random probability [0,0.25)rand . 

The migration method is to directly copy the Habitatselect selected by roulette to form Habi-

tatnew. 

Step3: The migration condition in case S2 is with random probability [0.25,0.5)rand . 

The migration method is to generate position P1 and position P2 in the encoding by ran-

dom probability and to form Habitatnew by combining the encoding parts of position 1 to 

position P1 and position p2 to position 4 in Habitate, as well as the encoding part of position 

P1 to position P2 in Habitatselect.. 

Step4: The migration condition in case S2 is with random probability [0.5,0.75)rand . 

The migration method is to generate encoded position P3 and position P4 in the encoding 

by random probability, and the encoded parts from position 1 to position P2 in Habitatselect 

are migrated to the same positions in Habitatnew in reverse order; then, the remaining po-

sition parts of Habitate are combined to form Habitatnew. 

Step5: The migration condition in case of S4 is to keep the current habitat Habitate un-

changed with random probability [0.75,1]rand . 

3.1.3. Hybrid Variation Operator 

No specific variation operator is proposed in the NSBBO algorithm, and to increase 

the diversity of the population, the following hybrid variation operator was proposed in 

this paper and the process is reflected in Figure 7. 

0 1 0 1

2 3 1 2

Habitatnew

Habitate
0 1 0 1

2 3 1 2

0 1 0 1

2 3 1 2

0 10 1

2 31 2

0

2

1

2

1 1

1 3

1

2

0

2

0

1

1

3

0 1 0 1

2 3 1 2

0 1 0 1

2 2 1 2

S1 S2 S3 S4

P1 P2 P3 P4 P5

 

Figure 7. Schematic diagram of the hybrid variation operator. 

Step1: Assuming that there are popsize habitats (solution scheme) and the current habitat 

is Habitate, then the migration operation is completed by the mixed variation formed by 

the four variation operators S1, S2, S3, and S4. 

Step2: The variation condition in S1 case is when the random probability is [0,0.25)rand

. Position P1 and position P2 are in the encoding by random probability, while the encod-

ing of the P1 and P2 positions are exchanged to form Habitatnew. 

Step3: The variation condition in S2 case is when the random probability is 

[0.25,0.5)rand . Habitatnew is formed by regenerating the encoding parts of P1 and P2 by 

generating position P3 and position P4 in the encoding with random probability. 

Step4: The variation condition in S3 case is when the random probability is 

[0.5,0.75)rand . The encoding of each position is mutated to the encoding of the previous 

position to form Habitatnew. 

Step5: The variation condition in S3 case is when the random probability is [0.75,1]rand

. The position P5 in the encoding is randomly inserted into the other positions by random 

probability to form Habitatnew. 



Electronics 2022, 11, 3035 15 of 24 
 

 

3.1.4. Hybrid Variation Operator 

Since the NSBBO algorithm is prone to the situation when the objective function 

value F1 of one solution scheme is smaller than the other objective function value F1 in 

the operation process, if their objective function values of 2 were very similar, in order to 

make the distribution of solution schemes on the same Pareto front surface more uniform, 

solutions with similar arrangements were deleted. 

3.1.5. Mixed Elite Mechanism 

A new solution scheme was formed by each iteration, and the top z elite populations 

were archived. After entering the next iteration, the next z populations in the current iter-

ation in the ranking were replaced with the elite populations. 

3.2. Lower IBBO-Solving Algorithm 

Since the lower objective function was a time-dependent continuous constrained op-

timization problem, this paper added the hybrid migration operator and hybrid varia-

tional operator mentioned in the INSBBO algorithm to the original BBO algorithm and 

improved the selection mechanism to enhance the algorithm’s optimization-seeking ca-

pability, and it could better meet the timeliness requirement in the simulation example. 

3.2.1. Algorithm Coding 

This coding level generated the target order mainly by random order and generated 

the order of weapons randomly for each target. As the left part of Figure 8, the interception 

order of the targets was randomly generated as T1 and T2; the encoding of position 1 and 

2 meant that the targets were intercepted in the order of W1 toW2 against target T1. After 

the coding was completed, the solution result in the upper algorithm was loaded, as in 

the right part of Figure 8, and if W2 was not assigned to T1 according to the upper algo-

rithm allocation, the coding correction of position 2 was 0. 

W1 W1W2 W2

T1 T2

1 2 1 2

 generate randomly

Modify the 
code basing on 
the assignment 

solutions.

T1 T2

1 10 0

W1 W1

 

Figure 8. Lower-level algorithm coding schematic. 

3.2.2. Cosine Adaptive Migration Pressure Selection Mechanism 

Based on the original BBO, this paper proposed the following selection probabilities 

for the migration operator of the original algorithm. 









a
k

k popsize
a
i

i

P  
(15)

   2
max max min

max

( )( )
G

a pd pd pd
G

 (16)

where kP  is the probability of the kth solution selected for migration; popsize is the pop-

ulation size; ku  is the emigration rate of the habitat; i  is the immigration rate of any 

ith habitat; a is the cosine adaptive factor; pdmax is the initial value of the variation in the 
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selected pressure factor; and pdmin is the final value of the variation in the selected pressure 

factor. Let the initial change probability of pdmax = 1, which gradually decreases to pdmin = 

0.1 as the number of generations increases. G is the current number of iterations, Gmax is 

the maximum number of iterations, and i  is the selection probability of the current hab-

itat i. Figure 9 reflects the trend in the cosine dynamic adaptive factor a, and the probabil-

ity of a random probability less than a is larger in the pre-iteration period. The S1, S2 mi-

gration operator is mainly beneficial to maintain the diversity of the population and avoid 

local optimum. At a later stage, the probability of a random probability greater than a is 

larger, and the S3, S4 migration operator is mainly used for modification, which facilitates 

more favorable exploration of the solution and is also conducive to the convergence of the 

algorithm. The cosine dynamic adaptive strategy presented the dynamic change pattern 

in oscillation, as well as the overall decreasing convergence trend. It avoided the singular-

ity of the modified strategy and facilitated the exploration of the unknown solution, which 

could avoid the phenomenon of similarity and the duplication of solutions. The trend of 

cosine factor is shown in Figure 9. 

 

Figure 9. Cosine dynamic adaptive factor trend. 

In this paper, a more representative, multi-peak, indistinguishable Ackley test func-

tion was selected to run to obtain the results shown in Figure 10, where the red line seg-

ment is the unimproved BBO algorithm. It is easy to find that the improved dynamic hab-

itat selection formula converged slowly in the early stage, which was conducive to the 

global search. It converged quickly in the later stage, which was conducive to strengthen-

ing the local search, and it achieved better results and a greater improvement in habitat 

selection than the original BBO. 

 

Figure 10. Equations 15 and 16 experimental results.  
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3.3. Improved Bi-Level Recursive BBO Algorithm Based on Hybrid Migration and Variation 

The improved NSBBO algorithm for solving the upper model combined with the 

fuzzy simulation technique [31] and the improved BBO algorithm for solving the lower 

model were combined with each other to form an improved bi-level recursive BBO algo-

rithm based on hybrid migration and variation, and the specific flow chart of the algo-

rithm is shown in Figure 11.. 

improved cosine 
adaptive strategy

fast BBO algorithm
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dominated sort

multi-objective BBO 
algorithm

upper level 
model solution

lower level 
model solution
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revisetransmit feedbackconstraint
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objective 
model

rolling 
horizon 

optimization 
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An improved bi-level hierarchical algorithm based on hybrid migration and mutation BBO algorithm

child horizon optimization

rolling optimization

fuzzy 
simulation

 

Figure 11. Flow chart of the improved two-layer recursive BBO algorithm based on hybrid migra-

tion and variation. 

4. Experiment and Analysis 

4.1. Parameter Analysis 

4.1.1. Rolling Horizon Window and Anti-Missile Fire Collaboration Problem Scale Study 

Tests were conducted for the number of targets W in the task window of the rolling 

horizon. Since the overall number of targets T varies in problems of different sizes, in 

order to facilitate a generalizability test for the parameter W, this paper converted the 

number of W into  /eW W T , where eW  denotes the ratio of the number of targets in 

the task window to the overall number of targets. Since eW  was mainly based on the 

number of targets, the number of weapons was fixed to nine in order to reduce the varia-

bles, and each weapon was equipped with 20 firepower. The experiment sizes were small-

scale (9 weapons—10 incoming targets); medium-scale (9 weapons—50 incoming targets); 

and large-scale (9 weapons—100 incoming targets). Each experiment was conducted 10 

times individually and averaged.  

The parameters were: the same weapon-firing time interval of SW = 0.5 s; the firing 

time interval between different weapons of DW = 2 s; Dmax = 0.75; 

    ； ； ； ；1 2 3=0.4 0.3 =0.3 =0.5 =0.5 1 0.5m ; and 2 0.5m . The algorithm parame-

ters were set as follows: number of populations = 50; upper coding dimension = 260; lower 

coding dimension = 9; maximum variation probability = 0.05; maximum migration modi-

fication rate = 0.85; maximum number of iterations = 200; pdmax = 1; and pdmin = 0. Other 

relevant data were generated from anti-missile combat simulations. 
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From the Figure 12 analysis, too-small eW  values led to repeated calculations and 

the problem of “short-sightedness”, resulting in a large computational burden, high time 

cost, and poor solution quality, while too-large eW  values had obvious shortcomings in 

solving small-scale problems. The above experimental results conclude that the determi-

nation of eW  needed to be determined according to different operational objectives, and 

a larger eW  value could be chosen to enhance the quality of the solution in a case of suf-

ficient time. In a case of time constraint, a smaller eW  value was chosen to increase the 

solution speed; meanwhile, it was necessary to avoid choosing too-small or too-large eW  

values, which could neither increase the quality of the solution nor reduce the burden of 

the solution time. 

Figure 12. Parameter analysis of rolling horizon window. (a) Comparison of average solving time 

at different scales; (b) comparison of upper-level function values under small scale; (c) comparison 
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of upper-level function values under medium scale; (d) comparison of upper-level function values 

under large scale; (e) comparison of lower-level function values under different scales. 

4.1.2. Study on the Length and Distribution of Interceptable Time Window 

Each target had an interceptable time window, and the length and distribution of the 

interceptable time window affected the results of the dynamic weapon target allocation. 

This paper explored the impact of different lengths and distributions of interceptable time 

windows on the allocation and scheduling results by designing them. The impact on the 

target interceptable time window is discussed as follows. 

The distribution of interceptable time windows was mainly discussed in three types: 

(1) the type with concentrated distribution, i.e., the interceptable time windows com-

pletely overlapped; (2) the type with moderate distribution, i.e., the interceptable time 

windows half overlapped; and (3) the type with dispersed distribution, i.e., the intercepta-

ble time windows did not overlap at all. The distribution is shown in Figure 13. 
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Figure 13. Distribution of interceptable time windows. 

The interceptable time window length was mainly discussed in three types (1) short 

interceptable time window length, (2) moderate interceptable time window length, and 

(3) long interceptable time window length. 

In this paper, the orthogonal test design method was used to construct a test example 

for a two-factor, three-level test. The orthogonal table was selected, and the construction 

examples and specific contents are shown in Table 2. The test parameter environment was: 

assume there are nine weapons, and each weapon is equipped with 20 fires; there are 30 

incoming targets; and, according to the parameter analysis in the previous section, make 

W = 10. Other parameter settings were the same as in Section 4.1.1. 

Table 2. Interceptable time window test factor level table. 

 Level 1 Level 2 Level 3 

distribution of interceptable time window concentrated moderate dispersive 

length of of interceptable time window short (20 s) moderate (50 s) long (100 s) 

By analyzing Figure 14, we could see that the function value of F1 was affected by 

the interceptable time window under different levels of influence: moderate > short > long 

under the length of interceptable time window; and moderate > scattered > concentrated 

under the distribution of interceptable time window. The function value of F2 was af-

fected by the interceptable time window: short > moderate > long under the length of in-

terceptable time window; and interceptable time window distribution, moderate > disper-

sion > concentration. The F3 function values were affected by the interceptable time win-

dow: interceptable time window length from longer > moderate > shorter; and intercepta-

ble time window distribution from dispersion > moderate > concentration. As the F1 and 

F2 functions were solved for the maximum value, we could moderate and short intercep-

tion time window lengths and a moderate interception time window distribution were 

more suitable for the solution of the upper function; the F3 function was solved for the 

minimum value, so shorter and concentrated interception time window lengths and 
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distributions were more suitable for the solution of the lower function. In the actual solu-

tion process, we needed to analyze according to the actual situation. 

 
(a) 

 
(b) 

 
(c) 

Figure 14. Analysis of extreme differences in different objective function values at different factor 

levels. (a). Analysis of extreme differences in F1 function values at different levels; (b). analysis of 

extreme differences in F2 function values at different levels; (c). analysis of extreme differences in 

F3 function values at different levels. 

4.2. Analysis of Scenes 

4.2.1. Simulation Experimental Hypothesis 

Supposing there were nine weapons, each equipped with 20 fires, and there were 30 

incoming targets, the parameter settings were the same as in Section 4.1.1. 

4.2.2. Simulation Experiment Results and Analysis 

In Figure 15, we compare the solution algorithm of INSBBO with NSBBO and two 

classical multi-objective algorithms, NSGA-II and MOPSO; in Figure 16, we compare the 

IBBO algorithm with BBO and two classical single-objective algorithms, GA and PSO. It 
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is easy to see from the image analysis that the Pareto front surface of the INSBBO algo-

rithm was significantly better than the other comparison algorithms in the multi-objective 

experiments, and combined with the analysis in Table 3, we can see that the algorithm 

was only second to the MOPSO algorithm in terms of solution time, but the solution re-

sults were due to the MOPSO algorithm. 

Figure 15. Comparison charts of INSBBO and NSBBO solving the upper objective function Pareto 

front solution in different time domains. 

   

Figure 16. Comparison of IBBO and BBO solving the lower objective function in different time 

domains. 

Table 3. Comparison experiments with average time. 

Objective Function Average Time 

upper level 

INSBBO 12.7821 

NSBBO 13.482 

NSGA-Ⅱ 14.231 

MOPSO 11.642 

lower level 

IBBO 4.27 

BBO 4.31 

GA 5.34 

PSO 4.98 

In the single-objective experiment, the convergence of the optimal values of the four 

algorithms was relatively close, among which the convergence value of the IBBO algo-

rithm was optimal, and the solution time consumed the least. From this analysis, it can be 

obtained that the bi-level solution algorithm consisting of the INSBBO and IBBO algo-

rithms had advantages in terms of solution efficiency and effectiveness. 
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The allocation and scheduling scheme without considering the new target emergence 

factor is reflected on the left side of Figure 17, where there is a situation in which the old 

target did not reach the heavy destruction efficiency in the T2 phase, and the minimum 

marginal benefit target was selected to exit the set by calculating the marginal benefit of 

the target set in the next time domain, and the old target was made to replace. To consider 

the target redistribution and scheduling in the case of new target emergence, it was as-

sumed that a new target emerged at t = 410 s, 430 s, and 450 s, respectively, and the new 

target interceptable time windows were [410, 1050], [430, 1350], and [450, 1450], respec-

tively. A new reprogramming solution was obtained according to the marginal benefit 

redistribution strategy, as the right side of Figure 17 shows. In the initial allocation scheme 

generated on the left, the red target in the T2 stage did not reach the maximum destruction 

efficiency in the observation and needed to enter the next stage for continued allocation 

and scheduling; in the scheme generated on the right, the green target is the newly 

emerged target, and the new scheme of reallocation was obtained according to the mar-

ginal benefit calculation. 
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Figure 17. Weapon target allocation scheme. 
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5. Conclusions 

In this paper, a bi-level fuzzy expectation model under a rolling horizon strategy was 

proposed, which effectively solved the dynamic complexity, synergy, and uncertainty 

characteristics in the dynamic weapon target allocation problem of anti-missile fire. We 

also proposed an improved bi-level recursive BBO algorithm based on hybrid migration 

and variation to solve the upper-level objective function and an improved biogeographic 

optimization algorithm to solve the lower-level objective function. The upper-level opti-

mization algorithm proposed hybrid migration and variation operators, a similar solution 

deletion mechanism, and a hybrid elite mechanism, and the lower-level optimization al-

gorithm introduced a hybrid migration operator, a hybrid variation operator, and an 

adaptive strategy. In the simulation example, the algorithm reflected better time efficiency 

and convergence accuracy and could adapt to the solution of large-scale problems. In the 

next step, we plan to introduce a fuzzy system for the dynamic planning and control of 

the weapon target allocation problem. 
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