
Citation: Chen, Y.; Li, T.; Chen, X.;

Cai, Z.; Su, T. High-Frequency

Systolic Array-Based Transformer

Accelerator on Field Programmable

Gate Arrays. Electronics 2023, 12, 822.

https://doi.org/10.3390/

electronics12040822

Academic Editor: Dah-Jye Lee

Received: 4 January 2023

Revised: 1 February 2023

Accepted: 3 February 2023

Published: 6 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

High-Frequency Systolic Array-Based Transformer Accelerator
on Field Programmable Gate Arrays
Yonghao Chen 1, Tianrui Li 1, Xiaojie Chen 1, Zhigang Cai 2 and Tao Su 1,*

1 School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
2 School of Physics, Sun Yat-sen University, Guangzhou 510275, China
* Correspondence: sutao@mail.sysu.edu.cn

Abstract: The systolic array is frequently used in accelerators for neural networks, including Trans-
former models that have recently achieved remarkable progress in natural language processing (NLP)
and machine translation. Due to the constraints of FPGA EDA (Field Programmable Gate Array
Electronic Design Automation) tools and the limitations of design methodology, existing systolic
array accelerators for FPGA deployment often cannot achieve high frequency. In this work, we
propose a well-designed high-frequency systolic array for an FPGA-based Transformer accelerator,
which is capable of performing the Multi-Head Attention (MHA) block and the position-wise Feed-
Forward Network (FFN) block, reaching 588 MHz and 474 MHz for different array size, achieving
a frequency improvement of 1.8× and 1.5× on a Xilinx ZCU102 board, while drastically saving
resources compared to similar recent works and pushing the utilization of each DSP slice to a higher
level. We also propose a semi-automatic design flow with constraint-generating tools as a general
solution for FPGA-based high-frequency systolic array deployment.

Keywords: systolic array; transformer; hardware accelerator; FPGA

1. Introduction

Recently, Transformer [1] has been widely used in NLP tasks and provides a tremen-
dous performance improvement over the traditional Convolutional Neural Network (CNN)
and Recurrent Neural Network (RNN) models. By avoiding the recurrent calculations
and taking full advantage of the attention mechanism, the Transformer has achieved
state-of-the-art accuracy in various NLP tasks. However, attention runs terribly slow
on general-purpose platforms such as GPUs and CPUs. Therefore, designing efficient
hardware accelerators for the Transformer is of great necessity. With high parallelism and
low latency, FPGA is widely used for hardware acceleration. The most resource-intensive
modules in Transformer, including MHA and FFN blocks, can be well implemented in
hardware through systolic array architecture [2,3].

Systolic arrays are also widely seen in various accelerator designs such as [4–9].
By reusing input data multiple times, it enables high operational throughput with less
bandwidth consumption. The systolic array architecture has high parallelism and is suitable
for hardware acceleration on FPGA. However, many systolic array designs suffer a low
frequency of FPGA implementation. This paper aims to tackle this problem and provide
a Transformer accelerator with a high-frequency runtime configurable systolic array on
FPGA. The key contributions of this work are as follows:

1. A high-frequency systolic array design with variable functionality and much less
resource usage that can switch between tasks such as MHA and FFN by dynamically
changing the functionality of DSP slices.

2. The regularity of the systolic array can be finely preserved at implementation, while
each cell of the systolic array is undertaken by only one DSP slice on the FPGA device.

Electronics 2023, 12, 822. https://doi.org/10.3390/electronics12040822 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12040822
https://doi.org/10.3390/electronics12040822
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5227-1337
https://doi.org/10.3390/electronics12040822
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12040822?type=check_update&version=2

Electronics 2023, 12, 822 2 of 13

3. A semi-automatic design flow for high-frequency systolic arrays on FPGA is proposed
as a general solution, together with an automated XDC (Xilinx Design Constraints)
constraint file generator to preserve the regularity of large systolic arrays on different
FPGA devices.

The remainder of this paper is organized as follows. The backgrounds of the Trans-
former and the systolic array are presented in Section 2. The method of deploying a systolic
array with conserved topology and fine-tuned DSP configuration is shown in Section 3. We
then describe the proposed design flow in Section 4. Section 5 presents the model architec-
ture and crucial blocks of the Transformer, and Section 6 shows the accelerator architecture.
We provide the experimental result in Section 7. Finally, the paper is concluded in Section 8.

2. Background

In this section, we focus on the background and recent works in terms of the model
architecture of the Transformer and the systolic array.

2.1. The Model Architecture of the Transformer

Transformer [1] is well known for its superior performance in the natural language
processing (NLP) area. The Transformer contains an encoder stack and a decoder stack, and
all the encoder layers and the decoder layers are composed of two kinds of ResBlocks, i.e.,
the Multi-Head Attention (MHA) ResBlock and the position-wise Feed-Forward Network
(FFN) ResBlock. An MHA ResBlock consists of h Attention Heads, while each Attention
Head composes of three linear layers and a Scaled Dot-Product Attention function that
follows. The parameter h is equal to 8 in the Transformer base model or equal to 16 in
the Transformer big model. The input of each Attention Head includes three tensors: V
(values), K (keys), and Q (queries), which is the same as the input of the MHA ResBlock.
Vi, Ki, and Qi are generated from the three linear layers in each Attention Head, shown in
Equation (1):

Vi = X ∗Wv + Bv, Ki = X ∗Wk + Bk, Qi = X ∗Wq + Bq (1)

while the Scaled Dot-Product Attention function in the MHA ResBlock is described in
Equation (2):

Attention(Qi, Ki, Vi) = so f tmax

(
Mask

(
QiKT

i√
dk

))
Vi (2)

The mask operation masks out all values of illegal connections before the softmax. The
parameter dk is equal to 64 in both the Transformer base model as well as the Transformer
big model. The FFN ResBlock contains a layer normalization [10] operation, residual
addition, a ReLU activation, and two linear sublayers, described in Equation (3):

FFN_ResBlock(x) = LayerNorm(x + ReLU(x ∗W1 + b1) ∗W2 + b2) (3)

The massive amount of matrix computations and complicated data flow make it neces-
sary to design efficient hardware architectures for the Transformer. Reference [2] proposes
a hardware accelerator for the Transformer with a reconfigurable hardware architecture
based on a systolic array for the MHA ResBlock and the FFN ResBlock. However, in this
design, the systolic array has not been optimized for FPGA deployment. Reference [11] pro-
vides a Transformer neural network inference accelerator with Set-Associative Rearranged
Compressed Sparse Column Format to enable large-scale MACs (Multiply and Accumulate)
to maintain high utilization. Pruning in Transformers has been researched in depth in
recent works for the purpose of reducing data storage and computational requirement:
Reference [12] accommodates Transformer onto FPGA with Vivado High-Level Synthesis
(HLS), using a block-balanced pruning technique and their proposed special storage format,
while Reference [13] presents an efficient transformer-based large-scale language repre-
sentation using hardware-friendly block structure pruning, and Reference [14] provides a

Electronics 2023, 12, 822 3 of 13

novel structural pruning method with memory footprint awareness and designs the associ-
ated accelerator on FPGA. Due to the high complexity of the Transformer, many hardware
accelerator designs choose the Vivado High-Level Synthesis tool for development. As an
automatic process, High-Level Synthesis accepts synthesizable code written in high-level
languages (such as C, SystemC, and C++) and transforms them into an RTL design. Refer-
ence [15] develops a customized hardware accelerator for the Transformer using Vivado
HLS and performs different optimization for different data types. Reference [16] designs a
customized hardware accelerator for the Transformer by using Vivado HLS. Reference [17]
develops a framework that builds inference accelerators on FPGA platforms for quantized
Vision Transformers with binary weights and low-precision activations and uses the Vivado
HLS for hardware implementations. Reference [18] proposes an energy-efficient accelera-
tion framework for transformer-based large-scale language representations, and also uses
the Vivado HLS tool for the synthesis step.

Although HLS is often adopted for its convenience in the design of hardware, it is
worth noting that using a behavioral approach rather than a structural approach to describe
hardware may lead to a lack of preciseness of design intention. To avoid this obvious
drawback, we chose to use a better hardware design approach. As a kind of hardware
generation language (HGL), the SpinalHDL [19] language raises the level of abstraction
from RTL description to RTL generation and utilizes a high-level language named Scala
for describing the generation intent. SpinalHDL achieves its high design productivity by
providing object-oriented programming, functional programming, and meta-hardware
description that enables parametrization and Verilog code generation. Therefore, in this
work, we choose to use the SpinalHDL language for Transformer hardware design to
increase the level of abstraction while retaining RTL-level granularity.

2.2. The Systolic Array

The architecture of the systolic array is capable of tackling the timing issue for massive
parallelization while delivering high performance for a wide range of applications. There-
fore, it will be competent for crucial matrix operations in Transformer hardware acceleration.
The systolic array runs in a regular and synchronized manner to perform fine-grained
pipelining between neighboring data processing units (called cells). At every clock cycle,
each cell reads inputs from its neighbors (above or on the left), performs computation, and
passes forwards the inputs and results to other neighbors (below or on the right). By such
means, high computational throughput is realized, and bandwidth consumption is reduced,
for the input data are reused constantly. The feature of local interconnect minimizes long
datapaths to meet the target clock frequency. Furthermore, various algorithms can be
implemented by reusing the same systolic array structure but with different computation
cell logics, which exhibits the broad applicability of systolic array architecture. Output
stationary and weight stationary are the two well-known dataflows for computational
tasks such as matrix multiplication, according to [8,9]. For instance, a typical systolic
array acceleration takes in input feature maps and weight and returns results during the
calculation of matrix multiplication. Weight stationary dataflow indicates that the weight is
preloaded into cell buffers and remains stationary inside them while executing calculation.
Output stationary dataflow suggests that the input feature maps and weight flow through
the systolic array while the result remains stationary in the cells during calculation. In this
work, we adopt the output stationary dataflow.

Reference [2] proposes a hardware accelerator for the Transformer with systolic array
architecture. However, this design only uses the traditional RTL-based design methodology,
which does not make full use of the DSP resources of the FPGA, so there is a relatively
large room for frequency enhancement. Reference [4] implements CNN on an FPGA with
systolic array architecture, which can achieve high clock frequency as well as increased
resource utilization. Reference [8] use Chisel language to build hardware module templates
for systolic architecture, and the templates can be reused for different dataflows and compu-
tation algorithms. SuSy [20] introduces a compilation flow that enables high-performance

Electronics 2023, 12, 822 4 of 13

systolic arrays building with productivity on FPGAs, as well as a programming framework
composed of a domain-specific language (DSL). AutoSA [21] also provides an end-to-
end compilation framework for generating high-performance systolic arrays on FPGA.
The works in SuSy and AutoSA have good performance in terms of frequency, reaching
250 MHz and 300 MHz, respectively. We hope to achieve a better performance of higher
frequency in this work.

3. Deployment of Systolic Array with Conserved Topology and Fine-Tuned DSP
Configuration on FPGA

In the systolic array, each cell is identical, forming a shape of a regular 2D mesh, which
can bring simple and regular data and control flow to hardware implementation, avoiding
high fan-out, thus being friendly for place and route. Although systolic arrays have a
layout-friendly topology, existing FPGA EDA tools cannot synthesize and place them on
FPGA with high quality. According to [22], the limitation of the EDA tool will lead to
structure distortion of systolic arrays in the actual layout, causing many implementations
of systolic arrays on FPGAs to suffer a lower frequency than expected. Additionally, the
EDA tool may not fully exploit the capability of DSP resources, should a finely designed
configuration not be given.

Therefore, in this design, we manually deploy the designed circuit logic onto the DSPs
by means of instantiating the DSP macro IP (intellectual property) and configuring them
at compile-time and runtime, pushing the utilization of each DSP slice to a higher level.
We also leverage the generator methodology and the object-oriented feature of SpinalHDL
to generate Verilog HDL code for DSP configuration and instantiation in batches, which
can maximize efficiency while retaining the maximum precision for configuring the DSP’s
functional and timing paths. In addition, the size of the proposed systolic array can
be adjusted freely to explore optimal designs on FPGA devices with different resources
through our design flow.

DSPs are high-speed arithmetic resources on FPGA. The DSP48E2 slice on Xilinx
Ultrascale devices consists of a 27-bit pre-adder, 27× 18 multiplier, and a flexible 48-bit ALU
(arithmetic logic unit) that serves as a post-adder/subtracter, accumulator, or logic unit,
which is capable of performing various calculational tasks. Considering that the functional
ability of a single DSP slice is powerful enough and its configurability is remarkably high,
we adopt a mapping method of one cell corresponding to one DSP slice. Every DSP slice
accepts direct input signals including A (30 bits), B (18 bits), C (48 bits), and D (27 bits),
and cascaded input signals ACIN (30 bits), BCIN (18 bits), and PCIN (48 bits). We take full
advantage of the dedicated cascaded channels between the DSP slices in the same column
on board, for they do not consume additional routing resources, which is beneficial to
optimizing the routing effect and increasing the frequency. Since cascaded channels can
only be used along columns, we can only use additional routing resources for the datapaths
vertical to the DSP columns. More details will be discussed in Section 6.

The constraint-generating tool we design that can automatically generate XDC con-
straints will take the size of the target systolic array and the resource arrangement of
different FPGA devices as input, then adjust the overall layout structure of the systolic
array and restrict cells to fixed locations while ensuring its homogeneity and leveraging
the DSP column resources as much as possible. It can be seen that in Figure 1, DSP slices of
the systolic array (marked in orange) are finely arranged with the help of the constraint-
generating tool, and the regularity of their layout is preserved to the maximum. For small
size systolic array, it will be directly arranged as a regular mesh like that in Figure 1a.
However, when the side length of the systolic array exceeds the number of DSP columns,
the proposed tool will compromise appropriately and adjust accordingly for optimal results
such as those in Figure 1b. With such a regular topology of placement, we manage to
achieve high frequency for both small- and large-scale systolic arrays.

Electronics 2023, 12, 822 5 of 13

Electronics 2023, 12, 822 5 of 13

proposed tool will compromise appropriately and adjust accordingly for optimal results
such as those in Figure 1b. With such a regular topology of placement, we manage to
achieve high frequency for both small- and large-scale systolic arrays.

(a)

(b)

Figure 1. The implementation result of the proposed systolic array with a dimension of (a) 16 × 16
and (b) 64 × 64. DSPs used are marked in orange.

To summarize, the fine-tuned DSP configuration has three important features.
Firstly, we adopt a mapping method of one cell corresponding to one DSP slice, and by
compile-time and runtime configurations, the DSP resources are fully leveraged. Sec-
ondly, datapaths between cells are, therefore, datapaths between DSP slices, and we can
take full advantage of the dedicated cascaded channels along DSP columns to save routing
resources and increase the frequency. Lastly, we lay out all of the DSP slices with the XDC
placement constraint file generated by scripts in order to preserve the regularity of the
layout of the systolic array in deployment.

4. Proposed Design Flow
Considering the versatility of the systolic array design and the common frequency

issue that occurred when deployed on FPGAs, we hope to propose a more general solu-
tion. A semi-automatic design flow for high-frequency systolic arrays for FPGA deploy-
ment is designed and implemented, which is shown in Figure 2.

Figure 1. The implementation result of the proposed systolic array with a dimension of (a) 16 × 16
and (b) 64 × 64. DSPs used are marked in orange.

To summarize, the fine-tuned DSP configuration has three important features. Firstly,
we adopt a mapping method of one cell corresponding to one DSP slice, and by compile-
time and runtime configurations, the DSP resources are fully leveraged. Secondly, datapaths
between cells are, therefore, datapaths between DSP slices, and we can take full advantage
of the dedicated cascaded channels along DSP columns to save routing resources and
increase the frequency. Lastly, we lay out all of the DSP slices with the XDC placement
constraint file generated by scripts in order to preserve the regularity of the layout of the
systolic array in deployment.

4. Proposed Design Flow

Considering the versatility of the systolic array design and the common frequency
issue that occurred when deployed on FPGAs, we hope to propose a more general solution.
A semi-automatic design flow for high-frequency systolic arrays for FPGA deployment is
designed and implemented, which is shown in Figure 2.

Electronics 2023, 12, 822 5 of 13

proposed tool will compromise appropriately and adjust accordingly for optimal results
such as those in Figure 1b. With such a regular topology of placement, we manage to
achieve high frequency for both small- and large-scale systolic arrays.

(a)

(b)

Figure 1. The implementation result of the proposed systolic array with a dimension of (a) 16 × 16
and (b) 64 × 64. DSPs used are marked in orange.

To summarize, the fine-tuned DSP configuration has three important features.
Firstly, we adopt a mapping method of one cell corresponding to one DSP slice, and by
compile-time and runtime configurations, the DSP resources are fully leveraged. Sec-
ondly, datapaths between cells are, therefore, datapaths between DSP slices, and we can
take full advantage of the dedicated cascaded channels along DSP columns to save routing
resources and increase the frequency. Lastly, we lay out all of the DSP slices with the XDC
placement constraint file generated by scripts in order to preserve the regularity of the
layout of the systolic array in deployment.

4. Proposed Design Flow
Considering the versatility of the systolic array design and the common frequency

issue that occurred when deployed on FPGAs, we hope to propose a more general solu-
tion. A semi-automatic design flow for high-frequency systolic arrays for FPGA deploy-
ment is designed and implemented, which is shown in Figure 2.

Figure 2. The flow diagram of the proposed design flow. The three main entrances in the design flow
are marked by serial numbers (1©– 3©).

Electronics 2023, 12, 822 6 of 13

The design flow has three main entrances that start from the main design written in
SpinalHDL, marked by serial numbers (1©– 3©) in the diagram according to the sequence of
the actual steps in the design flow. Starting from entrance 1©, we first perform cell design
and dataflow design that should be verified as DUT1 (design under test) in comparison
with the software golden model in functional simulation 1. After several modifications,
DUT1 that passed the functional simulation 1 will become the hardware golden model.
Secondly, starting from entrance 2©, we map the design on DSP slices by means of fine
configuration and instantiation, which should pass the verification as DUT2 in functional
simulation 2 in comparison with the software golden model and hardware golden model.
The well-configured DSP slices, as DUT2, should exhibit the exact same functionality as
DUT1, so as to pass the functional simulation 2. Starting from entrance 3©, XDC files
are generated automatically and sent to the FPGA physical design tools for placement
constraints together with the synthesized design. Using the timing reports analysis as
feedback, we continue to iterate the design loop until the optimal design is found. Such
design flow is also beneficial to implementing systolic arrays of different sizes onto FPGA
devices with different resource budgets.

5. Model Architecture and Crucial Blocks of Transformer

The standard Transformer contains an encoder and a decoder, consisting of three kinds
of blocks, i.e., the Multi-Head Attention (MHA) ResBlock, the Feed-Forward Network
(FFN) ResBlock, and the Residual Addition and Layer Normalization block; the MHA and
the FFN ResBlocks have the highest numbers of FLOPs and occupy most of the storage
space, according to Reference [23]. In this work, we mainly focus on these key modules
in Transformer for accelerator design. The specific computational tasks as well as the
module used for these tasks are presented in detail in Table 1. For the steps containing tasks
such as matrix multiplication, matrix addition, matrix transposition, and ReLU activation
function, the same proposed systolic array is used for their calculation. The steps containing
softmax and layer normalization are performed in the Softmax module and LayerNorm
module, respectively. The design of the Softmax module is partially based on the design of
Reference [24].

Table 1. The computation steps and module used for each step in the proposed accelerator.

1. Multi-Head Attention

MHA1 [Q, K, V] =
[
WQ, WK, WV

]
·X Systolic Array

MHA2 KT = Transpose(K) Systolic Array
MHA3 P = KT·Q Systolic Array
MHA4 S = Softmax

(
P/
√

dk
)

Softmax Module
MHA5 Z0−7 = V·S Systolic Array
MHA6 Z = WO·Concat

(
Z0−7

)
Systolic Array

2. Position-Wise Feed Forward

FF1 Z = ReLU(W1·Z + b1) Systolic Array
FF2 Z = W2·Z + b2 Systolic Array

3. Residual Addition and Layer Normalization

LN Z = γLayerNorm(X + Z) + β LayerNorm Module

6. Accelerator Architecture

The overall architecture of our accelerator is shown in Figure 3. The system architecture
mainly includes Host, external memory DRAM (dynamic random access memory), on-chip
buffer, accelerator in programmable logic, and on-chip and off-chip bus interconnection.
The accelerator receives data from external memory DRAM through an AXI connection
with the help of DMA (direct memory access). The data reorder module rearranges the data
as needed and passes them to multiple buffers. The read/write arbiter module controls

Electronics 2023, 12, 822 7 of 13

read and write between multiple buffers and the systolic array. The systolic array receives
data input from both the left and top directions while performing calculation tasks, and the
result can be output from one of the two directions after the calculation is completed (for
matrix transposition purposes). The size of the systolic array is configurable at compile
time and is denoted as SA_size. We set up six buffers in the accelerator for Weight, Bias, X,
Q, K, and V, respectively. Each buffer consists of SA_size RAMs (random access memory),
while each RAM has a depth of Buffer_Depth, and its data width is 8 bits. Therefore, at
each clock cycle, data with the number of SA_size are fetched by the fetch logic from one
buffer and sent to the corresponding SA_size ports of the systolic array in the left or top
direction. Two of the buffers are selected each time to provide the corresponding data for
the systolic array, and they are controlled by the main control module. A multiple clock
domains design is adopted, considering that the frequency of the Softmax module and the
LayerNorm module is generally lower than that of the systolic array. Asynchronous FIFOs
(First In First Out) are used when the data are passed between the fast clock domain and
slow clock domain.

Electronics 2023, 12, 822 7 of 13

on-chip buffer, accelerator in programmable logic, and on-chip and off-chip bus intercon-
nection. The accelerator receives data from external memory DRAM through an AXI con-
nection with the help of DMA (direct memory access). The data reorder module rear-
ranges the data as needed and passes them to multiple buffers. The read/write arbiter
module controls read and write between multiple buffers and the systolic array. The sys-
tolic array receives data input from both the left and top directions while performing cal-
culation tasks, and the result can be output from one of the two directions after the calcu-
lation is completed (for matrix transposition purposes). The size of the systolic array is
configurable at compile time and is denoted as SA_size. We set up six buffers in the accel-
erator for Weight, Bias, X, Q, K, and V, respectively. Each buffer consists of SA_size RAMs
(random access memory), while each RAM has a depth of Buffer_Depth, and its data width
is 8 bits. Therefore, at each clock cycle, data with the number of SA_size are fetched by the
fetch logic from one buffer and sent to the corresponding SA_size ports of the systolic
array in the left or top direction. Two of the buffers are selected each time to provide the
corresponding data for the systolic array, and they are controlled by the main control
module. A multiple clock domains design is adopted, considering that the frequency of
the Softmax module and the LayerNorm module is generally lower than that of the sys-
tolic array. Asynchronous FIFOs (First In First Out) are used when the data are passed
between the fast clock domain and slow clock domain.

Figure 3. The architecture of the proposed accelerator.

6.1. MHA Task
Matrix multiplication and matrix addition are the most significant tasks in the Multi-

Head Attention block. When performing matrix multiplication and matrix addition (pre-
sent in Figure 4a,b), at every cycle, each cell applies the same MAC (Multiply and Accu-
mulate) operation to its inputs from left and above and then passes the computed result
and its unmodified inputs to its adjacent cells, such that there is minimal data movement
and high computational concurrency. Each row or column accepts data one cycle earlier
than the row below it or the column next to its right side. For matrix addition mode in
Figure 4b, an input matrix of 0s with 1s on the diagonal is used on one side, while the bias
matrix to be added is on the other side.

Figure 3. The architecture of the proposed accelerator.

6.1. MHA Task

Matrix multiplication and matrix addition are the most significant tasks in the Multi-
Head Attention block. When performing matrix multiplication and matrix addition (present
in Figure 4a,b), at every cycle, each cell applies the same MAC (Multiply and Accumulate)
operation to its inputs from left and above and then passes the computed result and its
unmodified inputs to its adjacent cells, such that there is minimal data movement and high
computational concurrency. Each row or column accepts data one cycle earlier than the
row below it or the column next to its right side. For matrix addition mode in Figure 4b, an
input matrix of 0s with 1s on the diagonal is used on one side, while the bias matrix to be
added is on the other side.

Electronics 2023, 12, 822 8 of 13Electronics 2023, 12, 822 8 of 13

(a) (b)

(c)

Figure 4. Data flow of the systolic array for (a) matrix multiplication, (b) matrix addition, (c) matrix
transposition.

According to the proposed design flow, we design circuit logic for each cell, map the
design on DSP slices with primitive level configuration, and instantiate the configured
DSP slices in batches. As mentioned in Section 3, every DSP slice accepts four direct input
data signals, including A, B, C, D, and three cascaded input data signals, ACIN, BCIN,
and PCIN, shown in Figure 5b. Considering that cascaded channels can only be used
along columns, we use BCIN-BCOUT channels for B signal input and PCIN-PCOUT chan-
nels for P signal output. For the datapaths vertical to the DSP columns, i.e., signal A en-
tering the systolic array and the P signal outputting from it, we can only use additional
routing resources, shown in Figure 5a.

Figure 4. Data flow of the systolic array for (a) matrix multiplication, (b) matrix addition, (c) matrix
transposition.

According to the proposed design flow, we design circuit logic for each cell, map the
design on DSP slices with primitive level configuration, and instantiate the configured DSP
slices in batches. As mentioned in Section 3, every DSP slice accepts four direct input data
signals, including A, B, C, D, and three cascaded input data signals, ACIN, BCIN, and
PCIN, shown in Figure 5b. Considering that cascaded channels can only be used along
columns, we use BCIN-BCOUT channels for B signal input and PCIN-PCOUT channels
for P signal output. For the datapaths vertical to the DSP columns, i.e., signal A entering
the systolic array and the P signal outputting from it, we can only use additional routing
resources, shown in Figure 5a.

Electronics 2023, 12, 822 9 of 13
Electronics 2023, 12, 822 9 of 13

(a)

(b)

Figure 5. (a) A portion of the proposed systolic array, (b) schematic of the DSP48E2, while each cell
is mapped on one DSP48E2 slice, and the datapaths used inside are colored.

For MAC tasks, the DSP configuration and their functionalities are set as follows (the
datapaths for different purposes are marked in different colors for distinction in Figure
5a): inside each DSP slice, after receiving the A signal (direct input, marked in blue) and
the BCIN signal (cascade input, marked in red), a multiplication operation is first per-
formed on them, and the operation result is sent to the ALU through MReg (register
named M, marked in orange). Then, the calculation result of the ALU is forwarded to the
PReg (register named P) for registration. The result of PReg is sent back to the other input
end of the ALU through a loop (marked in cyan), then accumulated with the data passed

Figure 5. (a) A portion of the proposed systolic array, (b) schematic of the DSP48E2, while each cell is
mapped on one DSP48E2 slice, and the datapaths used inside are colored.

For MAC tasks, the DSP configuration and their functionalities are set as follows (the
datapaths for different purposes are marked in different colors for distinction in Figure 5a):
inside each DSP slice, after receiving the A signal (direct input, marked in blue) and the
BCIN signal (cascade input, marked in red), a multiplication operation is first performed
on them, and the operation result is sent to the ALU through MReg (register named M,
marked in orange). Then, the calculation result of the ALU is forwarded to the PReg
(register named P) for registration. The result of PReg is sent back to the other input end of
the ALU through a loop (marked in cyan), then accumulated with the data passed from

Electronics 2023, 12, 822 10 of 13

MReg in the next clock cycle. After calculation, the result of all cells can be output from
one of the two directions (left or down, marked in green), shown in Figure 5a. Figure 5b
shows the configuration of DSP48E2 in detail. The valid datapaths are colored in the same
way as shown in Figure 5a, and they are matched accordingly.

6.2. FFN Task

In the FFN task, the main computational procedures involve matrix multiplication,
matrix addition, and Rectified Linear Unit (ReLU) activation function. We map the ReLU
activation function into each DSP slice of the systolic array for greater efficiency and
higher DSP utilization. By such means, the FFN task can also be fully implemented on the
proposed systolic array. The ReLU activation function is shown in Equation (4):

ReLU(x) =

{
0, x < 0
x, x ≥ 0

(4)

As shown in Figure 5b, in order to determine the positivity or negativity of the
calculation results, we perform sign bit recognition on the most significant bit of the
calculation result of the ALU by using pattern recognition through configuring the signals
MASK and PATTERN of DSP slices. Only calculation results that are greater than 0 will be
allowed to be output; otherwise, they will be substituted by 0. By implementing the ReLU
function inside the DSP slice, we manage to conserve LUT (lookup table) resources to a
greater extent.

6.3. Matrix Transposition Task

The matrix transpose operation is an indispensable part of the attention mechanism.
The matrix transposition task in the MHA requires a transposition of the result of the calcu-
lation. We propose an efficient method to realize such transposition in two steps. Firstly,
after the calculation, the result can be output from the systolic array in two perpendicular
directions, left or below. Secondly, the result can be written into the buffer in two directions
by controlling the write address order, i.e., from the most significant address to the least
significant address or the opposite. By changing the output direction and the write address
order at the same time, the matrix transposition is realized, as shown in Figure 4c. With
such a design, no additional transpose unit is required.

7. Experimental Result

We mainly compare our results with previous systolic array accelerators on FPGA to
prove the effectiveness of our frequency optimization. Our design is evaluated on Xilinx
ZCU102 (with a similar chip process to related designs) for different array sizes by using
the Vivado 2021.2. With the help of the proposed design flow and fine-tuned configuration,
the maximum frequency of our design is much higher than related designs and achieves
588 MHz and 474 MHz for different sizes, which is 1.8× and 1.5× improvement compared
to the best recent design [8], demonstrated in Table 2. Since we did not find the exact
same array sizes as our design for comparison in recent designs, we chose the designs
with similar dimensions for comparison. A similar dimension implies similar parallelism
and therefore leads to meaningful comparisons. Based on our refined DSP configurations
method, we manage to fully leverage DSP resources and save them drastically by 84%
compared to Reference [21] with similar systolic array dimensions. By the mapping method
of one cell corresponding to one DSP slice and the refined configuration of DSP slices, we
manage to save a tremendous amount of DSP resources and enable an exact correspondence
between the amount of DSP utilization and the size of the systolic array. At the same time,
by placing a large number of calculation processes inside the DSP, the usage of FlipFlop
and LUT can also be significantly reduced, as shown in Table 3.

Electronics 2023, 12, 822 11 of 13

Table 2. Comparison of systolic arrays’ performances to related works.

Frequency a Dimension Precision Device e

[20] 220 8 × 10 × 16 b configurable Arria10
[22] 298 8 × 19 × 8 c fixed8–16 KCU1500
[21] 300 13 × 12 × 8 d int8 U250
[8] 322 16 × 16 fixed16 VU9P
[2] 200 64 × 64 int8 XCVU13P

Ours
588 16 × 16

fixed8 ZCU102474 32 × 32
a Frequency of the systolic array (MHz). b,c,d These reference designs are in SIMD (dimension = row * column
* SIMD factor). e FPGA Board Series and process technology of the devices used in these works are listed be-
low: Arria10—Intel® Arria® 10 Series, with 20 nm process technology; KCU1500—Xilinx Kintex® UltraScale™
Series, with 20 nm process technology; U250—Xilinx Alveo® UltraScale™ Series, with 16 nm process technol-
ogy; VU9P—Xilinx Virtex® UltraScale+™ Series, with 16 nm process technology; XCVU13P—Xilinx Virtex®

UltraScale+™ Series, with 16 nm process technology; ZCU102—Xilinx Zynq® UltraScale+™ Series, with 16 nm
process technology.

Table 3. Resources usage comparison (for matrix multiplication task).

Dimension DSP LUT FF BRAM

[21] 13 × 12 × 8 (=1248) a 6268 794,880 1,278,720 268
Ours b 32 × 32 (=1024) 1024 2774 8808 192

a These reference designs are in SIMD (dimension = row * column * SIMD factor). b Resources used in LayerNorm
and Softmax module in our design are not included here for a fair comparison with other systolic array designs.

8. Conclusions

In this work, we present a Transformer accelerator based on a well-designed high-
frequency systolic array for FPGA deployment, achieving a frequency improvement of
up to 1.8× while significantly reducing DSP, FlipFlop, and LUT resource usage. In terms
of innovation, the proposed systolic array can realize the calculations of both MHA and
FFN blocks through runtime configuration on DSP slices, while fully leveraging the DSP
resources. Furthermore, the systolic array based on refined DSP configurations, the design
flow as a general solution, and the placement constraint-generating tools proposed in this
paper are of universal reference values for more similar designs intending to implement a
higher-frequency systolic array on FPGA.

Admittedly, one of the limitations of this work is that we only focus on key modules
in Transformer for accelerator design. More effort is spent on the systolic array part of
the accelerator.

In future work, we plan to upgrade the Transformer accelerator with more complete
and comprehensive functionalities. Additionally, based on the proposed design flow,
we envision a fully automatic design flow as a universal solution for FPGA-based high-
frequency systolic array deployment.

Author Contributions: Conceptualization, Y.C. and T.L.; methodology, Y.C. and T.L.; validation, Y.C.;
investigation, Y.C. and X.C.; resources, T.S.; data curation, Y.C. and X.C.; writing—original draft
preparation, Y.C.; writing—review and editing, T.L. and T.S.; supervision, T.S.; project administration,
Y.C. and T.S.; funding acquisition, T.S. and Z.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Key-Area Research and Development Program of Guang-
dong Province, China (Grant No. 2020B0404030003); and the Science and Technology Planning Project
of Guangdong Province, China (Grant No. 2021B1212050003).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2023, 12, 822 12 of 13

References
1. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need.

In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. Available
online: https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html (accessed on 31
January 2023).

2. Li, S.; Wang, M.; Liang, S.; Lin, J.; Wang, Z. Hardware Accelerator for Multi-Head Attention and Position-Wise Feed-Forward in
the Transformer. In Proceedings of the 2020 IEEE 33rd International System-on-Chip Conference (SOCC), Las Vegas, NV, USA,
8–11 September 2020; pp. 84–89. [CrossRef]

3. Ye, W.; Zhou, X.; Zhou, J.T.; Chen, C.; Li, K. Accelerating Attention Mechanism on FPGAs Based on Efficient Reconfigurable
Systolic Array. ACM Trans. Embed. Comput. Syst. 2022. [CrossRef]

4. Automated Systolic Array Architecture Synthesis for High Throughput CNN Inference on FPGAs | Proceedings of the 54th
Annual Design Automation Conference 2017. Available online: https://dl.acm.org/doi/abs/10.1145/3061639.3062207 (accessed
on 28 November 2022).

5. Chen, Y.-H.; Krishna, T.; Emer, J.S.; Eyeriss, V.S. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional
Neural Networks. IEEE J. Solid-State Circuits 2017, 52, 127–138. [CrossRef]

6. Das, S.; Roy, A.; Chandrasekharan, K.K.; Deshwal, A.; Lee, S. A Systolic Dataflow Based Accelerator for CNNs. In Proceedings of
the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–5. [CrossRef]

7. Zeng, Y.; Sun, H.; Katto, J.; Fan, Y. Accelerating Convolutional Neural Network Inference Based on a Reconfigurable Sliced
Systolic Array. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of
Korea, 22–28 May 2021; pp. 1–5.

8. Jia, L.; Lu, L.; Wei, X.; Liang, Y. Generating Systolic Array Accelerators With Reusable Blocks. IEEE Micro 2020, 40, 85–92.
[CrossRef]

9. Genc, H.; Haj-Ali, A.; Iyer, V.; Amid, A.; Mao, H.; Wright, J.; Schmidt, C.; Zhao, J.; Ou, A.; Banister, M.; et al. Gemmini: An agile
systolic array generator enabling systematic evaluations of deep-learning architectures. arXiv 2019, arXiv:1911.09925.

10. Lei, J.; Kiros, J.R.; Hinton, G.E. Layer Normalization. arXiv 2016, arXiv:1607.06450.
11. Park, J.; Yoon, H.; Ahn, D.; Choi, J.; Kim, J.-J. OPTIMUS: OPTImized Matrix MUltiplication Structure for Transformer Neural

Network Accelerator. Proc. Mach. Learn. Syst. 2020, 2, 363–378.
12. Accommodating Transformer onto FPGA | Proceedings of the 2021 on Great Lakes Symposium on VLSI. Available online:

https://dl.acm.org/doi/abs/10.1145/3453688.3461739 (accessed on 29 December 2022).
13. Li, B.; Kong, Z.; Zhang, T.; Li, J.; Li, Z.; Liu, H.; Ding, C. Efficient Transformer-Based Large Scale Language Representations Using

Hardware-Friendly Block Structured Pruning. arXiv 2020, arXiv:2009.08065.
14. Zhang, X.; Wu, Y.; Zhou, P.; Tang, X.; Hu, J. Algorithm-Hardware Co-Design of Attention Mechanism on FPGA Devices. ACM

Trans. Embed. Comput. Syst. 2021, 20, 71:1–71:24. [CrossRef]
15. Peng, H.; Huang, S.; Geng, T.; Li, A.; Jiang, W.; Liu, H.; Wang, S.; Ding, C. Accelerating Transformer-Based Deep Learning

Models on FPGAs Using Column Balanced Block Pruning. In Proceedings of the 2021 22nd International Symposium on Quality
Electronic Design (ISQED), Santa Clara, CA, USA, 7–9 April 2021; pp. 142–148. [CrossRef]

16. Bahmani, M. Accelerating Transformer Deep Learning Models on FPGAs Using High-Level Synthesis. Laurea, Politecnico di
Torino. 2021. Available online: https://webthesis.biblio.polito.it/17894/ (accessed on 31 January 2023).

17. Sun, M.; Ma, H.; Kang, G.; Jiang, Y.; Chen, T.; Ma, X.; Wang, Z.; Wang, Y. VAQF: Fully Automatic Software-Hardware Co-Design
Framework for Low-Bit Vision Transformer. arXiv 2022, arXiv:2201.06618.

18. FTRANS | Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design. Available online:
https://dl.acm.org/doi/abs/10.1145/3370748.3406567 (accessed on 1 February 2023).

19. Papon, C. SpinalHDL. 2021. Available online: https://github.com/SpinalHDL/SpinalHDL (accessed on 31 January 2023).
20. Lai, Y.-H.; Rong, H.; Zheng, S.; Zhang, W.; Cui, X.; Jia, Y.; Wang, J.; Sullivan, B.; Zhang, Z.; Liang, Y.; et al. SuSy: A Programming

Model for Productive Construction of High-Performance Systolic Arrays on FPGAs. In Proceedings of the 2020 IEEE/ACM
International Conference on Computer Aided Design (ICCAD), Virtual Event, USA, 2–5 November 2020; pp. 1–9.

21. AutoSA | The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. Available online: https:
//dl.acm.org/doi/abs/10.1145/3431920.3439292 (accessed on 28 November 2022).

22. Zhang, J.; Zhang, W.; Luo, G.; Wei, X.; Liang, Y.; Cong, J. Frequency Improvement of Systolic Array-Based CNNs on FPGAs.
In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019;
pp. 1–4. [CrossRef]

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://doi.org/10.1109/SOCC49529.2020.9524802
http://doi.org/10.1145/3549937
https://dl.acm.org/doi/abs/10.1145/3061639.3062207
http://doi.org/10.1109/JSSC.2016.2616357
http://doi.org/10.1109/ISCAS45731.2020.9180403
http://doi.org/10.1109/MM.2020.2997611
https://dl.acm.org/doi/abs/10.1145/3453688.3461739
http://doi.org/10.1145/3477002
http://doi.org/10.1109/ISQED51717.2021.9424344
https://webthesis.biblio.polito.it/17894/
https://dl.acm.org/doi/abs/10.1145/3370748.3406567
https://github.com/SpinalHDL/SpinalHDL
https://dl.acm.org/doi/abs/10.1145/3431920.3439292
https://dl.acm.org/doi/abs/10.1145/3431920.3439292
http://doi.org/10.1109/ISCAS.2019.8702071

Electronics 2023, 12, 822 13 of 13

23. Ganesh, P.; Chen, Y.; Lou, X.; Khan, M.A.; Yang, Y.; Sajjad, H.; Nakov, P.; Chen, D.; Winslett, M. Compressing Large-Scale
Transformer-Based Models: A Case Study on BERT. Trans. Assoc. Comput. Linguist. 2021, 9, 1061–1080. [CrossRef]

24. Wang, M.; Lu, S.; Zhu, D.; Lin, J.; Wang, Z. A High-Speed and Low-Complexity Architecture for Softmax Function in Deep
Learning. In Proceedings of the 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, 26–30
October 2018; pp. 223–226. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1162/tacl_a_00413
http://doi.org/10.1109/APCCAS.2018.8605654

	Introduction
	Background
	The Model Architecture of the Transformer
	The Systolic Array

	Deployment of Systolic Array with Conserved Topology and Fine-Tuned DSP Configuration on FPGA
	Proposed Design Flow
	Model Architecture and Crucial Blocks of Transformer
	Accelerator Architecture
	MHA Task
	FFN Task
	Matrix Transposition Task

	Experimental Result
	Conclusions
	References

