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Abstract: In order to optimize the performance of a resonant micro-optic gyroscope, a well-designed
transmissive structure, which was obtained by optimizing the transmission coefficient of a cou-
pler was used as the core component of a planar waveguide optical gyroscope. By analyzing the
relationship between the resonator’s transmission coefficient and the gyroscope’s scale factor, the
optical waveguide resonator sensing element with optimal parameters for the resonant micro-optic
gyroscope was obtained. A scale factor of 1.34 mV/◦/s was achieved using an open-loop system,
and a bias stability of 183.7 ◦/h over a one-hour test was successfully demonstrated.

Keywords: resonant micro-optic gyroscope; transmissive resonator; waveguides

1. Introduction

A resonant micro-optic gyroscope is a novel optoelectronic hybrid integrated sensor
with great potential to realize miniaturized all-solid-state devices and monolithic device
integration [1,2]. Benefitting from the mature process of integrated circuits and planar
light waveguide circuits, the realization of all integrated resonant micro-optic gyroscopes
on a single chip has been proposed for years and is developing rapidly [3,4]. Because
a waveguide ring resonator is the core sensing element of a gyroscope, its performance
directly determines the precision of the gyroscope. The design and fabrication of a high
quality resonator has become an important research topic for optical waveguide gyroscopes.

A number of parameters are directly related to a gyroscope’s performance, including
the quality factor and effective area of a resonator. In view of the development trend of
gyroscope miniaturization and integration, the question of how to optimize the parameters
of a resonator of a finite size to improve the performance of a gyroscope is urgent. In recent
years, research on resonators for resonant optical gyroscopes has developed rapidly [5–13].
Vannahme et al. fabricated a 6 cm diameter ring resonator on a LiNbO3 substrate with a Q
factor of 2.4 × 106 [14].

Ciminelli et al. fabricated an InP-based spiral resonator with a quality factor (Q factor)
of 6 × 105 and an effective area of 10 mm2; the resolution of the gyroscope was 150 ◦/h [15].
Feng et al. fabricated a silica waveguide ring resonator with a Q factor of 1.4 × 107, for
which a long-term bias stability of 0.013 ◦/s was reported [16].

Planar optical resonators include transmissive structures and reflective structures.
Compared with a reflective resonator, a transmissive resonator has one more coupling
region, which introduces an additional coupling loss [17]; however, it seems to be more
advantageous, not only in the sense that the structure is more symmetrical and reciprocal,
but also in regard to the better suppression of the polarization fluctuation [18]. Moreover,
circulators are not required when constructing the gyroscope system. Feng et al. designed
a transmissive resonator optic gyroscope based on a silica waveguide ring resonator, for
which the quality factor was 6.13 × 106 and the long-term bias stability was 0.22◦/s [19].
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In this paper, a resonant micro-optic gyroscope based on a transmissive silica waveg-
uide ring resonator is reported. First, we established a physical model of the transmissive
resonator, deduced the transfer function, analyzed the relationship between the resonator’s
transmission coefficient and the gyroscope’s scale factor, and obtained the transmission
coefficient at the maximum sensitivity. Then, micro-electro-mechanical-system (MEMS)
processing was used to process the resonator. Finally, a gyroscope test system was built to
carry out experiments. The experimental results agreed with the simulation results.

2. Principle and Simulation

A transmissive resonator consists of two straight waveguides and a circular waveguide.
The structure diagram is shown in Figure 1a: Ein, Ethrough, and Edrop are the input port,
through port, and drop port of the light fields, respectively. The light is divided into two
parts when it arrives at coupling region 1: part of it travels to the through port, while
the other couples into the circular waveguide. In the same way, E1 will be spilt into two
parts when arriving at coupling region 2: one part couples with a straight waveguide and
then travels to the drop port, while the other continues propagating around the circular
waveguide. When it meets the resonance conditions, the light of the ring resonator will
reach a dynamic balance.
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In Figure 1, k1, k2, t1, and t2 are defined as the coupling coefficients and transmission co-
efficients of coupling region 1 and coupling region 2, respectively. In this paper, we assume
that the coupling is lossless, in which case the parameters satisfy the following equation:

k2
1 + t2

1 = 1 k2
2 + t2

2 = 1 (1)

In Figure 1, g1 and g2 are the gaps between the straight waveguides and the circular
waveguide, respectively. The transmission loss of the light during one cycle in the circular
waveguide can be described using the round-trip loss factor a:

a =
√

10−αL/10 (2)

where α is the c-band transmission loss and φ is the round-trip phase of the resonator.
The transmission matrix method is used to analyze the transmission of light between

the straight waveguides and the circular waveguide [20]; the relationship between the
parameters can be expressed as follows:(

Ethrough
E1

)
=

(
t1 −ik1
−ik1 t1

)(
Ein
E2

)
(3)
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Edrop = k2a1/2eiπ/2eiφ/2E1 (4)

According to the above formulae, the normalized transfer function of the transmissive
resonator can be represented as:

Tthrough(φ) =

∣∣∣∣Ethrough

Ein

∣∣∣∣2 =
t2
1 + a2t2

2 − 2at1t2 cos φ

1 + a2t2
1t2

2 − 2at1t2 cos φ
(5)

Tdrop(φ) =

∣∣∣∣Edrop

Ein

∣∣∣∣2 =
ak2

1k2
2

1 + a2t2
1t2

2 − 2at1t2 cos φ
(6)

The resonance curve is plotted by the transfer function, as shown in Figure 1b. The
blue curve Tt represents the resonant spectrum of the straight through port and the red
curve Td represents the resonant spectrum of the drop port. The full width at half maximum
(FWMH), ∆f, and the quality factor, Q, can be expressed as follows:

∆ f =
c

nπL
arccos

2at1t2

1 + a2t2
1t2

2
(7)

Q =
f

∆ fFWHM
=

nπL
λarccos 2at1t2

1+a2t2
1t2

2

(8)

where c is the speed of light in a vacuum, n is the refractive index of the waveguide, L is
the perimeter of the circular waveguide, f is the resonant frequency, and λ is the operation
wavelength in a vacuum.

The resonant depth, h, of the through port spectrum can be derived as follows:

h =
Ttmax − Ttmin

Ttmax
= 1−

(
t1 − at2

1− at1t2

)2
(9)

where Ttmax and Ttmin are the maximum and minimum of the transfer function of through
port, respectively.

Equations (7) and (8) show that when the length of the circular resonator is fixed, the
Q will be determined by the transmission coefficients t1 and t2.

In a reflective resonant optical gyroscope, the best performance is achieved when the
resonator is undercoupling and the resonant depth is 0.75 [13]. Therefore, in a transmissive
resonator, the coupling loss from coupling region 2 can be approximately considered as a
part of the loss in the reflective resonant. In this way, the round-trip loss factor, a, and the
transmission coefficient, t2, can be regarded as a whole factor to simplify the analysis.

The slope, l, of the demodulation curve in the linear region is defined as a scale factor,
which can be considered as the sensitivity of the gyroscope. The specific formula [21] is
as follows:

l =
dIout

d∆ f

∣∣∣∆ f=0 (10)

Iout = Iin

{
t2
1 + a2t2

2 − 2at1t2 cos 2π(∆ f /2+ f ′)
FSR

1 + a2t2
1t2

2 − 2at1t2 cos 2π(∆ f /2+ f ′)
FSR

−
t2
1 + a2t2

2 − 2at1t2 cos 2π(∆ f /2− f ′)
FSR

1 + a2t2
1t2

2 − 2at1t2 cos 2π(∆ f /2− f ′)
FSR

}
(11)

where Iin, Iout represent the input and output light intensity of the photodetector, re-
spectively. FSR represents the free spectrum width of the resonance curve, as shown in
Figure 1b.

In this article, the diameter of the circular waveguide is 6 cm. The experimental
test results show that the c-band transmission loss, α, of the silica optical waveguide is
0.017 dB/cm.

In combination with Equations (9) to (11), we can calculate that t1 = 0.9798 and
t2 = 0.9759 when the slope of the demodulation curve is at its maximum at the resonant
frequency point, and the corresponding gyroscope sensitivity is at its maximum at this time.
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In this case, we only need to design the gaps between the straight waveguides and
the circular waveguide to match the above transmission coefficient. Then, g1 = 6.9 µm and
g2 = 6.7 µm can be obtained through the beam propagation method (BPM) simulation.

3. Design and Fabrication

A transmissive ring resonator was fabricated on a silicon substrate (Figure 2). The
refractive indices of the core and the overlay were n1 = 1.456 and n2 = 1.445, respectively.
First, the SiO2 was thermally grown as the bottom cladding layer. Second, a 6 µm thick
SiO2 doped with Ge, which can increase the refractive index of the waveguide core, was
deposited by plasma-enhanced chemical vapor deposition (PECVD). A 6 µm wide core was
processed by lithography and the dry etch technique; this size can support single-mode
transmission. Then, the top cladding layer was covered with borophosphosilicate glass
(BPSG), which can be used to make the refractive index of the top cladding equal to that
of the bottom cladding. The thickness of the top and bottom layer was 15 µm, which
can reduce the leakage loss of the cladding layer. The wafer was annealed after each
process to realize stress compensation and reduce polarization-dependent loss caused by
birefringence. Finally, a layer of glass was covered on the top cladding for protecting the
connection and packaging between the waveguides and the optical fiber. In order to carry
out the comparison test, three groups of resonators with different gaps were fabricated
(g1 = 6.9 µm, g2 = 6.7 µm; g1 = g2 = 6.9 µm; and g1 = g2 = 6.7 µm).
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Figure 2. (a) Schematic of key fabrication and process steps of the resonator: (i) SiO2 of the bottom
cladding layer by being thermally grown; (ii) core layer by PECVD; (iii) ultraviolet lithography;
(iv) dry etch; and (v) SiO2 of the bottom cladding layer by PECVD. (b) SEM image of a coupling
region cross-section.

4. Experiment

The experimental test system was built up to measure the resonance spectrum of the
transmissive silica waveguide ring resonator (Figure 3a). A tunable laser with a central
wavelength of 1550 nm and a spectral linewidth of 300 KHz was used as an incident light
source. A triangular voltage signal was applied to the laser for the linear scanning of the
laser frequency. An isolator was placed between the laser and the resonator in order to
avoid the laser from being influenced by the echo light. The light was then coupled into
the resonator. A photodetector was used to convert the light output from the resonator into
an electrical signal. The resonance spectrum could be observed on the oscilloscope.

Based on the above system, an experimental testing system of a resonant micro-
optic gyroscope based on a transmissive silica waveguide ring resonator in an output
loop state was established (Figure 3b). A Y-branch multifunctional phase modulator
made of proton exchange lithium niobate was used to modulate the optical signals. The
modulated signals entered into the resonator from the two input ports; the two light
waves were transmitted around the circular waveguide in opposite directions and then
outputted to the photodetectors, PD1 and PD2, from the two drop ports of the resonator.
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Because of the structural advantages of the transmissive resonator compared with the
reflective resonator, there was no need to use the circulators. The photodetectors converted
the light intensity signals into current signals, which were then converted into voltage
signals by transimpedance amplifiers. The demodulated signal from a lock-in amplifier
(LIA1) was used to supply feedback to the frequency locking module to lock the laser’s
central frequency to the resonance point of the resonator through a PI controller, and the
other demodulated signal from LIA2 was used as the gyroscope output signal. The data
acquisition and signal processing of the frequency-locked loop and the output loop were
realized with Field Programmable Gate Array (FPGA).
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Figure 3. (a) Schematic diagram of the test system for the resonator; (b) schematic diagram of the
gyroscope test system.

5. Results

The resonant curve of the drop port of the transmissive resonator (g1 = 6.9 µm and
g2 = 6.7 µm) after Lorentz fitting is shown in Figure 4. The black curve refers to the resonant
spectrum and the red curve indicates the output voltage of the triangle wave sweep
signal. The corresponding scan voltage difference was 0.615 V. The frequency modulation
coefficient of the laser was 15 MHz/V; therefore, we determined that the FWHM of the
resonator was 9.22 MHz. Furthermore, we calculated that the Q was 2.1 × 107 and the
finesse was 119.
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The transmissive resonators with different parameters were connected to the gyroscope
system for rotation tests. Step signals from the gyroscope system could be obtained by
adjusting the rotating speed of the rotary table with ±20 ◦/s, ±40 ◦/s, ±60 ◦/s, and
±80 ◦/s, respectively, as shown in Figure 5a. Then, the scale factor of the resonant optical
gyroscope system based on the transmissive resonator was calculated by the least square
method, as shown in Figure 5b.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 8 
 

 

 

 
Figure 4. Curve fitting of the resonant spectrum (g1 = 6.9 μm and g2 = 6.7 μm). 

The transmissive resonators with different parameters were connected to the gyro-
scope system for rotation tests. Step signals from the gyroscope system could be obtained 
by adjusting the rotating speed of the rotary table with ±20 °/s, ±40 °/s, ±60 °/s, and ±80 °/s, 
respectively, as shown in Figure 5a. Then, the scale factor of the resonant optical gyro-
scope system based on the transmissive resonator was calculated by the least square 
method, as shown in Figure 5b. 

 

 
Figure 5. (a). Rotation step signals; (b) least square fitting (g1 = 6.9 μm and g2 = 6.7 μm). 

According to the above test steps, the quality factor, finesse, and scale factors of the 
gyroscope system of the three transmissive optical waveguide resonators with different 
parameters were tested, respectively. The results are shown in Table 1. 

Table 1. Quality factors and scale factors of resonators with different parameters tested by the ex-
periment. 

Figure 5. (a). Rotation step signals; (b) least square fitting (g1 = 6.9 µm and g2 = 6.7 µm).

According to the above test steps, the quality factor, finesse, and scale factors of the
gyroscope system of the three transmissive optical waveguide resonators with different
parameters were tested, respectively. The results are shown in Table 1.

Table 1. Quality factors and scale factors of resonators with different parameters tested by the
experiment.

g1 (µm) g2 (µm) Quality Factor Scale Factor (mV/◦/s)

6.9 6.7 2.1 × 107 1.34
6.9 6.9 1.5 × 107 0.79
6.7 6.7 1.2 × 107 0.69

The resonant micro-optic gyroscope based on a transmissive silica waveguide ring
resonator with optimal parameters was tested at room temperature on a static table. A min-
imum of Allan deviation with 122 ◦/h over a one-hour test was successfully demonstrated
(see Figure 6). Then, a bias stability of 183.7 ◦/h was calculated by dividing the minimum
Allan deviation by 0.664 [22]. The bias stability of the other two groups of resonators were
191.7 ◦/h (g1 = 6.9 µm and g2 = 6.9 µm) and 203.1 ◦/h (g1 = 6.7 µm and g2 = 6.7 µm). The
test results show that the gyro index of the resonator (g1 = 6.9 µm and g2 = 6.7 µm) is best,
and the test results were consistent with the simulation results.
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resonator was up to 2.1 × 107, which is the highest quality among the reported transmissive 
resonators. A bias stability of 183.7°/h over a one-hour test was successfully demonstrated, 
which is the best index of the optical gyroscope, based on the silicon dioxide transmissive 
resonators. The results show that our design method is feasible and provides ideas for the 
design of high quality transmissive optical waveguide resonators. In addition, the quality 
factor, finesse, and zero-bias stability of the gyroscope were close to those of the reflective 
resonator with nearly the same size. This provides a sound foundation for the improve-
ment of the micro-optic gyroscope. 
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Figure 6. (a) One-hour static test result; (b) Allan standard deviation of the rotation data (g1 = 6.9 µm
and g2 = 6.7 µm).

6. Conclusions

We designed and fabricated a transmissive silica waveguide ring resonator with
various gaps. The modeling of a transmissive resonator used in a micro-optic gyroscope
was carried out, and the relationship between the resonator’s transmission coefficient and
the gyroscope’s sensitivity was identified. A scale factor of 1.34 mV/◦/s was achieved
using an open-loop system, which was the highest value attained among all the resonators
that we fabricated; this result was consistent with those of the simulations. The quality
of the resonator was up to 2.1 × 107, which is the highest quality among the reported
transmissive resonators. A bias stability of 183.7 ◦/h over a one-hour test was successfully
demonstrated, which is the best index of the optical gyroscope, based on the silicon dioxide
transmissive resonators. The results show that our design method is feasible and provides
ideas for the design of high quality transmissive optical waveguide resonators. In addition,
the quality factor, finesse, and zero-bias stability of the gyroscope were close to those of the
reflective resonator with nearly the same size. This provides a sound foundation for the
improvement of the micro-optic gyroscope.
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