
Citation: Patil, S.; Varadarajan, V.;

Mazhar, S.M.; Sahibzada, A.; Ahmed,

N.; Sinha, O.; Kumar, S.; Shaw, K.;

Kotecha, K. Explainable Artificial

Intelligence for Intrusion Detection

System. Electronics 2022, 11, 3079.

https://doi.org/10.3390/

electronics11193079

Academic Editor: Flavio Canavero

Received: 18 July 2022

Accepted: 20 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Explainable Artificial Intelligence for Intrusion
Detection System
Shruti Patil 1,* , Vijayakumar Varadarajan 2,3,4,* , Siddiqui Mohd Mazhar 5, Abdulwodood Sahibzada 5,
Nihal Ahmed 5, Onkar Sinha 5, Satish Kumar 1 , Kailash Shaw 5 and Ketan Kotecha 1

1 Symbiosis Centre for Applied Artificial Intelligence (SCAAI),
Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India

2 School of Computer Science and Engineering, The University of New South Wales,
Sydney, NSW 1466, Australia

3 School of NUOVOS, Ajeenkya D Y Patil University, Pune 412105, India
4 Swiss School of Business and Management, 1213 Geneva, Switzerland
5 Department of Computer Science Engineering, Symbiosis Institute of Technology, Symbiosis

International (Deemed University), Pune 412115, India
* Correspondence: shruti.patil@sitpune.edu.in (S.P.); vijayakumar.varadarajan@gmail.com (V.V.)

Abstract: Intrusion detection systems are widely utilized in the cyber security field, to prevent and
mitigate threats. Intrusion detection systems (IDS) help to keep threats and vulnerabilities out of
computer networks. To develop effective intrusion detection systems, a range of machine learning
methods are available. Machine learning ensemble methods have a well-proven track record when it
comes to learning. Using ensemble methods of machine learning, this paper proposes an innovative
intrusion detection system. To improve classification accuracy and eliminate false positives, features
from the CICIDS-2017 dataset were chosen. This paper proposes an intrusion detection system using
machine learning algorithms such as decision trees, random forests, and SVM (IDS). After training
these models, an ensemble technique voting classifier was added and achieved an accuracy of 96.25%.
Furthermore, the proposed model also incorporates the XAI algorithm LIME for better explainability
and understanding of the black-box approach to reliable intrusion detection. Our experimental results
confirmed that XAI LIME is more explanation-friendly and more responsive.

Keywords: IDS; CICIDS2017; XAI; LIME; ensemble techniques; intrusion detection system

1. Introduction

As a result of extensive internet use, cyberattacks against financial institutions, gov-
ernment organizations, and energy companies have increased dramatically in recent years.
Hackers and intruders attack businesses with large websites. Viruses, malware, worms,
fraudulent logins, and spyware are just a few of the ways for them to attack. Organizations
need security applications to protect their networks from malicious attacks and misuse.
Intrusion detection systems (IDS) can detect and prevent data breaches by detecting and
stopping intrusions. Misuse detection and anomaly detection are two types of intrusion
detection. Misuse detection relies on information or patterns, whereas anomaly detection
relies on behavior [1]. Current intrusion detection systems have a high detection rate,
which may result in many false alarms. In an IDS, false positives should be minimized.
Various IDS are implemented using different machine learning approaches because they
can discover valuable information from datasets. These approaches have the potential
to minimize false positives. Machine learning approaches, including association of rules,
genetic algorithms, and intrusion detection systems, are frequently implemented using
artificial neural networks. Ensemble learning mixes various machine learning methods [2].
Researchers have discovered that an ensemble approach to ML reduces false positives.

Electronics 2022, 11, 3079. https://doi.org/10.3390/electronics11193079 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11193079
https://doi.org/10.3390/electronics11193079
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4903-1540
https://orcid.org/0000-0003-3752-7220
https://orcid.org/0000-0001-6788-0952
https://orcid.org/0000-0003-2653-3780
https://doi.org/10.3390/electronics11193079
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11193079?type=check_update&version=1

Electronics 2022, 11, 3079 2 of 23

With the advancements in technology, the threat to industry also increases. The
three major contributors to Industry 4.0 are the internet of things (IoT), AI, and extensive
data analysis [3]. IoT-based monitoring systems for secure computer numerical control
machines have proven safe against cyber-attacks with increased reliability. Use of IoT also
shows remarkable improvements in deep neural networks (DNN) for recognizing intrusion
detection in automated guided vehicles (AGVs) [4]. The major drawback of any model
is its complexity, with no clear indication about the behavior or cause of the decision of
the model. Hence, research interpretation has tilted toward other fields such as computer
vision, robotics, bioinformatics, and natural language processing. Recently, the SHapley
Additive explanations (SHAP) [5] framework has improved the transparency of IDs, which
further helps in cybersecurity by positively identifying the IDs’ judgments.

In this research, we worked with the network traffic data set CIC-IDS-2017. The data
set passed through a preprocessed pipeline consisting of cleaning, normalization, SMOTE,
and feature selection. Later, the extracted feature was classified using various ML methods,
such as decision tree (DT), random forest (RF), and support vector machine (SVM). Model
accuracy was reported and analyzed using explainable artificial intelligence (XAI), to justify
the trustworthiness, ability, and reliability of the AI-based solutions in IDS. XAI [6] is
a method that allows humans to understand the results of a model, as models are too
difficult to understand and explain due to their black-box concept [7,8], and meant for
improving accuracy. Our approach is to provide a solution as a white-box approach for a
better understanding of the model and a reliable prediction, so that all stakeholders are
on the same page [9,10]. Model and data discrepancies can be detected early on during
the modeling process and corrected accordingly. From the experiment, we successfully
showed the effect of XAI techniques such as the LIME framework that strengthened the
model’ accuracy and reliability [11].

Deep neural networks, complex nonlinear models, have mainly been responsible for
recent advancements in AI and machine learning [12]. “Black box” models such as ensemble
methods or support vector machines are hard to interpret and understand. Some algorithms
require many samples, because of their nonlinear characteristics, multiple parameters, and
complex transformations [13]. Additionally, the training sets for learning are enormous,
making it difficult to explain how the model learns. As a result, the model cannot explain
how it is learning from the data and which portion of the data sets significantly influenced
the output, ultimately leading to uncertainties within the model and a delayed human
response [14]. In addition, there are ethical issues in insensitive, high-profile domains,
such as in finance, healthcare, and security. Artificial intelligence and machine learning are
becoming increasingly crucial in security solutions and defense. Various government efforts
have been implemented to promote responsible use of AI systems and minimize unethical
practices related to their use. An algorithm decision can be challenged by requesting proof
from the European Union, which promotes the “right of explanation” [15]. There is also
the possibility of auditing machine learning systems for bias and discrimination, which
could require corrective action. Reasons for bias have been identified by the Department
of Defense [16]. XAI provides a solution to this problem by displaying the prediction
and explaining the black box. Additionally, for those unfamiliar with XAI, here is a
brief description of how it works. A comprehensive AI model can be described in three
dimensions [17]:

Explainability: A learning model’s explainability involves the ability to clearly explain
the processes it undertakes. This study explains how training models work by explain-
ing their inner workings. Critical applications used in real-world service are not only
intellectually fascinating but are also weighed against risky factors when human lives are
at stake.

Interpretability: Interpretability provides information regarding how the model func-
tions and allows users to draw conclusions from it.

Furthermore, a learning model is considered transparent if it exhibits understand-
ability by itself, without any intervention from the user. Models are transparent when

Electronics 2022, 11, 3079 3 of 23

they are inherently comprehensible without additional components [18]. Transparency
is a key characteristic of comprehensive learning models, including explainability and
interpretability. Academics and the industry have debated interpretability, consistent with
which ML and DL models perform better in causality, reliability, and usefulness [19]. Fur-
thermore, a variety of definitions of explanation and interpretability are used in different
literature, but these terms are interchangeable. The definition of interpretability suggests
that it is a mechanism that allows algorithms to explain decisions and for the inner details
of a model to be understood, and consequently, models are explained mathematically [20].
Keeping generality, and following LIME’s approach, we will discuss interpretability and
explainability interchangeably. Transparency is a key component of AI models, and their
decisions require explanations [21].

On the other hand, the threat of adversarial attacks on machine learning algorithms
emphasizes the need for algorithmic and functional transparency within machine learning
mechanisms. A transparent AI model will serve many purposes, including allowing us
to expect positive outcomes from AI, choose whether to trust AI or take human factors
into account fully, and address threats to AI-based systems [22]. In addition to helping the
responsible intrusion detection system (RIDS) make better and more accurate predictions,
the XAI algorithm explains how the classifiers identify specific attacks in a dataset [23].

The rest of the paper is organized as follows: Section 2 discusses the literature review,
Section 3 contributes significant studies, Section 4 deals with the methodology, and Sec-
tion 5 discusses the generation of explanations using the X-AI model (LIME), followed by
prediction and accuracy in Section 6. Section 7 deals with the experimental results and
discussions, and the conclusions are in Section 8.

2. Literature Review

An overview of the algorithm distributions and major techniques used in intrusion
detection research is presented in Figure 1. On the basis of the majority papers, we
identified 68 primary studies. This study examines several classification techniques [24]:
The majority of experiments were performed using classification approaches, which account
for 81% of all experiments. Other techniques mainly include clustering, dataset analysis
techniques, prediction techniques, estimation techniques (3%), association techniques,
and statistical analysis. The study showed that public datasets accounted for 79% of
experiments and experiments on private datasets were 21%, which were compared in the
research studies [25]. A comprehensive study of 18 techniques for intrusion detection was
conducted: six of these methods were found to be most prevalent: support vector machine,
deep neural network, random forest, naive Bayes, decision tree, and K- nearest neighbor.
Additionally, some researchers proposed some different techniques.

Ensemble methods to improve machine learning classifier accuracy on IDS included
boosting algorithms, ensemble combined feature selection algorithms, and machine learn-
ing methods, as mentioned in Table 1.

Peddabachigari et al. [26] modeled intrusion detection systems using hybrid intelligent
systems. On the basis of their research, they investigated some new techniques for intrusion
detection and examined their performance against the benchmark KDD Cup 99 intrusion
dataset. Their research focused on data temporal correlation (DT) and sparse maximum
likelihood (SVM). As a next step, they developed a hybrid DT–SVM model, and an ensemble
approach with DT, SVM, and DT–SVM models as the base classifiers. The results indicated
that DT provides better or equal accuracy than Probe, U2R, and R2L for all classes. If
compared with direct SVM, a hybrid DT-SVM approach delivers better performance or
offers equal performance for all classes. It is the ensemble approach that offers the best
performance for the Probe and R2L classes. According to the ensemble approach, the
Probe class achieved a 100% accuracy, suggesting that with proper base classifiers other
classes may reach 100% accuracy too. The final proposal was to develop a hierarchical
intelligent IDS model that can optimally take advantage of the top-performing individual
base classifiers and the ensemble approach.

Electronics 2022, 11, 3079 4 of 23
Electronics 2022, 11, x FOR PEER REVIEW 4 of 25

Figure 1. Algorithm distribution.

Ensemble methods to improve machine learning classifier accuracy on IDS included

boosting algorithms, ensemble combined feature selection algorithms, and machine learn-

ing methods, as mentioned in Table 1.

Peddabachigari et al. [26] modeled intrusion detection systems using hybrid intelli-

gent systems. On the basis of their research, they investigated some new techniques for

intrusion detection and examined their performance against the benchmark KDD Cup 99

intrusion dataset. Their research focused on data temporal correlation (DT) and sparse

maximum likelihood (SVM). As a next step, they developed a hybrid DT–SVM model,

and an ensemble approach with DT, SVM, and DT–SVM models as the base classifiers.

The results indicated that DT provides better or equal accuracy than Probe, U2R, and R2L

for all classes. If compared with direct SVM, a hybrid DT-SVM approach delivers better

performance or offers equal performance for all classes. It is the ensemble approach that

offers the best performance for the Probe and R2L classes. According to the ensemble ap-

proach, the Probe class achieved a 100% accuracy, suggesting that with proper base clas-

sifiers other classes may reach 100% accuracy too. The final proposal was to develop a

hierarchical intelligent IDS model that can optimally take advantage of the top-perform-

ing individual base classifiers and the ensemble approach.

Li et al. [26] proposed a Ditto framework to achieve fairness and robustness via fed-

erated learning systems. They statistically identified heterogeneous networks as spaces

where robustness to attacks, as well as fairness, measured as the uniformity of perfor-

mance across devices, compete for resources. The Ditto framework and a scalable solver

are our proposals for addressing these constraints. A class of linear problems was theo-

retically analyzed to determine whether Ditto can achieve fairness and robustness simul-

taneously. They demonstrated empirically that Ditto results in a competitive performance

relative to recent customization methods, but also generates more accurate, robust, and

fair models, compared to standard fair and robust baselines.

Mohseni et al. [27] reviewed the challenges and opportunities in bringing ML safety

to open-world tasks and applications. Reviewing and comparing the dependability limi-

tations of ML algorithms in uncontrolled open-world scenarios with conventional safety

standards, we first review the shortcomings of ML in uncontrolled open-world scenarios.

Figure 1. Algorithm distribution.

Li et al. [26] proposed a Ditto framework to achieve fairness and robustness via
federated learning systems. They statistically identified heterogeneous networks as spaces
where robustness to attacks, as well as fairness, measured as the uniformity of performance
across devices, compete for resources. The Ditto framework and a scalable solver are our
proposals for addressing these constraints. A class of linear problems was theoretically
analyzed to determine whether Ditto can achieve fairness and robustness simultaneously.
They demonstrated empirically that Ditto results in a competitive performance relative to
recent customization methods, but also generates more accurate, robust, and fair models,
compared to standard fair and robust baselines.

Mohseni et al. [27] reviewed the challenges and opportunities in bringing ML safety
to open-world tasks and applications. Reviewing and comparing the dependability limi-
tations of ML algorithms in uncontrolled open-world scenarios with conventional safety
standards, we first review the shortcomings of ML in uncontrolled open-world scenarios.
The third strategy category is run-time error detection. These three strategies were applied
in order to meet the ML dependability objective of achieving safe design, to improve
model performance and robustness, and increase run-time error detection. As a research
direction for ML, ML safety tries to reduce the potential long-term risks associated with
ML. In particular, for the next decade, the focus is on cases where general machine learning
capabilities outpace safety, or where safety problems are going to become more challenging.

Table 1. Literature Review.

Reference Dataset Used Techniques Used Research Findings

[28] NSL-KDD

This paper proposes a different explainable AI
framework that provides the capabilities for
transparency in every stage of the machine learning
pipeline, including SHAP, LIME, CEM, ProtoDash,
and Boolean Decision Rules. They also employed
deep neural networks for intrusion detection.

This approach uses a variety of
explainability techniques, these approaches are
applied on the NSL-KDD dataset. This is a dataset
which is based on KDD99, an older dataset.

[29] KDDCup-99

This paper proposes different machine learning
classifiers on top of kdd99 This research paper also
elaborately covered the application of DNNs in
intrusion detection comprehensively.

This approach used many classical machine learning
classifiers, as well as deep neural networks of layer 1
to 5; however, the approach used the KDD99
dataset.

Electronics 2022, 11, 3079 5 of 23

Table 1. Cont.

Reference Dataset Used Techniques Used Research Findings

[30] KDDCup-99

Using genetic algorithms to detect several types of
network intrusions, the paper discusses the
implementation of an intrusion detection system
(IDS). Utilizing the standard KDD99 benchmark
dataset, we implemented our system and obtained a
good detection rate.

In intrusion detection, many approaches have been
adopted, but none of the systems have been
completely error-free. Thus, the quest for betterment
continues. KDDcup-99 was yet another limitation to
this approach.

[31] NSL-KDD

An application of self-taught learning (STL) for
classification was proposed in this paper. STL
employs two stages for deep learning. Accuracy,
precision, recall, and F-measure values are among
the metrics compared.

The use of a deep-learning-based NIDS with a
sparse autoencoderand softmax regression was
demonstrated. It is a limitation of this approach that
NSL- KDD does not apply.

[32] CIC-IDS- 2017
Several analysis methods involving artificial neural
networks and ML were proposed in this paper for
the CIC-IDS-2017 data set.

This paper proposes pros and cons of using
CIC-IDS-2017 for
domain research and implementation. It was found
that the data were not completely reliable in the
high required working processes. Many cases where
data cells read “NaN” and “Infinity” ceased to exist.

[33] NSL-KDD

A paper presented different deep learning
techniques that have the ability to adapt to dynamic
environments.
Three models were used: bidirectional
long short-term memory, Inception-CNN, and deep
belief network.

A number of practical problems with existing
intrusion detection were addressed in this work,
and different deep learning models were compared
to solve the problems. The model has been
developed and tested on the NSL-KDD dataset.

[34] KDD99, NSL- KDD

Ten machine learning approaches were presented for
IDS, which include decision tree, hybrid with locally
weighted learning, rotation forest, and Bayesian
belief network, and then combination of J48 and NB
with AdaBoost was implemented for IDS.

The results of this research suggest that the
proposed approach utilizing a variety of machine
learning methods using the NSL-KDD dataset
performed well in all major categories of attacks.
However, a low detection rate was reported.
It is inevitable to detect minority attacks such as U2R
and R2L, which results in large bias in the dataset.

[35] NSL-KDD
A combined approach is proposed by combining NB
with feature vitality based feature selection method
for accuracy improvement.

The FVBRM method achieved 97.78% overall
classifier accuracy, with 98.7 TPR for DoS, 97% for
normal, 98.8% for probe, 96.1 for r2l, and 64% for
u2r, which was higher than others compared.

[36] NSL-KDD
Clustering algorithm was used to group dataset
samples into a set representing four attack classes,
and then classification was done.

The K-means algorithm took 9.25 s to build cluster
models and the mean squared error in this process
was 19,308.72.

[37] DARPA1998, KDD99,
NSL-KDD, UNSW-NB15

Survey on machine learning and deep learning
algorithms used for intrusion detection.

The paper proposed an IDS taxonomy over various
machine learning algorithms used in this field. It
discusses the various data sources, i.e., logs, packets,
flow, and sessions. The paper emphasized ML for
IDs

[38] Examine 37 cases The paper examined the contribution of the IDPSs in
the SG paradigm, providing an analysis of 37 cases.

Timely detecting of IDs was given stress in the
paper. The cases the paper deals with are on the
advanced metering infrastructure (AMI),
supervisory control, and data acquisition (SCADA)
systems, substations, and synchrophasors. Based on
a comparative analysis, the limitations and the
shortcomings of the current IDPS systems were
identified, and appropriate recommendations were
provided for future research efforts.

[39] KDD 99, NSL-KDD,
CIC-IDS2017, CIC-IDS2018

Evaluated four deep learning models on four
intrusion detection datasets.

Gave a taxonomy and survey of deep learning
models for intrusion detection. Evaluated four deep
learning models on four intrusion detection datasets.
Feed-forward neural networks performed best
across all metrics, on all datasets.

[40] 14 different datasets were
used

Evaluated the performance of SVM for IDS
approaches.

This paper presented a comprehensive study and
investigation of the SVM-based intrusion detection
and feature selection systems.

[41] KDDCUP99, NSL-KDD IoT NIDS based on machine learning techniques.

This paper reviewed existing NIDS implementation
tools and datasets, as well as free and open-source
network sniffing software. Then, it surveyed,
analyzed, and compared state-of-the-art NIDS
proposals in the IoT context, in terms of architecture,
detection methodologies, validation strategies,
treated threats, and algorithm deployments.

[42] Comparison result on
various dataset

The work focused on the newest studies in intrusion
detection and intelligent techniques applied to IoT,
to keep data secure.

The research focused on rigorous state-of-the-art
literature on machine learning techniques applied in
internet-of-things and intrusion detection for
computer network security.

Electronics 2022, 11, 3079 6 of 23

Table 1 discusses research findings, concentrating on the dataset used to train the
machine learning models, the research findings, and limitations of each approach.

3. Significance of the Study

In this study, the intrusion detection system was trained using the CICIDS-2017 dataset.
Choosing the right features is an essential part of intrusion detection. According to the
review of the literature, some traits are required for all types of attacks, while others are
partially required, not required, or just required for specific attacks. There are 76 features in
the CICIDS-2017 dataset for training and testing IDS. Based on this research, we picked only
10 significant features from the CICIDS-2017 dataset, to improve classification accuracy.
Explanations have been proven to be useful for both professionals and non-experts in
selecting between models measuring trust, for improving untrustworthy models, and for
obtaining insights into forecasts in the text domain. Hence, the authors produced local
interpretable model-agnostic explanations (LIME) observations for DT, RF, and SVM after
applying the machine learning models.

4. Methodology
4.1. DATASET

A sufficient number of security events must be supplied for a model to accurately
conduct network data feature classification tasks. These factors will have a big impact on
the final outcome. As there are now many NIDS datasets with different feature sets that are
often independent of one another, it is essential to remember that extracting all of those
characteristics once the model is implemented in the field would be impossible. As a result,
integrating one feature set across different datasets is critical in model building, to enhance
the assessment reliability and, hence, deployment possibilities. NIDS datasets must be
similar in their data representation, to facilitate reliable experiments. This research work
considered CICIDS2017.

Ref. [34] provided the dataset for implementing the proposed methodology. This
dataset consists of both normal and abnormal sample sets of network traffic. It has a
realistic network attack date, which is very important for designing mitigation techniques
in IDS. This dataset is noteworthy because it contains the most recent cyber-attacks, and
the recovered PCAP file reflects accurate real-world data, as represented in Figure 2. There
are roughly 80 features and 15 unique classes in this set. The dataset, however, is dispersed
across eight CSV files, making it challenging to work with. Another flaw in this dataset is
the inclusion of NaN values, while the distribution of most of the classes is not uniform.
These parameters directly affect any machine learning model’s performance and accuracy.

Electronics 2022, 11, 3079 7 of 23

Electronics 2022, 11, x FOR PEER REVIEW 8 of 25

This dataset is noteworthy because it contains the most recent cyber-attacks, and the re-

covered PCAP file reflects accurate real-world data, as represented in Figure 2. There are

roughly 80 features and 15 unique classes in this set. The dataset, however, is dispersed

across eight CSV files, making it challenging to work with. Another flaw in this dataset is

the inclusion of NaN values, while the distribution of most of the classes is not uniform.

These parameters directly affect any machine learning model’s performance and accu-

racy.

Figure 2. File distribution of the dataset CIC-IDS-2017.

4.2. Feature Selection

It is important to identify the features that make a significant contribution to output

prediction in the process of feature selection. Model overfitting and processing time are

reduced along with an increased model accuracy [35,36]. After initial data preparation,

the authors reduced the number of features in the dataset. After which, they performed

feature selection for ML models. To select the appropriate feature selection method, the

authors compared the performance of several feature selection techniques.

Correlation heatmap: this shows how the features relate to one another. Moreover, if

we determine that a set of features are very closely related by their values, i.e., a correlation

can be found between their values, then the set can be replaced or dropped using a single

feature. Figures 3 and 4 show the correlation between all the features in the CIC-IDS-2017 da-

taset.

Figure 2. File distribution of the dataset CIC-IDS-2017.

4.2. Feature Selection

It is important to identify the features that make a significant contribution to output
prediction in the process of feature selection. Model overfitting and processing time are
reduced along with an increased model accuracy [35,36]. After initial data preparation, the
authors reduced the number of features in the dataset. After which, they performed feature
selection for ML models. To select the appropriate feature selection method, the authors
compared the performance of several feature selection techniques.

Correlation heatmap: this shows how the features relate to one another. Moreover,
if we determine that a set of features are very closely related by their values, i.e., a corre-
lation can be found between their values, then the set can be replaced or dropped using
a single feature. Figures 3 and 4 show the correlation between all the features in the
CIC-IDS-2017 dataset.

Electronics 2022, 11, 3079 8 of 23Electronics 2022, 11, x FOR PEER REVIEW 9 of 25

Figure 3. Correlation heatmap of features for the first stage.

Referring to the heatmap of Figures 3 and 4, it can be seen that there is an excellent

correlation between the following features: Bwd Packet Length Std, Bwd Packet Length

Mean, Avg Bwd Segment Size, Bwd Packet Length Max, Packet Length Std, Average

Packet Size, Packet Length Mean, Max Packet Length, and Packet Length Variance. In

addition, correlations can be seen in Flow IAT Max, Idle Max, Fwd IAT Max, Flow IAT

Std, Idle Std, and Idle Mean.

Figure 3. Correlation heatmap of features for the first stage.

Electronics 2022, 11, 3079 9 of 23
Electronics 2022, 11, x FOR PEER REVIEW 10 of 25

Figure 4. Correlation heatmap of features for the second stage.

Finding outliers: A data point that is abnormally dispersed compared to other points

is considered an outlier. Basically, it refers to data that differ from the other values in the

set. A significant finding could be missed, or real results distorted because of outliers, a

problem for many statistical analyses. Figure 5 illustrates some outliers that are present in

the CIC-IDS-2017 dataset.

Some of the features contain outliers, for example Bwd Packert/s, Bwd Packet Length

Min, Bwd Packet length Std, and Min Packet length, as shown in the graph above. Our

second stage of feature selection included reduction of these features.

Figure 4. Correlation heatmap of features for the second stage.

Referring to the heatmap of Figures 3 and 4, it can be seen that there is an excellent
correlation between the following features: Bwd Packet Length Std, Bwd Packet Length
Mean, Avg Bwd Segment Size, Bwd Packet Length Max, Packet Length Std, Average Packet
Size, Packet Length Mean, Max Packet Length, and Packet Length Variance. In addition,
correlations can be seen in Flow IAT Max, Idle Max, Fwd IAT Max, Flow IAT Std, Idle Std,
and Idle Mean.

Finding outliers: A data point that is abnormally dispersed compared to other points
is considered an outlier. Basically, it refers to data that differ from the other values in the
set. A significant finding could be missed, or real results distorted because of outliers, a
problem for many statistical analyses. Figure 5 illustrates some outliers that are present in
the CIC-IDS-2017 dataset.

Electronics 2022, 11, 3079 10 of 23

Electronics 2022, 11, x FOR PEER REVIEW 10 of 25

Figure 4. Correlation heatmap of features for the second stage.

Finding outliers: A data point that is abnormally dispersed compared to other points

is considered an outlier. Basically, it refers to data that differ from the other values in the

set. A significant finding could be missed, or real results distorted because of outliers, a

problem for many statistical analyses. Figure 5 illustrates some outliers that are present in

the CIC-IDS-2017 dataset.

Some of the features contain outliers, for example Bwd Packert/s, Bwd Packet Length

Min, Bwd Packet length Std, and Min Packet length, as shown in the graph above. Our

second stage of feature selection included reduction of these features.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 25

Figure 5. Boxplots of outliers/anomalies.

4.3. Machine Learning Pipeline

The machine learning pipeline includes steps of data loading, preprocessing, and AI

model implementation. Three traditional supervised learning algorithms and one ensem-

ble technique of voting classifier are shown in Figure 6. Each step of the implemented

methodology is explained below:

Data Loading: The first step in any machine learning analysis is to get the raw data

into the system. This raw information could be a dataset consisting of log files or a data-

base. Since the dataset consists of eight different files, we first concatenated the set into

one single file. In addition, the Pandas library offers a comprehensive toolkit of the data

to be loaded, using functions created using sci-kit-learn, an open-source machine learning

library written in Python, as well as simulated data generated using simulated data.

Data Preprocessing: StandardScaler was used to standardize the CICIDS dataset:

“garbage in, garbage out.” In Pandas, None, and NaN are essentially interchangeable as

ways of indicating missing data. Hence, null values need to be dropped from a data frame.

Since the dataset had a huge volume and consisted of many null values, the drop. null()

function was used to remove the rows/columns containing null values.

Train_test_split:

A model is trained on 70% of the data and the rest is used for testing.

Import train_test_split from sklearn model_selection

X_train,X_test,Y_train,Y_test=train_test_split(train_X,y,train_size=0.70,random_state=2)

Balancing the imbalanced data: The dataset was balanced with an imblearn Ran-

domundersampler, which automatically selects randomly selected subsets of data for the

targeted classes. moreover, we used the synthetic minority oversampling technique or

SMOTE

Figure 5. Boxplots of outliers/anomalies.

Some of the features contain outliers, for example Bwd Packert/s, Bwd Packet Length
Min, Bwd Packet length Std, and Min Packet length, as shown in the graph above. Our
second stage of feature selection included reduction of these features.

4.3. Machine Learning Pipeline

The machine learning pipeline includes steps of data loading, preprocessing, and
AI model implementation. Three traditional supervised learning algorithms and one
ensemble technique of voting classifier are shown in Figure 6. Each step of the implemented
methodology is explained below:

Electronics 2022, 11, x FOR PEER REVIEW 12 of 25

Figure 6. Pipeline model framework.

In the research, we split our data into training and testing data at 70:30%. On 70% of

training data, we used k-fold cross-validation with k = 5. Training data were split into five

parts (train and test), and we trained our algorithm multiple times. The model parameter

was trained with four sets of train data and tested with one set of unseen test data. This

way, we are able to tune the parameters, as well as prevent the model from overfitting.

4.3.1. Random Forest (RF)

Breiman (2001) developed random forest as an ensemble technique to handle super-

vised classification. Using supervised learning algorithms, random forests build decision

trees with training sets, in order to improve their accuracy. Random forest uses the bag-

ging method to build ensembles of decision trees. RF generates a variety of trees from

bootstrapped subsamples (random samples drawn with replacement) of coaching infor-

mation. It is historically determined, based on finding a split attribute that is simple

among a narrower set, what a tree seems to be. Consequently, randomly generated trees

are less related, since they make the same kinds of prediction errors and may overfit the

model. The trees in less related trees will be incorrect in some cases, but the correct ones,

and the trees collectively, should move in the right direction, since as they are closely re-

lated, the outputs are summed up for the final prediction. Random forest (RF) is a collab-

orative model. The first step is selecting features, followed by classifying them. Random

forests create multiple decision trees from random subsets of data. The major advantage

of random forests over other traditional classifiers is their lower classification errors.

When dealing with large datasets, RF requires too much computation.

The random forest recursive feature is eliminated

1: Acquire all the features of the random forest model

2: Calculate the RMSE and rank the importance of features.

3: Let i = 1 to n do

4: Remove the features with the smallest importance

5: Train the RF model with the tunes subset

6: Calculate RMSE and measure model performance

7: Rank the importance of features

8: End

9: Identify the optimal length of the features and the rank of each.

The main difference between them is the way they combine decision trees. Random

forests are built using a bagging method, in which each decision tree is used as a parallel

Figure 6. Pipeline model framework.

Data Loading: The first step in any machine learning analysis is to get the raw data
into the system. This raw information could be a dataset consisting of log files or a database.
Since the dataset consists of eight different files, we first concatenated the set into one single

Electronics 2022, 11, 3079 11 of 23

file. In addition, the Pandas library offers a comprehensive toolkit of the data to be loaded,
using functions created using sci-kit-learn, an open-source machine learning library written
in Python, as well as simulated data generated using simulated data.

Data Preprocessing: StandardScaler was used to standardize the CICIDS dataset:
“garbage in, garbage out.” In Pandas, None, and NaN are essentially interchangeable as
ways of indicating missing data. Hence, null values need to be dropped from a data frame.
Since the dataset had a huge volume and consisted of many null values, the drop. null()
function was used to remove the rows/columns containing null values.

Train_test_split:
A model is trained on 70% of the data and the rest is used for testing.
Import train_test_split from sklearn model_selection
X_train,X_test,Y_train,Y_test=train_test_split(train_X,y,train_size=0.70,random_state=2)
Balancing the imbalanced data: The dataset was balanced with an imblearn Ran-

domundersampler, which automatically selects randomly selected subsets of data for
the targeted classes. Moreover, we used the synthetic minority oversampling technique
or SMOTE.

In the research, we split our data into training and testing data at 70:30%. On 70% of
training data, we used k-fold cross-validation with k = 5. Training data were split into five
parts (train and test), and we trained our algorithm multiple times. The model parameter
was trained with four sets of train data and tested with one set of unseen test data. This
way, we are able to tune the parameters, as well as prevent the model from overfitting.

4.3.1. Random Forest (RF)

Breiman (2001) developed random forest as an ensemble technique to handle super-
vised classification. Using supervised learning algorithms, random forests build decision
trees with training sets, in order to improve their accuracy. Random forest uses the bagging
method to build ensembles of decision trees. RF generates a variety of trees from boot-
strapped subsamples (random samples drawn with replacement) of coaching information.
It is historically determined, based on finding a split attribute that is simple among a
narrower set, what a tree seems to be. Consequently, randomly generated trees are less
related, since they make the same kinds of prediction errors and may overfit the model. The
trees in less related trees will be incorrect in some cases, but the correct ones, and the trees
collectively, should move in the right direction, since as they are closely related, the outputs
are summed up for the final prediction. Random forest (RF) is a collaborative model. The
first step is selecting features, followed by classifying them. Random forests create multiple
decision trees from random subsets of data. The major advantage of random forests over
other traditional classifiers is their lower classification errors. When dealing with large
datasets, RF requires too much computation.

The random forest recursive feature is eliminated

1: Acquire all the features of the random forest model
2: Calculate the RMSE and rank the importance of features.
3: Let i = 1 to n do
4: Remove the features with the smallest importance
5: Train the RF model with the tunes subset
6: Calculate RMSE and measure model performance
7: Rank the importance of features
8: End
9: Identify the optimal length of the features and the rank of each.

The main difference between them is the way they combine decision trees. Random
forests are built using a bagging method, in which each decision tree is used as a parallel
estimator. The n_estimators parameter determines the number of trees used in the ensemble
model. The effect of the n_estimators parameter is different in random forests. Increasing
the number of trees in random forests does not cause overfitting. After some point, the

Electronics 2022, 11, 3079 12 of 23

accuracy of the model does not increase by adding more trees, but it is also not negatively
affected by adding excessive trees.

4.3.2. Decision Tree (DT)

This is the most popular and powerful classification and prediction tool. Depending
on its purpose, decision trees can represent the result of a test of one or more attributes.
Similarly, the internal nodes represent the tests, the branch nodes represent the outcomes,
and the leaf nodes represent the classes.

A decision tree allows an individual or organization to utilize the costs, possibilities,
and advantages of every action against each other. It can be used by individuals or
organizations to compare potential outcomes. Sometimes they are used in developing
an algorithm to calculate the best alternative mathematically, or they can be promoted in
informal discussions. There is usually one node in a decision tree that branches out to
possible outcomes. These nodes branch out into other prospects, giving it its arborescent
form. A node can be categorized into three kinds: a likelihood node, a call node, and a
finish node.

The following are some assumptions we mad when using decision trees:

• The whole training set is considered the root in the beginning.
• Categorical values are preferred for feature values.
• Recursively, records are distributed based on attribute values.
• According to some statistical methods, nodes or root attributes are ranked according

to their importance in a tree.

A decision tree is built upon iteratively asking questions to split data points. The
max_depth parameter controls the depth of the tree. The model stops splitting when the
max depth is reached. There is no standard or optimal value for max depth; it solely
depends on data. In general, the tree depth is more profound, and the chances of overfitting
increase when the depth is small; then, the model may not capture information about
the dataset.

4.3.3. Support Vector Machine (SVM)

A supervised classification task is performed by supporting vector machines (SVMs),
an algorithm originally introduced by Boser, Guyon, and Vapnik in 1992. A nonlinear
implicit mapping of input vectors into high-dimensional feature houses can produce an
optimum hyperplane that can separate instances of different categories in conjunction with
linear classification (the kernel trick) (Hooman et al. 2016). If there are millions of samples,
then the computation time becomes extremely expensive.

Based on support vector machines (SVMs), which have an edge over the typical
data sets, a decision boundary was constructed. The support vector machine algorithm
seeks a hyperplane (where N is the number of characteristics) that distinguishes between
data points. This approach minimizes the threat of classification, rather than pursuing an
optimal classification. When the number of features m, is large and the number of data
points n, is small (m > n), then this technique is useful. Hyperplanes are used to classify
data points. Data points can be classified into different classes, based on where they fall
on the hyperplane. Moreover, the number of features determines the dimensions of the
hyperplane. There are only two input features for a line to be a hyperplane. Support vectors
are data points that determine the position and orientation of a hyperplane. These support
vectors maximize the classifier’s margin. If the support vectors are removed, the position
of the hyperplane will change.

Using SVM to recursively eliminate features. Initially, the data subset G is 1, 2, and n.
R is the smallest weight criterion applied to the output ranked list.
1: Set R={}
2: Repeat steps 3 to 8 until G contains no empty cells.
4: Incorporate G into your SVM training
5: Estimate the weight vector

Electronics 2022, 11, 3079 13 of 23

5: Identify your ranking criteria.
Then, arrange them in order of importance. Newrank = Sort(Rank)
6: Update the feature rank list by Update R = R + G(Newrank)
7: Remove features ranked at the lowest level
8: Update G = G – G(Newrank)
In the high dimensional feature space of two ad hoc classification problems between

two classes, support vector machine (SVM) is the most accurate and robust model and
classification algorithm.

SVM is mostly used in supervised ML. SVM creates a decision boundary that can
solve the optimization problem, to separate different class labels. The correct placing of the
decision boundary is neither too close nor too far for the correct prediction of labeled data
points. The parameters c and gamma control the trade-off between the decision boundary
placement. When c is low, the low penalty of misclassification is low, so the decision
boundary with a large margin can be chosen at the expense of a more significant number
of misclassifications.

Similarly, when c is large, SVM tries to minimize the number of misclassified examples
due to a high penalty, resulting in a decision boundary with a smaller margin. The penalty
is not the same for all misclassified examples. It is directly proportional to the distance to
the decision boundary. On the other hand, low gamma values indicate a large similarity
radius, resulting in more points being grouped. For high gamma values, the points need
to be very close to each other to be considered in the same group (or class). Therefore,
models with very large gamma values tend to over fit. As the gamma decreases, the regions
separating different classes become more generalized.

4.3.4. Voting Classifier

The voting classifier (VC) is a machine learning model that utilizes an ensemble of
several models and identifies the output class with the highest probability. Hard and
soft are the two hyperparameters in voting classification. It makes judgments based on
predictions of others if set to hard, and if set to soft, it will use the weighted approach.

5. Generation of Explanations Using X-AI Model (LIME)

Figure 7 demonstrates our proposed model’s system architecture; adding the LIME
model to the designed machine learning pipeline to improve the explainability of the
model. Local interpretable model-agnostic explanation (LIME) [42] can explain many
machine learning algorithms for regression predictions in a faithful way, using the feature
value change of a data sample to transform individual feature values into the predictor’s
contribution. An explainer can provide a local interpretation of each data sample. For
example, interpretable models in LIME often employ linear regression or decision trees
that are trained by using tiny perturbations (e.g., adding random noise, removing certain
words, and hiding parts of an image) in the model [43,44]. The quality of these models
is increasing, and they are being used to resolve a good part of business victimization
information. There is also a persistent trade-off between model accuracy and interpretability.
Generally, if accuracy needs to be improved, it is recommended to use sophisticated
algorithms such as material, boosting, random forest, call trees, and SVM, which are
“blackbox” algorithms [45–47]. The Kaggle competition is full of winning entries that rely
on algorithms, including XGBoost, because they do not have to explain the method of
generating predictions to business users. However, in business settings, simpler models
that are easier to understand, such as regression toward the mean, provision regression,
call trees, etc. are used, although the predictions are less accurate. The business case for
predictions could be made intuitively by using black-box algorithms that can provide us
with a high accuracy and interpretability [48,49]. Machine learning models can be deployed
more widely by organizations that trust their predictions. The question remains, however,
how can trust be built in machine learning models? The model diagram after applying local
interpretable model-agnostic explanations (LIME) provides a clear explanation of the issue

Electronics 2022, 11, 3079 14 of 23

with black-box classifiers. The LIME approach is a way to understand a machine learning
black-box model by perturbing the input data samples and seeing how the predictions
change. With LIME, this technique can be applied to any machine learning black-box model.
Here are the main steps:

• A TabularExplainer is initially initialized with the data used to train it (or with the
statistics of the training data if no training data are present), details about the features,
and several class names (if classification is possible).

• In the class explain_instance, a method called explain_instance accepts a reference
to the instance for which an explanation is needed, along with the trained model’s
prediction method and the number of features to be included in the explanation.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 25

a high accuracy and interpretability [48,49]. Machine learning models can be deployed

more widely by organizations that trust their predictions. The question remains, however,

how can trust be built in machine learning models? The model diagram after applying

local interpretable model-agnostic explanations (LIME) provides a clear explanation of

the issue with black-box classifiers. The LIME approach is a way to understand a machine

learning black-box model by perturbing the input data samples and seeing how the pre-

dictions change. With LIME, this technique can be applied to any machine learning black-

box model. Here are the main steps:

• A TabularExplainer is initially initialized with the data used to train it (or with the

statistics of the training data if no training data are present), details about the fea-

tures, and several class names (if classification is possible).

• In the class explain_instance, a method called explain_instance accepts a reference to

the instance for which an explanation is needed, along with the trained model’s pre-

diction method and the number of features to be included in the explanation.

Figure 7. Explainable AI Framework.

Creating a LIME explanation.

explainer=lime. Lime_tabular. LimeTabularExplainer (X_train, feature_names=fea-

ture_names,class_names=[‘BENIGN’,’DDOS’], categorical_features=cat_columns,catego-

rial_names=feature_names_cat,kernel_width=3)

This explanation is divided into three parts:

1. The prediction probabilities are displayed in the left section.

2. The middle section presents 13 of the most important features. The binary classifica-

tion task would be done in two colors, orange and blue. Class 1 attributes are in or-

ange, and class 0 attributes are in blue. Horizontal bars indicate the relative im-

portance of these features based on floating-point numbers.

3. The color-coding is consistent across sections. A list containing the actual values of

the top 13 variables.

Through the LIME framework, classification models, regression models, or super-

vised models can be developed more efficiently. This work was introduced by Carlos

Guestrin, Sameer Singh, and Marco Ribeiro in 2016 [46]. The decision framework is based

on the assumption that all complex models are linear at a local level. The LIME model

Figure 7. Explainable AI Framework.

Creating a LIME explanation.

explainer=lime. Lime_tabular. LimeTabularExplainer (X_train, feature_names=fea
ture_names,class_names=[‘BENIGN’,’DDOS’], categorical_features=cat_columns,catego
rial_names=feature_names_cat,kernel_width=3) This explanation is divided into three parts:

1. The prediction probabilities are displayed in the left section.
2. The middle section presents 13 of the most important features. The binary classi-

fication task would be done in two colors, orange and blue. Class 1 attributes are
in orange, and class 0 attributes are in blue. Horizontal bars indicate the relative
importance of these features based on floating-point numbers.

3. The color-coding is consistent across sections. A list containing the actual values of
the top 13 variables.

Through the LIME framework, classification models, regression models, or supervised
models can be developed more efficiently. This work was introduced by Carlos Guestrin,
Sameer Singh, and Marco Ribeiro in 2016 [46]. The decision framework is based on the as-
sumption that all complex models are linear at a local level. The LIME model simulates how
the complex model behaves at one location, in order to explain the predictions at another
location based on the simple model. Tableau, text, and image data types are all supported
by LIME. This work illustrates the interpretations LIME made from CICIDS2017 data.

An explanation of the LIME algorithm

Electronics 2022, 11, 3079 15 of 23

• If an explanation is needed, n times of perturbation must occur without a small change
in value. Using this fake data, LIME constructs a local linear model around the
perturbed observation.

• Outcomes of perturbed data are predicted.
• Measure the distance between each perturbed observation and the original observation.
• Calculate the similarity score based on distance.
• Then determine m features to best represent the predictions from the perturbed data.
• The perturbed data are fitted with a simple model using the selected features.
• The coefficients (feature weights) of the simple model describe the observations.

The pseudo-code for pipeline model building is as follows:
IMPORT important libraries including Scikit Learn
IMPORT the dataset
PRE-PROCESSING to impute missing values, replace NaN values, and Infinity values in

the dataset.
SCALE the data
STORE various Machine Learning models in a variable ‘models’
SET scoring equal to accuracy
SET name as name of the machine learning models
FOR name, Model in models:
Store value of model_selection using 10 splits in a variable
Calculate and store results using cross validation score methods of the model selection
Append results in list of existing results
Print model accuracy and classification report
END FOR

6. Prediction and Evaluation
6.1. Confusion Matrix

A confusion matrix is a performance measurement for machine learning classification
problems, where the output can be two or more classes. This confusion matrix appears
in the figure below as a table containing four different combinations of predicted and
actual values. These combinations can be true negative, false positive, true positive, or
false negative.

After training the machine learning model using a decision tree, random forest, SVM,
and voting classifier with the given dataset and dealing with the various attacks represented
by confusion matrices, a prediction is made. A confusion matrix provides information
that is later used to calculate the accuracy, precision, and recall, to generate the evaluation
reports of each classifier, as presented in Figure 8.

Electronics 2022, 11, x FOR PEER REVIEW 17 of 25

Figure 8. Confusion matrix.

6.2. Accuracy

Based on a confusion matrix, an accuracy calculation can be made using the formula

below:

𝐴𝑐𝑐 =
𝑇𝑁 + 𝑇𝑃

(𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃)

6.3. Precision

Precision is calculated by using a confusion matrix, as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)

6.4. Recall

Calculation of recall is completed using the confusion matrix, with the following formula:

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)

7. Experimental Results and Discussions

Three promising supervised machine learning models were used in this experiment:

decision trees, random forests, and support vector machines (SVM). Later, a voting clas-

sifier model, which is an ensemble technique, was used as a built-in continuation to

achieve the best possible results.

7.1. Result Comparison

All of the feature models showed almost the same accuracy, with very minor differ-

ences. With reference to the comparison of the results below, we were able to achieve an

accuracy of 96.25 using a voting classifier, as shown in Table 2.

Table 2. Classification Comparison Report.

MODEL ACCURACY PRECISION RECALL F1-SCORE

Decision Tree 0.95551413679 0.88 0.88 0.88

Random Forest 0.9603538146 0.89 0.88 0.88

Support vector machine 0.9557731796 0.89 0.8 0.8

Voting classifier 0.9625651556 0.89 0.89 0.89

The bar-graph visualization in Figure 9 represents the comparison results of each

machine learning model used in this study. The results that are closest to 1 on a scale of 0

to 1 show the best performance. Based on the results above, it appears that the voting

classifier performed the best in our experiment, among all the predicted matrices.

Figure 8. Confusion matrix.

6.2. Accuracy

Based on a confusion matrix, an accuracy calculation can be made using the formula below:

Acc =
TN + TP

(TN + TP + FN + FP)

Electronics 2022, 11, 3079 16 of 23

6.3. Precision

Precision is calculated by using a confusion matrix, as follows:

Precision =
TP

(TP + FP)

6.4. Recall

Calculation of recall is completed using the confusion matrix, with the following formula:

recall =
TP

(TP + FN)

7. Experimental Results and Discussions

Three promising supervised machine learning models were used in this experiment:
decision trees, random forests, and support vector machines (SVM). Later, a voting classifier
model, which is an ensemble technique, was used as a built-in continuation to achieve the
best possible results.

7.1. Result Comparison

All of the feature models showed almost the same accuracy, with very minor differ-
ences. With reference to the comparison of the results below, we were able to achieve an
accuracy of 96.25 using a voting classifier, as shown in Table 2.

Table 2. Classification Comparison Report.

MODEL ACCURACY PRECISION RECALL F1-SCORE

Decision Tree 0.95551413679 0.88 0.88 0.88

Random Forest 0.9603538146 0.89 0.88 0.88

Support vector
machine 0.9557731796 0.89 0.8 0.8

Voting classifier 0.9625651556 0.89 0.89 0.89

The bar-graph visualization in Figure 9 represents the comparison results of each
machine learning model used in this study. The results that are closest to 1 on a scale of
0 to 1 show the best performance. Based on the results above, it appears that the voting
classifier performed the best in our experiment, among all the predicted matrices.

Electronics 2022, 11, x FOR PEER REVIEW 18 of 25

Figure 9. Comparison and results of the models.

7.1.1. Decision Tree

Figure 10 shows a multi-class confusion matrix representation for the decision tree

classifier, which shows a summary of the predicted results. By examining the plot, one

can understand the relationships between true-positive and false-positive, and true-neg-

ative and false-negative, predictions for multi-class classification of 0 to 7. With the con-

fusion matrix, we calculated the model’s accuracy and misclassification, both of which are

displayed in the figure itself.

Figure 10. Confusion matrix for decision tree.

Figure 9. Comparison and results of the models.

Electronics 2022, 11, 3079 17 of 23

7.1.1. Decision Tree

Figure 10 shows a multi-class confusion matrix representation for the decision tree
classifier, which shows a summary of the predicted results. By examining the plot, one can
understand the relationships between true-positive and false-positive, and true-negative
and false-negative, predictions for multi-class classification of 0 to 7. With the confusion ma-
trix, we calculated the model’s accuracy and misclassification, both of which are displayed
in the figure itself.

Electronics 2022, 11, x FOR PEER REVIEW 18 of 25

Figure 9. Comparison and results of the models.

7.1.1. Decision Tree

Figure 10 shows a multi-class confusion matrix representation for the decision tree

classifier, which shows a summary of the predicted results. By examining the plot, one

can understand the relationships between true-positive and false-positive, and true-neg-

ative and false-negative, predictions for multi-class classification of 0 to 7. With the con-

fusion matrix, we calculated the model’s accuracy and misclassification, both of which are

displayed in the figure itself.

Figure 10. Confusion matrix for decision tree.

Figure 10. Confusion matrix for decision tree.

7.1.2. Random Forest

Figure 11 depicts the confusion matrix associated with the random forest model.

Electronics 2022, 11, x FOR PEER REVIEW 19 of 25

7.1.2. Random Forest

Figure 11 depicts the confusion matrix associated with the random forest model.

Figure 11. Confusion matrix for a random forest.

The number of correct and incorrect predictions is summarized with count values

and broken down by each class. In the figure itself, the confusion matrix allows us to cal-

culate the model’s accuracy and misclassification.

7.1.3. Support Vector Machine

Similarly, in Figure 12, we have visualized the prediction results of the support vector

machine model as a confusion matrix. A count value is computed for each class for the

number of correct and incorrect predictions. Using this confusion matrix, a model accu-

racy of 96% was achieved.

Figure 11. Confusion matrix for a random forest.

Electronics 2022, 11, 3079 18 of 23

The number of correct and incorrect predictions is summarized with count values and
broken down by each class. In the figure itself, the confusion matrix allows us to calculate
the model’s accuracy and misclassification.

7.1.3. Support Vector Machine

Similarly, in Figure 12, we have visualized the prediction results of the support vector
machine model as a confusion matrix. A count value is computed for each class for the
number of correct and incorrect predictions. Using this confusion matrix, a model accuracy
of 96% was achieved.

Electronics 2022, 11, x FOR PEER REVIEW 20 of 25

Figure 12. Confusion matrix for the support vector machine.

7.1.4. Voting Classifier

The initial extensive experiment involved a feature selection method that targeted

the top 10 features in the dataset, as listed in Table 3. Later, we utilized these features to

train the machine learning models that are listed below. After successfully training all the

machine learning models, we conducted an experiment to plot the feature contribution of

each feature for a specific machine learning model.

Table 3. Top 10 features in dataset.

1 Bwd Packet Length Min

2 Bwd Packet Length Std

3 Flow IAT Max

4 Fwd IAT Std

5 Bwd IAT Total

6 Bwd Packets/s

7 Min Packet Length

8 PSH Flag Count

9 ACK Flag Count

10 URG Flag Count

1. A decision tree was used to determine the importance of features on a classification

problem involving 1000 samples and 10 features. The importance of split points is

estimated using decision tree algorithms, such as classification and regression trees

(CARTs), which use standard metrics, such as Gini and entropy, to select split points.

Similarly, algorithms such as random forest and stochastic gradient boosting can be

applied to ensembles of decision trees. It is possible to use this algorithm as the Ba-

sisTreeRegressor and BasisTreeClassifier classes of scikit-learn. After a model has

Figure 12. Confusion matrix for the support vector machine.

7.1.4. Voting Classifier

The initial extensive experiment involved a feature selection method that targeted
the top 10 features in the dataset, as listed in Table 3. Later, we utilized these features to
train the machine learning models that are listed below. After successfully training all the
machine learning models, we conducted an experiment to plot the feature contribution of
each feature for a specific machine learning model.

Table 3. Top 10 features in dataset.

1 Bwd Packet Length Min

2 Bwd Packet Length Std

3 Flow IAT Max

4 Fwd IAT Std

5 Bwd IAT Total

6 Bwd Packets/s

7 Min Packet Length

8 PSH Flag Count

9 ACK Flag Count

10 URG Flag Count

Electronics 2022, 11, 3079 19 of 23

1. A decision tree was used to determine the importance of features on a classification
problem involving 1000 samples and 10 features. The importance of split points is
estimated using decision tree algorithms, such as classification and regression trees
(CARTs), which use standard metrics, such as Gini and entropy, to select split points.
Similarly, algorithms such as random forest and stochastic gradient boosting can
be applied to ensembles of decision trees. It is possible to use this algorithm as the
BasisTreeRegressor and BasisTreeClassifier classes of scikit-learn. After a model has
been fitted, the feature_importances property can be accessed, to retrieve the relative
importance scores for each input feature. Figure 13 represents the calculated scores
for each feature.

Electronics 2022, 11, x FOR PEER REVIEW 21 of 25

been fitted, the feature_importances property can be accessed, to retrieve the relative

importance scores for each input feature. Figure 13 represents the calculated scores

for each feature.

Figure 13. Feature importance graph for decision tree.

2. The random forest method was used to determine the significance of features in re-

gression problems, as represented in Figure 14. Random forest was implemented as

the Random Forest Classifier class and Random Forest Regressor class in scikit-learn,

to determine the feature importance. After a model has been fitted, its property of

feature importance can be accessed, to retrieve the relative importance of each fea-

ture. The bagging and extra trees algorithms can also be used with this approach.

Figure 13. Feature importance graph for decision tree.

2. The random forest method was used to determine the significance of features in
regression problems, as represented in Figure 14. Random forest was implemented as
the Random Forest Classifier class and Random Forest Regressor class in scikit-learn,
to determine the feature importance. After a model has been fitted, its property of
feature importance can be accessed, to retrieve the relative importance of each feature.
The bagging and extra trees algorithms can also be used with this approach.

Electronics 2022, 11, 3079 20 of 23Electronics 2022, 11, x FOR PEER REVIEW 22 of 25

Figure 14. Feature importance graph for random.

The explanation of the LIME observations for all the algorithms, decision tree, ran-

dom forest, and support vector machine, are represented in Figures 15–17, respectively.

The prediction probabilities are considered for DDOS and BENIGN classes. LIME ex-

plains why the probability was assigned in the first place. To calculate the prediction, the

probability values are compared with the actual class of the target variable. The observa-

tion ID value of 2 was considered for this research study in the validation set. All three

algorithms assigned a higher probability to type 2, which is the actual value. However,

the probability ranged from -1 to 1.0, with random forest assigning the maximum proba-

bility. In addition, the weights assigned by the different algorithms to each feature were

quite different. For example, the value of Fwad LAT Std > 2.81 was assigned a weight of

−0.26 for the decision tree, a weight of 0.65 for random forest, and 0.65 for SVM. Each

feature was then color-coded, to indicate whether it contributed to the prediction of DDOS

(Orange), NOT1, or BENIGN (blue) in the feature-value-table. The Feature-Value table by

itself shows the actual values of the features for that particular record (here observation

or Id = 2).

LIME observations for the different machine learning models:

Figure 15. LIME observations for decision tree.

Figure 14. Feature importance graph for random.

The explanation of the LIME observations for all the algorithms, decision tree, random
forest, and support vector machine, are represented in Figures 15–17, respectively. The
prediction probabilities are considered for DDOS and BENIGN classes. LIME explains why
the probability was assigned in the first place. To calculate the prediction, the probability
values are compared with the actual class of the target variable. The observation ID value
of 2 was considered for this research study in the validation set. All three algorithms
assigned a higher probability to type 2, which is the actual value. However, the probability
ranged from −1 to 1.0, with random forest assigning the maximum probability. In addition,
the weights assigned by the different algorithms to each feature were quite different. For
example, the value of Fwad LAT Std > 2.81 was assigned a weight of −0.26 for the decision
tree, a weight of 0.65 for random forest, and 0.65 for SVM. Each feature was then color-
coded, to indicate whether it contributed to the prediction of DDOS (Orange), NOT1, or
BENIGN (blue) in the feature-value-table. The Feature-Value table by itself shows the
actual values of the features for that particular record (here observation or Id = 2).

LIME observations for the different machine learning models:

Electronics 2022, 11, x FOR PEER REVIEW 22 of 25

Figure 14. Feature importance graph for random.

The explanation of the LIME observations for all the algorithms, decision tree, ran-

dom forest, and support vector machine, are represented in Figures 15–17, respectively.

The prediction probabilities are considered for DDOS and BENIGN classes. LIME ex-

plains why the probability was assigned in the first place. To calculate the prediction, the

probability values are compared with the actual class of the target variable. The observa-

tion ID value of 2 was considered for this research study in the validation set. All three

algorithms assigned a higher probability to type 2, which is the actual value. However,

the probability ranged from -1 to 1.0, with random forest assigning the maximum proba-

bility. In addition, the weights assigned by the different algorithms to each feature were

quite different. For example, the value of Fwad LAT Std > 2.81 was assigned a weight of

−0.26 for the decision tree, a weight of 0.65 for random forest, and 0.65 for SVM. Each

feature was then color-coded, to indicate whether it contributed to the prediction of DDOS

(Orange), NOT1, or BENIGN (blue) in the feature-value-table. The Feature-Value table by

itself shows the actual values of the features for that particular record (here observation

or Id = 2).

LIME observations for the different machine learning models:

Figure 15. LIME observations for decision tree. Figure 15. LIME observations for decision tree.

Electronics 2022, 11, 3079 21 of 23Electronics 2022, 11, x FOR PEER REVIEW 23 of 25

Figure 16. LIME observations for random forest.

Figure 17. LIME observations for support vector machine.

8. Conclusions and Future Work

The paper proposes an intrusion detection system using machine learning algo-

rithms, such as decision trees, random forests, and SVM (IDS) experiments. After training

these models, an ensemble technique, voting classifier, was added, and this achieved an

accuracy of 96.25%. This paper contends that effective human–machine interactions re-

quire trust. LIME is a modular, extensible approach that describes predictions in a clear,

understandable way. For the selection of representative models, an explanation of predic-

tion is very helpful. It is used for deciding between models, assessing trust, improving

untrustworthy models, and gaining insights into predictions for experts and non-experts

of the system. This work proposes using an ensemble of machine learning models and

then applying a LIME explainable framework to understand the model’s prediction. The

ensemble of ML models showed an improved accuracy of 96.25 for the IDS prediction,

and the LIME explanation graphs showcased the prediction performance of the decision

tree, random forest, and SVM algorithms. This work could be further extended to the ap-

plication of explainability to deep learning-based analysis of IDS, and different XAI mod-

els could also be tried, such as SHAP, DeepLift, and AIX360.

We are also planning to create an app for real-time data analysis and prediction per-

formance evaluation. In the future, we will implement the concept of explainable AI on

various complex datasets, such as ToN_IoT [48,49].

Author Contributions: Conceptualization, S.P., S.K. and K.K.; Data curation, S.M.M., A.S. and O.S.;

Formal analysis, V.V., A.S., N.A. and K.S.; Funding acquisition, V.V.; Investigation, V.V. and N. A.;

Methodology, S.P., S.M.M., A.S. and S.K.; Project administration, S.K. and K.K.; Resources, N.A. and

Figure 16. LIME observations for random forest.

Electronics 2022, 11, x FOR PEER REVIEW 23 of 25

Figure 16. LIME observations for random forest.

Figure 17. LIME observations for support vector machine.

8. Conclusions and Future Work

The paper proposes an intrusion detection system using machine learning algo-

rithms, such as decision trees, random forests, and SVM (IDS) experiments. After training

these models, an ensemble technique, voting classifier, was added, and this achieved an

accuracy of 96.25%. This paper contends that effective human–machine interactions re-

quire trust. LIME is a modular, extensible approach that describes predictions in a clear,

understandable way. For the selection of representative models, an explanation of predic-

tion is very helpful. It is used for deciding between models, assessing trust, improving

untrustworthy models, and gaining insights into predictions for experts and non-experts

of the system. This work proposes using an ensemble of machine learning models and

then applying a LIME explainable framework to understand the model’s prediction. The

ensemble of ML models showed an improved accuracy of 96.25 for the IDS prediction,

and the LIME explanation graphs showcased the prediction performance of the decision

tree, random forest, and SVM algorithms. This work could be further extended to the ap-

plication of explainability to deep learning-based analysis of IDS, and different XAI mod-

els could also be tried, such as SHAP, DeepLift, and AIX360.

We are also planning to create an app for real-time data analysis and prediction per-

formance evaluation. In the future, we will implement the concept of explainable AI on

various complex datasets, such as ToN_IoT [48,49].

Author Contributions: Conceptualization, S.P., S.K. and K.K.; Data curation, S.M.M., A.S. and O.S.;

Formal analysis, V.V., A.S., N.A. and K.S.; Funding acquisition, V.V.; Investigation, V.V. and N. A.;

Methodology, S.P., S.M.M., A.S. and S.K.; Project administration, S.K. and K.K.; Resources, N.A. and

Figure 17. LIME observations for support vector machine.

8. Conclusions and Future Work

The paper proposes an intrusion detection system using machine learning algorithms,
such as decision trees, random forests, and SVM (IDS) experiments. After training these
models, an ensemble technique, voting classifier, was added, and this achieved an accuracy
of 96.25%. This paper contends that effective human–machine interactions require trust.
LIME is a modular, extensible approach that describes predictions in a clear, understandable
way. For the selection of representative models, an explanation of prediction is very helpful.
It is used for deciding between models, assessing trust, improving untrustworthy models,
and gaining insights into predictions for experts and non-experts of the system. This
work proposes using an ensemble of machine learning models and then applying a LIME
explainable framework to understand the model’s prediction. The ensemble of ML models
showed an improved accuracy of 96.25 for the IDS prediction, and the LIME explanation
graphs showcased the prediction performance of the decision tree, random forest, and
SVM algorithms. This work could be further extended to the application of explainability
to deep learning-based analysis of IDS, and different XAI models could also be tried, such
as SHAP, DeepLift, and AIX360.

We are also planning to create an app for real-time data analysis and prediction
performance evaluation. In the future, we will implement the concept of explainable AI on
various complex datasets, such as ToN_IoT [48,49].

Author Contributions: Conceptualization, S.P., S.K. and K.K.; Data curation, S.M.M., A.S. and O.S.;
Formal analysis, V.V., A.S., N.A. and K.S.; Funding acquisition, V.V.; Investigation, V.V. and N.A.;
Methodology, S.P., S.M.M., A.S. and S.K.; Project administration, S.K. and K.K.; Resources, N.A. and

Electronics 2022, 11, 3079 22 of 23

O.S.; Software, S.M.M., A.S., N.A., O.S. and K.S.; Supervision, S.P. and K.K.; Validation, V.V., K.S.
and K.K.; Visualization, A.S. and O.S.; Writing – original draft, S.M.M. and O.S.; Writing – review
& editing, V.V., S.K., K.S. and K.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, M.; Zheng, K.; Yang, Y.; Wang, X. An explainable machine learning framework for intrusion detection systems. IEEE Access

2020, 8, 73127–73141. [CrossRef]
2. Vigneswaran, R.K.; Vinayakumar, R.; Soman, K.; Poornachandran, P. Evaluating shallow and deep neural networks for network

intrusion detection systems in cyber security. In Proceedings of the 9th International Conference on Computing, Communication
and Networking Technologies (ICCCNT), Bengaluru, India, 10–12 July 2018; pp. 1–6.

3. Tran, M.-Q.; Elsisi, M.; Liu, M.-K.; Vu, V.Q.; Mahmoud, K.; Darwish, M.M.F.; Abdelaziz, A.Y.; Lehtonen, M. Reliable deep learning
and IoT-based monitoring system for secure computer numerical control machines against cyber-attacks with experimental
verification. IEEE Access 2022, 10, 23186–23197. [CrossRef]

4. Elsisi, M.; Tran, M.-Q. Development of an IoT architecture based on a deep neural network against cyber attacks for automated
guided vehicles. Sensors 2021, 21, 8467. [CrossRef]

5. Scott, S.-l.l.; Lundberg, M. A unified approach to interpreting model predictions. In Proceedings of the Advances in Neural
Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Volume 30.

6. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should I trust you?”: Explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 1135–1144.

7. Ribeiro, M.T.C. Lime. 2020. Available online: https://github.com/marcotcr/lime (accessed on 17 July 2022).
8. Sahu, S.K.; Sarangi, S.; Jena, S.K. A detail analysis on intrusion detection datasets. In Proceedings of the 2014 IEEE International

Advance Computing Conference (IACC), Gurgaon, India, 21–22 February 2014.
9. AI Explainability 360 (v0.2.0). 2019. Available online: https://github.com/Trusted-AI/AIX360 (accessed on 17 July 2022).
10. Mane, S.; Rao, D. Explaining network intrusion detection system using explainable AI framework. arXiv 2021, arXiv:2103.07110t.
11. Ando, S. Interpreting Random Forests. 2019. Available online: http://blog.datadive.net/interpreting-random-forests/ (accessed

on 17 July 2022).
12. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
13. Chen, J.; Li, K.; Tang, Z.; Bilal, K.; Yu, S.; Weng, C.; Li, K. A parallel random forest algorithm for big data in a spark cloud

computing environment. IEEE Transact. Parallel Distrib. Syst. 2016, 28, 919–933. [CrossRef]
14. DeJong, G. Generalizations based on explanations. IJCAI 1981, 81, 67–69.
15. Dong, B.; Wang, X. Comparison deep learning method to traditional methods using for network intrusion detection. In

Proceedings of the 8th IEEE International Conference on Communication Software and Networks (ICCSN), Beijing, China, 4–6
June 2016; pp. 581–585.

16. Hooman, A.; Marthandan, G.; Yusoff, W.F.W.; Omid, M.; Karamizadeh, S. Statistical and data mining methods in credit scoring. J.
Dev. Areas 2016, 50, 371–381. [CrossRef]

17. Islam, S.R.; Eberle, W.; Bundy, S.; Ghafoor, S.K. Infusing domain knowledge in ai-based ”black box” models for better explainability
with application in bankruptcy prediction. arXiv 2019, arXiv:1905.11474.

18. Javaid, A.; Niyaz, Q.; Sun, W.; Alam, M. A deep learning approach for network intrusion detection systems. In Proceedings of the
9th EAI International Conference on Bio-Inspired Information and Communications Technologies (Formerly BIONETICS), New
York, NY, USA, 3–5 December 2016; pp. 21–26.

19. Li, Z.; Sun, W.; Wang, L. A neural network-based distributed intrusion detection system on a cloud platform. In Proceedings of the
IEEE 2nd International Conference on Cloud Computing and Intelligence Systems, Hangzhou, China, 30 October–1 November
2012; Volume 1, pp. 75–79.

20. Lipovetsky, S.; Conklin, M. Analysis of regression in game theory approach. Appl. Stoch. Models Bus. Ind. 2001, 17, 319–330.
[CrossRef]

21. Lundberg, S. Shap vs. Lime. 2019. Available online: https://github.com/slundberg/shap/issues/19 (accessed on 17 July 2022).
22. Ferdiana, R. A systematic literature review of intrusion detection system for network security: Research trends, datasets and

methods. In Proceedings of the 4th International Conference on Informatics and Computational Sciences (ICICoS), Semarang,
Indonesia, 10–11 November 2020; pp. 1–6.

23. Peddabachigari, S.; Abraham, A.; Grosan, C.; Thomas, J. Modeling intrusion detection system using hybrid intelligent systems. J.
Netw. Comput. Appl. 2007, 30, 114–132. [CrossRef]

24. Li, T.; Hu, S.; Beirami, A.; Smith, V. Ditto: Fair and robust federated learning through personalization. In Proceedings of the
International Conference on Machine Learning, Online, 18–24 July 2021; pp. 6357–6368.

http://doi.org/10.1109/ACCESS.2020.2988359
http://doi.org/10.1109/ACCESS.2022.3153471
http://doi.org/10.3390/s21248467
https://github.com/marcotcr/lime
https://github.com/Trusted-AI/AIX360
http://blog.datadive.net/interpreting-random-forests/
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1109/TPDS.2016.2603511
http://doi.org/10.1353/jda.2016.0057
http://doi.org/10.1002/asmb.446
https://github.com/slundberg/shap/issues/19
http://doi.org/10.1016/j.jnca.2005.06.003

Electronics 2022, 11, 3079 23 of 23

25. Mohseni, S.; Wang, H.; Yu, Z.; Xiao, C.; Wang, Z.; Yadawa, J. Practical machine learning safety: A survey and primer. arXiv 2021,
arXiv:2106.04823.

26. Kishore, R. Evaluating Shallow and Deep Neural Networks for Intrusion Detection Systems Cyber Security. Doctoral Dissertation,
Amrita School of Engineering, Amritapuri, India, 2020.

27. Hoque, M.S.; Mukit, M.; Bikas, M.; Naser, A. An implementation of intrusion detection system using genetic algorithm. arXiv
2012, arXiv:1204.1336.

28. Maseer, Z.K.; Yusof, R.; Bahaman, N.; Mostafa, S.A.; Foozy, C.F.M. Benchmarking of machine learning for anomaly based intrusion
detection systems in the CICIDS2017 dataset. IEEE Access 2021, 9, 22351–22370. [CrossRef]

29. Laqtib, S.; El Yassini, K.; Hasnaoui, M.L. A technical review and comparative analysis of machine learning techniques for intrusion
detection systems in MANET. Int. J. Electr. Comput. Eng. 2020, 10, 2701. [CrossRef]

30. Ahmad, Z.; Shahid Khan, A.; Wai Shiang, C.; Abdullah, J.; Ahmad, F. Network intrusion detection system: A systematic study of
machine learning and deep learning approaches. Transact. Emerg. Telecommun. Technol. 2021, 32, e4150. [CrossRef]

31. Mukherjee, S.; Sharma, N. Intrusion detection using naive Bayes classifier with feature reduction. Procedia Technol. 2012, 4,
119–128. [CrossRef]

32. Kumar, V.; Chauhan, H.; Panwar, D. K-means clustering approach to analyze NSL-KDD intrusion detection dataset. Int. J. Soft
Comput. Eng. 2013, 4, 2231–2307.

33. Sharafaldin. Intrusion Detection Evaluation Dataset (CICIDS2017), Canadian Institute for Cybersecurity, January, 2018. Available
online: https://www.unb.ca/cic/datasets/ids2017.html (accessed on 17 July 2022).

34. Liu, H.; Lang, B. Machine learning and deep learning methods for intrusion detection systems: A survey. Appl. Sci. 2019, 9, 4396.
[CrossRef]

35. Radoglou-Grammatikis, P.I.; Sarigiannidis, P.G. Securing the smart grid: A comprehensive compilation of intrusion detection and
prevention systems. IEEE Access 2019, 7, 46595–46620. [CrossRef]

36. Gamage, S.; Samarabandu, J. Deep learning methods in network intrusion detection: A survey and an objective comparison. J.
Netw. Comput. Appl. 2020, 169, 102767. [CrossRef]

37. Mohammadi, M.; Rashid, T.A.; Karim, S.H.; Aldalwie, A.H.M.; Tho, Q.T.; Bidaki, M.; Rahmani, A.M.; Hosseinzadeh, M. A
comprehensive survey and taxonomy of the SVM-based intrusion detection systems. J. Netw. Comput. Appl. 2021, 178, 102983.
[CrossRef]

38. Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C.; Faruki, P. Network intrusion detection for IoT security based on learning
techniques. IEEE Commun. Surv. Tutor. 2019, 21, 2671–2701. [CrossRef]

39. Da Costa, K.A.; Papa, J.P.; Lisboa, C.O.; Munoz, R.; de Albuquerque, V.H.C. Internet of things: A survey on machine learning-based
intrusion detection approaches. Comput. Netw. 2019, 151, 147–157. [CrossRef]

40. Shone, N.; Ngoc, T.N.; Phai, V.D.; Shi, Q. A deep learning approach to network intrusion detection. IEEE Transact. Emerg. Topics
Comput. Intell. 2018, 2, 41–50. [CrossRef]

41. Štrumbelj, E.; Kononenko, I. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst.
2014, 41, 647–665. [CrossRef]

42. Ribeiro, M.T.; Singh, S.; Guestrin, C. Model-agnostic interpretability of machine learning. arXiv 2016, arXiv:1606.05386.
43. Adadi, A.; Berrada, M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 2018, 6,

52138–52160. [CrossRef]
44. Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; Yang, G.Z. XAI—Explainable artificial intelligence. Sci. Robot. 2019, 4,

eaay7120. [CrossRef]
45. Tjoa, E.; Guan, C. A survey on explainable artificial intelligence (XAI): Toward medical XAI. IEEE Transact. Neural Netw. Learn.

Syst. 2020, 32, 4793–4813. [CrossRef]
46. Wolf, C.T. Explainability scenarios: Towards scenario-based XAI design. In Proceedings of the 24th International Conference on

Intelligent User Interfaces, Marina del Ray, CA, USA, 17–20 March 2019; pp. 252–257.
47. Das, A.; Rad, P. Opportunities and challenges in explainable artificial intelligence (XAI): A survey. arXiv 2020, arXiv:2006.11371.
48. Byrne, R.M.J. Counterfactuals in explainable artificial intelligence (XAI): Evidence from human reasoning. IJCAI 2019, 6276–6282.
49. Booij, T.M.; Chiscop, I.; Meeuwissen, E.; Moustafa, N.; Hartog, F.T.H.d. ToN_IoT: The role of heterogeneity and the need for

standardization of features and attack types in IoT network intrusion data sets. IEEE Internet Things J. 2022, 9, 485–496. [CrossRef]

http://doi.org/10.1109/ACCESS.2021.3056614
http://doi.org/10.11591/ijece.v10i3.pp2701-2709
http://doi.org/10.1002/ett.4150
http://doi.org/10.1016/j.protcy.2012.05.017
https://www.unb.ca/cic/datasets/ids2017.html
http://doi.org/10.3390/app9204396
http://doi.org/10.1109/ACCESS.2019.2909807
http://doi.org/10.1016/j.jnca.2020.102767
http://doi.org/10.1016/j.jnca.2021.102983
http://doi.org/10.1109/COMST.2019.2896380
http://doi.org/10.1016/j.comnet.2019.01.023
http://doi.org/10.1109/TETCI.2017.2772792
http://doi.org/10.1007/s10115-013-0679-x
http://doi.org/10.1109/ACCESS.2018.2870052
http://doi.org/10.1126/scirobotics.aay7120
http://doi.org/10.1109/TNNLS.2020.3027314
http://doi.org/10.1109/JIOT.2021.3085194

	Introduction
	Literature Review
	Significance of the Study
	Methodology
	DATASET
	Feature Selection
	Machine Learning Pipeline
	Random Forest (RF)
	Decision Tree (DT)
	Support Vector Machine (SVM)
	Voting Classifier

	Generation of Explanations Using X-AI Model (LIME)
	Prediction and Evaluation
	Confusion Matrix
	Accuracy
	Precision
	Recall

	Experimental Results and Discussions
	Result Comparison
	Decision Tree
	Random Forest
	Support Vector Machine
	Voting Classifier

	Conclusions and Future Work
	References

