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Abstract: This paper presents a new approach to simplify the design of class-E power amplifier (PA)
using hybrid artificial neural-optimization network modeling. The class-E PA is designed for wire-
less power transfer (WPT) applications to be used in biomedical or internet of things (IoT) devices.
Artificial neural network (ANN) models are combined with optimization algorithms to support the
design of the class-E PA. In several amplifier circuits, the closed form equations cannot be extracted.
Hence, the complicated numerical calculations are needed to find the circuit elements values and
then to design the amplifier. Therefore, for the first time, ANN modeling is proposed in this paper
to predict the values of the circuit elements without using the complex equations. In comparison
with the other similar models, high accuracy has been obtained for the proposed model with mean
absolute errors (MAEs) of 0.0110 and 0.0099, for train and test results. Moreover, root mean square
errors (RMSEs) of 0.0163 and 0.0124 have been achieved for train and test results for the proposed
model. Moreover, the best and the worst-case related errors of 0.001 and 0.168 have been obtained,
respectively, for the both design examples at different frequencies, which shows high accuracy of
the proposed ANN design method. Finally, a design of class-E PA is presented using the circuit
elements values that, first, extracted by the analyses, and second, predicted by ANN. The calculated
drain efficiencies for the designed class-E amplifiers have been obtained equal to 95.5% and 91.2%
by using analyses data and predicted data by proposed ANN, respectively. The comparison be-
tween the real and predicted values shows a good agreement.

Keywords: artificial neural network; class-E amplifier; genetic algorithm; imperialist competitive;
particle swarm optimization
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1. Introduction

Wireless power transfer (WPT) means transmission of electrical energy without wires
or any physical links, which was first introduced by Nicola Tesla in 1914 [1]. Recently, the
wireless transmission of energy has become more interesting and popular in several ap-
plications, such as biomedical science [2], internet of things (IoT) [3], electrical vehicles [4],
and sensor networks [5]. The WPT can be generally divided in two categories of far-field
and near-field techniques, where the near-field technique is studied in this paper. The
near-field WPT utilizes inductive coupling effect to wirelessly transfer energy [6]. The us-
age of battery is undesirable in implantable biomedical devices due to the limitation of
the energy storage capacity and the need for recharging the battery. Moreover, the risk of
possible infection due to the battery inside implantable biomedical devices urges high
demands for WPT in biomedical applications [7]. The power amplifier (PA) component
plays an important role in the biomedical devices [2]. Among the PAs are the switching
amplifiers, especially class-E type, which have a high efficiency and are desirable in bio-
medical applications [8-12]. The schematic of wireless power transfer with class-E PA us-
ing inductive coupling technique is illustrated in Figure 1.
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Figure 1. Schematic of the inductive coupling WPT with class-E amplifier.

The class-E amplifier structure was introduced in 1975 by Sokal [13]. In the class-E
type amplifiers, the transistor works as a switch. Additionally, the switching pattern
shapes the current and voltage of the transistor. The ideal efficiency can be achieved for
class-E PA in theory. There are two main conditions in class-E PA, which guarantee a high
operation efficiency [14]. These conditions are zero voltage switching (ZVS) and zero de-
rivative switching (ZDS). There are several topologies for class-E PAs, such as shunt ca-
pacitance [15], sub-nominal conditions [16] and inverse class-E [17]. Class-E PAs are
widely used in several applications, such as biomedical [18], DC-DC power converter [19],
rectifiers [20], RF heating [21], and wireless power transfer (WPT) [22,23] applications. The
amplifiers can be realized in the forms of discrete [8-12] and integrated circuits (ICs)
[24,25]. Additionally, photonic crystal fibers, which are used to achieve higher speeds and
higher frequencies [26-29], can be used for amplifiers design [30,31].

Extracting the equations of the class-E PA circuit is an important step in the design
process of the amplifier. The circuit elements can be calculated using the equations estab-
lished. Some researchers have studied the effects of parasitic and nonlinear elements in
the PA circuit, which result in complicated equations [8,9,32]. Subsequently, an artificial
neural network (ANN) model can be useful to help find the circuit elements of the ampli-
fier. Recently, ANN techniques have been used to solve several engineering and electron-
ics problems [33-36]. ANN have also been used to model microwave circuits behavior
[37-40]. A class-F amplifier at 1.8 GHz has been designed and modeled in [37], where the
radial basis function (RBF) type of neural network has been utilized to model the amplifier
circuit. A PSO algorithm is used in [41] to improve the efficiency and frequency of the
WPT system. A back propagation neural network and a Simulink MATLAB model are
used in [42] to emulate the distance, gape, and noise effects on a WPT system, which can
estimate the voltage of the receiver coil as a function of time. System modeling and ANN
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are used in [43] to design a WPT system identification method for predicting load re-
sistance and mutual inductance and parameters. A review was performed in [44], in which
several ANN and optimization algorithms for WPT system have been highlighted. How-
ever, [44] used ANN to optimize some parameters in the WPT, such as maximizing the
power transfer or reducing the frequency splitting.

In all of the mentioned works in the literature, neural networks or optimization algo-
rithms have been used for optimizing the WPT output parameters or for output parame-
ters prediction. However, in the proposed work, ANNs with optimization algorithms
have been utilized to predict the circuit elements values with desired output parameters.

In this paper, a multilayer perceptron (MLP) network, which has high precision for
modeling and prediction, is selected as the main neural network structure of the model.
The conventional MLP networks use back propagation algorithm (BPA) to modify the
weights of each layer of the MLP. Additionally, most of the conventional ANNs use the
back propagation algorithm to train the neural network. However, the back propagation
algorithm has some defects, such as getting into local minimum and slow convergence
[45]. Recently, popular optimization algorithms have been used in some approaches for
optimizing the weights and biases of the neural networks to overcome the back propaga-
tion algorithm disadvantages and to have a more accurate design and model [46].

In this work, a hybrid ANN and optimization model is proposed, which can be used
to design the class-E PA for WPT applications. The circuit elements of the amplifier can
be predicted by using the presented model, considering the desired output parameters.
The imperialist competitive algorithm (ICA), genetic algorithm (GA), and particle swarm
optimization (PSO) algorithm are used to train the weights and bias of the neural network
instead of the back propagation algorithm.

2. Class-E PA Circuit

The considered circuit for designing the class-E PA is illustrated in Figure 2. As can
be seen, the transistor acts as a switch in this circuit, where the internal capacitors of the
transistor are considered. The IRF510 MOSFET transistor with 80 pF shunt capacitor is
selected for this considered circuit. The ideal switching amplifiers can achieve ideal effi-
ciency, theoretically. However, in practice, the parasitic resistors and capacitors of the cir-
cuit cause the efficiency to be less than 100%. Accordingly, the structure of the switching
amplifier is an important element to obtain high efficiency, and the shunt capacitor class-
E PA is one of the most desirable circuits that can achieve high efficiency in several appli-
cations.

The parameter values of operating frequency (f), DC supply voltage (Vbc), resonant
circuit quality factor (Q), and output power (Po) are important parameters, which should
be specified at the first step of designing the class-E PA. At the next step, based on these
parameter values, the circuit elements, such as shunt capacitor (Cs), series inductance (L),
series capacitor (C), load resistance (R), and switch voltage (vs), should be calculated.

C L
|
|

Drive
Voltage

Figure 2. The considered circuit to design the Class-E PA.
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The closed form equations can be written for the selected schematic of amplifier ac-
cording to [14], which is complicated. However, if the MOSFET parasitic elements or the
other circuit parasitic elements are considered, it will be impossible to extract the closed
form equations and calculate the circuit elements values. The equations for class-E ampli-
fier circuit shown in Figure 2 can be written according to [8]. Using a KCL for the switch
voltage (vs) node, Equation (1) can be defined as:

[DC = l‘ds + igd + is + io (1)

where the currents are defined in Figure 2. Because of the high value of Q assumption, the
output current can be considered a pure sinusoidal wave.

i,(0)=1,sin(0+¢) @)

In Equation (2), I is the amplitude of sinusoidal output current, ¢ is the phase shift
between source voltage and the output current, and 0 = wt represents the angular time.
Practically, the currents of drain to source (iss) and gate to drain (igs) capacitors should be
considered according to nonlinear capacitors consideration. Therefore, Equation (1) could
be written as:

d .
L = (Crpy (14v, 1V, )"+ C oy (14 v,, /Vbl.z)"”z)d—‘2+lm sin(@+¢). (3

where Cjor and Cjz are initial drain-to-source and initial gate-to-drain capacitors. Addi-
tionally, Vi1 and Viiz are built-in potentials related to drain-to-source and gate-to-drain
capacitors. The describing equation for the switch voltage (vs) can be obtained by integrat-
ing from Equation (3), which is written as follows:

a)RCjOI (1 n VS % VDC jlﬂll . C()choz [1 . vs ) VDC jlmZ
@(l_ml) Voe  Via I;)C(l—mz) Voe Vi

bil bi2

(4)
RC. RC.
_RIDCe—ﬂ(COS(e‘F(D)—COS((o))—Va) ;o1 _Va) 2 _ ,
Vbe pC ﬂ(l—ml) ﬂ(l—mz)
bil bi2

In Equation (4), miis the grading coefficient; this parameter corresponds to nonlinear
drain-to-source and nonlinear gate-to-drain capacitors. Equation (4) should be solved us-
ing initial conditions to extract the waveform equations. This equation has not closed form
solution. However, in this paper, the effect of Cex is considered and all of the capacitors
are assumed linear to analyze the class-E PA. Therefore, in this case, the switch voltage
waveform is simplified as Equation (5), according to [14]. Additionally, the other circuit
parameters could be obtained based on the switch voltage waveform, which are fully de-
scribed in [14].

I I &« .
v, = a)t—T—Ecosa)t—smcosa)t (5)

=
a)th

The ANN is a good solution to design any amplifier circuit according to the selected
design parameters. The procedure of applying neural network and optimization algo-
rithms to model the presented circuits is described in the next section.
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3. Neural Network Modeling

In this section, the process of class-E PA modeling using neural network and optimi-
zation algorithms are discussed. To design a class-E PA, the values of Vbc, Po, f, and Q
should be defined first, which are considered as the ANN input parameters. Then, the
circuit elements can be calculated, based on the extracted equations (1)-(5) and also basic
switching amplifier equations in [14]. Hence, the circuit elements of R, C, L, Csh, vo and vs
are assumed as the ANN output parameters. The proposed ANN model for designing of
the class-E PA is depicted in Figure 3.

Inputs Outputs
Voe -~ Neural R
Network " L
A | c
P> > Cs
/, (MHz I 1 g
l v (0]

Q >

Figure 3. The proposed ANN model for modeling of the class-E amplifier.
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3.1. Proposed Model Implementation

Recently, several different types of ANN have been presented, which could be uti-
lized to implement the proposed model. An MLP is a feed forward type of ANN, which
has high precision for modeling and prediction applications. The MLP network has three
layers: input, hidden, and output layers. There is a number of neurons in each layer with
an activation function, and each neuron is connected to neurons in the subsequent layer
with weighted connections. The weight values can be calculated during the training pro-
cess. The proposed structure of the MLP network is selected according to the presented
model, which is illustrated in Figure 4.
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Figure 4. Proposed MLP architecture.

The optimization algorithms are utilized to train the weights and bias of the neural
network instead of back propagation algorithm. The optimization methods of ICA, GA,
and PSO are used to train the presented network. In other words, these optimization al-
gorithms are used to find the best bias and weights values for the proposed MLP network
structure. Therefore, the proposed MLP network structure which uses the optimization
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algorithms is called the hybrid ANN-optimization algorithm. The procedure of applying
the optimization algorithms to the presented ANN model can be illustrated in a flow dia-
gram, which is shown in Figure 5, where MAE is the mean absolute error and RMSE is
the root mean squared error. The class-E PA with the presented circuit is analyzed and
the circuit elements are extracted using MATLAB software. The presented amplifier is
analyzed 100 times with different input parameters to form the dataset for training and
testing process of the presented network. Finally, the amplifiers with predicted circuit el-
ements and real circuit elements are simulated and compared using PSpice software.

The optimization algorithm (ICA, Ga, and PSO)

Start find the weights and biases values of the defined

v

Extract the amplifier data using
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s (ICA,
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Apply the optimization algoritl
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Check if the obtained model for the presented network
accuracy is desired
Yes - - - - - - - = - - =

be used to predict the values of the

circuit elements

Figure 5. Flow diagram of the presented ANN-optimization algorithm model.

The complexity of the presented feedforward neural network can be defined based
on the total number of weights and biases of the network structure. The total number of
wights and biases parameters in the feedforward network should be optimized by the
applied optimization algorithm. Since a single presented model is used as the ANN
model, therefore, three optimization algorithms should optimize same number of param-
eters. For the presented structure, there are 4 input neurons and 7 neurons in the hidden
layers; therefore, there are 28 weight parameters in the input layer and 49 weight param-
eters in the hidden layers. Additionally, there are 7 biases for each hidden layer containing
7 neurons. Moreover, there are 42 weight parameters and 6 biases for the output layer.
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Hence, a total number of 139 parameters should be optimized by the applied optimization
algorithms.

3.2. Initial Evaluation of the Hybrid ANN-Optimization Algorithms

The utilized optimization algorithms are summarized at the followings. The number
of iterations is considered as 100 in the proposed initial networks to save the time in the
modeling process for initial evaluation of the proposed algorithms. The specifications of
three optimization algorithms, ICA, GA, and PSO algorithms, for initial modeling of the
amplifier are listed in Tables 1-3, respectively. After finding the best optimization algo-
rithm to train the weights and bias of the neural network, the number of 1000 iterations
will be selected for the final evaluation of the presented algorithm. In all of the presented
algorithms, 80% of the total dataset is applied for training process and the remainder is
applied for the test process of the presented model in each network.

3.2.1. MLP-ICA Neural Optimization Network

ICA optimization algorithm has been recently introduced, which can be used for sev-
eral optimization applications [47]. Similar to PSO and GA, the ICA uses the evolutionary
method to obtain the best solution [46]. Among the meta-heuristic algorithms, ICA is one
of the most effective algorithms to find the best solution for different problems. This algo-
rithm is inspired from the sociopolitical evolution of humans [48]. Parameters of the ICA
algorithm, applied in the presented ANN network, are 500 initial countries, 30 initial im-
perialists, and 100 iterations. The specifications of the ICA algorithm for initial modeling
of the amplifier are listed in Table 1. As mentioned, the low number of iterations is selected
according to initial evaluation. The number of initial countries in the ICA algorithms is
similar to the initial population in PSO and GA algorithms, while the number of initial
imperialists in the ICA is selected based on the [47]. The obtained errors of the proposed
ANN-ICA model are given in Table 4. As seen in Table 4, the output circuit element values
of the presented ANN-ICA model are close to the real values.

Table 1. The specifications of the ICA algorithm for initial modeling of the amplifier.

Neural network MLP
Training Algorithm ICA
Input Layer Neurons 4
Hidden Layer Neurons 7-7
Output Layer Neurons 6
Number of Iterations or Generations 100
Number of Countries 500
Number of Initial Imperialists 30
Activation Function tansig

3.2.2. MLP-Genetic Neural Optimization Network

GA is inspired from biological genetic evolution process, which has been used in
several optimization engineering problems [49-51]. In the GA, chromosomes represent
the information. According to the considered fitness function, the best chromosome will
be chosen in the population [52]. A set of solutions, named population will be optimized
by genetic algorithm. Parameters of the GA algorithm, applied in the presented ANN net-
work, are a population size of 500 and 100 generations. The specifications of the GA algo-
rithm for initial modeling of the amplifier are listed in Table 2. Additionally, the obtained
MAE and the RMSE values of the proposed ANN-GA model are shown in Table 4, which
show acceptable results.
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Table 2. The specifications of the GA algorithm for initial modeling of the amplifier.

Neural network MLP
Training Algorithm GA
Input Layer Neurons 4
Hidden Layer Neurons 7-7
Output Layer Neurons 6
Number of Iterations or Generations 100
Population Size 500
Activation Function tansig

The mean squared error (MSE) of the initial proposed GA algorithm for the amplifier
modeling versus number of iterations is depicted in Figure 6. As seen, the value of the
mean squared error is decreasing as iterations number increase; however, this decrement
rate will be reduced as number of iterations increases. The MSE equation which is used in
this paper is defined in Equation (6):

l N
MSE=—-3 vy Vb ) ©)
i=1

x10
12 T

MSE

| | | | | | | | |
10 20 30 40 50 60 70 80 90 100

Number of iterations

Figure 6. MSE of the initial proposed GA versus number of iterations.

3.2.3. MLP-PSO Neural Optimization Network

The PSO algorithm, which was developed in 1995, is based on the behavior of social
mechanism, for instance, a flock of birds [53]. The PSO method is an evolutionary method,
similar to the genetic algorithm. In the PSO algorithm, each particle is determined de-
pendent upon its velocity and position. Experiences of neighboring particles affect the
behavior of each particle. Other particles follow the best performance particle to find its
solution [54]. The parameters of the PSO algorithm, applied in the presented ANN net-
work, are swarm particles number of 500 and 100 iterations. The specifications of the PSO
algorithm for initial modeling of the amplifier are listed in Table 3. The mean squared
error of the initial proposed PSO algorithm for the amplifier modeling versus number of
iterations is depicted in Figure 7. As seen, the value of MSE is exponentially decreasing as
the number of iterations increases.
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Table 3. Specifications of the PSO algorithm for initial modeling of the amplifier.

Neural network MLP
Training algorithm PSO
Input layer neurons 4
Hidden layer neurons 7-7
Output layer neurons 6
Number of iterations or generations 100
Population Size 500
Activation function Tansig
Cognition Coefficient 2
Social Coefficient 2

Table 4. Summary of the results of the initial hybrid ANN-optimization networks.

ANN-ICA ANN-ICA ANN-GA ANN-GA ANN-PSO ANN-PSO

Error Test Train Test Train Test Train
MAE, R (QQ) 8.20 8.97 15.68 10.97 7.33 3.34
RMSE, R (Q) 15.31 11.69 21.47 16.36 11.72 4.50
MAE, L (uH) 11.04 10.63 21.38 16.70 7.95 6.49

RMSE, L (uH) 12.88 14.46 33.55 20.47 9.55 7.97
MAE, C (nF) 0.25 0.22 0.03 0.02 0.35 0.18
RMSE, C (nF) 0.36 0.31 0.04 0.02 0.56 0.25
MAE, Csh (nF) 0.22 0.28 0.49 0.33 0.34 0.24
RMSE, Csh (nF) 0.28 0.36 0.67 0.40 0.49 0.37
MAE, vo (V) 1.92 2.37 3.74 3.19 0.58 0.45
RMSE, vo (V) 2.44 2.83 441 3.96 0.90 0.67
MAE, us (V) 8.92 6.93 12.60 9.32 1.12 1.15
RMSE, vs (V) 11.67 8.96 16.52 11.73 1.43 1.50

0.009 .

0.007} i

uml i

S 0.005 .

0.003r 1

0.001f 1

0 20 40 60 80 100

Number of iterations

Figure 7. MSE of the initial proposed PSO algorithm versus the number of iterations.

4. Results and Discussion

As mentioned, low number of iterations is selected for hybrid ANN-optimization
networks according to initial evaluation. The results summary of the initial hybrid ANN-
optimization networks is given in Table 4. As seen, the ANN-PSO optimization network
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has the best results, compared to the other networks. Thus, the ANN-PSO optimization
network is selected for the final modeling of the class-E amplifier.

Subsequently, the ANN-PSO optimization network, which has the best results com-
pared to the other networks, is selected for the final modeling of the class-E amplifier.
Hence, swarm particles of 500 and iterations of 1000 are considered for the final proposed
ANN-PSO network. The result summary of the final proposed ANN-PSO network is
given in Table 5.

Table 5. Summary of the results of the final proposed ANN-PSO network.

ANN-PSO ANN-PSO Test ~ANN-PSO Train

Error ANN-PSO Test Train (Normalized Data) (Normalized Data)

MAE, R (Q) 2.39 1.91 0.0042 0.0034
RMSE, R (Q) 3.40 2.38 0.0060 0.0042
MAE, L (uH) 3.63 2.43 0.0040 0.0027
RMSE, L (uH) 445 3.10 0.0049 0.0034
MAE, C (nF) 0.1 0.11 0.0252 0.0290
RMSE, C (nF) 0.12 0.17 0.0310 0.0444
MAE, Csh (nF) 0.11 0.14 0.0220 0.0283
RMSE, Csh (nF) 0.13 0.21 0.0268 0.0421
MAE, vo (V) 0.19 0.11 0.0021 0.0012
RMSE, vo (V) 0.27 0.15 0.0028 0.0016
MAE, us (V) 0.65 0.49 0.0020 0.0015
RMSE, vs (V) 0.86 0.66 0.0027 0.0021
Mean Value - MAE 1.17 0.86 0.0099 0.0110
Mean Value - RMSE 1.53 1.11 0.0124 0.0163

As seen in the Table 5, the proposed model has precisely predicted the output values.
There are six circuit elements which are considered as the output of the proposed model.
Therefore, typically, the predicted results of the output resistor of the circuit are reported.
The predicted and real values of the final proposed ANN-PSO network algorithm for the
output resistor element are shown in Figure 8. In this figure, real values of the resistor,
which are extracted by the analyses, are shown as the real resistor values with solid line,
whereas the predicted values of resistor by the proposed ANN are shown with circles.
According to this figure, the model could predict the power amplifier circuit parameter,
precisely.

600
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300 | //
200 | /

Real Resistor Values —
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0 200 400 600
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Figure 8. Real and predicted circuit output resistor values for (a) test and (b) train data of the final
proposed ANN-PSO network.

The MSE of the final proposed ANN-PSO network for the amplifier modeling versus
number of iterations is depicted in Figure 9. As seen, good MSE has been obtained at the
end of the iterations. The MSE formula used in this paper is defined in Equation (6).

-3
x10

MSE
(8]

-

0 200 400 600 800 1000

Number of iterations

Figure 9. MSE of the final proposed ANN-PSO network versus number of iterations for the out-
put resistor.

The predicted and real circuit output resistor values of the proposed final ANN-PSO
network algorithm versus the number of samples are shown in Figure 10. As seen in this
figure, out of 100 sample data, 80 samples are considered to train the model and the other
20 samples are selected for the test procedure of the model.
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Figure 10. Real and predicted circuit output resistor values for (a) train and (b) test data of the final
proposed ANN-PSO network versus number of samples.

4.1. The Proposed Model Comparison

The proposed class-E ANN model with its selected model parameters, is presented
for the first time in this work. However, by using the average of the output parameters
errors, the presented model can be compared with the similar ANN models. A complete
report of the proposed model errors is shown in Table 5. A comparison between the test
and train error results of the proposed model is listed in Table 6. According to the reported
results in Table 6, the proposed class-E PA model has precise results.
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Table 6. A comparison between the test and train error results of the proposed model.
Proposed Model Proposed Model
Errors . . .
Training Testing
MAE 0.0110 0.0099
RMSE 0.0163 0.0124

80V

40V

ov

40V

4.2. Design Examples

To validate the proposed model, a design example of class-E PA is presented at 1
MHz. A comparison between the final proposed ANN-PSO model and analyses results
of the presented design example is listed in Table 7. The “Analyses Result Values” column
in Table 7 is calculated by solving the typical equations for conventional class-E amplifier
[14]. These equations are solved using MATLAB software. Moreover, the “Model Result
Values” column in Table 7 shows the predicted values by the proposed ANN-PSO model.
When parasitic elements of the amplifier have been considered in the circuit, equations
will become more complicated, but the proposed model could easily predict the circuit
parameters.

Table 7. Comparison between the final model and analysis results of the presented design example
at 1 MHz.

Considered Output Analyses Result Model Result

Input Parameters Relative Error

Values Parameters Values Values
Vbc (V) 20 R (QQ) 23.07 25.07 0.086
Po (W) 10 L (uH) 36.72 39.64 0.079
f (MHz) 1 C (pp) 779.6 802.0 0.028
Q 10 Cex (pF) 1186.5 12255 0.032
vo (V) 21.48 21.43 0.002
Usm (V) 71.24 70.87 0.005

The presented design example of a class-E amplifier is simulated once with the circuit
elements obtained by solving amplifier equations. Additionally, the presented design ex-
ample is simulated again using circuit elements extracted from the final proposed ANN-
PSO model. A comparison between class-E simulation results using extracted circuit pa-
rameters from analyses and the proposed model are illustrated in Figure 11, which shows
good accuracy of the model. The simulation is performed using Orcad Capture 9.2 soft-
ware included in PSpice programs. The calculated drain efficiencies for the designed class-
E amplifiers have been obtained equal to 95.5% and 91.2% by using analyses data and
predicted data by proposed ANN, respectively. Additionally, the output power capabili-
ties have been calculated as 0.1 and 0.09 for the designed amplifier by using analyses data
and predicted data, respectively.

- Vv
7 S |Circuit parameters extracted by analysis
/7 N
/4 \\ Predicted circuit parameters by model e e— —
— - N ]~

T 2r
9 [rad ]

Figure 11. Class-E circuits simulation using extracted circuit parameters from analyses (solid line)
and the proposed model (dashed line).
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Another design example of class-E PA is presented at 1.8 MHz to show the effects of
input frequency variation on the accuracy of the model. A comparison between the final
proposed ANN-PSO model and analyses results of the presented design example at 1.8
MHz is listed in Table 8. According to this table, the proposed model could predict the
circuit elements at different frequencies precisely.

Table 8. A comparison between the final model and analysis results of the presented design example
at 1.8 MHz.

Anal Re-
Considered Output nalyses B Model Result .
Input Parameters sult Relative Error
Values Parameters Values
Values
Voce (V) 20 R (Q) 23 243 0.057
Po (W) 10 L (uH) 20.4 18.7 0.083
f (MHz) 1.8 C (pF) 433.2 484.6 0.118
Q 10 Cex (pF) 623.6 518.8 0.168
Vo (V) 214 21.3 0.004
Usm (V) 71.2 71.3 0.001

4.3. Result Comparison

In this section, a comparison between the performance of the proposed algorithm
and the other researches has been performed, which is listed in Table 9. As can be seen in
Table 9, the ANN method is used in [37] for modeling of the amplifier and predict output
parameter of the amplifier. Additionally, the ANN method is used in [43] for predicting
load resistance and mutual inductance parameters in the WPT system. In [55], a feedfor-
ward neural network is presented for automatic impedance matching in WPT system. The
effects of uncertain parameters in WPT system is predicted in [56] using partial least
squares (PLS) regression method. Finally, ANN-PSO method, which is presented in this
paper has the best results, while the proposed method can predict the design parameter
of the amplifier for WPT applications.

Table 9. A comparison between the performance of proposed algorithm and other research pa-
pers.

Design Parameter

Accuracy-Error Type

Ref Proposed Method Prediction
[37] ANN No 0.0311-MAE
0.0740-MRE
[43] ANN No 0.0293-MRE
[55] ANN No 0.5-RMSE
[56] PLS regression No 0.535-RMSE
. 0.0099-MAE
This Work ANN + PSO Yes 0.0124-RMSE

5. Conclusions

In this paper, a class-E PA model was presented using the hybrid artificial neural
network and optimization algorithms for wireless power transfer (WPT) applications, to
be used in biomedical or internet of things (IoT) devices. By using the proposed model,
the circuit elements of the amplifier can be easily predicted. Therefore, a class-E amplifier
can be designed with desirable parameters, such as output power, DC voltage, and quality
factor, at any frequency using the proposed model. Two operating frequencies of 1 MHz
and 1.8 MHz are considered for two design examples, in which the presented model has
predicted the circuit elements accurately. The MAE of better than 0.011 and MRE of better
than 0.016 have been achieved in the proposed model. Moreover, the best- and worst-case
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related errors of 0.001 and 0.168 have been obtained, respectively, in both design exam-
ples. A comparison between the simulation results based on the analyses and the simula-
tion results based on the proposed ANN model shows good agreement. The proposed
model is valid for the presented circuit and the modeling procedure can be applied to any
amplifier circuit, which can simplify the RF circuit modeling process. The other advantage
is that the presented modeling does not need complicated equations, especially when par-
asitic and nonlinear elements are considered in the circuit.
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