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Abstract: Alzheimer’s disease (AD) is a neurological disease that affects numerous people. The condi-
tion causes brain atrophy, which leads to memory loss, cognitive impairment, and death. In its early
stages, Alzheimer’s disease is tricky to predict. Therefore, treatment provided at an early stage of AD
is more effective and causes less damage than treatment at a later stage. Although AD is a common
brain condition, it is difficult to recognize, and its classification requires a discriminative feature
representation to separate similar brain patterns. Multimodal neuroimage information that com-
bines multiple medical images can classify and diagnose AD more accurately and comprehensively.
Magnetic resonance imaging (MRI) has been used for decades to assist physicians in diagnosing
Alzheimer’s disease. Deep models have detected AD with high accuracy in computing-assisted
imaging and diagnosis by minimizing the need for hand-crafted feature extraction from MRI images.
This study proposes a multimodal image fusion method to fuse MRI neuroimages with a modular set
of image preprocessing procedures to automatically fuse and convert Alzheimer’s disease neuroimag-
ing initiative (ADNI) into the BIDS standard for classifying different MRI data of Alzheimer’s subjects
from normal controls. Furthermore, a 3D convolutional neural network is used to learn generic
features by capturing AlD biomarkers in the fused images, resulting in richer multimodal feature
information. Finally, a conventional CNN with three classifiers, including Softmax, SVM, and RF,
forecasts and classifies the extracted Alzheimer’s brain multimodal traits from a normal healthy brain.
The findings reveal that the proposed method can efficiently predict AD progression by combining
high-dimensional MRI characteristics from different public sources with an accuracy range from
88.7% to 99% and outperforming baseline models when applied to MRI-derived voxel features.

Keywords: Alzheimer’s disease (AD); 3D-convolutional neural network (3D-CNN); multi-model
image fusion; deep learning; medical image processing; 3D image detection—data preprocessing

1. Introduction

The human brain is often considered one of the most crucial and intricate organs in the
body, necessary for developing ideas, resolving issues, formulating judgments, exercising
imagination, and storing memories [1,2]. Memory is capable of accumulating knowledge
and experiences and retrieving them. Since it contains the complete record of a person’s
life, physical memory is a vital component in forming personality and identity. Losing
one’s memory due to dementia and the inability to identify one’s surroundings are terrible
situations [1,2]. Alzheimer’s disease (AD) is the kind of dementia that affects most people.
People’s concerns about AD tend to intensify as they age [3]. The gradual death of brain
cells characterizes AD.
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Consequently, patients eventually become disconnected from everything around
them and experience a loss of loving memories, memories from childhood, the capacity to
recognize family members, and even the ability to understand and carry out straightforward
instructions. In the latter stages, they will also lose the power to swallow, cough, and breathe
normally. There are approximately 50 million people throughout the world living with
dementia, and the cost of providing health and social care for these individuals equals
the size of the 18th biggest economy [3,4]. Through tracking its progression, early and
precise identification of AD plays a crucial role in preventing and treating the disease
and providing patient care. Imaging techniques of the brain, such as magnetic resonance
imaging (MRI), are the subject of several different research initiatives. Such an approach can
determine the number of cells in the brain and their size. Additionally, it can demonstrate
the shrinkage of the parietal lobe associated with AD [5].

MRI may detect the brain abnormalities linked with mild cognitive impairment (MCI),
and this information can predict which MCI patients will progress to AD in the future [3].
The utilization of MRI images largely depends on the availability of qualified doctors or
healthcare professionals who will search for any anomalies in the MRI pictures. Researchers
have investigated MRI images of patients to find that some unknown features, such as a
size reduction in various brain regions (mainly affecting the temporal and parietal lobes),
help detect AD [3,5]. Nevertheless, analyzing every MRI will delay detection, which, in
turn, slows treatment. Furthermore, an insufficient number of radiologists in rural areas
makes timely detection and intervention difficult. Hence, an automatic AD detection
system, or, more accurately, a computer-aided AD detection system, is essential. It can
be shown that paying closer attention to the differences between healthy, MCI, and AD
people by combining their data from publicly available sources can considerably aid in
the early detection and monitoring of Alzheimer’s disease [6,7]. It is well known that MRI
brain images are assembled from many sources, such as hospitals, medical institutions,
and others. Therefore, various imaging methods and different brain regions and textures
can reveal certain principles due to their different modalities [6,7]. By learning these
characteristics, patients with AD can be classified and identified with greater accuracy,
allowing for faster detection and treatment of diseases.

A significant amount of information about AD can be extracted from neuroimaging
data through machine learning (ML) and deep learning (DL). However, more data is
produced by brain-imaging techniques [7–9]. This situation occurs because brain-imaging
techniques generate an increasing amount of data. Traditional learning-based methods
include the following three stages: stage one involves regionalized MRI of the brain based
on predetermined regions of interest (ROIs), stage two selects features from the ROIs, and
stage three consists of the construction and evaluation of classification models [10,11].

The process of hand-crafted ROIs identification and selection, also known as manual
selection and extraction, constitutes the primary weakness of ML approaches [12,13]. This
flaw significantly impacts the quality of the results produced by the model. DL has
developed into a revolutionary system in recent decades compared to the classic ML
methods [11]. Images can be directly analyzed using deep learning, so it no longer requires
human experts for feature extraction. However, most CNN models for AD prediction
are trained on individual modal image data (i.e., cohort), which cannot be applied to
other cohorts.

A great deal of research has focused on individual modal image data. By integrating a
mix of MRI models from multiple cohorts, this research proposes a MULTforAD, a new
multimodal feature fusion model based on a 3D-CNN, to predict AD progression without
using any pre-trained networks or transfer learning. The high-dimensional MRI neu-
roimaging fusion is achieved by combining and assembling image processing techniques.
A fully connected neural network then classifies the output images. The suggested model
undergoes training and testing on various public datasets with the following contributions:

• A robust three-dimensional CNN is proposed with three distinct classifiers (Softmax,
SVM, and RF) for detecting multimodal-fused features for the prediction of AD;
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• A new method of image fusion, MULTforAD, is presented and evaluated for brain
MRI information preprocessing and fusing, which has improved network classification
and performance in AD diagnosis;

• Multiple features and details for patients who are MCI or AD were collected and
analyzed using the MULTforAD method, making the results easier to interpret.

2. Literature Review

We can now investigate the facets that play a significant part in our work. This is
made possible by imaging methods applied to the brain. Scientists can now explore not
just individual brain areas but also the dynamic pattern of connections between them due
to recent developments in the field [12]. Several studies have taken place to develop deep
learning (DL) models that can classify Alzheimer’s patients based on the segmentation of
medical images [13–16]. An X-shaped network structure (X-Net) has been proposed by
Li et al. [17]. It represents a viable alternative compared to pure convolutional networks
for medical image segmentation. Additionally, local and global features can be extracted to
obtain better results. Ren et al. [18] proposed a faster RCNN, which suggests the region
proposal network (RPN), a separate network that predicts the network’s regions. RPN
is a supervised method that evaluates bounding boxes using a loss function based on
intersection over union (IoU) and requires a ground truth pixel-level label. A scheme for
image fusion based on image cartoon texture decomposition and sparse representation was
proposed by Zhu et al. [19].

The fused cartoon and texture components are combined from MRI scans for medical
research using texture enhancement fusion rules. For classifying and predicting whole-
brain PET images, Silveira et al. [20] used the boosting approach. Despite its simplicity, this
method proves 90.97% accurate on AD (Alzheimer’s disease) and NC (normal cohort).

Additionally, Liu et al. [21] used sagittal, coronal, and cross-sectional slices of the
whole FDG-PET 3D image to extract features utilizing convolutional neural networks. A
pre-trained 2D-CNN deep learning model, ResNet50, automatically extracted features
from ADNI MRI images for AD diagnosis. The CNN then underwent evaluation using
conventional Softmax, SVM, and RF metrics, such as accuracy. Pre-trained models achieve
higher accuracy, ranging between 85.7% and 99%. Finally, using a recurrent neural network,
the three directions of features were combined to produce the final classification prediction.
These methods use only single-modality medical images to diagnose and classify AD.
Additionally, a significant calculation procedure helps optimize the pre-trained network.

One of the major drawbacks of those methodologies is that they study only one (or a
few) brain regions, whereas AD alterations affect multiple brain regions. However, this
method may reduce the risk of model overfitting because of the smaller and fewer inputs
than those methods that allow patch combinations. Multimodal images offer numerous
suitable features for AD pathology, and combining images of different modalities can help
diagnose AD earlier and more accurately [22,23]. By slicing the 3D brain images, the 2D
convolution operation extracts features, thereby weakening the spatial correlation and
potentially enhancing the loss of spatial features. An MRI 3D segmentation using a 3D
fully convolutional neural network was performed by Biswas et al. [24]. According to
the findings, simple 3D convolutional operations on 3D brain images (MRI images in the
experiments) demonstrate great potential. The lightweight 3D convolutional model has
excellent performance compared to complex models that require tedious preprocessing of
data. In addition to considering ambiguity zones, the authors believe that using multiple
binary classifications instead of multiple classification tasks might lead to “ambiguity
zones.” Even though the above methods prove capable of extracting features from 3D
images, they remain limited in specific ways. Multimodal images can demonstrate more
comprehensive and significant experimental results. Different imaging principles are
employed in medical brain imaging, making it possible for modal images to highlight
certain pathological characteristics associated with specific brain diseases. Brain MRI
images represent, for instance, receptor distribution, cortex thickness, or the functional
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activity of the brain [25,26]. This way, multiple modal images for the same subject can
provide more comprehensive pathological information and features.

Furthermore, Liu et al. [21] developed a network model designed explicitly for AD
classification based on MRI and PET images, and their results proved satisfactory. The
operation of this method on 3D images requires many complex preprocessing steps, in-
cluding rigid alignment, non-rigid alignment, and ROI extraction. In [21], the authors
proposed a multimodal image fusion approach that combines complementary information
from different PET + MRI images. Therefore, the composite modality gives more accurate
information than a single input picture. The proposed image fusion approach recovers
the GM area from FDG-PET based on an anatomical mask from an MRI scan. This GM
is then used to combine structural MRI and functional PET data using a trained sparse
autoencoder to develop 3D-CNN convolution layers. According to experimental results,
the proposed model is 93.21% accurate in binary classification and 87.67% accurate in
multi-class AD classifications.

Table 1 summarizes some of the recent work in the area of brain image analysis.
Compared to existing feature fusion strategies, multimodal medical image fusion is more
intuitive. Multiple images are fused to enhance the accuracy of diagnosis and treatment. In
addition to strengthening modal features, the fusion of images also improves information
representations. Inspired by this fact, the proposed research intends to implement and
evaluate a multimodal MRI feature fusion method to automatically classify Alzheimer’s
illnesses. This evaluation will be based on the performance of different image processing
methods and a 3D convolutional neural network approach on MRI images collected from
various sources. Using three distinct classifiers (Softmax, SVM, and RF), the 3D-CNN-
based model detects Alzheimer’s disease on MRI images via deep learning. In this study,
full-connected and convolutional layers were compared for their performance, and the
result was compared with state-of-the-art benchmarked models for AD detection and
classification. This paper is organized as follows: first, the details of the data, the pre-
processing steps, and the tools used for the implementation are given in the “AD data
description” section then the “Proposed Model” describes the proposed model architecture
and testing/validation settings. After providing a quick overview of the experiment’s
setup, covering the software and hardware configurations, the experimental section and the
results undergo analysis in the “Implementation Results” section. Finally, the conclusion
and discussion are explained in the “Conclusions” section.

Table 1. Related work summary.

Reference Method Pros Cons

Liu et al. [21]
A pre-trained 2D-CNN deep

learning model ResNet50 used to
extract FDG-PET 3D image features.

- The utilization of pre-trained
deep learning models
achieves high classification
accuracy.

- The composite modality gives
more accurate information
about AD detection.

- A significant calculation
procedure needed to optimize
the pre-trained network.

Biswas et al.
[24].

An MRI 3D segmentation method
using a 3D fully convolutional

neural network.

A lightweight 3D convolutional
model that has improved

performance considerably.

- One single-modality MRI
images are used to AD
classification.

- The use of multiple binary
classifications might lead to
“ambiguity zones” that can
hinder the classification
accuracy.
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Table 1. Cont.

Reference Method Pros Cons

Li et al. [17].
An X-shaped network

structure (X-Net) to segment the
AD medical images.

The devised network
structure enhances the classification

task compared to pure
convolutional networks.

- The model has not been tested
for multi-modal image
analysis task.

Ren et al. [18]

A faster RCNN for AD detection
based on a supervised region
proposal network (RPN) that

predicts the important regions in
the input medical image.

The model achieves an excellent
result for local and global features
extraction from the fused images.

- RPN is a supervised method
that evaluates bounding boxes
using a loss function and
requires a ground truth
pixel-level label that will
increase the model complexity
for multi-modal image
analysis task.

Baghdadi
[27]

MRI scans from an Alzheimer’s
patient are analyzed using CNN

architectures and solved as an
optimization problem by gorilla

troops optimizers.

Automatic accurate classification
using transfer learning and artificial

gorilla troops optimizer.

- The model has not been tested
for multi-modal image
analysis task.

Kang et al.
[25]

Brain magnetic resonance images
(MR) are analyzed using several
pre-trained deep convolutional
neural networks. Afterwards,

several machine learning classifiers
are used to evaluate them.

The performance of the system has
been significantly improved by an

ensemble of deep features.

- A significant calculation
procedure needed to optimize
the utilized pre-trained
networks.

- Transfer learning-based
models cannot be applied if
the features learned from the
classification layers cannot
differentiate between AD
classes. Consequently, if the
datasets are multimodal, the
pre-trained characteristics will
not be sufficient, which will
result in an overfitting
problem.

Ullah et al.
[26]

Multiscale residual attention-UNet
(MRA-UNet) is proposed as a new

fully automatic segmentation
technique for brain tumor regions
using Cascade multiscale residual

attention CNNs.

- With the devised region of
interest scheme, the algorithm
is adaptive and accurate,
increasing the accuracy of the
model for the core tumor
regions detection.

Compared to traditional 3D CNNs,
MRA-UNet is computationally
efficient

Attention-based models take longer
training times as they become more
complex (in terms of parameters).

3. Proposed MULTforAD Image Fusion

Neuroimaging encounters a significant problem regarding the availability of many
scans associated with AD patients since limited image samples are available. Therefore,
a DL model is often more effective when trained on more data. Unfortunately, medical
research is hindered by privacy concerns, making it tricky to access large datasets [12],
especially when classifying cancer and Alzheimer’s disease. Furthermore, during the
model’s training, the small and imbalanced dataset creates overfitting problems that affect
the model’s efficiency [28,29]. To overcome this issue, we proposed a multimodal fusion
MULTforAD method to fuse MRI images from three online sources. These dataset sources
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contain complimentary MRI information that is most prominent in Alzheimer’s disease
and helps accurately forecast the development from MCI to AD.

In addition, different modalities of these images can highlight the anatomical structure
and texture abnormalities more precisely in pathological regions. Figure 1 presents a
multimodal coronal view from participants with varying cognitive states.
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Figure 1. Sample multimodal coronal MRI collected from ADNI dataset for the same patient.

By incorporating all such features from different sources, the composite modality
more accurately reflects the information than a single input image. Utilizing the combined
modality, the subject is diagnosed using a single-channel network.

The number of design variables dramatically reduces compared to multi-channel
input networks with feature fusion. Figure 2 shows the suggested MULTforAD. The critical
components comprise unprocessed multimodal MRI data collection, image fusion, and
preprocessing, followed by a neural network-based classification. The following subsection
provides the details of the proposed model to highlight each step.
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Figure 2. Proposed MULTforAD multimodal image fusion method for AD diagnosis framework.

3.1. Multimodal MRI Data Collection

As MRI measures the energy released by protons within various tissues, such as
white matter (WM), gray matter (GM), and cerebrospinal fluid (CF), it can provide detailed
images of the brain, allowing significant damage and complex changes to be detected [12].
Therefore, public datasets such as ADNI, Kaggle, and OASIS provide tremendous value to
the AD research community. The current study uses three datasets to consider multimodal
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features from MRI neuroimaging for different cohorts. Table 2 describes the collected
samples as follows:

Table 2. Fused MRI dataset description.

Dataset Dataset Link Number of Samples

Kaggle https://www.kaggle.com/datasets/sachinkumar413
/alzheimer-mri-dataset (accessed on 12 January 2022) 897

ADNI https://ida.loni.usc.edu/login.jsp?project=ADNI&
page=HOME (accessed on 30 January 2022) 4296

OASIS https://www.oasis-brains.org/#data
(accessed on 5 February 2022) 789

Total 5982

An authenticated user ID and password are necessary to see the MRI images on the
ADNI website. An authenticated username was used for logging into the ADNI website
(credentials available on direct request with the author). All images were in the nii format.
The dataset comprises 5982 MRI images. For this study, only AD (Alzheimer’s Disease)
(1896 images) and NC (Normal Cohort) (4086 images) class images are incorporated for the
analysis of the effectiveness of the proposed model.

Additionally, the Kaggle dataset contains a mild-to-moderate dementia dataset that
comprises 72 subsets of data related to three different classes, including NC, MCI (mild
cognitive impairment), and AD data. These are assigned by a physician after a series of
clinical tests, while there are only two diagnosis classes for OASIS (the MCI subjects are
labeled as AD), which are picked up solely from the clinical data report. Therefore, there is
no clear organization of the raw data downloaded, making them difficult to use. Hence, the
raw data was converted to the BIDS format [30] using various preprocessing techniques. In
addition, all outputs of the experiments are standardized according to the BIDS format.

3.2. Image Fusing and Preprocessing

Different sources of images show different shapes, brightness, and contrast since
the images were gathered from various sources. To boost the contrast of all images, we
applied different image processing techniques to resize, standardize, and augment [31] all
MRI images (Figure 3). However, the nonlinear light intensity can cause the addition of
undesirable information to the image during the acquisition. This may affect the accuracy of
the overall image processing [32]. Therefore, deterioration of MRI images may occur during
the formation process such as low variation resulting from poor brightness produced by the
visual devices. So, image enhancement approaches were applied to MRI scans to upgrade
the pixel distribution over a wide range of intensities.

For the set of fused MRI neuroimages, applying a noise mask distorts high- and
low-frequency components and increases sample variability to overcome this limitation.
Essentially, the original image is enhanced by adding a Gaussian distribution array. Figure 4
compares an MRI image with Gaussian noise to the original image. Removing unnecessary
objects from the neuroimage MRI scan is crucial to improving accuracy, particularly during
the classification phase. For example, a skull may negatively affect pattern recognition and
significantly increase input complexity [3,7]. AD only affects brain tissue, so all objects
and tissues other than the brain are undesirable. We used Pincram’s [31] skull-stripping
software to process structural MRI images, as shown in Figure 5. Watershed brain mask
segmentation can reduce brain size by removing bones and other non-brain material,
resulting in less distortion and redundant data. This method preserves only intracranial
tissue structure while removing unnecessary anatomical organs, as predicted in [32]. After
skull removal, the FLIRT package accurately transforms MRI images into a global brain
function map model, known as the MNI152 space. The FLIRT technique recognizes brain
objects in both in-mode and inter-mode completely automated, reliably, and accurately.

https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-dataset
https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-dataset
https://ida.loni.usc.edu/login.jsp?project=ADNI&page=HOME
https://ida.loni.usc.edu/login.jsp?project=ADNI&page=HOME
https://www.oasis-brains.org/#data
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The amount of data available often improves neural network performance. Training
data’s availability, quality, and labelling constitute significant constraints for training
effective models. Making minor changes to our existing dataset is a popular way to acquire
more data. Convolutional neural networks are not affected by translation, viewpoint, size,
or lighting. As part of image data augmentation, images from the training dataset are
transformed into transformed versions that belong to the same class as the original images.
In neural network models, this method can prevent overfitting by explicitly adding familiar
sources of variation to training samples. A model that has been overfitted performs poorly
on new data as a result of memorizing its training data [33]. When selecting transformations,
consideration must be given to the training dataset and the knowledge of the domain of the
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problem. To increase the variability of the collected datasets, all MRI scans that have been
fused are flipped. It is possible to turn the images horizontally and vertically. By reversing
the rows or columns of pixels in an image, a vertical flip is equivalent to rotating the image
180 degrees. Figure 6 depicts horizontal, vertical, and both flips.
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Afterwards, a cropping process is randomly applied to the original image and resized
to the original size. As a result, CNNs are translation and size invariant, which can help
improve the model’s robustness.

Finally, a random rotation process of the image is used as another possible transforma-
tion. The rotation of an image can introduce artifacts in areas where new information must
be presented after the rotation, depending on the image. The collected data is processed
using several filling techniques, including adding zeroes, reflecting, and wrapping. The
background in an MRI is always black (zero), meaning this issue is avoided. Figure 7
depicts an example of rotation applied over the collected datasets.
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High-fidelity 3D information, as input to the deep learning network, requires more
computational resources during the training phase. Moreover, standardizing inputs will
speed up training when modeling a neural network.

To address this limitation, all the fused images are manipulated using clipping and
sampling techniques to reduce the time required to calculate individual information.
Figure 8 shows that each modality image contains many background areas with zero-pixel
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values. Properly minimizing these useless background spots reduces the amount of input
information without damaging brain tissue areas. MRI is trimmed from 182 × 218 × 182 to
145 × 172 × 145, and a Z-score normalization for image dimension scaling is applied. The
process of rescaling features to have a zero mean and unit variance is known as standard-
ization (or Z-score normalization). The standardization formula is shown in Equation (1).

z =
xi − µ

σ
(1)

where µ is the mean, and σ is the standard deviation.
Electronics 2022, 11, 3893 11 of 22 
 

 

 
Figure 8. The cost functions for non-optimized (left) and optimized features (right). 

The standardization of the entire dataset and applying the same transformation to 
the training and test sets is, therefore, essential. Figure 8 illustrates the significance of data 
standardization in training algorithms. Using the collected datasets, the gradient-based 
algorithm is used to find the minimum value, identify the correct learning rate, and avoid 
time complexity. The final step is to apply a segmentation method for creating a brain 
tissue mask from the multimodality collected input. The extraction of the brain mask is 
essential for the subsequent phases of analysis and classification. 

Several methods proposed to deal with the brain segmentation problem reflect the 
importance of reliable and accurate brain extraction [32,33]. The brain extraction (registra-
tion procedure) aims to exclude the individual’s spatial variation tissues, including the 
skull, skin, eyes, and fat, and not remove any normal orientation part of the brain. Most 
brain extraction methods use T1-weighted MR images since they provide excellent con-
trast among the different brain tissues. In MULTforAD, the white matter tissue (WM) un-
dergoes segmentation from the input MRI image using the FSL (FMRIB Software Library 
V6.0) software FAST module. FAST separates 3D brain images into different tissue types, 
taking into account changes in geographical brightness [31] for the AD classification task. 
Multiplying the mask by the brain MR image removes the skull from the image. Figure 9 
illustrates the brain extraction process. Figure 10 shows a sample of the brain extraction 
process conducted over the fused images. Having collected the data and processed the 
images, the dataset, which contains 5982 instances, is divided into train, validation, and 
test sets in a ratio of 75:15:10, respectively. 

 
Figure 9. The brain extraction process. 

Figure 8. The cost functions for non-optimized (left) and optimized features (right).

The standardization of the entire dataset and applying the same transformation to the
training and test sets is, therefore, essential. Figure 8 illustrates the significance of data
standardization in training algorithms. Using the collected datasets, the gradient-based
algorithm is used to find the minimum value, identify the correct learning rate, and avoid
time complexity. The final step is to apply a segmentation method for creating a brain
tissue mask from the multimodality collected input. The extraction of the brain mask is
essential for the subsequent phases of analysis and classification.

Several methods proposed to deal with the brain segmentation problem reflect the
importance of reliable and accurate brain extraction [32,33]. The brain extraction (regis-
tration procedure) aims to exclude the individual’s spatial variation tissues, including
the skull, skin, eyes, and fat, and not remove any normal orientation part of the brain.
Most brain extraction methods use T1-weighted MR images since they provide excellent
contrast among the different brain tissues. In MULTforAD, the white matter tissue (WM)
undergoes segmentation from the input MRI image using the FSL (FMRIB Software Library
V6.0) software FAST module. FAST separates 3D brain images into different tissue types,
taking into account changes in geographical brightness [31] for the AD classification task.
Multiplying the mask by the brain MR image removes the skull from the image. Figure 9
illustrates the brain extraction process. Figure 10 shows a sample of the brain extraction
process conducted over the fused images. Having collected the data and processed the
images, the dataset, which contains 5982 instances, is divided into train, validation, and
test sets in a ratio of 75:15:10, respectively.
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3.3. 3D-Convolutional Neural Network

Convolutional neural networks may be trained for various tasks, including image seg-
mentation, classification, and reconstruction, using an image as an input. CNN architecture
is based on what can be called the human brain and visual cortex neuronal connection
pattern. CNN can do this using multiple convolutional kernels to detect spatial correlations
in a picture. The architecture of the suggested 3D-CNN (shown in Figure 11) consists
of the input, fully connected (FC) layer, pooling layers, and classification layer. Initially,
the experiment used an overfitting model that was heavy due to its high number of FC
layers. Next, the following operations were repeated iteratively. Firstly, the number of FC
layers decreased until the accuracy of the validation set declined significantly. Secondly,
one more convolutional block was added. For example, start with a heavy model of four
convolutional blocks + five FC layers, then four convolutional blocks + two FC layers, and
repeat with one FC layer. Afterwards, change the convolution blocks from four to seven
and notice the accuracy.
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Four convolutional blocks and three FC layers were chosen as the optimal architecture
for multimodal MRI classification tasks. The training hyperparameters (learning rate, decay
of weight) are adjusted based on the evolving training accuracy. The convolutional layer
extracts relevant features from the MRI neuroimages to obtain relevant knowledge about
AD and NC patients. Training images preprocessed to 145 × 172 × 145 size are provided as
inputs to the CNN, and the last feature extraction layer generates feature maps. Combining
all the extracted feature maps with the ReLU activation function in the convolution layer,
a CNNForAD with 32 neurons is proposed, further connected to a classifier layer. A 3D
convolutional layer applies to slide cuboidal convolution filters to transform 3D inputs into
convolutional filters.

Convoluting the input involves moving filters vertically and horizontally and, along
with the depth of the input, calculating the dot product of weights and input and then
adding a bias term. In the case of a 3D MRI input, the layer’s dimensions are determined
by the input layer, which contains data with five dimensions corresponding to pixels in
three spatial dimensions, channels, and observations. During the feature extraction, the
3D-CNN model will create MRI feature vectors from the FC layer after being trained with
the training set. The feature vectors are then fed into final classifiers. While fine-tuning the
model, the validation set offers an unbiased assessment of the model’s capacity to match
the training dataset. The feature extraction process in CNN employs local connections to
identify local features and pooling to combine characteristics in comparable localities into a
single feature. In the meantime, the FC layer is utilized in computing the result for each
MRI picture input.

A binary-class classification problem is utilized as the neuroimages undergo classifi-
cation in the following two categories: AD and CN. The feature extractor convolutional
layer contains 3 × 3 filters (shown in Table 3). A max-pooling layer follows the convolution
layer to minimize the feature maps of the collected images by partitioning the images into
sets of 2 × 2 zones that do not overlap. Subsequently, a batch normalization layer resists
any incorrect weight initialization of the proposed model to accelerate the training process.
Finally, a dropout layer prevents model overfitting. The dropout rate of 0.5 determines
the probability of neuron loss by controlling the number of neurons eliminated from the
network. The neurons are only eliminated while the training procedure is carried out. The
outcome of the classification layer (the fully connected layer), also known as dense layers,
is added to the model with 32 neurons, followed by the final output layer. The FC layer
had several adjustments, so it could be calibrated to link the several layers in the network
while also providing the Alzheimer’s disease categorization task by utilizing a normalized
exponential function, Softmax, SVM, or RF.

3.3.1. Softmax

The Softmax function is utilized in the final layer of CNN architecture to categorize
the labelled data and then transform the output values into perceptible ones, using ground-
truth labels between 0 and 1.

3.3.2. SVM

The last FC layers will be replaced with an SVM classifier with several splits (the
number of the folds will be set to 10, and the seed will be set to 7), demonstrating notable
success in solving real-world issues. Additionally, RBF kernels are used by SVM classifiers
to develop nonlinear classifiers by mapping the original dataset to a higher-dimensional
space through linear regression [34].

3.3.3. Random Forest

RF can reduce the amount of variation in an estimated prediction function [34]. It is
used in both classification and regression analysis. When applied to the classification task,
each tree in the forest places a vote as a class. Then the input is classified based on the vote
that receives the majority of the total.
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When utilized for regression, the trees’ predictions are averaged when positioned at
the target point x. In the course of our research, we used RF for categorization. The number
estimator figure is set to 20, even though the default value is 100. This value may range
from 1 to 100, and we found that 20 produced the most accurate results.

Table 3. Specifications of the designed model’s parameters.

Layer (Type) Output Shape Parameters (Sum of Weights and Biases)

Image Input layer ([208, 176, 3]) 2688
conv3d_1(conv3D) (None, 46, 45, 28, 128) 331,904

maxPooling3d _1 (MaxPooling3D) (None, 21, 21, 13, 256) 0
conv3d_2(conv3D) (None, 19, 19, 11, 324) 2,239,812

maxPooling3d_2 (MaxPooling3D) (None, 47, 47, 30, 96)
conv3d _3 (conv3D) (None, 17, 17, 0, 324) 2,834,676

max_pooling3d _3 (MaxPooling3D) (None, 8, 8, 4, 324) 0
Flatten 5184

Dense_1 512 2,645,720
Dropout_1 0

Dense_2 256 1,313,230
Dropout_2

Batch Normalization 512
Dense_3 128 32,890

Dropout_3 0
Dense_4 64 8206

Dropout_4 0

4. Experimental Result

The experiment and its setup are discussed in this section, and then the outcomes
are presented. After providing an overview of the experiment’s setup, we will discuss the
results of the model training and validation processes. Next, the findings achieved while
using the CNN model for feature extraction with the three different classifiers undergo
discussion in the third subsection (Softmax, SVM, and RF).

Finally, we will examine how the results were achieved using the suggested strategy
against state-of-the-art approaches.

4.1. Experimental Setup

The experiments were conducted using the MATLAB 2021b environment with a
‘MiniBatch’ size of 12 and several ‘MaxEpoches.’ This study employed MRI neuroimages
and visualization of the brain’s anatomy from a coronal plane. Test datasets should only
evaluate the performance of fully specified and trained classifiers [32,33]. In light of
this, the training data with 5982 instances were split into training/validation/test files.
Training/validation sets were used for selected models in a CV classification task. It was
decided to leave test sets untouched until the peer review was completed. A random
sample of 100 subjects for each diagnosis group was selected from the ADNI test dataset,
matched by age and sex (e.g., 100 NC patients and 100 AD patients). We used the remaining
ADNI data as a training and validation set to determine whether the model has overfitted
the training/validation set. A separate test set was created for all OASIS and Kaggle
classes to ensure age and gender distribution consistency. Stochastic gradient descent with
momentum (SGDM) optimization was used during the training process with an initial
learning rate of 0.001.

The model’s generalization ability was tested using the Kaggle test set, and the OASIS
test determined whether a dataset with various inclusion criteria and different imaging
conditions could be generalized. It is crucial to note that the neuroimage labels in OASIS and
ADNI/Kaggle are not based on the same criteria. Consequently, the ADNI-trained models
cannot be generalized sufficiently well to OASIS. The CNNForAD model was selected based
on the training/validation dataset, which included the selection of the model architecture



Electronics 2022, 11, 3893 14 of 21

and the fine-tuning of its training hyperparameters. Cross-validation experiments were
conducted with a 10-fold increase in the learning rate, with 40% of the data used for
validation and the rest for training. This data split occurred only once for the experiments
with a fixed seed number (random state = 2), ensuring that all experiments used the same
subjects during the classification process. Additionally, there will be no overlap.

4.2. Performance Evaluation Metrics

The accuracy (ACC) performance metric is considered essential for model assessment.
Additionally, sensitivity (SPE) and specificity (SEN) are performance metrics. The positive
tuples assigned to the appropriate labels by the classifier are referred to as true positives (TP).
Let us call this number TP, which stands for “true positives”. False positives, abbreviated as
FP, refer to the negative tuples mistakenly categorized as positive. Let’s call this figure FP
for the number of false positives. The actual negatives, also known as TNs, are the negative
tuples correctly categorized by the classifier. Let us call this number TN, which stands for
“true negatives”. The positive tuples mistakenly classified as negatives are false negatives
(FN). Let us call this occurrence the number of false negatives or FN.

Accuracy (ACC): The percentage of the number of records classified correctly versus
the total records shown in the equation below:

ACC = (TP + TN)/(TP + TN + FP + FN) (2)

Sensitivity (SEN)/recall shows the percentage of the number of records identified
correctly over the total number of AD subjects, as shown in the equation below:

SEN = TP/(TP + FN) (3)

Specificity (SPE): The percentage of the number of records. Normal control is divided
by the total number of normal nodes, as shown in the equation below:

SPE = TP/(TP + FP) (4)

F1: a measure of a test’s accuracy:

F1 = 2
(
(Precision ∗ Recall)
(Precision + Recall)

)
(5)

4.3. Experiments and Results
4.3.1. Image Fusion Performance

In Table 4, unimodal (a single cohort dataset with the same setting and preprocessing
steps) and MultforAD multimodal imaging are presented with various network layers in
categorizing AD: NC. The MultForAD technique performs better since the MRI data can be
fused effectively.

Table 4. Results of the proposed image fusion method against a single modality based on 3D-CNN in
three different epoch sizes.

Modalities Softmax Layer SVM Layer RF Layer

ACC SPE SEN F1 ACC SPE SEN F1 ACC SPE SEN F1

Unimodal MRI 92.10 ±
5.8

89.13 ±
9.7

94.27 ±
4.1

92.10 ±
2.8

89.80 ±
4.7

86.31 ±
12.0

91.97 ±
5.5

84.28 ±
2.7

79.46 ±
9.4

80.32 ±
7.1

69.15 ±
10.7

79.00 ±
1.4

Proposed image
fusion MRI

93.21 ±
5.0

91.43 ±
4.9

95.42 ±
2.5

98 ±
1.2

87.67 ±
3.1

85.63 ±
7.8

89.97 ±
3

88.1±
1.4

81.21 ±
4.8

83.67 ±
2.1

79.2 ±
6.1

83 ±
2.2

The MultforAD fusion approach outperforms the unimodal method in terms of overall
indicators. Using 3D CNN, the accuracy of the classification amounted to (93.21 ± 5.0)%,
specificity amounted to (91.43 ± 4.9)%, and the sensitivity amounted to (95.42 ± 2.5)%.
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There was a high sensitivity (94.44 ± 7.9)% for feature fusion but a low level of accuracy
and specificity. Our image fusion approach provided the best results using the softmax
activation function for the AD–NC classification test.

4.3.2. 3D-CNN Network Performance

In this section, the proposed 3D-CNN for multimodal MRI image classification un-
dergoes evaluation using a ten-fold cross-validation matrix, as presented in Tables 5–7.
Fold 1, Fold 6, Fold 7, Fold 9, and Fold 10 achieved 100% performance metrics. Using
a ten-fold cross-validation strategy, it was found that the average accuracy, sensitivity,
specificity, and F1 score were 99.0%, 99.6%, 98.4%, and 99.01%, respectively, using a ten-fold
cross-validation strategy.

Table 5. The suggested method’s performance metrics after being subjected to ten-fold cross-
validation with the softmax classifier.

K = 100
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

Performance

ACC 100% 98.2% 98.6% 99% 97% 98% 99.1% 97.4% 100% 100%
SEN 99% 100% 88% 100% 95% 97% 98% 97% 95% 94%
SPE 85.9% 88.5% 79.2% 84% 85.9% 88.5% 79.2% 84% 85.9% 88.5%
F1 98.2% 98% 97.1% 99.2% 98% 96.8% 94.7% 100% 100% 98.9%

Table 6. The suggested method’s performance metrics after being subjected to ten-fold cross-
validation with the RF classifier.

K = 100
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

Performance

ACC 97% 95.8% 94% 97.3% 99.7% 96% 97% 98% 95.5% 100%
SEN 100% 82% 92.7% 89.% 91% 92% 78.8% 88% 91% 92%
SPE 85.9% 88.5% 79.2% 84% 85.9% 88.5% 79.2% 100% 85.9% 88.5%
F1 98.2% 97.1% 96.1% 99.2% 98% 96.8% 94.4% 79.1% 100% 98.9%

Table 7. The suggested method’s performance metrics after being subjected to ten-fold cross-
validation with the SVM classifier.

K = 100
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

Performance

ACC 97% 98.2% 88.7% 89% 87% 96% 88% 98% 91% 92%
SEN 98% 92% 98% 88% 91% 97% 91% 92% 88% 88%
SPE 85.9% 88.5% 79.2% 84% 85.9% 88.5% 85.9% 88.5% 79.2% 84%
F1 81% 92% 98% 88% 98% 92% 91% 92% 98% 88%

Since Softmax produces the best classification results over the RF and SVM classifiers,
we will examine its performance.

The confusion matrix for the Softmax classifier is given in Figure 12. Two AD and four
NC samples were misidentified. Figures 13 and 14 represent the progress of training the
developed 3D-CNN network using Softmax. At the beginning of the training, the training
and test accuracy scores amounted to approximately 60%. At the end of the tenth iteration,
both the training and test datasets achieved 100% accuracy scores. After the tenth iteration,
the loss value for the training dataset decreased from over seven to approximately one.
For the test dataset, the loss value dropped to around zero after the tenth iteration and
remained during the training.
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4.3.3. Comparison with the State-of-the-Art Models

This section contrasts and evaluates the proposed MULTforAD image fusion based on
the 3D-CNN efficiency with the state-of-the-art multimodal algorithms. The proposed AD
diagnosis model has proven effective and outperformed the available MRI neuroimaging
algorithms, with a classification rate (98.875%) and a low false alarm of 1.125%, as shown
in Table 8. Moreover, the performance levels of the network with three classifiers show
consistency with one another, and their hyperparameter optimization reduces significantly
due to the use of single composite vector neuroimaging input rather than a set of different
images. Therefore, the findings clarify that the suggested multimodal image fusion strategy
provided a remarkably consistent high level of accuracy, and the computational complexity
and storage cost will remain the same with the existing strategy.
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Table 8. The performance of MULTforAD in comparison with competitors.

Ref Sample Size Methodology Experimental
Materials

AD:NC
Classification

Accuracy

[28]
Themes for AD, MCI, and NC are 111,

129, and 130, respectively 3D-CNN
Multimodal MRI + PET 93.21

Single-source MRI images 94.5

[35] Themes for [AD, NC] are 741 [427,
314] + 708 [466, 243]

ResNet50-Softmax,
ResNet50-SVM, and

ResNet50-RF
Single-source MRI images 85.7% to 99%

[36]
758 MR, including 180 AD, 160 cMCI,
214 ncMCI subjects, and 204 normal

Pre-Training Stacked
Auto-Encoders

MRI + PET 91.4
Single-source MRI images 93.67

[37] 37 AD, 35 NC, 75 MCI with (239,304
features

Manifold learning
techniques

MRI + PET + CSF + Genetic 91.8
Single-source MRI images 91

[38] 626 FDG-PET scans and 2402 MRI
Multimodal and Multiscale
stacked-autoencoder (SAE)

MRI + PET 92.51%
Single-source MRI images 75.44 (7.74)

[27] 17,976 AD, 138,105 NC, and 70,076
MCI

Hybrid (GTO + DL)
pre-trained CNNs

Alzheimer’s Dataset
+Neuroimaging Initiative

(ADNI)
96.25–96.65%

[39] 46 MCI, 25 AD, and 40 Normal NC 3D-DNN models and SVM Single-source MRI images 80–90%

[40] 179 AD, 254 MCI, and 182 NC

An ensemble learning
method with three base
classifiers, eResNet50,

eNASNet, and eMobileNet

Single-source MRI images 98.59

Proposed
method

5982 (1896 AD and 4086 NC)
3D-CNN + Softmax

Multimodal MRI
98.21%

3D-CNN + SVM 91%
3D-CNN + RF 85.9%

4.4. Discussion

Here, we propose an image fusion approach based on a 3D-CNN model for diagnosing
Alzheimer’s disease. Multimodal data can provide complete pathological information.
This makes it possible to combine heterogeneous image information from MRI images
successfully.
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Moreover, while 2D MRI could have been used in the proposed model, we chose to
convert the MRI image for analysis before inputting it into the model. Therefore, the model
can distinguish the discriminative value of individual MRI neuroimages in diagnosing
Alzheimer’s disease, although relationships among the neuroimages, which may aid expert
interpretation, have not been preserved. Feature extraction (concatenation and selection
operations) and classification must be fully incorporated within the model to provide
an end-to-end DL solution. Due to the proposed MULTforAD data fusion model, the
classification system may become more complex. For this, 3D image segments were built
and placed into the data’s channels, and feature extraction and classification occurred using
the 3D-CNN architecture.

Figure 2 shows that fusion images store the patient’s brain structure data from MRI
and preserve the details of the patient’s metabolic data through rotation and resizing. The
proposed image fusion method is also superior to techniques based on multimodal feature
learning in its ability to handle the problem of cropping and skull removal of heterogeneous
features between multimodal images. MULTforAD represents a more intuitive approach
to combining neuroimaging features than existing methods. A fusion image combines
relevant and supplemental information from multiple input images. In addition to having
more powerful information representation features, the merged images also have more
powerful modal features.

The suggested 3D CNN architecture would necessitate high-performance computers
for high-dimensional input volumes. However, the proposed MULTforAD methodology
uses a single network instead of the multi-input network used in the feature-matching
process by merging multimodal image scans into a single aggregate image. Consequently,
the number of CNN parameters has been significantly reduced. Moreover, the training
and test times for one-fold running the algorithms on a single core-I12 CPU 8 GB RAM
computer with NVIDIA GEFORCE GTX 1050 GPU amounted to 11 min and 3 s.

Using ten-fold cross-validation, the performance of the proposed image fusion ap-
proach is evaluated according to the classification results based on three different classifiers.
Tables 5–7 and Figure 13 show the average accuracy rates obtained using the proposed
3D-CNN. According to the classification results in Tables 4–8, the MULTforAD method
outperformed the unimodal methods because the multimodal approach contained more
supplementary information. Additionally, 3D-CNN using the proposed multimodal neu-
roimaging has produced the highest performance. However, recent studies considering
the unimodal pre-trained model, such as Resnet, show the highest overall accuracy (100%).
However, such models do not work if the features learned from the classification layers
cannot distinguish the AD classes. Thus, if the datasets are multimodal, the pre-trained char-
acteristics will be inadequate, leading to overfitting problems. In addition, the proposed
image fusion method outperforms methods based on multimodal learning with networks’
building blocks that extract features much smaller than a complex 3D convolution model.

However, the sensitivity and specificity of the model were not always optimal. To
address this issue, we plan to focus on mask and ROI indicators such as WM and CSF
tissues and combine them with existing preprocessing steps.

The following are the most crucial characteristics of the proposed MULTforAD model:

(1) The method fused 5982 MRI neuroimages, allowing the model to learn all the features
needed to distinguish AD from CN samples accurately and quickly accurately;

(2) The suggested method provides anatomical and metabolic information without pre-
trained models or transfers learning. In addition, it reduces noise with the scanned
brain patterns based on the multimodal image fusion method and 3D-CNN;

(3) Using lite models that comprise a smaller number of convolutional blocks and training
parameters, the suggested model achieved the highest classification accuracy among
the recent multimodal-based AD classification methods with 98.8593% accuracy.

The following are the limitations of our work:

(1) Increasing the size of the input neuroimaging raises the proposed model’s computa-
tional complexity, and storage costs increase as well;
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(2) Designing an unbiased neuroimaging dataset is tricky and generates sensitivity and
specificity artifacts. Therefore, incorporating additional tissue filters for neuroimaging
could help overcome this limitation.

5. Conclusions

This study proposed a new approach for AD identification using multimodal MRI
fusion based on DL. The proposed model was trained and optimized to provide more accu-
rate and comprehensive classifications with AD and CN. Moreover, the proposed method
optimizes and improves data fusion, enhancement, and oversampling tasks, considering
three publicly available MRI neuroimaging datasets. Therefore, it can effectively monitor
and track older people daily. A 3D-CNN network for learning the fused 3D characteristics
that best represent AD biomarkers is proposed, and a series of experiments prove its effec-
tiveness. The average achieved accuracy rate is 98.21, 90.77, and 86.01 when considering
Softmax, SVM, and RF, respectively, with the proposed model for AD classifications. In
the future, we plan to combine different brain scans, such as PET images, to create a com-
posite fusion modality that may enrich the classification accuracy and extend the model to
multi-class classification problems.
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