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Abstract: The current research investigates a new and unique Multi-Objective Generalized Nor-
mal Distribution Optimization (MOGNDO) algorithm for solving large-scale Optimal Power Flow
(OPF) problems of complex power systems, including renewable energy sources and Flexible AC
Transmission Systems (FACTS). A recently reported single-objective generalized normal distribution
optimization algorithm is transformed into the MOGNDO algorithm using the nondominated sorting
and crowding distancing mechanisms. The OPF problem gets even more challenging when sources
of renewable energy are integrated into the grid system, which are unreliable and fluctuating. FACTS
devices are also being used more frequently in contemporary power networks to assist in reducing
network demand and congestion. In this study, a stochastic wind power source was used with
different FACTS devices, including a static VAR compensator, a thyristor- driven series compensator,
and a thyristor—driven phase shifter, together with an IEEE-30 bus system. Positions and ratings
of the FACTS devices can be intended to reduce the system’s overall fuel cost. Weibull probability
density curves were used to highlight the stochastic character of the wind energy source. The best
compromise solutions were obtained using a fuzzy decision-making approach. The results obtained
on a modified IEEE-30 bus system were compared with other well-known optimization algorithms,
and the obtained results proved that MOGNDO has improved convergence, diversity, and spread
behavior across PFs.

Keywords: FACTS controller; MO-OPF; meta-heuristics; probability density function; stochastic; WTGS

1. Introduction

Constraint-based optimization problems with multiple objectives are the most preva-
lent type. In contrast to single-objective optimization problems, multi-objective optimiza-
tion problems have a wide variety of optimal solutions. The PF is an assortment of perfect
responses [1,2]. A multi-objective optimization approach must be able to locate solutions
that are uniform in the generated PFs and are workable optimum solutions to address
multi-objective problems [3]. Multi-objective optimization approaches are challenged by
the simultaneous achievement of these many objectives [4]. MH algorithms are typically
tested on simpler, well-known optimization scenarios. However, unlike classic search prob-
lems, engineering design tasks can have different specifications. Modifying and developing
the algorithm for them is the most effective way to optimize for them. The realm of appli-
cation of multi-objective optimization algorithms is quite vast, ranging from machining
processes [5,6], to vehicle routing [7], to optimizing AI systems [8].

Power systems researchers have been seeking solutions to the OPF challenges for many
decades. One issue with managing power systems and making plans for modern electrical
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energy networks is working with systems that use non-conventional sources of energy.
Ullah et al. [9] developed a hybrid phasor particle swarm optimization and gravitational
search algorithm to address the OPF problem in the wind and solar energy systems that are
connected to electrical power grids, while accounting for the control variables (PPSOGSA).
For the OPF problem with wind and solar systems, the developed PPSOGSA algorithm
produced outstanding and helpful results. In Elattar’s research, the OPF problem was
principally modelled mathematically using a combined heat and power system with
stochastic wind energy. On an IEEE 30-bus test system under various test situations, the
suggested method was assessed. The formulation of the OPF problem covering energy
sources and the suggested approach to solve it produced effective answers in contrast to pre-
existing algorithms [10] that were used to address similar problems. Anongpun et al. [11]
used IEEE 30- and 118-bus test systems to study the use of enhanced particle swarm
optimization (PSO) to solve a multi-objective OPF problem using a wind energy system that
combined chaotic mutation and stochastic weights. When compared to the other algorithms
included in their study, the suggested method produced better results. Salkuti [12] used the
glowworm swarm optimization method to offer a solution to a multi-objective OPF problem
requiring a modern electrical energy system that utilized wind energy. On IEEE 30- and
300-bus test systems, the methodology was examined in many operational scenarios. The
simulation findings indicated that the proposed methodology might offer an alternative.
A flower pollination algorithm was used by Kathiravan et al. [13] to address the OPF
problem using coal-based, wind, and solar energy systems. In a variety of test situations,
the authors used their method to test systems for the IEEE 30-bus and Indian utility 30-bus.
Duman et al. [14] used differential evolutionary particle swarm optimization to address
the OPF problem (DEEPSO) with manageable wind and solar (PV) energy sources. IEEE
30-, 57-, and 118-bus test systems were used to evaluate the DEEPSO technique to explore
the issue under various objective functions. DEEPSO produced better simulation results
when compared to the other optimization approaches that were looked at [14]. They
recommended using FACTS devices such as a thyristor-controlled phase shifter (TCPS) and
a thyristor-controlled series capacitor (TCSC) to solve the OPF problem. To account for
the uncertainties associated with wind energy installation, they used chaotic maps and a
modified version of the PSOGSA (particle swarm optimization and gravitational search
algorithm). The method presented [15] appears to be a potential approach for a solution
based on the findings of simulations. Biswas et al. [16] solved the OPF challenge, which
incorporated coal-based, wind, solar, and small-hydro energy sources coupled to IEEE 30-
bus test systems, by running multiple rounds of the multi-objective evolutionary algorithm.
The constrained multi-objective population extremal optimization (CMOPEO) technique
was used to handle the wind and solar-integrated OPF problem by Chen et al. [17], who
also tested the method on an IEEE 30-bus for different scenarios. Additionally, research
has been done on the evolutionary particle swarm optimization (EPSO) [18], the hybrid
differential evolution and symbiotic organisms search algorithm (HMICA-SQP) [19], the
success-history-based adaptation of differential evolution with superiority of feasible
solutions (SHADE-SF) [20], and the hybrid modified imperialist competitive algorithm and
sequential quadratic programming algorithm (HMICA-SQP) [21]. Pandya and Jariwala [22]
addressed single and multi-objective OPF issues by integrating with various sustainable
energy sources using recently developed metaheuristics algorithms. Biswas et al. [23]
analyzed the integration of three FACTS devices, wind turbines, and coal-fired power
plants. The success history-based adaptive differential evolution (SHADE) method was
used to conduct the investigation. According to the “No Free Lunch (NFL)” theorem [24],
no metaheuristic can solve every issue that occurs in real-world situations. This theorem has
opened the door to the creation of both novel metaheuristic techniques and improvements
to existing ones.

When using the Generalized Normal Distribution Optimization method [25] in multi-
objective optimization scenarios, several things need to be taken into account. The initial
problem in multi-objective generalized normal distribution optimization is balancing con-
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vergence and divergence archives. The algorithm’s generated solution set is filtered ac-
cording to a certain quality metric, and the non-dominating solution set is kept in separate,
external archives. In the literature, there are numerous recommendations for constructing
archives that could be employed in the multi-objective Generalized Normal Distribution
Optimization method. The pre-defined maximum size archives are widely employed, since
more non-dominating solutions can emerge quickly. The algorithm’s ability to begin with
the straightforward determination of the required population size and the terminal condi-
tion is the most noticeable feature of the GNDO. The location of the person is automatically
changed by the generalized normal distribution function (GNDO), which has a simple
construction. The benefits and drawbacks of the GNDO algorithm are as follows:

• It offers a faster and smoother convergence, especially for difficult problems, and it
strikes the perfect balance between exploration and exploitation.

• Local minima are less likely to become entangled in relaxed convergence.
• Effortlessly simple, adaptable, and simple to use
• The traditional GNDO may have issues with convergence trends or become stuck in

narrow, deceptive optima for challenging optimization tasks, such as high-dimensional
and multimodal problems.

Currently, both conventional and non-conventional energy sources require more stud-
ies. The current body of research recommends using coal-based plus wind and FACTS
devices, combined with single and multi-objective optimum power flow (MOOPF) prob-
lems. The conventional IEEE 30-bus network has been altered to include non-conventional
sources for research purposes. Using Weibull PDF, non-conventional units’ stochastic be-
haviors are calculated. The generating cost is suitably adjusted to account for reserve cost if
these stochastic units are over-estimated and adjusted for penalty cost in the case that they
are underestimated. Using the Generalized Normal Distribution Optimization method,
Pareto solution clusters are discovered for the multi-objective problem. The following is a
list of the contributions made by this study:

1. This work focuses on the mathematical modelling of the single and multiple-objective
OPF issue modelled, which takes into account both conventional units and non-
conventional sources of energy units, as well as FACTS devices.

2. The appropriate probability density functions (PDFs) are modeled in the second stage
to describe the wind power plants’ random behavior.

3. Stochastic non-conventional sources of energy sources are among the single and
multiple-objective OPF issues for which the Non-Dominated Sorting Generalized
Normal Distribution Optimization (NSGNDO) technique is used to develop solutions.

4. Studies and performance evaluations of the MOGNDO algorithm using empirical
comparisons are conducted.

The notion of the mathematical models for coal-based power, wind power, and FACTS
devices is presented in Section 2 of the study. An explanation of the objectives that need to
be optimized is included in Section 3. Section 4 provides an explanation and illustrations of
the multi-objective GNDO technique. Section 5 presents numerical results and discussion,
and Section 6 provides concluding remarks.

2. Mathematical Representations

The case studies presented here restructure the original IEEE 30-bus test apparatus.
The modified approach incorporates wind turbines and FACTS devices, and is listed in
Table 1. The equipment used for the analysis is depicted in Figure 1. The placement
and ratings of FACTS devices are depicted in the diagram with dotted lines because they
have been optimized. The section below provides information on the costs of traditional
coal-based production facilities and plants using non-conventional sources of energy.
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Table 1. Test system key features for analysis.

Particulars Quantity Details

Total buses 30 [23]
Total branches 41 [23]
Coal-based generators (TG1; TG2; TG3; TG4) 4 Buses: 1 (swing), 2, 8 and 13
Wind generators (WG1; WG2) 2 Bus-5 and Bus-11
Tap changing transformers 4 Branches: 11, 12, 15 and 36
SVC 2 Optimal bus and rating derived
TCSC 2 Optimal branch position and rating derived
TCPS 2 Optimal placement and rating derived
Demand - 283.4 MW, 126.2 MVAr
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2.1. Cost of Coal-Based Power Units

The generalized quadratic equation for the calculation of generation cost is expressed
in (1) in $/h [23]:

CT0(PTG) = ∑NTG
i=1 ai + biPTGi + ciP2

TGi (1)

For a more practical case, the valve point effect included:

CT(PTG) = ∑NTG
i=1 ai + biPTGi + ciP2

TGi +
∣∣∣di × sin

(
ei ×

(
Pmin

TGi − PTGi

))∣∣∣ (2)

The values of both coal-based price constants and emanation constants with various
scenarios are shown in [23].

2.2. Toxic Gas Emanation

Polluted gases are released by using coal-based plants. So, toxic gas emanations in
tons per hour can be determined as (in ton/h):

F2 = t,E = ∑NTG
i=1

[(
αi + βiPTGi + γiP2

TGi

)
× 0.01 + ωie(µi PTGi)

]
(3)
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The toxic gas emanation constants of coal-based power plants are taken from [22].

2.3. Direct Cost of Stochastic Non-Conventional Sources Plants

It is particularly challenging to integrate non-conventional energy sources into the
power grid since they are stochastic. The independent system operator (ISO) is responsible
for managing these non-conventional energy sources. Due to this, the private operator
must contract with the grid or ISO for a specific quantity of planned power. The scheduled
electricity must be maintained by the ISO scheduled power. If these non-conventional
sources are unable to maintain the planned power, the ISO is liable for the absence of power.
So, if a need arises, there are spinning reserve requirements. This spinning reserve increases
costs for the ISO, and this circumstance is known as an overestimation of non-conventional
sources. Conversely, if non-conventional sources formed more energy than was planned,
it might go to waste, due to underuse. Therefore, the ISO must accept the penalty charge.
The scheduled power cost, the overestimation cost caused by the spinning reserve, and the
penalized cost caused by the underestimation are the three costs related to electricity. The
direct cost linked to wind farms is demonstrated with the Pws scheduled power from the
same sources as:

Cw(Pws) = gwPws (4)

2.4. Indeterminate Non-Conventional Sources of Wind Power Cost

Due to the erratic nature of wind, the wind farm occasionally produces less energy
than expected. This means that if demand increases, it needs the spinning reserve to
maintain the agreed-upon amount of scheduled power. It is sometimes feasible that the
real power generated by wind farms won’t be enough to meet demand and will have lower
values. Such power is referred to as exaggerated power by an ambiguous resource. To
control this kind of uncertainty and provide end users with a reliable power source, the
network ISO operates spinning reserves. The price of hiring a backup generator to supply
the overestimated power is known as the reserve cost.

Reserve cost for the wind unit is formulated by:

CRw(Pws − Pwav) = KRw(Pws − Pwav) = KRw

∫ Pws

0
(Pws − pw) fw(pw)dpw (5)

The possibility exists that the wind farm will generate more power than is required,
which is the opposite of the overestimation scenario. Underestimated power is the term
used to describe such a situation. If there is no provision for managing the output power
from coal-based units, the excess power will be lost. Regarding the extra power, the ISO
needs to be penalized.

The penalty charge for the wind unit is given by:

CPw(Pwav − Pws) = KPw(Pwav − Pws) = KPw

∫ Pwr

Pws
(pw − Pws) fw(pw)dpw (6)

2.5. Uncertainty Models of Stochastic Wind Units

In the redesigned IEEE-30, the wind power generating units installed at buses 5 and
11, which were originally thermal generators, were replaced. It should be noted that, as
for a comparison point of view with the published reference article [23], in this paper, the
thermal DGs were also replaced with the wind turbines. This will ensure compatibility of
the results obtained by the proposed algorithm to the already published research article [23].
The scale (c) and shape (k) constants for the proposed Weibull model are detailed in Table 2.



Electronics 2022, 11, 3825 6 of 34

Table 2. PDF constants of wind power plants [23].

Windfarm No. of
Turbines

Rated
Power

Weibull PDF
Parameters

Cost Constants

Direct Reserve Penalty

WG5 (bus 5) 25 75 c = 9, k = 2 1.60 3.0 1.50
WG11 (bus 11) 20 60 c = 10, k = 2 1.75 3.0 1.50

The Weibull curve and wind frequency distributions in Figure 2 (for the bus 5 wind
plant) and Figure 3 (for the bus 11 wind plant) were produced using 8000 Monte-Carlo
settings. The standard provided explains the need for wind turbine design and specifies
the maximum turbulence class IA that is confirmed to operate at the highest yearly average
wind velocity of 10 m/s at hub height. The formed shape (k) and scale (c) parameters of
wind farms are given particular attention, because their highest Weibull mean value is fixed
at around 10. It is commonly known that the wind speed distribution follows the Weibull
PDF curve.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 37 
 

 

 

Figure 2. Weibull PDF (bus 5). 

 

Figure 3. Weibull PDF (bus 11). 

2.6. Average Power Calculation for Wind Plants 

The combined outputs of the 25 turbines in the farm are taken as the wind unit 

connected at bus 5. Every turbine has a 3 MW output rating. The wind velocity affects 

the wind turbine’s precise output, which varies. We used the following equations to ex-

press turbine output power in terms of wind velocity (v) [23]: 

𝑝𝑤(𝑣) = {

0,                                       for 𝑣〈𝑣𝑖𝑛 𝑎𝑛𝑑 𝑣〉𝑣𝑜𝑢𝑡

𝑝𝑤𝑟 (
𝑣−𝑣𝑖𝑛

𝑣𝑟−𝑣𝑖𝑛
)                               for 𝑣𝑖𝑛 ⩽ 𝑣 ⩽ 𝑣𝑟

𝑝𝑤𝑟                                              for 𝑣𝑟 < 𝑣 ⩽ 𝑣𝑜𝑢𝑡

  (10) 

The Enercon E82-E4 design specification is referred to for the 3 MW wind turbine. 

The various speeds are 𝑣𝑖𝑛 = 3 m/s, 𝑣𝑟  = 16 m/s, and 𝑣𝑜𝑢𝑡 = 25 m/s. 

  

Figure 2. Weibull PDF (bus 5).

Electronics 2022, 11, x FOR PEER REVIEW 7 of 37 
 

 

 

Figure 2. Weibull PDF (bus 5). 

 

Figure 3. Weibull PDF (bus 11). 

2.6. Average Power Calculation for Wind Plants 

The combined outputs of the 25 turbines in the farm are taken as the wind unit 

connected at bus 5. Every turbine has a 3 MW output rating. The wind velocity affects 

the wind turbine’s precise output, which varies. We used the following equations to ex-

press turbine output power in terms of wind velocity (v) [23]: 

𝑝𝑤(𝑣) = {

0,                                       for 𝑣〈𝑣𝑖𝑛 𝑎𝑛𝑑 𝑣〉𝑣𝑜𝑢𝑡

𝑝𝑤𝑟 (
𝑣−𝑣𝑖𝑛

𝑣𝑟−𝑣𝑖𝑛
)                               for 𝑣𝑖𝑛 ⩽ 𝑣 ⩽ 𝑣𝑟

𝑝𝑤𝑟                                              for 𝑣𝑟 < 𝑣 ⩽ 𝑣𝑜𝑢𝑡

  (10) 

The Enercon E82-E4 design specification is referred to for the 3 MW wind turbine. 

The various speeds are 𝑣𝑖𝑛 = 3 m/s, 𝑣𝑟  = 16 m/s, and 𝑣𝑜𝑢𝑡 = 25 m/s. 

  

Figure 3. Weibull PDF (bus 11).



Electronics 2022, 11, 3825 7 of 34

The following formula can be used to calculate the probability of wind velocity v, in
m/s, pursuing the Weibull PDF with shape factor (k) and scale factor (c) [23]:

fv(v) =
(

k
c

)(v
c

)(k−1)
e−(

v
c )

k
f or 0 < v < ∞ (7)

The Weibull distribution’s mean is given as follows [23]:

Mwbl = c∗Γ
(

1 + k−1
)

(8)

and the gamma function Γ(x) is expressed in Equation (9):

Γ(x) =
∫ ∞

0
e−ttx−1dt (9)

2.6. Average Power Calculation for Wind Plants

The combined outputs of the 25 turbines in the farm are taken as the wind unit
connected at bus 5. Every turbine has a 3 MW output rating. The wind velocity affects the
wind turbine’s precise output, which varies. We used the following equations to express
turbine output power in terms of wind velocity (v) [23]:

pw(v) =


0, for v〈vin and v〉vout

pwr

(
v−vin
vr−vin

)
for vin ≤ v ≤ vr

pwr for vr < v ≤ vout

(10)

The Enercon E82-E4 design specification is referred to for the 3 MW wind turbine. The
various speeds are vin = 3 m/s, vr = 16 m/s, and vout = 25 m/s.

2.7. Wind Power Probabilities Calculation

In certain ranges of wind speeds, uncertain wind generation is noticeable. The gener-
ated power would be 0 if the wind speed was greater than or less than the cut-out speed or
cut-in speed. The turbine thereby produces the specified amount of power within the range
of the rated and cut-out wind speeds. These are possible ways to describe the likelihood of
these areas [23]:

fw(pw){pw = 0} = 1− exp
[
−
(vin

c

)k
]
+ exp

[
−
(vout

c

)k
]

(11)

fw(pw){pw = pwr} = exp
[
−
(vr

c

)k
]
− exp

[
−
(vout

c

)k
]

(12)

Between the cut-in velocity and the rated velocity of the wind, the wind production
remains constant. The following can be used to express the likelihood of the continuous
zone [23]:

fw(pw) =
β(vr − vin)

αβ ∗ pwr

[
vin +

pw

pwr
(vr − vin)

]β−1
exp

−(vin +
pw
pwr

(vr − vin)

α

)β
 (13)

2.8. Thyristor-Controlled Series Compensator (TCSC) Modeling

The basic circuitry of the TCSC is depicted in Figure 4. It consists of a fixed series
capacitor (XC) and a reactor (XL) operated by a thyristor. For the TCSC to function as a
variable capacitive reactance, reactance XC < XL is taken into consideration. By varying the
firing angle (α) of the thyristors, the inductive reactance is changed, and for high values of
inductive reactance, the least corresponding capacitive reactance is produced (Open circuit
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Inductive branch). As a result, the TCSC’s effective reactance with constant capacitive
reactance XC and variable inductive reactance XL(α) can be written as [23]:

XTCSC(α) =
XCXL(α)

XL(α)− XC
= −jXC (14)
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The TCSC static model, which is situated in the path between buses m and n, is shown
in Figure 4. Following the TCSC’s integration (described as a variable capacitive reactance
mode), the transmission line’s adjusted reactance (Xeq) is given by [23]:

Xeq = Xmn − XTCSC = (1− τ)Xmn (15)

where
τ =

XTCSC
Xmn

(16)

The power flow equations of the line incorporating the TCSC are written as [23]:

Pmn = V2
mgmn −VmVngmn cos(δm − δn).
−VmVnbmn sin(δm − δn)

(17)

Qmn = −V2
mbmn −VmVngmn sin(δm − δn).

+VmVnbmn cos(δm − δn)
(18)

Pnm = V2
n gmn −VmVngmn cos(δm − δn).
+VmVnbmn sin(δm − δn)

(19)

Qnm = −V2
n bmn + VmVngmn sin(δm − δn).

+VmVnbmn cos(δm − δn)
(20)

where
gmn =

rmn

r2
mn + (xmn − xc)

2 (21)

bmn = − xmn − xc

r2
mn + (xmn − xc)

2 (22)
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2.9. Model of Thyristor-Controlled Phase Shifter (TCPS)

Figure 5 displays the model of the TCPS placed between the line that connects buses
m and n. The power flow equations of the line can be expressed as below, assuming that is
the phase shift angle φ is introduced by the TCPS:

Pmn = V2
mgmn

cos2 φ
− VmVn

cos φ [gmn cos(δm − δn + φ) .
+bmn sin(δm − δn + φ)]

(23)

Qmn = −V2
mbmn

cos2 φ
− VmVn

cos φ [gmn sin(δm − δn + φ).
−bmn cos(δm − δn + φ)]

(24)

Pnm = V2
n gmn − VmVn

cos φ [gmn cos(δm − δn + φ).
−bmn sin(δm − δn + ϕ)]

(25)

Qnm = −V2
n bmn +

VmVn
cos φ [gmn sin(δm − δn + φ).

+bmn cos(δm − δn + ϕ)]
(26)
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Figure 5. Model of TCP [23].

The inserted actual and reactive power of the TCPS at bus m and n is [23]:

Pms = −gmnV2
m tan2 φ−VmVn tan φ[gmn sin(δm − δn).
−bmn cos(δm − δn)]

(27)

Qms = bmnV2
m tan2 φ + VmVn tan φ[gmn cos(δm − δn).

+bmn sin(δm − δn)]
(28)

Pns = −VmVn tan φ[gmn sin(δm − δn) + bmn cos(δm − δn)] (29)

Qns = −VmVn tan φ[gmn cos(δm − δn)− bmn sin(δm − δn)] (30)

2.10. Model of Static VAR Compensator (SVC)

The basic circuit architecture and the SVC model are depicted in Figure 6. It is made
up of a thyristor-controlled reactor (XL = ωL) and a fixed capacitor (XC = 1/ωC). By
changing the thyristor firing angle (α), the reactance can be changed. The equivalent
susceptibility is computed as:

Beq = BL(α) + BC (31)

where

BL(α) = −
1

ωL

(
1− 2α

π

)
, Bc = ω× C (32)

The reactive power offered by the SVC can be expressed in terms within the context of
power flow:

QSVC = −V2
m·BSVC (33)
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3. Objectives of Optimization

The best active power allocation and the best VAR power allocation are goals in the
OPF. The following are some examples of how this section incorporates the goals of wind
power flow optimization.

3.1. Reducing Overall Costs While Using Non-Conventional Energy Sources

Objective 1:
Minimizing the whole cost is the first goal. Direct, reserve, and penalty charges for

non-conventional resources are added to the coal-based unit cost to determine the overall
generation cost. Therefore, the comprehensive cost for coal-based and wind power plants
is denoted as:

Minimize—

F1 = CTot = CT(PTG) + [Cw(Pws) + CRw(Pws − Pwav) + CPw(Pwav − Pws)] (34)

3.2. Reduction of Voltage Variation with the Use of Non-Conventional Energy Sources

One of the most crucial safety and administrative superiority lists is the bus voltage.
By restricting the voltage deviations of the PQ bus from 1.0 for each unit, the improving
voltage profile will be acquired. The objective function is going to come from:

Objective 2: Minimize—
F2 = ∑Npq

i=1 |vi − 1.0| (35)

3.3. Minimization of APL Including Non-Conventional Energy Sources

The optimization of actual power losses PLOSS (MW) maybe calculated by:
Objective 3: Minimize—

F3 = PLOSS = ∑NB
i=1 PGi −∑NB

i=1 PDi (36)

3.4. Enhancement of VSI Including Non-Conventional Energy Sources

The Lmax index is the most important indicator for evaluating each bus’s voltage
constancy margin, since it keeps the voltage constant within a reasonable range during
typical operation. For every PQ bus, the Lmax index offers a scalar number. Between ‘0’ (no
load) and ‘1’ is where the Lmax index is located (voltage collapse). The following formula is
used to get the jth bus’s voltage collapse indicator amount:

Lj =

∣∣∣∣∣1−∑Ng
i=1 Fji

Vi
Vj

∣∣∣∣∣ ∀j = 1, 2, . . . . . . , NL (37)

Fji = −[Y1]
−1[Y2] (38)



Electronics 2022, 11, 3825 11 of 34

The objective function of voltage stability enhancement is written by:

F4 = L = max
(

Lj
)
∀j = 1, 2, . . . . . . , NL (39)

3.5. Minimization of Entire Gross Cost Including Non-Conventional Energy Resources

The generating cost is significantly higher in the latter scenario, whereas the loss is
greater in the former, as shown by Objectives 1 and 3. The requirement for an aim that
includes both the cost and the loss is increased by this very circumstance. Making a cost
model that converts the loss into an equivalent energy cost is a straightforward way to take
into consideration both goals. The price of energy taken into account in this analysis is
$0.10 per kWh. The goal of gross cost in dollars per hour might be stated as follows:

F5 = CTot + PLOSS ∗ 10000 ∗ 0.10 (40)

3.6. Equality Constraints

Power flow equations provide equality boundaries, and demonstrate that both real and
fictitious power generated in a system should fulfill the load demand and system losses:

PGi − PDi −Vi ∑NB
j=1 Vj

[
Gij cos

(
δij
)
+ Bij sin

(
δij
)]

= 0 ∀i ∈ NB (41)

QGi −QDi −Vi ∑NB
j=1 Vj

[
Gij sin

(
δij
)
− Bij cos

(
δij
)]

= 0 ∀i ∈ NB (42)

3.7. Inequality Constraints

Inequality bounds are the operational boundaries of devices and the security bounds
of lines and PQ buses.

Generator bounds:

Pmin
TGi ≤ PTGi ≤ Pmax

TGi ∀i ∈ NTG (43)

Pmin
ws ≤ Pws ≤ Pmax

ws (44)

Qmin
TGi ≤ QTGi ≤ Qmax

TGi ∀i ∈ NTG (45)

Qmin
ws ≤ Qws ≤ Qmax

ws (46)

Vmin
Gi ≤ VGi ≤ Vmax

Gi , i = 1, . . . . . . , NG (47)

Security bounds:

Vmin
Lp
≤ VLp ≤ Vmax

Lp
, p = 1, . . . . . . , NL (48)

Slq ≤ Smax
lq , q = 1, . . . . . . , nl (49)

FACTS devices bounds:

τmin
TCSCm ≤ τTCSCm ≤ τmax

TCSCm∀m ∈ NTCSC (50)

φmin
TCPSn ≤ τTCPSn ≤ τmax

TCPSn∀n ∈ NTCPS (51)

Qmin
SVCj ≤ QSVCj ≤ Qmax

SVCj∀j ∈ NSVC (52)

The real power output limits of coal-based and wind units are shown in
Equations (43) and (44), respectively. Then, Equations (45) and (46), which show the
VAR power size of producing units, are used. The overall voltage regulator buses are
shown in NG. PV bus voltage restrictions are shown in Equation (47), while PQ bus voltage
restrictions are shown in Equation (48), where NL is the number of PQ buses. When
NL is the total number of lines in a system, Equation (49) can be used to calculate line
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loading limitations. Equations (50)–(52) show the limits of the TCSC, TCPS, and SVC
devices, respectively.

4. Generalized Normal Distribution Optimization Algorithm
4.1. Inspiration

The normal distribution theory serves as the foundation for GNDO. The normal distri-
bution, commonly referred to as the Gaussian distribution, is a crucial tool for describing
natural phenomena. The following is a definition of a normal distribution. Assume that
random variable x follows a probability distribution with location µ and scale δ parameters,
and that its probability density function may be written as:

f (x) =
1√
2πδ

exp

(
− (x− µ)2

2δ2

)
(53)

Following that, x can be referred to as a normal random variable, and this distribution
can be referred to as a normal distribution. Two variables, the location parameter and scale
parameter, are part of a normal distribution, according to Equation (53). It is possible to
describe the mean value and standard deviation of random variables using the location
parameter and scale parameter, respectively. In general, population-based optimization
approaches’ search procedures consist of the three stages listed below. The scattered
distribution contains all initialized people to start. Following that, everyone begins to move
in the direction of the global optimal solution, and are guided by the designed exploration
and exploitation tactics. The optimal answer is attained, and everyone congregates around
it. Multiple normal distributions can adequately characterize this search process. To put
it more precisely, individuals’ positions can be thought of as random variables with a
normal distribution. The ideal position and the mean position are farther apart in the initial
stage. The positions of all people exhibit a significantly high standard deviation. The gap
between the average and ideal positions gradually narrows in the second stage. With each
individual’s position, the standard variance decreases. The standard deviation of each
individual’s location can be as low as possible in the final stage, which also sees the shortest
distance between the mean position and the ideal position.

4.2. Local Exploitation

The suggested GNDO framework is depicted in Figure 3. As can be seen, GNDO
has a fairly straightforward structure, and its local exploitation and global exploration
information exchange mechanisms are built specifically for GNDO. The generalized normal
distribution model that has been constructed—which is based on the current mean position
and the present optimal position—is the foundation for local exploitation. Three people that
were chosen at random were tied to global exploration. The following provides a thorough
overview of the two learning strategies. Local exploitation is the process of locating better
solutions within a search space made up of everyone’s present placements. A generalized
normal distribution model for optimization can be constructed based on the correlation
between the population’s distribution of people and the normal distribution:

vt
i = µi + δi × η, i = 1, 2, 3, . . . , N (54)

where vt
i is the trailing vector of the ith individual at time t, µi is the generalized mean

position of the ith individual, δi is generalized standard variance, and η is the penalty factor.
Moreover, µi, δi, and η can be defined as

µi =
1
3
(
xt

i + xt
Best + M

)
(55)

δi =

√
1
3

[(
xt

i − µ
)2

+
(
xt

Best − µ
)2

+ (M− µ)2
]

(56)
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η =

{ √
−log(λ1)× cos(2πλ2), if a<=b√

−log(λ1)× cos(2πλ2 + π), otherwise
(57)

where a, b, λ1, and λ2 are random numbers between 0 and 1, xt
Best is the present fitness

location, and M is the mean location of the present population. In addition, M can be
calculated by:

M =
∑N

i=1 xt
i

N
(58)

4.3. Global Exploration

A speech space is searched globally to identify promising regions. The worldwide
exploration of GNDO is based on three individuals who were chosen at random, as shown
in Figure 7.

vt
i = xt

i + β× (|λ3| × v1)︸ ︷︷ ︸
Local information sharing

+ (1− β)× (|λ4| × v2)︸ ︷︷ ︸
Global information sharing

(59)

where λ3 and λ4 are two random numbers subject to the standard normal distribution, β
is called the adjust limit and is a random number between 0 and 1, and v1 and v2 are two
trail vectors. Moreover, v1 and v2 can be calculated by:

v1 =

{
xt

i − xt
p1, if f

(
xt

i
)
< f

(
xt

p1

)
xt

p1 − xt
i , otherwise

(60)

v2 =

{
xt

p2 − xt
p3, if f

(
xt

p2

)
< f

(
xt

p3

)
xt

p3 − xt
p2, otherwise

(61)

where p1, p2, and p3 are three random integers selected from 1 to N, which meets p1 6=
p2 6= p3 6= i. In the context of Equations (60) and (61), the second term to the right of
Equation (59) can be referred to as the local learning term, indicating that solution p1 shares
information with solution i, and the third term to the right of Equation (59) can be referred
to as the global information sharing term, indicating that the information is provided to the
individual i by the individuals p2 and p3. To balance the two information-sharing options,
z utilizes the adjusted parameter β. Furthermore, because λ3 and λ4 are random numbers
with a typical normal distribution, the search space for the GNDO can be expanded when
conducting a global search. The absolute symbol in Equation (59) is used to stay steady
with the screening mechanism in Equations (60) and (61).
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4.4. The Implementation of the Proposed Method for Optimization

This section presents the GNDO implementation. The defined local exploitation and
global exploration tactics serve as the foundation for the proposed GNDO. The two tactics
are equally important and equally likely to be chosen for the GNDO. Additionally, similar
to other population-based optimization methods, GNDO initializes its population by;

xt
i,j = lj +

(
uj − lj

)
× λ5, i = 1, 2, 3, . . . , N, j = 1, 2, 3, . . . , D (62)

where D is the total number of design variables, lj is the jth design variable’s lower
boundary, uj is its upper boundary, and λ5 is a random number between 0 and 1. Note that
neither a local exploitation approach nor a global exploration strategy will guarantee that
the ith individual will find a better solution. A screening system is created to ensure that the
population of the future generation receives the best solution, and it may be described as:

xt+1
i =

{
vt

i , if f
(
vt

i) < f
(
xt

i
)

xt
i , otherwise

(63)

Figure 8 provides the pseudocode of the GNDO.

1 

 

 

 

 
Figure 8. The pseudocode of GNDO [25].
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4.5. Basic Definitions of Multi-Objective Optimization

One optimization technique or tool that allows for more than one objective function to
be used for any type of issue is multi-objective optimization. The following is a formulation
of the fundamental elements of any multi-objective optimization:

Minimize : F
(→

x
)
=
[

f1

(→
x
)

, f2

(→
x
)

, . . . , fo

(→
x
)]

Subjected to :
yi

(→
x
)
= 0, i = 1, 2, . . . , n

zi

(→
x
)
≥ 0, i = 1, 2, . . . , p

lbi ≤ xi ≤ ubi, i = 1, 2, . . . m


(64)

where yi signifies the ith equality constraint, zi denotes the ith inequality constraint,
n signifies the number of equality constraints, p denotes the number of inequality con-

straints,
→
x =

[→
x 1,
→
x 2, . . . ,

→
x j

]T
denotes the decision/optimization variables, the minor

and upper limits of the decision variables are represented by lb and ub, the number of
decision variables is denoted by m, and the number of objective functions is denoted by o.
In any multi-objective optimization problem, the relational operators are no longer valid to
compare the search space solutions. The fundamental descriptions of multi-objective opti-
mization problems are stated as follows, and a new operator known as Pareto optimality
may be utilized to compare the solution.

Definition 1. Pareto Optimality.

The solution
→
x ∈ X is called Pareto optimum if and only if:

@ →y ∈ X
∣∣∣ F
(→

y
)
≺ F

(→
x
)

(65)

Definition 2. Pareto Dominance.

Let two different vectors be represented as
→
x =

(
x1, x2, . . . , xj

)
and

→
y =

(
y1, y2, . . . , yj

)
.

The vector
→
y is said to dominate the vector

→
x (symbolized as

→
y ≺ →x ), if and only if:

∀i ∈ {1, 2, . . . , j} : fi

(→
y
)
≤ fi

(→
x
)
∧ ∃i ∈ {1, 2, . . . , j} : fi

(→
y
)
< fi

(→
x
)

(66)

Definition 3. Pareto Optimal Set.

All Pareto optimal solution sets are called the Pareto set, and are expressed as follows:

Ps =
{

x, y ∈ X
∣∣∣ ∃F

(→
y
)
� F

(→
x
)}

(67)

Definition 4. Pareto Optimal Front.

The Pareto optimal front is a collective of Pareto optimal solutions in the Pareto optimal
set, as shown in (68):

Pf =
{

F
(→

x
)∣∣∣→x ∈ Ps

}
(68)

Any multi-objective optimization issue must be solved using the Pareto optimum set
during the multi-objective optimization process. The search space (set of dominated so-
lutions) and objective space (set of non-dominated solutions) are depicted in Figure 9.
The Pareto optimum front describes the interaction between the objective space and
search space.
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4.6. Multi-Objective Generalized Normal Distribution Optimization (MOGNDO)

The proposed MOGNDO algorithm optimizer uses both the crowding distance (CD)
mechanism and the elitist non-dominated sorting (NDS) method. The NDS consists of the
following stages:

• Locating the non-dominated solution is the first step.
• The second step is the use of the NDS strategy.
• Performing non-dominated ranking (NDR) calculations on all non-dominated solutions.

Between two fronts, the NDR process takes place. The first front’s solutions offer a “0”
index because no solutions are dominated by them, but at least one solution from the first
front dominates the second front’s solutions. A solution’s NDR is equal to the number of
solutions that predominate it. The CD process is used to keep the created solutions diverse.
The following is a definition of the CD mechanism:

CDi
j =

f obji+1
j − f obji−1

j

f objmax
j − f objmin

j
(69)

where f objmax
j and f objmin

j are the maximum and minimum values of jth objective function.
The diagrammatic illustration of an NDS-based approach is illustrated in Figure 10.

The MOGNDO algorithm’s pseudocode is displayed in Algorithm 1. The MOGNDO
method begins by specifying the necessary inputs, such as population size (Np), termination
criteria, the maximum number of generations, and the maximum number of iterations
(Maxit). Then, each objective function in the objective space vector F for Po is evaluated
using a randomly generated parent population Po in the feasible search space region S.
Thirdly, Po is subjected to the elitist-based CD and NDS. Fourthly, Po is merged with a fresh
population of Pj to create a population, Pi. This Pi is sorted using the CD and NDR data, as
well as elitist non-dominance. To establish a new parent population, the best Np options are
evaluated. The process is then repeated until the termination criteria are met. MOGNDO’s
flowchart is displayed in Figure 11.

Algorithm 1: Pseudocode of Multi-objective Generalized Normal Distribution Optimization
(MOGNDO).

Step 1: Initially Generate population (Po) randomly in solution space (S)
Step 2: Evaluate objective space (F) for the generated population (Po)
Step 3: Sort the based on the elitist non-dominated sort method and find the non-dominated rank
(NDR) and fronts
Step 4: Compute crowding distance (CD) for each front
Step 5: Update solutions (Pj)
Step 6: Merge Po and Pj to create Pi = Po U Pj
Step 7: For Pi perform Step 2
Step 8: Based on NDR and CD sort Pi
Step 9: Replace Po with Pi for Np first members of Pi
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4.7. Constraint Handling Approach

The majority of engineering design issues in the actual world are multi-objective
and highly nonlinearly constrained. To solve constrained MOPs, managing all constraints
within their bounds is crucial. A static penalty technique is used in the MOGNDO algorithm
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because it transforms a constrained problem into an unconstrained problem, despite the
literature survey giving various constrained handling approaches. This approach adds a
significant penalty to the relevant goal function if a constraint is broken. The following is a
presentation of the static penalty system:

f j(X) = f j(X) + ∑p
i=1 Pimax{gi(X), 0}+ ∑NC

i=p Pimax{|hi(X)| − δ, 0} (70)

where f j(X), j = 1, 2 . . . n is the objective function to be optimized (here minimized),
X = {x1, x2, . . . xm} are design variables, gi(X) ≤ 0, i = 1, 2 . . . p are inequality constraints,
hi(X) = 0, i = p + 1 . . . NC are equality constraints, and δ is the tolerance in equality
constraints.

4.8. Fuzzy Approach for the Multi-Objective Problem

The fuzzy membership approach can be used in multi-objective functions to identify
the best compromising outcome out of all the non-inferior results. The fuzzy membership
function µ fi

uses a fuzzy membership function to keep track of the minimum f min
i and

maximum f max
i values for each objective aim. Now, the membership function of the ith the

objective is given as:

µ fi
=


1 fi ≤ f min

i
f max
i − fi

f max
i − f min

i
f min
i < fi < f max

i

0 fi ≥ f max
i

(71)

The standards of membership functions lie on the measure of (0–1) and display in
the way that satisfies the function fi. Later, the decision-making function µk should be
calculated as follows:

µk =
∑N

i=1 µk
fi

∑M
k=1 ∑N

i=1 µk
fi

(72)

For non-inferior findings, the decision-making function can also be thought of as the
normalized membership function, which displays the ordering of the undominated results.
The end outcome is regarded as the best attainable compromise among all PFs, with a
maximum value of maximum

{
µk : k = 1, 2, 3 . . . . . . M

}
.

5. Simulation Results, Analysis, and Comparative Study

This section discusses the outcomes of the MOGNDO algorithm, which optimized
the optimal power flow with non-conventional and FACTS device problems with control
variables. The initialization of the algorithm’s population size, archive size, the maximum
number of iterations, and boundary condition for optimal power flow problems all came
first. To identify the best optimal tradeoff points between multiple objective functions, the
MOGNDO algorithm was then used to obtain the initial position and objective function
values. Optimal power flow with non-conventional sources and FACTS devices were used
to apply the MOGNDO algorithm’s performance, which was initially verified on eight
unconstrained multi-objective problems. On a computer with 4 GB of RAM and a 3.20
GHz clock speed, the simulation was run using the MATLAB program. The benchmark
functions for each unconstrained test were solved using 10 separate runs. The population
size was set to 30, the maximum number of iterations was set to 100, and the archive size
was set to 30 when the control parameters for the proposed MOGWO algorithm were
first set. The performance measures for the MOGNDO algorithm, including Generational
Distance (GD), Inversion Generational Distance (IGD), Spacing Metrics (SP), Diversity
Metrics (DM), and Spread Metrics (SD), are covered in this section.
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5.1. MOGNDO Results for Test Benchmark Problems

Before tackling real-world issues, the MOGNDO was used to evaluate the perfor-
mance of the benchmark unconstraint test function provided in [26]. Eight benchmark
unconstrained test functions—ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, KURSAVE, SCHAFFER-1,
and SCHAFFER-2 (Figure 12) were taken into account, and a thorough simulation was
performed using the MOGNDO technique. Any algorithm’s control parameters are crucial
to the resolution of the optimization problem. As a result, the number of populations was
decided after conducting a comparative analysis that took into account various population
sizes, while holding all other variables constant. Following careful consideration, the
population size, maximum iterations, and archive size were chosen as 30, 100, and 30,
respectively, for the unconstrained test benchmark functions. The MOGNDO algorithm’s
performance was evaluated using performance metrics, such as Generational Distance
(GD), Inversion Generational Distance (IGD), Spacing Metrics (SP), Diversity Metrics (DM),
and Spread Metrics (SD), for convergence measurement. Tables 3–7 demonstrate that
MOGNDO could achieve the best outcomes for all performance metrics, including Gen-
erational Distance (GD), Inversion Generational Distance (IGD), Spacing Metrics (SP),
Diversity Metrics (DM), and Spread Metrics (SD), which cover convergence and solution
accuracy. It follows that the suggested MOGNDO can provide the best convergence on
all benchmark functions. The outcomes (archive solutions) of all eight test benchmark
issues are displayed in Figures 1–5. As can be shown, the MOGNDO method was capable
of approximating the PF. By comparing the PF estimations, it can also be seen that the
suggested MOGNDO could provide acceptable performance. Thus, it was determined that
the MOGNDO algorithm is more suitable for the stochastic OPF problem with three FACTS
devices and wind power plants.

Table 3. Results of GDMETRICS on test functions.

TEST
FUNCTIONS Minimum Average Median Maximum Std Dev

ZDT-1 0.00014795 0.00025051 0.00025043 0.00033133 6.658 × 10−5

ZDT-2 0.00015293 0.00016665 0.00016915 0.00018271 8.9928 × 10−6

ZDT-3 0.00048314 0.00059601 0.00057943 0.00077354 9.9396 × 10−5

ZDT-4 0.00012104 0.00022808 0.00020834 0.0004758 9.4401 × 10−5

ZDT-6 9.084 × 10−5 0.046963 0.00011316 0.22777 0.084189
KURSAVE 0.00079741 0.0014452 0.0012905 0.0025211 0.00051722
SCHAFFER-1 0.00033607 0.00040992 0.00042203 0.00047897 4.714 × 10−5

SCHAFFER-2 4.3236 × 10−5 7.2824 × 10−5 5.2463 × 10−5 0.00016939 4.0743 × 10−5

Table 4. Results of IGD METRICS on test functions.

TEST
FUNCTIONS Minimum Average Median Maximum Std Dev

ZDT-1 0.00086623 0.00098862 0.0010348 0.0010718 8.6005 × 10−5

ZDT-2 0.00086578 0.00098848 0.00094837 0.0012358 0.00012678
ZDT-3 0.001211 0.0020746 0.0013386 0.0077205 0.0020015
ZDT-4 0.00078066 0.00089518 0.00087008 0.0012276 0.00012621
ZDT-6 0.0004207 0.00045525 0.00044688 0.00049748 2.8268 × 10−5

KURSAVE 0.00054436 0.00062399 0.00057845 0.00085408 9.8135 × 10−5

SCHAFFER-1 0.0013154 0.0015246 0.0015027 0.0017064 0.0001302
SCHAFFER-2 0.00038808 0.00042594 0.00042586 0.00044933 1.8173 × 10−5
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Table 5. Results of SPACINGMETRICS on test functions.

TEST
FUNCTIONS Minimum Average Median Maximum Std Dev

ZDT-1 0.055513 0.068922 0.068773 0.078086 0.0087192
ZDT-2 0.055269 0.066982 0.06225 0.082706 0.010406
ZDT-3 0.23708 0.30199 0.30489 0.37195 0.038816
ZDT-4 0.055461 0.079673 0.082798 0.0984 0.012829
ZDT-6 0.060275 0.36467 0.082672 1.2984 0.50689
KURSAVE 1.7123 2.0817 2.0541 2.3807 0.20644
SCHAFFER-1 0.47734 0.6444 0.65722 0.78476 0.086121
SCHAFFER-2 4.3184 6.228 6.1458 8.1797 0.99173

Table 6. Results of DIVERSITYMETRICS on test functions.

TEST
FUNCTIONS Minimum Average Median Maximum Std Dev

ZDT-1 0.39774 0.4726 0.46959 0.53772 0.060856
ZDT-2 0.34666 0.4369 0.44215 0.57139 0.069382
ZDT-3 0.42402 0.52122 0.50625 0.64813 0.07401
ZDT-4 0.3035 0.37573 0.36822 0.43095 0.043003
ZDT-6 0.36148 0.6907 0.45236 1.3455 0.42847
KURSAVE 0.28774 0.3839 0.39009 0.45763 0.050257
SCHAFFER-1 0.28774 0.3839 0.39009 0.45763 0.050257
SCHAFFER-2 0.9161 0.95607 0.95992 1.0033 0.030768

Table 7. Results of SPREAD METRICS on test functions.

TEST
FUNCTIONS Minimum Average Median Maximum Std Dev

ZDT-1 0.38649 0.45794 0.45049 0.5251 0.059019
ZDT-2 0.33511 0.42459 0.42842 0.56709 0.070091
ZDT-3 0.5604 0.64503 0.64749 0.73814 0.066426
ZDT-4 0.30364 0.36741 0.36204 0.4213 0.040601
ZDT-6 0.35291 0.67963 0.4479 1.3293 0.42341
KURSAVE 0.37729 0.43491 0.43448 0.4872 0.030263
SCHAFFER-1 0.27113 0.37375 0.37832 0.44441 0.051198
SCHAFFER-2 0.56431 0.61293 0.61561 0.65022 0.02504

5.2. Multi-Objectives OPF Problem with Wind Power Plants and Three FACTS Devices

The GNDO algorithm was used to address the stochastic OPF problem with wind
power plants and three FACTS devices in this study. The solution to the optimum power
flow problem was evaluated in parallel using newly created algorithms, such as the Multi-
Verse Optimization (MVO), the Sine-Cosine Algorithm (SCA) [27], the Grey Wolf Optimiza-
tion (GWO), the Moth Fame Optimization (MFO), the Ant Lion Optimization (ALO) [28],
and Ion Motion Algorithms (IMA) [29]. The proposed approach was demonstrated using a
modified IEEE-30 bus infrastructure with wind power plants and FACTS devices. Table 1
lists the major characteristics of the customized IEEE-30 bus framework. The following are
two scenarios:

• Scenario-1 (Solo objective OPF with wind power plants and FACTS devices)
• Scenario-2 (Multi-objective OPF with wind power plants and FACTS devices)

As shown in Table 8, there were a total of thirteen different test scenarios to evaluate. In
this section, the results of case studies using various metaheuristics methodologies are tab-
ulated and presented. The first six case studies are for single-objective optimization, while
the latter seven are multi-objective optimization problems that include non-conventional
sources of energy resources, as well as optimal FACTS device sizes and locations. The
search agent value was set to 40, and each algorithm underwent 500 iterations of analysis.
Please refer to the original research for a detailed discussion of those procedures. Table 4
shows the parameter settings for these methods.
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Table 8. Summary of case studies for adapted IEEE-30 bus test system.

Test System Case # Single and Multi-Objectives Functions

Adapted
IEEE 30-bus test system

Case # 1 TFC includes FACTS devices, wind farms, and coal-based plants

Case # 2 Reduction of total toxic gas emanations with the use of coal-based, wind, and FACTS
technologies.

Case # 3 Minimization of APL in FACTS devices, wind farms, and coal-based plants.
Case # 4 Minimization of the total voltage variation using coal-based, wind, and FACTS devices.
Case # 5 Voltage stability improvement in coal-based, wind, and FACTS equipment.
Case # 6 Total Gross Generation Cost, includes FACTS devices, wind farms, and coal-based plants.

Case # 7 Minimizing TFCs and toxic gas emanations while using non-conventional sources of
energy and FACTS devices

Case # 8 TFC and APL Minimization Including non-conventional sources and FACTS Devices
Case # 9 TFC and VSI minimization including non-conventional sources and FACTS devices

Case # 10 Total Gross Generation Cost and voltage deviation minimization with non-conventional
sources and FACTS devices

Case # 11 TFC, Toxic gas emanation, and APL minimization together with non-conventional
sources and FACTS devices

Case # 12 TFC, APL, and VSI minimization including non-conventional sources and FACTS devices

Case # 13 TFC, Toxic gas emanation, APL, and voltage deviation minimization including
non-conventional sources and FACTS devices

5.3. Scenario-1 (Single Objective OPF with Wind Power Plants and FACTS Devices)

With the use of GNDO, MVO, ALO, SCA, and IMO methods, all of the objective
goals indicated in the mathematical formulation were simultaneously handled as solo
objective optimization issues. The limitations of all control variables, as well as proper
FACTS device locations and sizing, are listed below. From case 1 to case 6, the outcomes of
objective functions are tabulated in Tables 9–11, with the best minimum values containing
five different recent techniques.

Table 9. Single objectives simulation results for case 1 and case 2.

Control &
State Variables Min Max

Case-1 Case-2

GNDO MVO ALO SCA IMO GNDO MVO ALO SCA IMO

PTG2 20 80 41.427 40.311 40.960 35.458 30.881 46.634 46.639 46.634 48.357 46.726
PWG5 0 75 49.815 49.459 49.077 41.719 54.226 74.818 74.934 71.362 75.000 74.507
PTG8 10 35 10.000 10.352 13.038 15.172 14.361 35.000 35.000 35.000 35.000 35.000
PWG11 0 60 40.799 42.135 39.362 47.561 36.329 52.365 51.215 54.905 60.000 48.761
PTG13 12 40 12.002 12.000 12.000 14.321 16.648 40.000 40.000 40.000 40.000 40.000
V1 0.95 1.1 1.091 1.100 1.100 1.019 1.100 1.090 0.997 1.100 0.997 1.100
V2 0.95 1.1 1.075 1.090 1.091 0.992 1.100 1.080 1.013 1.078 0.950 1.100
V5 0.95 1.1 1.049 1.071 1.072 0.978 1.100 1.067 1.037 0.975 1.100 1.100
V8 0.95 1.1 1.046 1.076 1.079 0.950 1.100 0.962 1.100 1.100 1.100 1.100
V11 0.95 1.1 1.100 1.100 1.071 1.047 1.100 1.073 1.082 1.100 0.950 1.100
V13 0.95 1.1 1.069 1.062 1.038 0.950 1.100 1.087 0.970 1.047 1.100 1.100
T11 0.9 1.1 1.037 1.007 1.059 0.959 1.090 0.977 0.938 1.020 1.100 1.100
T12 0.9 1.1 0.997 1.087 1.084 0.900 1.090 0.943 1.055 1.073 0.965 1.100
T15 0.9 1.1 1.027 1.099 1.095 0.938 1.090 1.023 1.063 1.080 0.900 1.100
T36 0.9 1.1 0.957 1.024 1.087 0.900 1.090 1.017 1.024 1.054 0.900 1.100
SVC1 Location - - 24 27 6 19 22 27 11 21 25 29
SVC2 Location - - 7 27 10 9 15 6 20 30 25 30
SVC1 Rating −10 10 10.000 9.893 −6.541 3.882 1.740 −3.380 9.274 8.786 10.000 10.000
SVC2 Rating −10 10 5.764 −6.277 1.209 5.482 −3.094 −9.559 0.639 8.550 −10.000 4.480
TCSC1 Location - - 15 39 10 3 14 37 38 32 34 33
TCSC2 Location - - 12 29 20 4 32 36 24 37 41 39
TCSC1 Rating 0 0.5 0.491 0.219 0.218 0.000 0.452 0.110 0.196 0.497 0.000 0.500
TCSC2 Rating 0 0.5 0.496 0.239 0.440 0.000 0.492 0.454 0.060 0.485 0.193 0.500
TCPS1 Location - - 14 16 34 15 14 38 14 26 40 40
TCPS2 Location - - 16 22 19 1 30 35 5 32 1 41
TCPS1 Rating −5 5 2.714 4.503 −3.990 3.917 1.235 4.787 −0.175 0.926 5.000 5.000
TCPS2 Rating −5 5 1.705 3.761 −4.281 1.150 0.113 4.095 1.148 4.860 −3.963 4.566
TFC ($/h) 806.999 808.030 809.449 818.654 814.865 - - - - -
Emission
(Ton/h) - - - - - 0.138 0.138 0.138 0.138 0.138
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Table 10. Single objectives simulation results for case 3 and case 4.

Control &
State Variables Min Max

Case-3 Case-4

GNDO MVO ALO SCA IMO GNDO MVO ALO SCA IMO

PTG2 20 80 69.005 75.900 79.745 80.000 79.644 79.721 78.271 28.577 49.606 34.817
PWG5 0 75 75.000 74.966 75.000 73.825 74.667 47.504 11.236 13.419 0.000 47.506
PTG8 10 35 34.999 34.656 35.000 30.726 34.844 25.357 32.736 16.328 35.000 34.441
PWG11 0 60 59.999 58.422 60.000 50.635 59.748 26.234 20.292 4.602 0.000 55.391
PTG13 12 40 39.976 31.239 39.823 31.706 39.832 26.916 32.996 24.669 24.060 39.576
V1 0.95 1.1 1.036 1.100 1.098 1.098 1.089 1.008 0.958 0.967 0.950 0.955
V2 0.95 1.1 1.037 1.100 1.100 1.091 1.089 1.032 1.054 1.051 1.072 1.052
V5 0.95 1.1 1.027 1.090 1.091 1.100 1.089 1.010 1.016 1.017 0.960 0.955
V8 0.95 1.1 1.030 1.092 1.096 1.100 1.090 1.025 0.992 1.013 1.024 1.015
V11 0.95 1.1 1.100 1.099 1.100 1.100 1.089 0.950 1.069 1.009 1.100 1.004
V13 0.95 1.1 1.100 1.100 1.077 0.990 1.089 1.004 1.067 1.084 1.043 1.038
T11 0.9 1.1 1.012 1.047 1.046 1.030 1.090 0.938 1.063 0.949 1.017 0.905
T12 0.9 1.1 0.903 0.903 1.045 1.100 1.090 0.907 0.903 0.904 0.912 0.986
T15 0.9 1.1 0.998 1.042 1.100 1.018 1.090 0.945 1.048 1.065 1.044 1.069
T36 0.9 1.1 0.935 0.983 1.068 1.100 1.090 0.934 0.930 0.936 0.957 0.936
SVC1 Location - - 18 12 27 11 27 19 24 28 19 19
SVC2 Location - - 24 15 30 16 30 10 14 16 21 23
SVC1 Rating −10 10 4.901 6.871 3.951 6.535 9.956 8.082 8.769 −1.898 4.969 9.593
SVC2 Rating −10 10 10.000 5.448 5.238 −0.936 4.219 5.421 −2.342 −5.291 −1.465 9.547
TCSC1 Location - - 34 5 40 3 40 14 13 2 2 40
TCSC2 Location - - 11 40 41 2 41 18 25 9 5 29
TCSC1 Rating 0 0.5 0.494 0.107 0.500 0.000 0.471 0.353 0.300 0.075 0.027 0.500
TCSC2 Rating 0 0.5 0.500 0.198 0.497 0.000 0.498 0.499 0.391 0.087 0.000 0.486
TCPS1 Location - - 16 12 40 4 33 19 38 3 1 37
TCPS2 Location - - 19 15 41 1 34 15 41 5 5 36
TCPS1 Rating −5 5 1.744 −0.898 −3.378 0.433 4.979 −4.997 3.754 −1.638 5.000 2.660
TCPS2 Rating −5 5 0.257 4.748 −3.441 1.249 0.946 0.767 0.550 −3.874 0.128 −1.703
APL (MW) 1.647 1.735 1.686 2.482 1.880 - - - - -
Voltage
Deviation (p.u) - - - - - 0.124 0.150 0.177 0.227 0.165

Table 11. Single objectives simulation results for case 5 and case 6.

Control &
State Variables Min Max

Case-5 Case-6

GNDO MVO ALO SCA IMO GNDO MVO ALO SCA IMO

PTG2 20 80 78.161 28.765 76.487 20.000 74.363 44.894 47.802 55.203 20.000 56.164
PWG5 0 75 75.000 16.020 74.240 0.000 67.677 74.998 74.564 71.256 75.000 68.555
PTG8 10 35 35.000 34.855 34.405 10.000 32.815 35.000 32.893 33.271 35.000 30.826
PWG11 0 60 54.355 0.000 55.983 49.379 14.173 59.006 58.030 50.102 60.000 58.732
PTG13 12 40 12.001 28.840 38.080 16.659 35.961 21.583 22.222 32.274 19.540 23.229
V1 0.95 1.1 1.100 1.100 1.100 1.100 1.097 1.046 1.100 1.100 1.100 1.100
V2 0.95 1.1 1.100 1.100 1.100 1.100 1.097 1.042 1.097 1.098 1.100 1.100
V5 0.95 1.1 1.100 1.100 1.100 1.100 1.097 1.032 1.087 1.087 1.100 1.100
V8 0.95 1.1 1.100 1.100 1.100 1.100 1.097 1.035 1.092 1.091 1.100 1.098
V11 0.95 1.1 1.100 1.100 1.100 1.100 1.097 1.098 1.100 1.100 1.100 1.100
V13 0.95 1.1 1.100 1.100 1.100 1.100 1.097 1.035 1.100 1.083 1.100 1.098
T11 0.9 1.1 0.905 0.910 0.990 1.100 1.089 1.077 1.054 1.007 1.100 1.084
T12 0.9 1.1 0.904 0.909 0.990 0.900 1.089 0.901 0.903 1.089 1.100 1.084
T15 0.9 1.1 0.901 0.900 0.930 0.900 1.089 1.065 1.053 1.081 1.100 1.100
T36 0.9 1.1 0.901 0.909 0.910 0.900 0.910 0.985 1.001 1.033 1.100 1.087
SVC1 Location - - 10 29 29 29 26 24 28 26 15 24
SVC2 Location - - 29 30 30 30 26 13 14 26 3 10
SVC1 Rating −10 10 9.999 4.260 7.322 10.000 9.312 9.999 −3.639 3.886 10.000 8.490
SVC2 Rating −10 10 9.999 2.982 9.608 9.747 9.622 3.844 −1.487 3.411 −0.065 7.591
TCSC1 Location - - 38 38 38 24 36 16 7 39 1 18
TCSC2 Location - - 15 36 40 1 38 19 29 34 3 31
TCSC1 Rating 0 0.5 0.500 0.490 0.500 0.002 0.499 0.500 0.468 0.470 0.002 0.500
TCSC2 Rating 0 0.5 0.500 0.325 0.475 0.013 0.499 0.013 0.490 0.355 0.000 0.147
TCPS1 Location - - 36 4 33 3 38 14 4 35 31 30
TCPS2 Location - - 41 17 38 1 39 4 2 25 11 33
TCPS1 Rating −5 5 −4.999 3.788 4.884 −5.000 4.540 3.173 0.486 4.591 2.761 1.494
TCPS2 Rating −5 5 −4.998 1.993 4.772 −1.126 4.697 −0.508 −1.527 −0.901 5.000 2.191
VSI 0.096 0.100 0.096 0.108 0.102 - - - - -
Total Gross Fuel
Cost ($/h) - - - - - 1120.996 1125.970 1138.357 1187.287 1148.359

The overall fuel cost with GNDO, which included the two non-conventional sources
of power plants and optimal placement of FACTS devices, was 806.999 $/h, which was
the best in comparison with the other cited algorithm shown in Table 9. The reductions
in TFC in comparison with MVO, ALO, SCA, IMO, SHADE-SF, DE-SF, ABC-SF, PSO-SF,
FPA-SF, and MSA-SF were 1.031 $/h, 1.031 $/h, 2.45 $/h, 11.655 $/h 7.866 $/h, 0.0176 $/h,
0.4917 $/h, 0.4 $/h, 1.2553 $/h, 3.398 $/h, and 1.0403 $/h, respectively. This demonstrated
the GNDO algorithm’s superiority over other cited metaheuristics algorithms.
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Figure 13 illustrates the convergence traits of the TFC minimization. Similar conver-
gence traits for APL, voltage deviations, and VSI are depicted in Figures 14–16. Figure 17
also displays a comparison of the fuel cost decrease with various algorithms. In example 2,
the GNDO method resulted in a pollutant gas emission of 0.138 tons per hour. In instance
3, the APL of the various transmission lines using the GNDO approach was 1.647 MW. The
APL was 0.088 MW, 0.039 MW, 0.835 MW, 0.233 MW, 0.0997 MW, 0.0997 MW, 0.2598 MW,
0.2494 MW, 0.6127 MW, and 0.4972 MW less compared to MVO, ALO, SCA, IMO, SHADE-
SF, DE-SF, ABC-SF, PSO-SF, and MSA-SF, respectively. A crucial factor for the grid’s ability
to operate reliably was the voltage divergence of each bus from 1.0 per unit. Therefore, in
scenario 4, the moth flame algorithm produced the lowest voltage variation (0.124 p.u),
making it the best of the five optimization methods. The VSI, sometimes referred to as the
L max index, varied between zero (no load) and one (voltage collapse). Therefore, in case 5,
0.096 was the lowest value for the L max index. In scenario 6, the overall gross fuel cost
using the GNDO method was 1120.996 dollars per hour. It is interesting to note here that in
Table 12, the total gross fuel cost of the proposed GNDO was more than the SHADE-SF,
which further enforces the narrative of the “No free lunch theorem,” which states that no
algorithm gives the best result in every problem.
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Table 12. Comparison of the simulation results for single objectives.

Objectives
Functions GNDO MVO ALO SCA IMO SHADE-SF DE-SF ABC-SF PSO-SF FPA-SF MSA-SF

Total F.C ($/h) 806.999 808.030 809.449 818.654 814.865 807.0166 807.4907 807.399 808.2543 810.397 808.0393
Emission (T/h) 0.138 0.138 0.138 0.138 0.138 - - - - - -
Ploss (MW) 1.647 1.735 1.686 2.482 1.880 1.7467 1.7467 1.9068 1.8964 2.2597 2.1442
V.D (p.u) 0.124 0.150 0.177 0.227 0.165 - - - - - -
Lmax 0.096 0.100 0.096 0.108 0.102 - - - - - -
Total Gross F.C
($/h) 1120.996 1125.970 1138.357 1187.287 1148.359 1104.077 1113.676 1116.365 1118.601 1164.719 1122.331

Figures 18 and 19 provide comparison charts with the minimizing of APL and overall
fuel cost. The results of the simulations were compared to those of the most recent algo-
rithms, including MVO, ALO, SCA, IMO, and other mentioned optimization approaches.
It was found that the proposed method of Generalized Normal Distribution Optimization
methodology produced superior results.
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5.4. Scenario-2 (Multi-Objective OPF with Non-Conventional Sources Energy Resources)

In this case, two, three, and four objectives were simultaneously optimized using the
Multi-Objective Generalized Normal Distribution Optimization (MOGNDO) algorithm
technique. In multi-objective optimization, the non-dominated sorting optimization tech-
nique is used to simultaneously find solutions for numerous objectives. To find the PF for
the modified IEEE 30-bus architecture, 30 non-dominate solutions are retained. The scenar-
ios in cases 7 through 10 are thought of as two-objective optimization cases. Three-objective
optimization problems are what are known as cases 11 and 12. Contrarily, case 13 is referred
to as a set of four problems involving objective optimization. Among all the Pareto archives,
the best compromising solution was found using the fuzzy decision-making method. For
cases 7 through 13, the most optimal compromise solutions using the proposed MOGNDO
algorithm and other cited metaheuristics techniques are shown in boldface and stated in
Tables 13–16. The best PFs of TFC and pollution minimization for case 7 are shown in
Figure 20, utilizing various metaheuristics techniques. Likewise with case 7, case 8’s PF
with two goal optimizations resulted in APL and TFC, which are depicted in Figure 21.
Figure 22 shows the PF of the TFC with the carbon tax and voltage deviation minimization.
In scenario 11, Figure 23 shows the three objectives PFs for minimizing APL, TFC, and toxic
gas emanations. Figure 24 depicts the PF for the minimization of voltage variation, APL,
and TFC, using various algorithms.
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Table 13. Multi-objective simulation results for case 7 and case 8.

Control & State
Variables Min Max

Case-7 Case-8

GNDO GWO MFO MVO GNDO GWO MFO MVO

PTG2 20 80 45.896 54.592 47.915 47.568 31.212 44.406 40.200 37.027
PWG5 0 75 54.828 58.922 53.220 52.055 64.776 65.069 60.990 63.027
PTG8 10 35 23.322 20.821 25.403 24.401 17.913 23.015 25.019 24.049
PWG11 0 60 46.878 42.848 41.484 46.116 48.381 51.171 51.429 43.893
PTG13 12 40 19.171 17.914 22.285 22.094 14.453 23.604 19.015 14.758
V1 0.95 1.1 1.031 1.043 1.067 1.036 1.085 1.099 1.087 1.065
V2 0.95 1.1 1.027 1.019 1.055 1.025 1.075 1.090 1.082 1.049
V5 0.95 1.1 1.022 1.000 1.029 1.010 1.057 1.077 1.069 1.027
V8 0.95 1.1 1.023 1.001 1.032 1.020 1.054 1.071 1.074 1.041
V11 0.95 1.1 1.031 1.035 1.039 1.022 1.087 1.077 1.073 1.069
V13 0.95 1.1 1.026 1.020 1.045 1.029 1.075 1.079 1.052 1.037
T11 0.9 1.1 0.986 0.956 1.007 0.987 0.972 1.003 1.034 1.016
T12 0.9 1.1 1.006 0.966 1.002 1.001 1.020 1.037 1.045 0.966
T15 0.9 1.1 1.041 0.953 1.051 1.038 1.049 1.071 1.057 1.017
T36 0.9 1.1 1.003 0.956 1.012 0.981 0.990 0.996 1.033 1.004
SVC1 Location – – 15 11 15 14 12 22 16 19
SVC2 Location – – 22 25 19 10 17 12 23 13
SVC1 Rating −10 10 0.696 0.846 −1.633 2.629 −0.018 8.596 −3.998 6.891
SVC2 Rating −10 10 4.611 5.523 −0.549 1.422 3.179 −3.651 3.231 2.030
TCSC1 Location – – 24 13 15 18 12 19 20 20
TCSC2 Location – – 16 17 26 14 27 14 25 17
TCSC1 Rating 0 0.5 0.294 0.480 0.221 0.261 0.437 0.403 0.279 0.204
TCSC2 Rating 0 0.5 0.213 0.202 0.160 0.243 0.144 0.357 0.322 0.184
TCPS1 Location – – 19 16 23 23 28 25 21 20
TCPS2 Location – – 22 26 33 23 14 15 31 19
TCPS1 Rating −5 5 −1.239 −2.128 −1.398 −0.747 0.304 0.797 −0.187 0.372
TCPS2 Rating −5 5 1.618 −0.298 0.373 0.018 0.988 −4.113 1.473 0.005
TFC ($/h) – – 861.489 865.902 863.797 865.736 845.768 883.242 870.299 852.611
Emission (Ton/h) – – 0.166 0.164 0.165 0.163 – – – –
APL (MW) – – – – – – 4.010 3.024 3.458 4.066

Table 14. Multi-objective simulation results for case 9 and case 10.

Control & State
Variables Min Max

Case-9 Case-10

GNDO GWO MFO MVO GNDO GWO MFO MVO

PTG2 20 80 41.854 40.056 35.406 41.929 52.339 50.960 47.711 57.834
PWG5 0 75 46.213 44.290 45.659 43.000 73.729 59.378 67.052 72.012
PTG8 10 35 10.539 17.206 12.905 17.794 27.548 33.079 25.001 34.062
PWG11 0 60 40.507 37.047 42.067 37.374 55.547 50.930 47.004 45.086
PTG13 12 40 14.441 14.583 17.107 15.543 25.046 28.260 33.662 29.799
V1 0.95 1.1 1.095 1.085 1.077 1.077 1.027 1.045 1.039 1.019
V2 0.95 1.1 1.088 1.068 1.070 1.062 1.026 1.036 1.037 1.030
V5 0.95 1.1 1.082 1.054 1.052 1.035 1.021 1.024 1.026 1.017
V8 0.95 1.1 1.089 1.081 1.081 1.078 1.011 1.016 1.009 1.004
V11 0.95 1.1 1.081 1.067 1.082 1.081 1.042 1.072 1.048 1.033
V13 0.95 1.1 1.093 1.082 1.078 1.080 1.031 1.010 1.036 1.045
T11 0.9 1.1 1.022 0.979 0.971 1.001 0.984 1.010 1.032 0.979
T12 0.9 1.1 0.957 0.945 0.959 1.012 0.963 0.956 0.949 0.929
T15 0.9 1.1 1.005 1.017 0.979 0.981 0.964 0.964 0.985 0.980
T36 0.9 1.1 0.909 0.906 0.927 0.910 0.947 0.933 0.943 0.946
SVC1 Location - - 17 21 15 21 8 23 22 9
SVC2 Location - - 24 14 22 27 19 10 19 19
SVC1 Rating −10 10 7.270 1.629 1.395 3.604 0.703 6.496 0.374 −0.378
SVC2 Rating −10 10 8.303 3.620 6.583 8.418 6.197 −2.454 6.193 4.988
TCSC1 Location - - 38 38 21 15 14 7 11 26
TCSC2 Location - - 16 15 38 13 30 24 28 27
TCSC1 Rating 0 0.5 0.470 0.446 0.273 0.473 0.281 0.097 0.357 0.309
TCSC2 Rating 0 0.5 0.487 0.410 0.403 0.438 0.186 0.433 0.412 0.384
TCPS1 Location - - 30 13 11 14 23 15 25 31
TCPS2 Location - - 31 7 14 23 29 14 28 15
TCPS1 Rating −5 5 1.527 0.693 0.001 0.286 0.888 1.063 0.635 2.025
TCPS2 Rating −5 5 2.980 −0.065 −1.394 −0.272 0.240 2.646 0.126 −0.864
TFC ($/h) - - 810.049 814.201 813.755 817.163 - - - -
VSI - - 0.105 0.110 0.116 0.115 - - - -
Total Gross F.C
($/h) - - - - - - 1173.322 1208.416 1212.959 1199.459
Voltage Deviation
(p.u) - - - - - - 0.176 0.230 0.209 0.169
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Table 15. Multi-objective simulation results for case 11 and case 12.

Control & State
variables Min Max

Case-11 Case-12

GNDO GWO MFO MVO GNDO GWO MFO MVO

PTG2 20 80 45.293 44.975 50.298 45.856 31.589 60.147 33.799 36.035
PWG5 0 75 60.666 68.795 62.294 57.155 62.042 61.717 66.094 52.766
PTG8 10 35 24.271 24.485 27.179 26.031 24.651 27.550 25.232 25.207
PWG11 0 60 46.551 47.899 53.206 47.440 40.375 57.220 45.112 41.884
PTG13 12 40 19.146 17.287 20.734 14.419 18.307 15.569 16.090 19.407
V1 0.95 1.1 1.033 1.093 1.060 1.015 1.066 1.046 1.077 1.045
V2 0.95 1.1 1.019 1.086 1.060 1.008 1.058 1.040 1.063 1.032
V5 0.95 1.1 0.997 1.069 1.055 1.001 1.040 0.996 1.041 1.017
V8 0.95 1.1 1.015 1.081 1.051 1.006 1.046 1.039 1.039 1.009
V11 0.95 1.1 1.020 1.040 1.055 1.051 1.051 1.075 1.034 1.037
V13 0.95 1.1 1.035 1.051 1.021 1.019 1.028 1.029 1.052 1.050
T11 0.9 1.1 1.000 0.972 0.999 0.966 0.987 0.963 0.963 0.964
T12 0.9 1.1 1.003 1.070 1.055 1.007 1.020 0.976 1.002 0.973
T15 0.9 1.1 1.061 1.099 1.075 1.043 1.035 1.087 1.051 1.015
T36 0.9 1.1 0.952 1.076 1.024 0.985 0.964 0.974 0.964 0.965
SVC1 Location - - 11 21 13 18 14 15 18 18
SVC2 Location - - 13 12 15 8 20 23 19 18
SVC1 Rating −10 10 0.495 6.230 −2.056 −0.109 0.057 3.863 −0.308 −2.293
SVC2 Rating −10 10 3.861 4.665 5.159 8.132 0.599 3.889 −0.818 7.033
TCSC1 Location - - 20 16 21 4 26 39 25 24
TCSC2 Location - - 19 24 24 22 17 22 18 23
TCSC1 Rating 0 0.5 0.173 0.269 0.306 0.331 0.217 0.101 0.133 0.278
TCSC2 Rating 0 0.5 0.205 0.288 0.336 0.365 0.312 0.194 0.259 0.237
TCPS1 Location - - 15 24 30 8 20 19 17 25
TCPS2 Location - - 14 34 20 36 16 20 22 5
TCPS1 Rating −5 5 0.083 −2.213 1.397 −0.222 0.555 −0.891 0.384 0.657
TCPS2 Rating −5 5 2.118 −0.241 0.863 0.454 −0.207 −1.208 −0.652 0.936
TFC ($/h) - - 868.806 877.252 887.402 860.794 849.334 893.297 860.198 845.253
Emission (Ton/h) - - 0.162 0.157 0.150 0.167 - - - -
APL (MW) - - 4.034 3.370 3.254 4.347 4.328 3.453 3.922 4.825
VSI - - - - - - 0.416 0.356 0.378 0.269

Table 16. Multi-objective simulation results for case 13.

Control & State
Variables Min Max

Case-13

GNDO GWO MFO MVO

PTG2 20 80 49.763 52.443 59.634 45.029
PWG5 0 75 47.291 62.622 61.404 53.782
PTG8 10 35 26.717 13.340 15.911 17.846
PWG11 0 60 29.206 58.719 47.380 47.174
PTG13 12 40 26.888 19.443 18.672 18.177
V1 0.95 1.1 1.048 1.034 1.041 1.053
V2 0.95 1.1 1.038 1.012 1.027 1.051
V5 0.95 1.1 1.028 0.980 0.990 1.009
V8 0.95 1.1 1.040 0.998 1.026 1.027
V11 0.95 1.1 1.053 1.069 1.047 1.024
V13 0.95 1.1 1.029 1.054 1.051 1.021
T11 0.9 1.1 1.012 0.931 0.974 0.978
T12 0.9 1.1 0.968 1.046 0.994 1.005
T15 0.9 1.1 1.023 0.975 1.032 1.055
T36 0.9 1.1 0.969 0.943 1.006 0.967
SVC1 Location - - 10 15 24 20
SVC2 Location - - 18 25 15 20
SVC1 Rating −10 10 −4.176 6.233 1.560 1.932
SVC2 Rating −10 10 3.745 6.259 4.766 0.737
TCSC1 Location - - 22 6 31 19
TCSC2 Location - - 19 27 17 22
TCSC1 Rating 0 0.5 0.423 0.208 0.168 0.228
TCSC2 Rating 0 0.5 0.278 0.300 0.125 0.114
TCPS1 Location - - 20 28 27 20
TCPS2 Location - - 27 26 32 20
TCPS1 Rating −5 5 −0.164 −3.317 −0.896 −0.585
TCPS2 Rating −5 5 1.413 −2.786 −0.976 0.658
TFC ($/h) 863.417 883.480 874.361 850.096
Emission (Ton/h) 0.173 0.157 0.160 0.175
APL (MW) 5.189 4.628 4.265 4.809
Voltage Deviation (p.u) 0.359 0.225 0.450 0.529



Electronics 2022, 11, 3825 30 of 34
Electronics 2022, 11, x FOR PEER REVIEW 30 of 37 
 

 

 

Figure 20. PF of TFC and emission minimization. 

 

Figure 21. PF of TFC and APL minimization. 

 

Figure 22. PF of TFC with a carbon tax and voltage deviation minimization. 

Figure 20. PF of TFC and emission minimization.

Electronics 2022, 11, x FOR PEER REVIEW 30 of 37 
 

 

 

Figure 20. PF of TFC and emission minimization. 

 

Figure 21. PF of TFC and APL minimization. 

 

Figure 22. PF of TFC with a carbon tax and voltage deviation minimization. 

Figure 21. PF of TFC and APL minimization.

Electronics 2022, 11, x FOR PEER REVIEW 30 of 37 
 

 

 

Figure 20. PF of TFC and emission minimization. 

 

Figure 21. PF of TFC and APL minimization. 

 

Figure 22. PF of TFC with a carbon tax and voltage deviation minimization. 
Figure 22. PF of TFC with a carbon tax and voltage deviation minimization.



Electronics 2022, 11, 3825 31 of 34
Electronics 2022, 11, x FOR PEER REVIEW 31 of 37 
 

 

 

Figure 23. PF of TFC, emission, and APL minimization with different algorithms. 

 

Figure 24. PF of TFC, APL, and voltage deviation minimization with different algorithms. 

Table 13. Multi-objective simulation results for case 7 and case 8. 

Control & State 

Variables 
Min Max 

Case-7 Case-8 

GNDO GWO MFO MVO GNDO GWO MFO MVO 

PTG2 20 80 45.896 54.592 47.915 47.568 31.212 44.406 40.200 37.027 

PWG5 0 75 54.828 58.922 53.220 52.055 64.776 65.069 60.990 63.027 

PTG8 10 35 23.322 20.821 25.403 24.401 17.913 23.015 25.019 24.049 

PWG11 0 60 46.878 42.848 41.484 46.116 48.381 51.171 51.429 43.893 

PTG13 12 40 19.171 17.914 22.285 22.094 14.453 23.604 19.015 14.758 

V1 0.95 1.1 1.031 1.043 1.067 1.036 1.085 1.099 1.087 1.065 

V2 0.95 1.1 1.027 1.019 1.055 1.025 1.075 1.090 1.082 1.049 

V5 0.95 1.1 1.022 1.000 1.029 1.010 1.057 1.077 1.069 1.027 

V8 0.95 1.1 1.023 1.001 1.032 1.020 1.054 1.071 1.074 1.041 

V11 0.95 1.1 1.031 1.035 1.039 1.022 1.087 1.077 1.073 1.069 

V13 0.95 1.1 1.026 1.020 1.045 1.029 1.075 1.079 1.052 1.037 

T11 0.9 1.1 0.986 0.956 1.007 0.987 0.972 1.003 1.034 1.016 

T12 0.9 1.1 1.006 0.966 1.002 1.001 1.020 1.037 1.045 0.966 

T15 0.9 1.1 1.041 0.953 1.051 1.038 1.049 1.071 1.057 1.017 

Figure 23. PF of TFC, emission, and APL minimization with different algorithms.

Electronics 2022, 11, x FOR PEER REVIEW 31 of 37 
 

 

 

Figure 23. PF of TFC, emission, and APL minimization with different algorithms. 

 

Figure 24. PF of TFC, APL, and voltage deviation minimization with different algorithms. 

Table 13. Multi-objective simulation results for case 7 and case 8. 

Control & State 

Variables 
Min Max 

Case-7 Case-8 

GNDO GWO MFO MVO GNDO GWO MFO MVO 

PTG2 20 80 45.896 54.592 47.915 47.568 31.212 44.406 40.200 37.027 

PWG5 0 75 54.828 58.922 53.220 52.055 64.776 65.069 60.990 63.027 

PTG8 10 35 23.322 20.821 25.403 24.401 17.913 23.015 25.019 24.049 

PWG11 0 60 46.878 42.848 41.484 46.116 48.381 51.171 51.429 43.893 

PTG13 12 40 19.171 17.914 22.285 22.094 14.453 23.604 19.015 14.758 

V1 0.95 1.1 1.031 1.043 1.067 1.036 1.085 1.099 1.087 1.065 

V2 0.95 1.1 1.027 1.019 1.055 1.025 1.075 1.090 1.082 1.049 

V5 0.95 1.1 1.022 1.000 1.029 1.010 1.057 1.077 1.069 1.027 

V8 0.95 1.1 1.023 1.001 1.032 1.020 1.054 1.071 1.074 1.041 

V11 0.95 1.1 1.031 1.035 1.039 1.022 1.087 1.077 1.073 1.069 

V13 0.95 1.1 1.026 1.020 1.045 1.029 1.075 1.079 1.052 1.037 

T11 0.9 1.1 0.986 0.956 1.007 0.987 0.972 1.003 1.034 1.016 

T12 0.9 1.1 1.006 0.966 1.002 1.001 1.020 1.037 1.045 0.966 

T15 0.9 1.1 1.041 0.953 1.051 1.038 1.049 1.071 1.057 1.017 

Figure 24. PF of TFC, APL, and voltage deviation minimization with different algorithms.

The MOGNDO methodology was one of the finest methods for finding the best
solutions to the multi-objective OPF problem that integrated with wind power plants and
the appropriate placement of FACTS devices, according to the tabulated data.

6. Conclusions

The optimal location and size of FACTS devices in this study, as well as single- and
multi-objective optimal power flow (MOOPF) concerned coal-based and wind power
plants, which were all addressed by the solution technique. Different probability density
functions were used to express inconsistencies in unconventional resource availability. The
method for integrating each unit was described in detail. When utilizing non-conventional
sources of energy sources and FACTS devices, single objectives were optimized, such
as generation cost, toxic gas emanation, voltage deviation, active loss, and VSI. A multi-
objective form of the OPF problem was looked into in light of the current situation of
the electric network. The outcomes were contrasted with a recently created optimization
strategy. Based on the results, it can be said that the proposed MOGNDO outperformed
existing algorithms in terms of convergence, and delivered higher quality and more usable
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solutions for each situation involving optimal power flow. All of the results point to
the suggested technique’s significant advantage in obtaining the best solutions to OPF
issues with one or more objectives. Finally, it was shown that by integrating wind farms
with FACTS devices utilizing a non-dominated sorting technique, MOGNDO could be
successfully employed to address small and large optimal power flow challenges. Based
on the extensive analysis of the proposed MOGNDO, the following can be summarized as
its advantages—

• Randomization in MOGNDO includes the diversity of the Pareto front being en-
hanced, since all solutions in the first dominated front will have an equal chance of
being selected, and multi-objectives are made uniformly significant while performing
local exploration.

• MOGNDO can deal with large-scale search spaces and is less dependent on problem
characteristics. Moreover, these algorithms are capable of estimating multiple points
in the search domain simultaneously, due to their population-based nature.

• MOGNDO strikes a good balance between exploitation and exploration, providing
powerful searchability for finding the optimum solution

• MOGNDO is superior in terms of the balance of diversity and convergence, the
distribution of PF, and better convergence.
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Abbreviations

Acronyms
OPF Optimal Power Flow
Mas Meta Heuristics Algorithms
MOGNDO Multi-Objective Generalized Normal Distribution Optimization
TG Thermal Generating unit
WG Wind Generation
ISO Independent System Operator
PDF Probability Density Function
BCS Best Compromise Solution
MOMFO Multi-Objective Moth Flame Optimization
MOOPF Multi-Objective Optimal Power Flow
SHADE-SF Success History-based Adaptive Differential Evolution using Superiority of

Feasible solutions method
DE-SF Differential Evolution using Superiority of Feasible solutions method
ABC-SF Artificial Bee Colony using Superiority of Feasible solutions method
PSO-SF Particle Swarm Optimization using Superiority of Feasible solutions method
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FPA-SF Flower Pollination Algorithm using Superiority of Feasible solutions
method

MSA-SF Moth Swarm Algorithm using Superiority of Feasible solutions method
TFC Total Fuel Cost
APL Active power Loss
VSI Voltage Stability Index
Nomenclature
ai, bi, ci, ei and di Price constants for ith coal-based power plants.
αi, βi, γi, ωi and µi Toxic gas emanation constants concerning the ith coal-based units.
gw Direct cost constant
Pws Scheduled power of the wind unit.
KRw Reserve cost coefficient regarding wind unit
KPw Penalty cost coefficient of wind unit
Pws Accessible power from the wind unit
Pwr Specified output power from the wind unit
fw(pw) Wind energy probability density function for the wind unit.
vin, vr and vout Cut-in, rated, and cut-out wind velocity of the turbine respectively
pwr Rated value of the generated output of the wind turbine
τ Degree of series compensation
Xmn Line inductive reactance linking buses m and n
Rmn Resistance of the line linking buses m and n
Vm and Vn Bus voltage magnitudes linking buses m and n.
δm and δn Phase angles of the linking buses m and n
gmn and bmn Conductance and susceptance of the line linking buses m and n.
Npq Number of load (PQ) buses
vi pu voltage level of ith bus.
PGi and PDi Generation and dispatch at ith bus

Number of buses
Y1 and Y2 Sub-matrices of
δij = δi − δj Variance in phase angles of voltage among bus i and bus
PDi and QDi Real and VAR power demand respectively at ith bus
PGi and QGi Real and VAR outputs respectively of ith bus by either unit

(coal-based or non-conventional) as applicable
Gij and Bij Conductance and susceptance between bus i and bus j
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